WO2022088319A1 - 支撑膜层及柔性显示面板 - Google Patents

支撑膜层及柔性显示面板 Download PDF

Info

Publication number
WO2022088319A1
WO2022088319A1 PCT/CN2020/130807 CN2020130807W WO2022088319A1 WO 2022088319 A1 WO2022088319 A1 WO 2022088319A1 CN 2020130807 W CN2020130807 W CN 2020130807W WO 2022088319 A1 WO2022088319 A1 WO 2022088319A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow structure
film layer
semi
elliptical hollow
elliptical
Prior art date
Application number
PCT/CN2020/130807
Other languages
English (en)
French (fr)
Inventor
汪文强
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/266,645 priority Critical patent/US11770907B2/en
Publication of WO2022088319A1 publication Critical patent/WO2022088319A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0017Casings, cabinets or drawers for electric apparatus with operator interface units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/552Fatigue strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the field of display technology, in particular to the field of flexible display technology, and in particular to a supporting film layer and a flexible display panel.
  • OLED Organic Light Emitted Diode
  • the present application provides a support film layer and a flexible display panel, which solve the problem of partial fracture of the support film layer in a long-time bending fatigue test.
  • the present application provides a support film layer, the support film layer is provided with a bending area; the bending area includes at least one elliptical hollow structure and a plurality of shuttle-like hollow structures arranged periodically;
  • the width direction is the same as the width direction of the shuttle-like hollow structure;
  • the length direction of the shuttle-like hollow structure is the same as the length direction of the elliptical hollow structure, and the width direction is the bending direction of the supporting film layer;
  • the shuttle-like hollow structure It includes a first semi-elliptical hollow structure, a rectangular hollow structure and a second semi-elliptical hollow structure connected in sequence along the length direction; in the length direction, the elliptical hollow structure is located in two adjacent first semi-elliptical hollow structures and/or between the second semi-elliptical hollow structures; and in the width direction, the elliptical hollow structures are located between two adjacent rectangular hollow structures.
  • the first semi-elliptical hollow structure is the same as half of the elliptical hollow structure in the length direction; the second semi-elliptical hollow structure and the elliptical hollow structure are The other half in the length direction is the same.
  • the width of the rectangular hollow structure is twice the short radius of the elliptical hollow structure.
  • the distance between the adjacent elliptical hollow structures and the first semi-elliptical hollow structure or the second semi-elliptical hollow structure is 100 ⁇ m to 240 ⁇ m.
  • the distance between two adjacent rectangular hollow structures is 60 ⁇ m to 140 ⁇ m.
  • the short radius of the elliptical hollow structure, the short radius of the first semi-elliptical hollow structure, and the short radius of the second semi-elliptical hollow structure are all 0.08 mm to 0.12mm.
  • the long radius of the elliptical hollow structure, the long radius of the first semi-elliptical hollow structure, and the long radius of the second semi-elliptical hollow structure are all 0.1 mm to 0.25mm.
  • the length of the rectangular hollow structure is 2.7 mm to 5.2 mm.
  • the support film layer further includes non-bending regions located on both sides of the bending region.
  • the present application provides a flexible display panel, which includes a flexible substrate and the support film layer in any of the above embodiments, and the support film layer is located on one side of the flexible substrate.
  • the flexible display panel further includes a protective film layer; the protective film layer is located on one side of the support film layer and away from the flexible substrate; the protective film layer at least covers the support film layer bending area.
  • the protective film layer is a linear elastic material.
  • the flexible display panel further includes a buffer layer; the buffer layer is located between the flexible substrate and the support film layer, and the buffer layer is a superelastic material .
  • the stress concentration in the bending area can be weakened , which is beneficial to improve the bending service life of the supporting film layer; it can improve the ductility of the flexible display panel as a whole, improve the bending performance of the flexible display panel, reduce the risk of debonding and fracture between the film layers, and improve the production quality of the product. Rate.
  • FIG. 1 is a schematic structural diagram of a flexible display panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of the support film layer in FIG. 1 .
  • FIG. 3 is a schematic structural diagram of the bending area in FIG. 2 .
  • FIG. 4 is an enlarged schematic diagram of the structure of the bending region in FIG. 3 .
  • FIG. 5 is a schematic structural diagram of the elliptical hollow structure in FIG. 4 .
  • FIG. 6 is a schematic structural diagram of the corresponding semi-elliptical hollow structure in FIG. 4 .
  • FIG. 7 is a partial cloud image of the module stack when it is bent.
  • FIG. 8 is a stress cloud diagram of the support film when it is bent.
  • FIG. 9 is a graph showing the trend of distance X and local stress.
  • FIG. 10 is a graph showing the trend of distance Y and local stress.
  • FIG. 11 is a graph showing the trend of length L and local stress.
  • FIG. 12 is a schematic diagram showing the trend of short radius a and local stress.
  • FIG. 13 is a schematic diagram showing the trend of long radius b and local stress.
  • the present embodiment provides a support film layer 20 .
  • the support film layer 20 is provided with a bending area 200 and non-bending areas 100 located on both sides of the bending area 200 ;
  • the bending area 200 includes Periodically arranged at least one elliptical hollow structure 230 and a plurality of shuttle-like hollow structures 210;
  • the width direction of the elliptical hollow structure 230 is the same as the width direction of the shuttle-like hollow structure 210;
  • the length direction of the shuttle-like hollow structure 210 The length direction of the elliptical hollow structure 230 is the same, and the width direction is the bending direction of the supporting film layer 20;
  • the shuttle-like hollow structure 210 includes a first semi-elliptical hollow structure 211, a rectangular The hollow structure 212 and the second semi-elliptical hollow structure 213; in the longitudinal direction, the elliptical hollow structure 230 is located between two adjacent first semi-elliptical hollow structures 211 and/or the second semi-elli
  • the elliptical hollow structure 230 and the shuttle-like hollow structure 210 are formed by etching, and are required to be free from foreign matter, oil stains and defects after processing, and the bending area 200 after forming is kept flat and has a good appearance. It is ensured that there is no side-etching and no over-etching phenomenon, so as to ensure the uniformity of the respective sizes of the circular hollow structure and the shuttle-like hollow structure 210 . In addition, it is required that the horizontal and vertical intervals corresponding to the circular hollow structure and the fusiform hollow structure 210 are uniform and the respective edges are free of burrs, micro-cracks, and the like.
  • the local modulus of the bending area 200 can be reduced, and the local ductility of the supporting layer can be improved.
