WO2022088247A1 - 一种磁介电树脂组合物及包含其的预浸料和覆铜板 - Google Patents

一种磁介电树脂组合物及包含其的预浸料和覆铜板 Download PDF

Info

Publication number
WO2022088247A1
WO2022088247A1 PCT/CN2020/127788 CN2020127788W WO2022088247A1 WO 2022088247 A1 WO2022088247 A1 WO 2022088247A1 CN 2020127788 W CN2020127788 W CN 2020127788W WO 2022088247 A1 WO2022088247 A1 WO 2022088247A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
resin composition
resin
titanate
dielectric
Prior art date
Application number
PCT/CN2020/127788
Other languages
English (en)
French (fr)
Inventor
殷卫峰
刘潜发
师剑英
张江陵
李莎
柴颂刚
许永静
霍翠
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Priority to US18/033,829 priority Critical patent/US20240010810A1/en
Publication of WO2022088247A1 publication Critical patent/WO2022088247A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/16Layered products comprising a layer of natural or synthetic rubber comprising polydienes homopolymers or poly-halodienes homopolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1021Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1022Titania
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2471/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2471/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2262Oxides; Hydroxides of metals of manganese
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2272Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2289Oxides; Hydroxides of metals of cobalt
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials

Definitions

  • the invention belongs to the technical field of copper clad laminates, and in particular relates to a magnetic dielectric resin composition and a prepreg and a copper clad laminate comprising the same.
  • CN103351578A discloses a resin composition for forming a dielectric layer of a dielectric substrate of an antenna and its use.
  • the resin composition includes an epoxy resin containing a naphthalene ring or a biphenyl structure, a ring having a low thermal expansion coefficient after curing Oxygen resin, viscosity modifier and pre-fired spherical ceramic powder; the dielectric substrate obtained by the resin composition has high dielectric constant, high peel strength, low thermal expansion coefficient and thickness consistency, and can meet the requirements of high dielectric constant Performance requirements for the antenna substrate.
  • CN103101252A discloses a manufacturing method of CEM-3 copper clad laminate with high dielectric constant and low loss.
  • the manufacturing method bisphenol A epoxy resin with good dielectric properties is used as the main resin, and it is mixed with high dielectric fillers Compounding is carried out to make it have high dielectric constant and low dielectric loss after curing; the high dielectric filler is titanium dioxide, aluminum trioxide, barium titanate or lead titanate, and the obtained CEM-3 copper clad laminate has good performance.
  • the above-mentioned high dielectric constant sheet can reduce the size of the antenna, this method will also reduce the gain of the antenna and reduce the overall performance of the antenna.
  • represents the wavelength
  • c represents the vacuum
  • f represents the frequency
  • ( ⁇ r ⁇ r ) 1/2 represents the miniaturization factor
  • the larger the dielectric constant ⁇ r the larger the magnetic permeability ⁇ r , the higher the miniaturization factor, the more conducive to miniaturization .
  • increasing the permeability can effectively reduce the size of the antenna while maintaining or improving the antenna gain and bandwidth.
  • CN106797699A discloses a magnetic dielectric substrate, a circuit material and an assembly having the same, comprising a first dielectric layer and a second dielectric layer, and a magnetic dielectric substrate disposed between the first dielectric layer and the second dielectric layer and connected with the two and at least one magnetic enhancement layer in close contact with each other, the magnetic enhancement layer comprising a ferrite material.
  • the magnetic dielectric substrate has low dielectric, low magnetic loss and low power consumption; however, the magnetic permeability of the magnetic dielectric plate is low, it is difficult to meet the differentiated requirements of electronic products for magnetic substrates, and the insulation performance is not ideal , resulting in poor usability of electronic products.
  • spinel ferrite such as nickel-zinc ferrite, manganese-zinc ferrite, etc.
  • spinel ferrite such as nickel-zinc ferrite, manganese-zinc ferrite, etc.
  • planar hexagonal ferrite such as Co 2 Z hexagonal ferrite, has a high cut-off frequency, but its magnetic permeability is low and difficult to greatly reduce Antenna size.
  • the purpose of the present invention is to provide a magnetic dielectric resin composition and a prepreg and a copper clad laminate containing the same.
  • the magnetic dielectric resin composition is significantly improved. It can reduce its temperature drift coefficient and magnetic loss, so that the copper clad laminate containing it has high magnetic permeability, low magnetic loss and low temperature drift coefficient, and has excellent stability and dielectric properties, which can fully Meet the needs of electronic products in terms of high performance and miniaturization.
  • the present invention provides a magnetic dielectric resin composition
  • the magnetic dielectric resin composition includes a resin and a magnetic filler; the absolute value of the temperature drift coefficient of the magnetic filler at -55 to 150° C. 0 ⁇ 1000ppm/°C, such as 1ppm/°C, 5ppm/°C, 10ppm/°C, 20ppm/°C, 30ppm/°C, 50ppm/°C, 70ppm/°C, 90ppm/°C, 100ppm/°C, 150ppm/°C, 200ppm/°C , 250ppm/°C, 300ppm/°C, 350ppm/°C, 400ppm/°C, 450ppm/°C, 500ppm/°C, 550ppm/°C, 600ppm/°C, 650ppm/°C, 700ppm/°C, 750ppm/°C, 800ppm/°C, 850ppm /°C, 900ppm/°C or 950pp
  • the preparation raw material of the magnetic filler includes a combination of iron oxide and metal oxide; the metal in the metal oxide is selected from Ba, Sr, Co, Ni, Cu, Zn, Mg, Mn, V, Mo, Cr, Sn , W, Bi, Hf, Nb, Ca, Zr, Al, Ti, Ta or La or a combination of at least two.
  • the magnetic dielectric resin composition provided by the present invention includes a resin and a specific magnetic filler, and the two cooperate with each other to endow the magnetic dielectric resin composition with good magnetic permeability and dielectric properties.
  • the absolute value of the temperature drift coefficient of the magnetic filler is 0-1000ppm/°C, and the raw materials for its preparation include a combination of iron oxide and metal oxide; the magnetic filler of a specific component enables the magnetic dielectric resin composition to ensure good dielectric properties.
  • the raw materials for its preparation include a combination of iron oxide and metal oxide
  • the magnetic filler of a specific component enables the magnetic dielectric resin composition to ensure good dielectric properties.
  • On the premise of electrical performance on the one hand, it has high permeability, low magnetic loss, and suitable cut-off frequency.
  • it can effectively reduce the temperature drift coefficient and improve stability, so that the copper clad laminate containing it can be It is suitable for the preparation of high-performance and miniaturized electronic products.
  • the temperature drift coefficient in the present invention is ( ⁇ r ⁇ r ) 1/2 temperature drift coefficient, wherein ⁇ r represents the relative permittivity, ⁇ r represents the relative magnetic permeability; the temperature drift coefficient represents -55 to 150
  • the relative change rate of magnetic permeability in °C by using the air line test method (the test instrument is the E5071C, N1500 or 8050D test system of Keysight Technology), the magnetic properties and dielectric properties of the test material from 0.1 to 18GHz, and the performance at different temperatures The test is placed in a temperature-controlled box for testing. The following refers to the same description, and all have the same meaning.
  • the absolute value of the temperature drift coefficient of the magnetic filler at -55 to 150°C is 0 to 1000ppm/°C
  • the magnetic filler includes a positive temperature drift coefficient magnetic filler and/or a negative temperature drift coefficient magnetic filler.
  • the type and content of the magnetic filler with temperature drift coefficient and negative temperature drift coefficient magnetic filler can meet the requirements of the present invention as long as the absolute value of the temperature drift coefficient is 0-1000 ppm/°C.
  • the magnetic filler can be one or a combination of at least two magnetic fillers, as long as the absolute value of the temperature drift coefficient is 0-1000 ppm/°C, the requirements of the present invention can be satisfied.
  • the absolute value of the temperature drift coefficient of the magnetic filler is less than or equal to 1000 ppm/°C, so that the magnetic dielectric resin combination has ideal magnetic and dielectric properties. If the absolute value of the intrinsic temperature drift coefficient of the magnetic filler is greater than 1000ppm/°C, the temperature drift coefficient of the prepared magnetic dielectric resin composition will be greater than 400ppm/°C, resulting in a large coefficient of variation of the magnetic permeability, which is difficult to meet the application requirements.
  • the absolute value of the temperature drift coefficient of the magnetic filler at -55 to 150°C is 5 to 500 ppm/°C.
  • the absolute value of the temperature drift coefficient of the magnetic filler at -55 to 150 °C is 5 to 500 ppm/°C, and the further optimization of the temperature drift coefficient makes the temperature drift coefficient of the plate smaller.
  • the anti-environmental performance of the device is better.
  • the absolute value of the temperature drift coefficient of the magnetic filler under the condition of 0.1-18 GHz is 5-500 ppm/°C, such as 5 ppm/°C, 10 ppm/°C, 20 ppm/°C, 30 ppm/°C, 50 ppm/°C, 70 ppm/°C °C, 90ppm/°C, 100ppm/°C, 150ppm/°C, 200ppm/°C, 250ppm/°C, 300ppm/°C, 350ppm/°C, 400ppm/°C, 450ppm/°C or 480ppm/°C, and specific values between the above points Point values, due to space limitations and for the sake of brevity, the present invention will not exhaustively list the specific point values included in the range.