  • the stress concentration in the bending area 200 can be weakened, which is beneficial to improve the supporting film layer.
  • the bending service life of the supporting membrane layer 20 is reduced or eliminated, thereby reducing or eliminating the risk of local fracture of the supporting film layer 20 .
  • the various technical means provided in the present application are at least optimized designs for weakening or eliminating the risk of excessive stress concentration during the bending process, which may cause the supporting film layer 20 to be prone to local fracture.
  • the first semi-elliptical hollow structure 211 and the elliptical hollow structure 230 are the same half in the length direction; the second semi-elliptical hollow structure 213 and the elliptical hollow structure The other half of 230 is the same lengthwise.
  • the state in which the first semi-elliptical hollow structure 211 and the second semi-elliptical hollow structure 213 are connected and combined is consistent with the elliptical hollow structure 230, and the first semi-elliptical hollow structure 211, the first semi-elliptical hollow structure 211, the The two semi-elliptical hollow structures 213 each account for one-half of the elliptical hollow structure 230 .
  • the design of this structure can further weaken or eliminate the over-concentration of stress during the bending process, which is beneficial to improve the bending of the supporting film layer 20 .
  • the service life is reduced, thereby reducing or eliminating the risk of local breakage of the support film layer 20 .
  • the width of the rectangular hollow structure 212 is twice the short radius a of the elliptical hollow structure 230 .
  • the center extension lines of the elliptical hollow structure 230 and the corresponding rectangular hollow structure 212 in the length direction are coincident, and the rectangular hollow structure 212 and the first semi-elliptical hollow structure 211 and /or the second semi-elliptical hollow structure 213 is circumscribed and connected.
  • the local peak stress first decreased and then increased, indicating the distance between the adjacent elliptical hollow structures 230 and the first semi-elliptical hollow structure 211 or the second semi-elliptical hollow structure 213 X has a better selection area, neither bigger is better nor smaller is better.
  • the local peak stress The distance X between the adjacent elliptical hollow structures 230 and the first semi-elliptical hollow structure 211 or the second semi-elliptical hollow structure 213 decreases from about 900 MPa to about 600 MPa; and the distance X between the adjacent elliptical hollow structures 230 and the first semi-elliptical hollow structure 211 or the second semi-elliptical hollow structure 213 sequentially increases from 160 ⁇ m, 180 ⁇ m, 200 ⁇ m, and 220 ⁇ m.
  • the local peak stress increases from about 600 MPa to about 950 MPa. Therefore, as a better choice, the distance X between the adjacent elliptical hollow structures 230 and the first semi-elliptical hollow structure 211 or the second semi-elliptical hollow structure 213 can be selected in the range of 120 ⁇ m to 180 ⁇ m, Of course, as a better solution for weakening the local peak stress, it can also be selected at about 160 ⁇ m.
  • the above simulation data is based on the length L of the rectangular hollow structure 212 being 4.2 mm, the distance Y between two adjacent rectangular hollow structures 212 being 0.08 mm, and the short radius a of the elliptical hollow structure 230 being 0.1 mm, and the corresponding trend diagram when the long radius b of the elliptical hollow structure 230 is 0.2 mm.
  • the local peak stress first decreases and then increases, indicating that the phase
  • the distance Y between the two adjacent rectangular hollow structures 212 has a preferred selection area, which is neither the bigger the better nor the smaller the better.
  • the local peak stress decreases from about 800 MPa to nearly 600 MPa; while the distance between the two adjacent rectangular hollow structures 212 is In the process of increasing Y from 80 ⁇ m, 100 ⁇ m, 120 ⁇ m to 140 ⁇ m, the local peak stress increases from nearly 600 MPa to about 1300 MPa. Therefore, as a better choice, the distance Y between two adjacent rectangular hollow structures 212 can be selected in the range of 60 ⁇ m to 100 ⁇ m. Of course, as a better solution for weakening the local peak stress, it is also possible to It is chosen to be around 80 ⁇ m.
  • the above simulation data is based on the length L of the rectangular hollow structure 212 being 4.2 mm, and the distance between the adjacent elliptical hollow structure 230 and the first semi-elliptical hollow structure 211 or the second semi-elliptical hollow structure 213
  • the short radius a of the elliptical hollow structure 230 increases from 80 ⁇ m to 300 ⁇ m, the local peak stress also increases from about 500 MPa to 1750 MPa Left and right, it is explained that the smaller the short radius a of the elliptical hollow structure 230, the better. Therefore, as a better choice, the short radius a of the elliptical hollow structure 230 can be selected in the range of 80 ⁇ m to 120 ⁇ m. Of course, as a better solution for weakening the local peak stress, it can also be selected in the range of 100 ⁇ m about.
  • the above simulation data is based on the length L of the rectangular hollow structure 212 being 4.2 mm, and the distance between the adjacent elliptical hollow structure 230 and the first semi-elliptical hollow structure 211 or the second semi-elliptical hollow structure 213
  • the short radius a of the elliptical hollow structure 230 may be, but not limited to, the same as the short radius of the first semi-elliptical hollow structure 211 or the short radius of the second semi-elliptical hollow structure 213 .
  • the long radius b of the elliptical hollow structure 230 decreases from 0.1 mm to 0.25 mm, the local peak stress also decreases from about 980 MPa to It is about 540MPa, indicating that the larger the major radius b of the elliptical hollow structure 230, the better. Therefore, as a better choice, the long radius b of the elliptical hollow structure 230 can be selected in the range of more than 0.2 mm, and of course, the value can also be selected to be about 0.12 mm, 0.15 mm or 0.22 mm.
  • the above simulation data is based on the length L of the rectangular hollow structure 212 being 4.2 mm, and the distance between the adjacent elliptical hollow structure 230 and the first semi-elliptical hollow structure 211 or the second semi-elliptical hollow structure 213
  • the long radius b of the elliptical hollow structure 230 may be, but not limited to, the same as the long radius of the first semi-elliptical hollow structure 211 or the long radius of the second semi-elliptical hollow structure 213 .
  • the length L of the rectangular hollow structure 212 increases, the local peak stress experienced by the support film layer 20 during the bending process is gradually reduced.
  • the length L of the rectangular hollow structure 212 can be selected in the range of 2.7 mm to 5.2 mm.
  • the corresponding local peak stress is about 1100 MPa;
  • the corresponding local peak stress is about 930MPa;
  • the corresponding local peak stress is about 680MPa;
  • the corresponding local peak stress is about 580MPa;
  • the length L of the rectangular hollow structure 212 is 4.7mm, the corresponding local peak stress is about 520MPa;
  • the corresponding local The peak stress is about 480MPa; therefore, considering the optimization of the local peak stress, the length L of the rectangular hollow structure 212 can be selected to be greater than or equal to 2.7mm, or the corresponding local peak stress can be selected according to the size of the local peak stress that the supporting film layer 20 can adapt to.