  • the magnetic permeability of the magnetic filler is 5-1000, such as 10, 15, 20, 30, 50, 80, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600 , 650, 700, 750, 800, 850, 900 or 950, and specific point values between the above-mentioned point values, due to space limitations and for the sake of simplicity, the present invention will not exhaustively list the specific point values included in the range.
  • the magnetic permeability (relative magnetic permeability) of the magnetic filler is 5-1000, so that the magneto-dielectric resin composition has high magnetic permeability and suitable cut-off frequency.
  • the magnetic permeability of the magnetic filler is less than 5
  • the magnetic permeability of the magnetic dielectric resin composition will be less than 1.5, and it is difficult to meet the use requirements.
  • the magnetic permeability of the magnetic filler is greater than 1000, the corresponding cutoff frequency is less than 200MHz, which is difficult to meet the application requirements.
  • the particle size of the magnetic filler is 0.1-30 ⁇ m (the particle size of the filler referred to herein is obtained by measuring the particle size distribution of the laser diffraction scattering method), such as 0.5 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m , 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 13 ⁇ m, 15 ⁇ m, 17 ⁇ m, 19 ⁇ m, 20 ⁇ m, 21 ⁇ m, 23 ⁇ m, 25 ⁇ m, 27 ⁇ m or 29 ⁇ m, and the specific point values between the above point values are limited to space and publication For the sake of brevity, the present invention does not exhaustively enumerate the specific values included in the range.
  • the particle size of the magnetic filler is 0.1-30 ⁇ m, which can be well dispersed in the resin system to obtain a magnetic dielectric resin composition with uniform and stable performance. If the particle size of the magnetic filler exceeds the above range, the dispersibility of the magnetic filler will be reduced, and the performance stability and uniformity of the magnetic dielectric resin composition and the copper clad laminate containing the same will be affected.
  • the molar content of iron oxide in the preparation raw material of the magnetic filler is 40-72%, such as 42%, 45%, 48%, 50%, 52%, 55%, 58%, 60%, 62%, 65%, 68% or 70%, and specific point values between the above-mentioned point values, due to space limitations and for the sake of brevity, the present invention will not exhaustively list the specific point values included in the range.
  • the metal in the metal oxide is selected from any one or a combination of at least two of Ba, Co, Ni, Cu, Zn, Mg, Mn, V or Bi.
  • the magnetic filler is prepared by the following method.
  • the method includes: mixing iron oxide, metal oxide and optional auxiliary materials, then sintering, and pulverizing the sintered product to obtain the magnetic filler.
  • the magnetic filler is obtained by mixing iron oxide, metal oxide and optional auxiliary materials and then sintering.
  • High-temperature sintering is a chemical process, which can make different metal oxides react to form a specific structure and improve the magnetic properties. material properties.
  • Physical mixing is a physical process. Pure iron oxide mixed with other metal oxides cannot form a new structure, and the performance improvement is not obvious.
  • the mixing method comprises physical dry mixing.
  • the sintering temperature is 800-2000°C, such as 850°C, 900°C, 950°C, 1000°C, 1050°C, 1100°C, 1150°C, 1200°C, 1250°C, 1300°C, 1350°C, 1400°C , 1450°C, 1500°C, 1600°C, 1700°C, 1800°C, 1900°C or 1950°C, as well as specific point values between the above-mentioned point values, due to space limitations and for the sake of brevity, the present invention will not list them exhaustively.
  • the specific point value that the range includes.
  • the sintering time is 1-8h, such as 1.5h, 2h, 2.5h, 3h, 3.5h, 4h, 4.5h, 5h, 5.5h, 6h, 6.5h, 7h or 7.5h, and the above points
  • 1-8h such as 1.5h, 2h, 2.5h, 3h, 3.5h, 4h, 4.5h, 5h, 5.5h, 6h, 6.5h, 7h or 7.5h, and the above points
  • the specific point values between the values are limited by space and for the sake of brevity, and the present invention will not exhaustively list the specific point values included in the range.
  • the pulverizing method includes wet ball milling pulverization.
  • the mass of the magnetic filler accounts for 20-90% of the total mass of the magnetic filler and organic matter, such as 22%, 25%, 28%, 30%, 32%, 35%, 38%, 40%, 42% , 45%, 48%, 50%, 52%, 55%, 58%, 60%, 62%, 65%, 68%, 70%, 72%, 75%, 78%, 80%, 82%, 85 % or 88%, as well as specific point values between the above-mentioned point values, due to space limitations and for the sake of simplicity, the present invention will not exhaustively list the specific point values included in the range.
  • the “organic” includes the resin, and an optional combination of curing agents, cross-linking agents, initiators, and curing accelerators. That is, the magnetic dielectric resin composition does not include non-magnetic fillers, and the mass percentage of the magnetic fillers in the magnetic dielectric resin composition is 20-90%; the magnetic dielectric resin composition also includes non-magnetic fillers , the mass of the magnetic filler accounts for 20-90% of the total mass of the other components except the magnetic filler in the magnetic dielectric resin composition.