  • the length L of the rectangular hollow structure 212 is 3.2mm, the corresponding local peak stress is about 930MPa;
  • the corresponding local peak stress is about 680MPa;
  • the corresponding local peak stress is about 580MPa;
  • the length L of the rectangular hollow structure 212 is 4.7mm, the corresponding local peak stress is about
  • the above simulation data is based on the long radius b of the elliptical hollow structure 230 being 0.2 mm, and the adjacent elliptical hollow structure 230 and the first semi-elliptical hollow structure 211 or the second semi-elliptical hollow structure 213
  • the distance X between them is 0.16 mm
  • the distance Y between two adjacent rectangular hollow structures 212 is 0.08 mm
  • the corresponding trend diagram when the short radius a of the elliptical hollow structures 230 is 0.1 mm.
  • the bending region 200 of the supporting film layer 20 adopts the combined design of the patterned and periodically arranged elliptical hollow structure 230 and the shuttle-like hollow structure 210, which effectively reduces the elastic modulus of the bending region 200.
  • the ductility of the bending area 200 is improved, but the periodic hole design is introduced, and there will still be a certain stress concentration phenomenon at the connection position between the elliptical hollow structure 230 and the quasi-fusiform hollow structure 210 during the bending process. That is, the interconnection between the elliptical hollow structure 230 and the shuttle-like hollow structure 210 is relatively fragile and prone to bending and breaking.
  • the present application combines the simulation optimization method to determine the above characteristic values: the distance X between the adjacent elliptical hollow structures 230 and the first semi-elliptical hollow structure 211 or the second semi-elliptical hollow structure 213, the distance X between the adjacent two
  • the distance Y between the rectangular hollow structures 212, the length L of the rectangular hollow structures 212, the short radius a of the elliptical hollow structure 230, and the long radius b of the elliptical hollow structure 230 are reasonably designed to minimize fracture failure. risk.
  • the connection position between the structures 210 in other words, the connection position can be understood as the position where the main risk point is located.
  • FIG. 8 shows the stress cloud diagram of the support film layer 20 during the bending process. It can also be seen that the stress concentration area is located at the connection position between the elliptical hollow structure 230 and the shuttle-like hollow structure 210 Similarly, it can be seen that during the bending process of the modular stack structure, the stress concentration is mainly caused by the relative size transition of the connection position between the elliptical hollow structure 230 and the shuttle-like hollow structure 210.
  • the present application combines the finite element simulation method, the distance X between the above-mentioned adjacent elliptical hollow structures 230 and the first semi-elliptical hollow structure 211 or the second semi-elliptical hollow structure 213, and the distance between the two adjacent rectangular hollow structures 212 Y, the length L of the rectangular hollow structure 212, the short radius a of the elliptical hollow structure 230, and the long radius b of the elliptical hollow structure 230 are optimized for size and shape design and verified, and this method can indeed solve the stress concentration phenomenon and minimize stress concentration.
  • the present application provides a flexible display panel, which includes a flexible substrate 40 and the supporting film layer 20 in any of the above embodiments, and the supporting film layer 20 is located on one side of the flexible substrate 40 .
  • the flexible display panel further includes a protective film layer 10 ; the protective film layer 10 is located on one side of the support film layer 20 and away from the flexible substrate 40 ; the protective film layer 10 covers at least the bending region 200 .
  • the protective film layer 10 is a linear elastic material.
  • the flexible display panel further includes a buffer layer 30 ; the buffer layer 30 is located between the flexible substrate 40 and the support film layer 20 , and the buffer layer 30 is a superelastic material with good energy absorption and buffering effect.
  • the flexible display panel further includes a display device layer 50 , a polarizer 60 , an optical adhesive layer 70 and a protective cover 80 which are disposed on the other side of the flexible substrate 40 and are stacked in sequence.
  • the flexible display panel is further provided with at least one circular hole 90 ; the circular hole 90 is arranged through the protective film layer 10 , the support film layer 20 , the buffer layer 30 , the flexible substrate 40 , the display device layer 50 , the polarizer 60 , and the optical glue In the layer 70 and the protective cover plate 80 , the circular hole 90 is disposed in the non-bending area 100 of the supporting film layer 20 . It can be understood that the circular hole 90 can be, but not limited to, a camera hole.
  • the modulus of the protective film layer 10 , the buffer layer 30 , the flexible substrate 40 , the polarizer 60 , the optical adhesive layer 70 and the protective cover plate 80 are relatively low and have good bendability, among which the optical
  • the adhesive layer 70 is a typical viscoelastic transparent material; the protective cover plate 80 , the polarizer 60 and the flexible substrate 40 are all linear elastic materials.
  • the elastic modulus of the raw material of the supporting film layer 20 used in this application is 200GPa, and its material is a stainless steel plate with a low content of manganese metal; its thickness can be, but not limited to, 90 ⁇ m to 210 ⁇ m, and a preferred thickness of 150 ⁇ m can also be selected. Thickness; tensile strength is 1500MPa to 2250MPa, or about 1850MPa can also be selected.
  • the middle part of the support film layer 20 is designed with holes, and the surface is smoothed, the surface flatness is controlled within 0.5mm, the appearance is free of bumps and concave points, and the edges are required to be free of burrs.
  • the above-mentioned supporting film layer 20 and flexible display panel in the present application can be applied to, but not limited to, phablet phones, flexible folding mobile phones, full-screen mobile phones, tablet computers, and can also be applied to rollable mobile phones or rollable tablets.
  • the adhesive optical adhesive layer 70 has the characteristics of coordinated deformation during the bending process; in addition, in the process of implementing the present application, the idea of shape optimization and size optimization design is adopted to reasonably design the periodic special combination hole substructure of the above design, Combined with the method of simulation design optimization and verification, the optimal structure size of the hole sub-structure is determined, so as to reduce the stress concentration phenomenon and reduce the risk of fracture failure of the support layer caused by excessive local stress during the bending process.
  • the yield problem of the flexible folding screen module can be improved, and reasonable and effective design methods and solutions can be provided for reference.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nonlinear Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种支撑膜层(20)及柔性显示面板,通过在支撑膜层(20)中的弯折区(200)周期性地设置至少一个椭圆状镂空结构(230)和多个类梭状镂空结构(210),可以弱化弯折区(200)的应力集中情况,有利于提高支撑膜层(20)的弯折使用寿命;可以从整体上改善柔性显示面板的延展性,提高柔性显示面板的弯折性能,降低膜层间的脱粘与断裂风险,提升产品的生产良率。

Description

支撑膜层及柔性显示面板 技术领域
本申请涉及显示技术领域,尤其涉及柔性显示技术领域,具体涉及一种支撑膜层及柔性显示面板。
背景技术
近年来,有机发光二极管(OLED,Organic Light Emitted Diode)显示技术日趋成熟,OLED模组叠构在LED(Light Emitted Diode,发光二极管)技术的基础之上,其厚度得到明显的降低,这使得柔性显示商用化成为可能。
近年来,各终端厂商已陆续推出柔性折叠、卷曲式显示电子产品,但价格较为昂贵导致产品的普及性相对较低。柔性显示屏的生产良率较低是导致这一现象的直接原因。其中,当前阶段柔性显示模组在生产过程中模组叠构的膜层材料之间出现脱粘、断裂失效等现象频频出现,直接影响产品的使用寿命和生产良率。一般而言,典型的OLED模组叠构中,为保证模组的整体平整性,与叠构相邻的最底下一层材料通常采用较薄的不锈钢板(SUS:一种不锈钢代号)作为支撑层。
然而,由于支撑层的模量与膜层、胶层差异性明显,通常相隔100~1000倍,故在弯折过程中因受力变形不协调,常常出现膜层之间的脱粘(Peeling)现象。鉴于此,为改善这一失效现象,通常将整面支撑层的弯折区制作成网格形,即带图案(Pattern)的结构形式,这一方案相比整面SUS有效解决了Peeling现象,但在长时间弯折疲劳试验(弯折折叠次数>20万次)中,常出现局部断裂的现象。这一断裂问题的存在直接影响OLED模组的使用寿命。
技术问题
本申请提供一种支撑膜层及柔性显示面板,解决了长时间弯折疲劳试验中支撑膜层局部断裂的问题。
技术解决方案
第一方面,本申请提供一种支撑膜层,支撑膜层设置有弯折区;弯折区包括周期性排列的至少一个椭圆状镂空结构和多个类梭状镂空结构;椭圆状镂空结构的宽度方向与类梭状镂空结构的宽度方向相同;类梭状镂空结构的长度方向与椭圆状镂空结构的长度方向相同,且宽度方向为支撑膜层的弯折方向;其中,类梭状镂空结构包括沿长度方向上依次连接的第一半椭圆状镂空结构、矩形镂空结构以及第二半椭圆状镂空结构;在长度方向上,椭圆状镂空结构位于两个相邻的第一半椭圆状镂空结构和/或第二半椭圆状镂空结构之间;且在宽度方向上椭圆状镂空结构位于两个相邻的矩形镂空结构之间。
基于第一方面,在第一方面的第一种实施方式中,第一半椭圆状镂空结构与椭圆状镂空结构沿长度方向上的一半相同;第二半椭圆状镂空结构与椭圆状镂空结构沿长度方向上的另一半相同。
基于第一方面的第一种实施方式,在第一方面的第二种实施方式中,矩形镂空结构的宽度两倍于椭圆状镂空结构的短半径。
基于第一方面,在第一方面的第三种实施方式中,在长度方向上,相邻的椭圆状镂空结构与第一半椭圆状镂空结构或者第二半椭圆状镂空结构之间的距离为100μm至240μm。
基于第一方面,在第一方面的第四种实施方式中,在宽度方向上,相邻的两个矩形镂空结构之间的距离为60μm至140μm。
基于第一方面,在第一方面的第五种实施方式中,椭圆状镂空结构的短半径、第一半椭圆状镂空结构的短半径以及第二半椭圆状镂空结构的短半径均为0.08mm至0.12mm。
基于第一方面,在第一方面的第六种实施方式中,椭圆状镂空结构的长半径、第一半椭圆状镂空结构的长半径以及第二半椭圆状镂空结构的长半径均为0.1mm至0.25mm。
基于第一方面,在第一方面的第七种实施方式中,矩形镂空结构的长度为2.7mm至5.2mm。
基于第一方面的上述任一实施方式,在第一方面的第八种实施方式中,支撑膜层还包括位于弯折区两侧的非弯折区。
第二方面,本申请提供一种柔性显示面板,其包括柔性基板和上述任一实施方式中的支撑膜层,支撑膜层位于柔性基板的一侧。
基于第二方面,在第二方面的第一种实施方式中,柔性显示面板还包括保护膜层;保护膜层位于支撑膜层的一侧,且远离柔性基板;保护膜层至少覆盖支撑膜层的弯折区。
基于第二方面的第一种实施方式,在第二方面的第二种实施方式中,保护膜层为线弹性材料。
基于第二方面的第一种实施方式,在第二方面的第三种实施方式中,柔性显示面板还包括缓冲层;缓冲层位于柔性基板与支撑膜层之间,且缓冲层为超弹材料。
有益效果
本申请提供的支撑膜层及柔性显示面板,通过在支撑膜层中的弯折区周期性地设置至少一个椭圆状镂空结构和多个类梭状镂空结构,可以弱化弯折区的应力集中情况,有利于提高支撑膜层的弯折使用寿命;可以从整体上改善柔性显示面板的延展性,提高柔性显示面板的弯折性能,降低膜层间的脱粘与断裂风险,提升产品的生产良率。
附图说明
图1为本申请实施例提供的柔性显示面板的结构示意图。
图2为图1中支撑膜层的结构示意图。
图3为图2中弯折区的结构示意图。
图4为图3中弯折区结构放大示意图。
图5为图4中椭圆状镂空结构的结构示意图。
图6为图4中对应的半椭圆状镂空结构的结构示意图。
图7为模组叠构弯折时的局部云图。
图8为支撑膜层弯折时的应力云图。
图9为距离X与局部应力的趋势示意图。
图10为距离Y与局部应力的趋势示意图。
图11为长度L与局部应力的趋势示意图。
图12为短半径a与局部应力的趋势示意图。
图13为长半径b与局部应力的趋势示意图。
本发明的实施方式
为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
请参阅图2至图4,本实施例提供了一种支撑膜层20,支撑膜层20设置有弯折区200以及位于弯折区200两侧的非弯折区100;弯折区200包括周期性排列的至少一个椭圆状镂空结构230和多个类梭状镂空结构210;椭圆状镂空结构230的宽度方向与类梭状镂空结构210的宽度方向相同;类梭状镂空结构210的长度方向与椭圆状镂空结构230的长度方向相同,且宽度方向为支撑膜层20的弯折方向;其中,类梭状镂空结构210包括沿长度方向上依次连接的第一半椭圆状镂空结构211、矩形镂空结构212以及第二半椭圆状镂空结构213;在长度方向上,椭圆状镂空结构230位于两个相邻的第一半椭圆状镂空结构211和/或第二半椭圆状镂空结构213之间;且在宽度方向上椭圆状镂空结构230位于两个相邻的矩形镂空结构212之间。