  • the mass of the magnetic filler accounts for 20-90% of the total mass of the magnetic filler and organic matter; if the content of the magnetic filler is too high, the dispersion of the magnetic filler in the resin system is poor, and uniform performance cannot be obtained. If the content of magnetic filler is too low, the magnetic permeability of the magnetic dielectric resin composition and the copper clad laminate containing it will decrease, and it is impossible to obtain the magnetic dielectric resin composition. Ideal magneto-dielectric properties.
  • the resin includes epoxy resin, cyanate ester resin, polyphenylene ether resin, polybutadiene resin, styrene-butadiene resin, maleimide-triazine resin, maleimide resin, poly Any one or a combination of at least two of tetrafluoroethylene resin, polyimide resin, phenolic resin, acrylic resin, liquid crystal resin, benzoxazine resin, phenolic resin or nitrile rubber.
  • the nitrile rubber includes carboxyl-terminated nitrile rubber and/or hydroxyl-terminated nitrile rubber.
  • the magneto-dielectric resin composition further includes an initiator.
  • the initiators include organic peroxide-based initiators, amine-based initiators, imidazole-based initiators, phenol-based initiators, boron trifluoride complex-based initiators, triphenyl phosphate or triphenyl phosphite Any one or a combination of at least two of the esters.
  • the organic peroxide-based initiator includes ⁇ , ⁇ '-di-tert-butylperoxide-m-cumyl-benzene-benzene, dicumyl peroxide, tert-butyl cumene peroxide, 1, 1-Di-tert-hexylperoxy-3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-di-tert-butylperoxy-3-hexyne, tert-peroxyoctanoic acid Any one or a combination of at least two of butyl ester or t-butyl peroxybenzoate.
  • the amine initiator includes a tertiary amine initiator and/or a quaternary ammonium salt initiator.
  • the tertiary amine initiator includes benzyldimethylamine and/or 2,4,6-tris(dimethylaminomethyl)phenol.
  • the magneto-dielectric resin composition further includes a curing accelerator.
  • the curing accelerator includes any one or a combination of at least two of imidazole-based compounds, piperidine-based compounds, pyridine-based compounds or organic metal salt Lewis acids.
  • the imidazole compounds include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methylimidazole , any one of 2-heptadecyl imidazole, 2-isopropyl imidazole, 2-phenyl-4-methyl imidazole, 2-dodecyl imidazole or 1-cyanoethyl-2-methyl imidazole one or a combination of at least two.
  • the magneto-dielectric resin composition further includes a cross-linking agent.
  • the cross-linking agent includes triallyl isocyanurate, triallyl polyisocyanurate, triallyl cyanurate, trimethacrylic acid, diallyl phthalate , any one or a combination of at least two of divinylbenzene or multifunctional acrylates.
  • the magneto-dielectric resin composition further includes a non-magnetic filler.
  • the non-magnetic fillers include silicon dioxide, titanium dioxide, barium titanate, strontium titanate, magnesium titanate, calcium titanate, barium strontium titanate, barium pertitanate, lead titanate, lead zirconate titanate, Lead lanthanum titanate titanate, barium lanthanum titanate, barium zirconium titanate, hafnium dioxide, lead magnesium niobate, barium magnesium niobate, lithium niobate, potassium niobate, aluminum strontium tantalate, potassium tantalate niobate, niobate Barium strontium, barium lead niobate, barium titanium niobate, strontium bismuth tantalate, bismuth titanate, barium rubidium titanate, copper titanate, or lead magnesium niobate-lead titanate or a combination of at least two .
  • the magneto-dielectric resin composition further includes a flame retardant.
  • the present invention provides a resin glue solution obtained by dissolving or dispersing the above-mentioned magneto-dielectric resin composition in a solvent.
  • the solvent includes any one or a combination of at least two of alcohol-based solvents, ether-based solvents, aromatic hydrocarbon-based solvents, ester-based solvents, ketone-based solvents or nitrogen-containing solvents.
  • the alcoholic solvent includes any one or a combination of at least two of methanol, ethanol or butanol.
  • the ether solvent includes any one or a combination of at least two of ethyl cellosolve, butyl cellosolve, ethylene glycol methyl ether, diethylene glycol ethyl ether or diethylene glycol butyl ether.
  • the aromatic hydrocarbon solvent includes any one or a combination of at least two of benzene, toluene, xylene or mesitylene.
  • the ester solvent includes any one or a combination of at least two of ethyl acetate, butyl acetate or ethoxyethyl acetate.
  • the ketone solvent includes any one or a combination of at least two of acetone, methyl ethyl ketone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone.
  • the nitrogen-containing solvent includes any one or a combination of at least two of N,N-dimethylformamide, N,N-dimethylacetamide or N-methyl-2-pyrrolidone.