需要进行说明的是,椭圆状镂空结构230和类梭状镂空结构210均采用蚀刻的加工方式成型,并加工后要求无异物、油污、缺陷,且成型后弯折区200保持平整,外观良好,保证无侧蚀、无过蚀现象,以此保证圆状镂空结构、类梭状镂空结构210各自尺寸的均一性。以及要求圆状镂空结构、类梭状镂空结构210对应的横纵间隔均匀一致,且各自的边缘无毛刺、微裂纹等。通过圆状镂空结构、类梭状镂空结构210的相邻排布,且在弯折区200呈交替式周期性排布,可以降低弯折区200的局部模量,提高支撑层的局部延展性能。
通过在支撑膜层20中的弯折区200周期性地设置至少一个椭圆状镂空结构230和多个类梭状镂空结构210,可以弱化弯折区200的应力集中情况,有利于提高支撑膜层20的弯折使用寿命,进而降低或者消除了支撑膜层20发生局部断裂的风险。可以理解的是,本申请中提供的各种技术手段至少是为了弱化或者消除在弯折过程中应力过于集中,致使支撑膜层20容易发生局部断裂的风险而进行的优化设计。
请参阅图4至图6,在其中一个实施例中,第一半椭圆状镂空结构211与椭圆状镂空结构230沿长度方向上的一半相同;第二半椭圆状镂空结构213与椭圆状镂空结构230沿长度方向上的另一半相同。
可以理解的是,第一半椭圆状镂空结构211和第二半椭圆状镂空结构213连接组合在一起的状态,与椭圆状镂空结构230是一致的,而且第一半椭圆状镂空结构211、第二半椭圆状镂空结构213各占椭圆状镂空结构230的二分之一,这种结构的设计可以进一步弱化或者消除在弯折过程中应力过于集中的情况,有利于提高支撑膜层20的弯折使用寿命,进而降低或者消除了支撑膜层20发生局部断裂的风险。
请参阅图4,在其中一个实施例中,矩形镂空结构212的宽度两倍于椭圆状镂空结构230的短半径a。换句话说就是,在各自的长度方向上,椭圆状镂空结构230与对应的矩形镂空结构212沿长度方向的中心延长线是重合的,并且矩形镂空结构212与第一半椭圆状镂空结构211和/或第二半椭圆状镂空结构213是外切连接的。
请参阅图4和图9,在其中一个实施例中,随着相邻的椭圆状镂空结构230与第一半椭圆状镂空结构211或者第二半椭圆状镂空结构213之间在长度方向上的距离X从100μm至240μm的变化过程中,局部峰值应力先下降再上升,说明相邻的椭圆状镂空结构230与第一半椭圆状镂空结构211或者第二半椭圆状镂空结构213之间的距离X具有一个较佳的选择区域,不是越大越好,也不是越小越好。其中,相邻的椭圆状镂空结构230与第一半椭圆状镂空结构211或者第二半椭圆状镂空结构213之间的距离X依次从100μm、120μm、140μm增加至160μm的过程中,局部峰值应力从900MPa左右下降至600MPa左右;而当相邻的椭圆状镂空结构230与第一半椭圆状镂空结构211或者第二半椭圆状镂空结构213之间的距离X依次从160μm、180μm、200μm、220μm增加至240μm的过程中,局部峰值应力从600MPa左右上升至950MPa左右。因此,作为一个更优的选择,相邻的椭圆状镂空结构230与第一半椭圆状镂空结构211或者第二半椭圆状镂空结构213之间的距离X可以选取在120μm至180μm的范围内,当然,作为一个更优的弱化局部峰值应力的处理方案,也可以将其选择在160μm左右。
需要进行说明的是,上述仿真数据是基于矩形镂空结构212的长度L为4.2mm,相邻的两个矩形镂空结构212之间的距离Y为0.08mm,椭圆状镂空结构230的短半径a为0.1mm,椭圆状镂空结构230的长半径b为0.2mm时的对应趋势图。
请参阅图4和图10,在其中一个实施例中,随着相邻的两个矩形镂空结构212之间的距离Y从60μm增加至140μm的过程中,局部峰值应力先下降再上升,说明相邻的两个矩形镂空结构212之间的距离Y具有一个较佳的选择区域,不是越大越好,也不是越小越好。其中,相邻的两个矩形镂空结构212之间的距离Y从60μm增加至80μm的过程中,局部峰值应力从800MPa左右降低至接近600MPa;而相邻的两个矩形镂空结构212之间的距离Y从80μm、100μm、120μm增加至140μm的过程中,局部峰值应力从接近600MPa上升至1300MPa左右。因此,作为一个更优的选择,相邻的两个矩形镂空结构212之间的距离Y可以选取在60μm至100μm的范围内,当然,作为一个更优的弱化局部峰值应力的处理方案,也可以将其选择在80μm左右。
需要进行说明的是,上述仿真数据是基于矩形镂空结构212的长度L为4.2mm,相邻的椭圆状镂空结构230与第一半椭圆状镂空结构211或者第二半椭圆状镂空结构213之间的距离X为0.16mm,椭圆状镂空结构230的短半径a为0.1mm,椭圆状镂空结构230的长半径b为0.2mm时的对应趋势图。
请参阅图5、图6以及图11,在其中一个实施例中,随着椭圆状镂空结构230的短半径a从80μm增加至300μm的过程中,局部峰值应力也从500MPa左右随之上升至1750MPa左右,说明椭圆状镂空结构230的短半径a越小越好。因此,作为一个更优的选择,椭圆状镂空结构230的短半径a可以选取在80μm至120μm的范围内,当然,作为一个更优的弱化局部峰值应力的处理方案,也可以将其选择在100μm左右。
需要进行说明的是,上述仿真数据是基于矩形镂空结构212的长度L为4.2mm,相邻的椭圆状镂空结构230与第一半椭圆状镂空结构211或者第二半椭圆状镂空结构213之间的距离X为0.16mm,相邻的两个矩形镂空结构212之间的距离Y为0.08mm,椭圆状镂空结构230的长半径b为0.2mm时的对应趋势图。其中,椭圆状镂空结构230的短半径a可以但不限于与第一半椭圆状镂空结构211的短半径或者第二半椭圆状镂空结构213的短半径相同。
请参阅图5、图6以及图12,在其中一个实施例中,随着椭圆状镂空结构230的长半径b从0.1mm减小至0.25mm的过程中,局部峰值应力也从980MPa左右下降至540MPa左右,说明椭圆状镂空结构230的长半径b越大越好。因此,作为一个更优的选择,椭圆状镂空结构230的长半径b可以选取在0.2mm以上的范围内,当然,也可以将其值选择为0.12mm、0.15mm或者0.22mm左右。
需要进行说明的是,上述仿真数据是基于矩形镂空结构212的长度L为4.2mm,相邻的椭圆状镂空结构230与第一半椭圆状镂空结构211或者第二半椭圆状镂空结构213之间的距离X为0.16mm,相邻的两个矩形镂空结构212之间的距离Y为0.08mm,椭圆状镂空结构230的短半径a为0.1mm时的对应趋势图。其中,椭圆状镂空结构230的长半径b可以但不限于与第一半椭圆状镂空结构211的长半径或者第二半椭圆状镂空结构213的长半径相同。