  • the solid content of the resin glue is 20-90%, such as 22%, 25%, 28%, 30%, 32%, 35%, 38%, 40%, 42%, 45%, 48% , 50%, 52%, 55%, 58%, 60%, 62%, 65%, 68%, 70%, 72%, 75%, 78%, 80%, 82%, 85%, or 88%, and
  • the specific point values between the above-mentioned point values are limited by space and for the sake of brevity, and the present invention will not exhaustively list the specific point values included in the range.
  • the present invention provides a resin-coated copper foil or resin film prepared with the above-mentioned magneto-dielectric resin composition.
  • the resin-coated copper foil is obtained by applying the above-mentioned magneto-dielectric resin composition in the form of a solution to the surface of the conductive metal layer to provide a coating weight of 2 ⁇ 15 g/m 2 .
  • the above-mentioned magnetic dielectric resin composition is coated on the release material, and after drying, semi-curing or curing, etc., the release material is removed to obtain the resin film.
  • the present invention provides a prepreg comprising a reinforcing material, and the above-mentioned magneto-dielectric resin composition adhered to the reinforcing material by impregnation and drying.
  • the reinforcing material includes inorganic reinforcing material and/or organic reinforcing material.
  • the reinforcing material includes any one or a combination of at least two of glass fiber cloth, non-woven fabric, quartz cloth or paper.
  • the glass fiber cloth can be E-glass fiber cloth, D-glass fiber cloth, S-glass fiber cloth, T glass fiber cloth, NE-glass fiber cloth, Q glass fiber cloth, L glass fiber cloth or QL Fiberglass cloth, etc.
  • the preparation method of the prepreg is as follows: immersing the reinforcing material in the resin glue solution of the magneto-dielectric resin composition, taking it out and drying to obtain the prepreg.
  • the drying temperature is 100-250°C, such as 105°C, 110°C, 115°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C, 200°C , 210°C, 220°C, 230°C, 240°C or 245°C, etc.
  • the drying time is 1 to 15 minutes, such as 2 minutes, 3 minutes, 4 minutes, 5 minutes, 6 minutes, 7 minutes, 8 minutes, 9 minutes, 10 minutes, 11 minutes, 12 minutes, 13 minutes, or 14 minutes.
  • the present invention provides a laminate comprising at least one prepreg as described above.
  • the present invention provides a copper clad laminate, the copper clad laminate comprising at least one prepreg as described above, and copper foils disposed on one or both sides of the prepreg.
  • the preparation method of the copper clad laminate is as follows: pressing copper foil on one side or both sides of a prepreg and curing to obtain the copper clad laminate; or, bonding at least two prepregs to make a copper clad laminate. A laminate is formed, and then copper foil is laminated on one side or both sides of the laminate and cured to obtain the copper clad laminate.
  • the curing is carried out in a hot press.
  • the curing temperature is 150-250°C, such as 150°C, 155°C, 160°C, 165°C, 170°C, 175°C, 180°C, 185°C, 190°C, 195°C, 200°C, 205°C , 210°C, 215°C, 220°C, 225°C, 230°C, 235°C, 240°C or 245°C, etc.
  • the present invention provides a printed circuit board, the printed circuit board comprising at least one of the above-mentioned prepreg or the above-mentioned copper clad laminate.
  • the present invention has the following beneficial effects:
  • the magnetic dielectric resin composition provided by the present invention has good magnetic properties and dielectric properties through the combination of resin and magnetic filler.
  • the absolute value of the temperature drift coefficient of the magnetic filler is 0-1000ppm/°C
  • the preparation raw materials include a combination of iron oxide and metal oxide
  • the magnetic filler of a specific component enables the magnetic dielectric resin composition to ensure good dielectric properties.
  • it On the premise of performance, on the one hand, it has high magnetic permeability, low magnetic loss and suitable cut-off frequency, on the other hand, it can reduce the temperature drift coefficient and improve the stability.
  • the copper clad laminate comprising the magnetic dielectric resin composition has high relative magnetic permeability, which can reach 6-10, and low magnetic loss, the tangent value of magnetic loss is 0.01-0.045, and the absolute value of temperature drift coefficient is 30-100ppm/°C , has high magnetic permeability, low magnetic loss, low temperature drift coefficient and high performance stability, which can fully meet the application requirements of CCL in the preparation of high-performance and miniaturized electronic products.
  • the preparation method of the magnetic filler is as follows:
  • each raw material component was weighed according to the molar ratio, mixed by physical dry method for 1 hour to prepare a ring-shaped embryo body, and then sintered at 1300 °C for 4 hours; the obtained sintered product was a ring-shaped sample (inner diameter 3.04mm, outer diameter 6.96mm, thickness 3mm); the sintered product was wet ball milled in a ball mill, the rotational speed was 3000 rpm, the time was 1-5h, and the particle size of the zirconium beads was 1-10mm; Filler; the preparation of different particle sizes is realized by the control of the ball milling time.
  • Magnetic permeability test use an impedance analyzer to test the magnetic permeability of the material from 0.1 to 18 GHz, and the test instrument is Keysight E5071C network analyzer + N1500 test system;
  • Temperature drift coefficient test Put the above test system into a high and low temperature oven, test the magnetic permeability at -55°C, 25°C, and 150°C respectively, and calculate the temperature drift coefficient according to the following announcement.
  • Temperature drift coefficient 1000000 ⁇ (Permeability 150°C -Permeability- 55°C )/(200 ⁇ Permeability 25°C ).
  • Epoxy resin Bisphenol A Novlac epoxy resin (EPR627 from Momentive Chemical Company, USA); Brominated epoxy resin: BEB531A80P from Changchun, Taiwan; Phenoxy resin: YP-50EK35 from Nippon Steel ; Polyphenylene ether resin: Sabic SA9000;
  • Curing accelerator imidazole curing accelerator, 2-MI of BASF, Germany;
  • Cross-linking agent TAIC cross-linking agent, purchased from Liuyang Organic Chemical Co., Ltd.;
  • a magnetic dielectric resin composition comprising the following components in parts by weight: 20 parts by weight of brominated epoxy resin, 15 parts by weight of phenolic resin, 35 parts by weight of polyphenylene ether resin, 20 parts by weight of magnetic filler DZC-100, 4.9 parts by weight of TAIC, 4.5 parts by weight of DDS, 0.5 parts by weight of 2-MI, 0.1 part by weight of DCP.
  • the magnetic dielectric resin composition is used for the preparation of copper clad laminates, and the specific method is as follows:
  • step (2) Impregnating the resin glue obtained in step (1) with a reinforcing material (glass fiber cloth), placing it in an oven at 155° C. for 5 minutes to achieve curing, and obtaining a prepreg; placing the prepreg on two copper Between the foils, the copper clad laminates are obtained by laminating and curing for 2 hours in a hot press at 210° C. and 5 MPa pressure.
  • a reinforcing material glass fiber cloth
  • a magnetic dielectric resin composition comprising the following components according to parts by weight: 2.97 parts by weight epoxy resin, 4.5 parts by weight brominated epoxy resin, 2 parts by weight phenolic resin, 90 parts by weight magnetic filler DZC-80, 0.5 parts by weight Parts by weight of DDS, 0.03 parts by weight of 2-MI.
  • the magnetic dielectric resin composition is used for the preparation of the copper clad laminate, and the specific method is the same as that of Example 1, and the copper clad laminate is obtained.
  • a magnetic dielectric resin composition comprising the following components in parts by weight: 16 parts by weight epoxy resin, 20.35 parts by weight brominated epoxy resin, 5 parts by weight phenolic resin, 50 parts by weight magnetic filler DFC-230, 8 Parts by weight of DDS, 0.65 parts by weight of 2-MI.
  • the magnetic dielectric resin composition is used for the preparation of the copper clad laminate, and the specific method is the same as that of Example 1, and the copper clad laminate is obtained.
  • a magnetic dielectric resin composition comprising the following components according to parts by weight: 5.97 parts by weight of epoxy resin, 8.5 parts by weight of brominated epoxy resin, 5 parts by weight of phenolic resin, 70 parts by weight of magnetic filler DZC-80, 10 Part by weight of silicon micropowder, 0.5 part by weight of DDS, 0.03 part by weight of 2-MI.
  • the magnetic dielectric resin composition is used for the preparation of the copper clad laminate, and the specific method is the same as that of Example 1, and the copper clad laminate is obtained.
  • a magnetic dielectric resin composition comprising the following components in parts by weight: 16 parts by weight epoxy resin, 20.35 parts by weight brominated epoxy resin, 5 parts by weight phenolic resin, 25 parts by weight magnetic filler DZC-100, 25 parts by weight Parts by weight of magnetic filler DFC-230, 8 parts by weight of DDS, 0.65 parts by weight of 2-MI.
  • the magnetic dielectric resin composition is used for the preparation of the copper clad laminate, and the specific method is the same as that of Example 1, and the copper clad laminate is obtained.
  • a magnetic dielectric resin composition the components of which are different from those of Example 3 only in that the magnetic filler DFC-230 is replaced with the same mass of magnetic filler DFC-500.
  • the magnetic dielectric resin composition is used for the preparation of the copper clad laminate, and the specific method is the same as that of Example 1, and the copper clad laminate is obtained.