请参阅图4和图13,在其中一个实施例中,随着矩形镂空结构212的长度L的增加,支撑膜层20在弯折过程中所受到的局部峰值应力在逐步降低。其中,矩形镂空结构212的长度L可以选择的取值范围为2.7mm至5.2mm,其中,当矩形镂空结构212的长度L为2.7mm时,对应的局部峰值应力为1100MPa左右;当矩形镂空结构212的长度L为3.2mm时,对应的局部峰值应力为930MPa左右;当矩形镂空结构212的长度L为3.7mm时,对应的局部峰值应力为680MPa左右;当矩形镂空结构212的长度L为4.2mm时,对应的局部峰值应力为580MPa左右;当矩形镂空结构212的长度L为4.7mm时,对应的局部峰值应力为520MPa左右;当矩形镂空结构212的长度L为5.2mm时,对应的局部峰值应力为480MPa左右;因此,考虑到局部峰值应力的优化,可以选取矩形镂空结构212的长度L大于或者等于2.7mm,也可以根据支撑膜层20能够适应的局部峰值应力的大小,自行选取对应的矩形镂空结构212的长度L。
需要进行说明的是,上述仿真数据是基于椭圆状镂空结构230的长半径b为0.2mm,相邻的椭圆状镂空结构230与第一半椭圆状镂空结构211或者第二半椭圆状镂空结构213之间的距离X为0.16mm,相邻的两个矩形镂空结构212之间的距离Y为0.08mm,椭圆状镂空结构230的短半径a为0.1mm时的对应趋势图。
综上所述,本申请中支撑膜层20的弯折区200采用图案化周期性排列的椭圆状镂空结构230和类梭状镂空结构210的组合设计,有效降低了弯折区200的弹性模量,提高了弯折区200的延展性,但引入周期性孔洞设计,在弯折过程中椭圆状镂空结构230和类梭状镂空结构210之间的连接位置仍然会存在一定的应力集中现象,即椭圆状镂空结构230和类梭状镂空结构210之间的互连部位相对较为脆弱,容易发生弯折断裂的行为。故本申请结合仿真优化的方式,对上述特征值:相邻的椭圆状镂空结构230与第一半椭圆状镂空结构211或者第二半椭圆状镂空结构213之间的距离X、相邻的两个矩形镂空结构212之间的距离Y、矩形镂空结构212的长度L、椭圆状镂空结构230的短半径a、以及椭圆状镂空结构230的长半径b进行合理的设计,以最大限度降低断裂失效风险。
请参阅图7,如图7所示为全模组叠构弯折半径为R=1.5mm时弯折区200的局部云图,可以看出应力集中主要位于椭圆状镂空结构230和类梭状镂空结构210之间的连接位置,换句话说,该连接位置可以理解为主要风险点所在的位置。
请参阅图8,如图8所示为支撑膜层20在弯折过程中的应力云图,同样可以看出,应力集中区位于椭圆状镂空结构230和类梭状镂空结构210之间的连接位置,同理可知,模组叠构的弯折过程中,应力集中主要是由于椭圆状镂空结构230和类梭状镂空结构210之间连接位置的相关尺寸过渡所引起,故而本申请结合有限元仿真的方法,对上述相邻的椭圆状镂空结构230与第一半椭圆状镂空结构211或者第二半椭圆状镂空结构213之间的距离X、相邻的两个矩形镂空结构212之间的距离Y、矩形镂空结构212的长度L、椭圆状镂空结构230的短半径a、以及椭圆状镂空结构230的长半径b进行尺寸和形貌优化设计并进行验证,通过这一方式确实可以解决应力集中的现象,并最大化降低应力的集中现象。
在其中一个实施例中,请参阅图1,本申请提供一种柔性显示面板,其包括柔性基板40和上述任一实施例中的支撑膜层20,支撑膜层20位于柔性基板40的一侧。
在其中一个实施例中,柔性显示面板还包括保护膜层10;保护膜层10位于支撑膜层20的一侧,且远离柔性基板40;保护膜层10至少覆盖弯折区200。保护膜层10为线弹性材料。
在其中一个实施例中,柔性显示面板还包括缓冲层30;缓冲层30位于柔性基板40与支撑膜层20之间,且缓冲层30为超弹材料,具备良好的吸能缓冲作用。
在其中一个实施例中,柔性显示面板还包括位于柔性基板40另一侧且依次叠层设置的显示器件层50、偏光片60、光学胶层70以及保护盖板80。
其中,柔性显示面板还设置有至少一个圆孔90;该圆孔90贯穿设置于保护膜层10、支撑膜层20、缓冲层30、柔性基板40、显示器件层50、偏光片60、光学胶层70以及保护盖板80中,且该圆孔90设置于支撑膜层20的非弯折区100。可以理解的是,该圆孔90可以但不限于作为摄像孔。
需要进行说明的是,保护膜层10、缓冲层30、柔性基板40、偏光片60、光学胶层70以及保护盖板80的模量均相对较低,具有良好的可弯折性,其中光学胶层70为典型的粘弹性透明材料;保护盖板80、偏光片60、柔性基板40均为线弹性材料。
本申请中采用的支撑膜层20的原材弹性模量为200GPa,其材质为含锰金属成分较低的不锈钢板;其厚度可以但不限于为90μm至210μm,也可以选择150μm这一较佳厚度;拉伸强度为1500MPa至2250MPa,也可以选择1850MPa左右的。本申请中支撑膜层20的中间部分采用孔洞化方式设计,且表面经过光滑处理,表面平整度控制在0.5mm以内,外观无凸点、凹点,且要求边缘无毛刺现象。
综上所述,本申请中的上述支撑膜层20及柔性显示面板可以但不限于应用在平板手机、柔性折叠手机、全面屏手机、平板电脑,还可以应用于可卷曲手机、或者可卷曲平板电脑中,也可以应用于各种电子显示设备中,均可以提高金属支撑结构弯折区200部位的延展性,使得原来整面型支撑板结构的局部拉伸模量有效降低;能够实现与其胶粘的光学胶层70在弯折过程中协调变形的特点;此外,实施本申请的过程中,采用形状优化、尺寸优化设计的思路,对上述设计的周期性特殊组合孔洞子结构进行合理设计,并结合仿真设计优化验证的方式,确定孔洞子结构的最优结构尺寸,以此减少应力集中现象,降低支撑层因弯折过程中局部应力过大而引起的断裂失效的风险。通过本本申请的实施,可以改善柔性折叠屏幕模组的良率问题,并提供合理有效的设计方法和解决措施以供参考。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (20)

  1. 一种支撑膜层,其中,所述支撑膜层设置有弯折区;所述弯折区包括周期性排列的至少一个椭圆状镂空结构和多个类梭状镂空结构;
    所述椭圆状镂空结构的宽度方向与所述类梭状镂空结构的宽度方向相同;所述类梭状镂空结构的长度方向与所述椭圆状镂空结构的长度方向相同,且所述宽度方向为所述支撑膜层的弯折方向;
    其中,所述类梭状镂空结构包括沿所述长度方向上依次连接的第一半椭圆状镂空结构、矩形镂空结构以及第二半椭圆状镂空结构;
    在所述长度方向上,所述椭圆状镂空结构位于两个相邻的所述第一半椭圆状镂空结构和/或所述第二半椭圆状镂空结构之间;且在所述宽度方向上所述椭圆状镂空结构位于两个相邻的所述矩形镂空结构之间。
  2. 根据权利要求1所述的支撑膜层,其中,所述第一半椭圆状镂空结构与所述椭圆状镂空结构沿所述长度方向上的一半相同;所述第二半椭圆状镂空结构与所述椭圆状镂空结构沿所述长度方向上的另一半相同。
  3. 根据权利要求2所述的支撑膜层,其中,所述矩形镂空结构的宽度两倍于所述椭圆状镂空结构的短半径。
  4. 根据权利要求1所述的支撑膜层,其中,在所述长度方向上,相邻的所述椭圆状镂空结构与所述第一半椭圆状镂空结构或者所述第二半椭圆状镂空结构之间的距离为100μm至240μm。
  5. 根据权利要求1所述的支撑膜层,其中,在所述宽度方向上,相邻的两个所述矩形镂空结构之间的距离为60μm至140μm。
  6. 根据权利要求1所述的支撑膜层,其中,所述椭圆状镂空结构的短半径、所述第一半椭圆状镂空结构的短半径以及所述第二半椭圆状镂空结构的短半径均为0.08mm至0.12mm。
  7. 根据权利要求1所述的支撑膜层,其中,所述椭圆状镂空结构的长半径、所述第一半椭圆状镂空结构的长半径以及所述第二半椭圆状镂空结构的长半径均为0.1mm至0.25mm。
  8. 根据权利要求1所述的支撑膜层,其中,所述矩形镂空结构的长度为2.7mm至5.2mm。
  9. 根据权利要求1所述的支撑膜层,其中,所述支撑膜层还包括位于所述弯折区两侧的非弯折区。
  10. 一种柔性显示面板,其中,包括:
    柔性基板;和
    如权利要求1所述的支撑膜层,所述支撑膜层位于所述柔性基板的一侧。
  11. 根据权利要求10所述的柔性显示面板,其中,所述柔性显示面板还包括保护膜层;
    所述保护膜层位于所述支撑膜层的一侧,且远离所述柔性基板;所述保护膜层至少覆盖所述支撑膜层的弯折区。
  12. 根据权利要求11所述的柔性显示面板,其中,所述保护膜层为线弹性材料。
  13. 根据权利要求11所述的柔性显示面板,其中,所述柔性显示面板还包括缓冲层;
    所述缓冲层位于所述柔性基板与所述支撑膜层之间,且所述缓冲层为超弹材料。
  14. 根据权利要求10所述的柔性显示面板,其中,所述第一半椭圆状镂空结构与所述椭圆状镂空结构沿所述长度方向上的一半相同;所述第二半椭圆状镂空结构与所述椭圆状镂空结构沿所述长度方向上的另一半相同。
  15. 根据权利要求14所述的柔性显示面板,其中,所述矩形镂空结构的宽度两倍于所述椭圆状镂空结构的短半径。
  16. 根据权利要求15所述的柔性显示面板,其中,在所述长度方向上,相邻的所述椭圆状镂空结构与所述第一半椭圆状镂空结构或者所述第二半椭圆状镂空结构之间的距离为100μm至240μm。
  17. 根据权利要求16所述的柔性显示面板,其中,在所述宽度方向上,相邻的两个所述矩形镂空结构之间的距离为60μm至140μm。
  18. 根据权利要求17所述的柔性显示面板,其中,所述椭圆状镂空结构的短半径、所述第一半椭圆状镂空结构的短半径以及所述第二半椭圆状镂空结构的短半径均为0.08mm至0.12mm。
  19. 根据权利要求18所述的柔性显示面板,其中,所述椭圆状镂空结构的长半径、所述第一半椭圆状镂空结构的长半径以及所述第二半椭圆状镂空结构的长半径均为0.1mm至0.25mm。
  20. 根据权利要求19所述的柔性显示面板,其中,所述矩形镂空结构的长度为2.7mm至5.2mm。
PCT/CN2020/130807 2020-10-28 2020-11-23 支撑膜层及柔性显示面板 WO2022088319A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/266,645 US11770907B2 (en) 2020-10-28 2020-11-23 Support film layer and flexible display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011169161.5 2020-10-28
CN202011169161.5A CN112309996B (zh) 2020-10-28 2020-10-28 支撑膜层及柔性显示面板