  • a magnetic dielectric resin composition comprising the following components according to parts by weight: 7 parts by weight epoxy resin A, 26.5 parts by weight brominated epoxy resin, 15 parts by weight phenolic resin, 38.5 parts by weight polyphenylene ether resin, 3 parts by weight Parts by weight of magnetic filler DZC-100, 4.9 parts by weight of TAIC, 4.5 parts by weight of DDS, 0.5 parts by weight of 2-MI, 0.1 part by weight of DCP.
  • the magnetic dielectric resin composition is used for the preparation of the copper clad laminate, and the specific method is the same as that of Example 1, and the copper clad laminate is obtained.
  • a magneto-dielectric resin composition whose components are different from those of Example 1 only in that the magnetic filler DZC-100 is replaced with the same mass of the magnetic filler DZC-430.
  • the magnetic dielectric resin composition is used for the preparation of the copper clad laminate, and the specific method is the same as that of Example 1, and the copper clad laminate is obtained.
  • Sample preparation The plate is processed into a ring sample (inner diameter 3.04mm, outer diameter 6.96mm, thickness 3mm);
  • Relative magnetic permeability and magnetic loss tangent use an impedance analyzer to test the magnetic permeability of the material from 0.1 to 18 GHz, and the testing instrument is Keysight E5071C network analyzer + N1500 testing system;
  • Temperature drift coefficient Put the above test system into a high and low temperature oven, test the magnetic permeability at -55°C, 25°C, and 150°C respectively, and calculate the temperature drift coefficient according to the following announcement.
  • Temperature drift coefficient 1000000 ⁇ (Permeability 150°C -Permeability- 55°C )/(200 ⁇ Permeability 25°C ).
  • the magnetic dielectric resin compositions provided in Examples 1 to 5 of the present invention are used to prepare copper clad laminates, and the obtained copper clad laminates have high magnetic permeability, low magnetic loss, low temperature drift coefficient and high performance. Stability, high relative permeability can reach 6 ⁇ 10, magnetic loss tangent value is as low as 0.01 ⁇ 0.045, absolute value of temperature drift coefficient is 30 ⁇ 100ppm/°C, which can meet the requirements of copper clad laminate in the preparation of high-performance and miniaturized electronics Application requirements in the product.
  • the absolute value of the temperature drift coefficient of the magnetic filler is 0-1000ppm/°C, and the obtained magnetic dielectric resin composition and the copper clad laminate comprising the same have excellent magnetic and dielectric properties; if If the absolute value of the temperature drift coefficient of the magnetic filler is greater than 1000ppm/°C (Comparative Example 1, Comparative Example 3), the performance of the CCL will be reduced.
  • the mass of the magnetic filler accounts for 20-90% of the total mass of the organic matter and the magnetic filler, and the two cooperate with each other, on the one hand, the magnetic filler is uniformly dispersed in the organic system, and on the other hand, the composition is It has excellent magnetic properties and dielectric properties; and the particle size of the magnetic filler is 0.1-30 ⁇ m, which can obtain better dispersibility. If the content of the magnetic filler is too low (Comparative Example 2), the magnetic permeability of the copper clad laminate will be low, and the ideal magnetic and dielectric properties cannot be achieved.