Publications (1)

Publication Number Publication Date
WO2022088319A1 true WO2022088319A1 (zh) 2022-05-05

Family

ID=74332179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130807 WO2022088319A1 (zh) 2020-10-28 2020-11-23 支撑膜层及柔性显示面板

Country Status (3)

Country Link
US (1) US11770907B2 (zh)
CN (1) CN112309996B (zh)
WO (1) WO2022088319A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220060605A (ko) * 2020-11-04 2022-05-12 삼성디스플레이 주식회사 표시 장치
CN112991953B (zh) * 2021-03-09 2022-08-05 武汉华星光电半导体显示技术有限公司 支撑板及可折叠显示模组
CN113178133A (zh) * 2021-05-06 2021-07-27 合肥维信诺科技有限公司 复合支撑膜及显示装置
CN113284417B (zh) * 2021-05-18 2022-09-27 武汉华星光电半导体显示技术有限公司 柔性显示模组
CN114203032A (zh) * 2021-11-11 2022-03-18 武汉华星光电半导体显示技术有限公司 一种金属支撑结构及折叠显示面板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106920820A (zh) * 2015-12-28 2017-07-04 三星显示有限公司 柔性基底和包括该柔性基底的柔性显示装置
WO2017177127A1 (en) * 2016-04-08 2017-10-12 Apple, Inc. Electronic devices with displays
CN107329627A (zh) * 2017-07-24 2017-11-07 京东方科技集团股份有限公司 触控面板及其制备方法、显示装置
CN208141720U (zh) * 2018-05-28 2018-11-23 京东方科技集团股份有限公司 柔性支撑件、柔性显示基板及显示装置
CN109523921A (zh) * 2018-12-12 2019-03-26 上海天马有机发光显示技术有限公司 柔性显示面板和显示装置
CN110689813A (zh) * 2019-11-20 2020-01-14 京东方科技集团股份有限公司 支撑结构及显示装置
CN110767096A (zh) * 2019-11-15 2020-02-07 京东方科技集团股份有限公司 支撑结构及显示装置
CN110992828A (zh) * 2019-11-28 2020-04-10 京东方科技集团股份有限公司 用于柔性显示装置的支撑基板和柔性显示装置
CN111445796A (zh) * 2020-04-02 2020-07-24 武汉华星光电半导体显示技术有限公司 显示面板及柔性显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400138B (zh) * 2016-12-28 2020-11-03 上海天马有机发光显示技术有限公司 一种柔性显示面板、显示装置和柔性显示面板的制作方法
WO2019018251A1 (en) * 2017-07-17 2019-01-24 3M Innovative Properties Company BEND LIMIT FILM
CN109036136A (zh) * 2018-08-10 2018-12-18 云谷(固安)科技有限公司 支撑膜、显示装置及其制备方法
CN109360499B (zh) * 2018-12-17 2021-07-30 上海天马微电子有限公司 一种柔性显示模组及显示装置
CN211742521U (zh) * 2020-01-21 2020-10-23 京东方科技集团股份有限公司 支撑件及折叠显示器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106920820A (zh) * 2015-12-28 2017-07-04 三星显示有限公司 柔性基底和包括该柔性基底的柔性显示装置
WO2017177127A1 (en) * 2016-04-08 2017-10-12 Apple, Inc. Electronic devices with displays
CN107329627A (zh) * 2017-07-24 2017-11-07 京东方科技集团股份有限公司 触控面板及其制备方法、显示装置
CN208141720U (zh) * 2018-05-28 2018-11-23 京东方科技集团股份有限公司 柔性支撑件、柔性显示基板及显示装置
CN109523921A (zh) * 2018-12-12 2019-03-26 上海天马有机发光显示技术有限公司 柔性显示面板和显示装置
CN110767096A (zh) * 2019-11-15 2020-02-07 京东方科技集团股份有限公司 支撑结构及显示装置
CN110689813A (zh) * 2019-11-20 2020-01-14 京东方科技集团股份有限公司 支撑结构及显示装置
CN110992828A (zh) * 2019-11-28 2020-04-10 京东方科技集团股份有限公司 用于柔性显示装置的支撑基板和柔性显示装置
CN111445796A (zh) * 2020-04-02 2020-07-24 武汉华星光电半导体显示技术有限公司 显示面板及柔性显示装置

Also Published As

Publication number Publication date
US11770907B2 (en) 2023-09-26
CN112309996A (zh) 2021-02-02
CN112309996B (zh) 2024-01-30
US20220312602A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
WO2022088319A1 (zh) 支撑膜层及柔性显示面板
US11309500B2 (en) Display panel and manufacturing method thereof
US11127804B2 (en) Display panel, method for manufacturing the same and display device
WO2020155517A1 (zh) 柔性阵列基板、显示面板及制备方法
JP6854268B2 (ja) フレキシブル表示装置及びその製造方法
CN110570772A (zh) 柔性显示装置及其制备方法
CN112599018B (zh) 显示装置
US20210233938A1 (en) Display panel and display device
US9082666B2 (en) Liquid crystal display panel and manufacturing method thereof
WO2021031512A1 (zh) 阵列基板和显示面板
WO2022088323A1 (zh) 支撑层及柔性显示面板
US20210360779A1 (en) Display device and bezel substrate thereof
US11237434B2 (en) Display panel and display terminal
WO2021042573A1 (zh) 柔性发光面板、柔性发光面板的制备方法及显示设备
WO2022077690A1 (zh) 支撑结构、柔性显示面板及电子设备
CN113380861B (zh) 显示面板及其制备方法
WO2024011995A1 (zh) 一种显示装置及显示终端
US11121333B2 (en) OLED display panel and method for fabricating same
JP2005079472A (ja) 配線基板、電気光学装置及び電子機器
WO2020232835A1 (zh) 显示面板和显示面板的制造方法
WO2020206971A1 (zh) 可拉伸显示面板及其制备方法、显示装置
CN111463359B (zh) 柔性基板及其制作方法、显示面板
KR20060119123A (ko) 평판표시장치
CN111244126B (zh) 一种微型显示面板、制程方法及拼接显示面板
WO2024108772A1 (zh) 显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959478

Country of ref document: EP

Kind code of ref document: A1