  • the present invention is to illustrate a magnetic dielectric resin composition, a prepreg and a copper clad laminate comprising the same of the present invention through the above-mentioned embodiments, but the present invention is not limited to the above-mentioned embodiments, that is, it does not mean that the present invention is not limited to the above-mentioned embodiments.
  • the invention must rely on the above-described embodiments to be implemented. Those skilled in the art should understand that any improvement of the present invention, the equivalent replacement of each raw material of the product of the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the protection scope and disclosure scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种磁介电树脂组合物及包含其的预浸料和覆铜板,磁介电树脂组合物包括树脂和磁性填料;磁性填料在-55~150℃条件下的温漂系数的绝对值为0~1000ppm/℃;磁性填料的制备原料包括氧化铁和金属氧化物的组合。磁介电树脂组合物通过树脂与特定磁性填料的相互协同,使其在确保良好介电性能的前提下,一方面具有高磁导率、低磁损耗和适宜的截止频率,另一方面能够降低温漂系数,提高稳定性。包含所述磁介电树脂组合物的覆铜板相对磁导率高,磁损耗低,温漂系数低,热稳定性优异,能够充分满足覆铜板在制备高性能和小型化的电子产品中的应用需求。

Description

一种磁介电树脂组合物及包含其的预浸料和覆铜板 技术领域
本发明属于覆铜板技术领域,具体涉及一种磁介电树脂组合物及包含其的预浸料和覆铜板。
背景技术
随着微电子、微机械等新兴微加工技术的逐渐发展,在以高密度安装技术为背景的潮流中,驱动电容器、集成电路、电路模块、天线射频模块等电子元器件不断面向小型化方向发展。作为雷达和现代无线通信系统中的关键组件,具有紧凑尺寸的天线元件具有重要的传输性能,天线尺寸的进一步缩小成为实现电子器件整体小型化的必要途径。因此,小尺寸天线的研发一直备受关注并持续发展。
以覆铜板为代表的板材是天线的重要构筑基元,减小天线尺寸的办法之一是使用高介电板材。例如CN103351578A公开了一种用于形成天线的介质基板的介质层的树脂组合物及其用途,所述树脂组合物包括含有萘环或联苯结构的环氧树脂、固化后具有低热膨胀系数的环氧树脂、粘度调节剂和经过预烧处理的球形陶瓷粉;所述树脂组合物得到的介质基板具有高介电常数、高剥离强度、低的热膨胀系数和厚度一致性,可以满足高介电常数天线基板的性能要求。CN103101252A公开了一种高介电常数、低损耗CEM-3覆铜板的制作方法,该制作方法中以具有良好介电性能的双酚A环氧树脂作为主体树脂,并将其与高介电填料进行复合,使其固化后具有高的介电常数和低的介质损耗;所述高介电填料为二氧化钛、三氧化铝、钛酸钡或钛酸铅,得到的CEM-3覆铜板性能良好。虽然上述高介电常数板材可以减小天线尺寸,但是这种办法同时会减小天 线的增益、降低天线的综合性能。
减小天线尺寸的另一种方法是使用具有磁介电性能的材料作为基板,根据波长计算公式λ=c/f·(ε r·μ r) 1/2可知,λ代表波长,c代表真空中的光速,f代表频率,(ε r·μ r) 1/2代表小型化因子,介电常数ε r越大、磁导率μ r越大,小型化因子越高,越有利于小型化。在介电常数不能改变的情况下,提高磁导率就能有效减小天线尺寸,同时保持或提高天线增益和带宽。
CN106797699A公开了一种磁介电基板、电路材料和具有其的组件,包括第一介电层和第二介电层,以及设置于第一介电层和第二介电层之间并与二者密切接触的至少一个磁性增强层,所述磁性增强层中包含铁氧体材料。该磁介电基板具有低介电、低磁损耗和低功率消耗;然而,所述磁介电板材的磁导率较低,难以满足电子产品对磁性基板的差异化需求,且绝缘性能不理想,导致电子产品的使用性较差。
现有技术中的磁介电材料大多使用尖晶石铁氧体或平面六角铁氧体;其中,尖晶石铁氧体,例如镍锌铁氧体、锰锌铁氧体等,具有高磁导率值,但其截止频率低,在300MHz以上难以使用;平面六角铁氧体,例如Co 2Z六角铁氧体等,具有高的截止频率,但其磁导率较低,难以大幅度降低天线尺寸。随着未来天线的小型化、集成化发展,电子产品会进一步向着高密度、多层化方向的不断发展,再加上埋容、埋阻和埋感等的发展,电子元件中小空间、大功率的特性会不可避免地导致热量聚集,使设备的工作温度相应升高,局部温度达到100℃以上,这就要求天线等相应元器件具有良好的热稳定性能。然而,现有技术中的磁介电板材在介电常数、热导率、稳定性、磁导率和磁损耗方面难以达到平衡,极大地限制了磁介电板材在电子产品中的应用。
因此,开发一种介电常数低、磁导率高且热稳定性好的磁介电材料,以满 足电子产品高性能和小型化的需求,是本领域的研究重点。
发明内容
针对现有技术的不足,本发明的目的在于提供一种磁介电树脂组合物及包含其的预浸料和覆铜板,通过树脂与特定磁性填料的相互配合,显著改善了磁介电树脂组合物的磁导率和介电性能,降低其温漂系数和磁损耗,使包含其的覆铜板具有高磁导率、低磁损耗和低温漂系数,而且稳定性和介电性能优异,能够充分满足电子产品在高性能和小型化方面的需求。
为达到此发明目的,本发明采用以下技术方案:
第一方面,本发明提供一种磁介电树脂组合物,所述磁介电树脂组合物包括树脂和磁性填料;所述磁性填料在-55~150℃条件下的温漂系数的绝对值为0~1000ppm/℃,例如1ppm/℃、5ppm/℃、10ppm/℃、20ppm/℃、30ppm/℃、50ppm/℃、70ppm/℃、90ppm/℃、100ppm/℃、150ppm/℃、200ppm/℃、250ppm/℃、300ppm/℃、350ppm/℃、400ppm/℃、450ppm/℃、500ppm/℃、550ppm/℃、600ppm/℃、650ppm/℃、700ppm/℃、750ppm/℃、800ppm/℃、850ppm/℃、900ppm/℃或950ppm/℃,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
所述磁性填料的制备原料包括氧化铁和金属氧化物的组合;所述金属氧化物中的金属选自Ba、Sr、Co、Ni、Cu、Zn、Mg、Mn、V、Mo、Cr、Sn、W、Bi、Hf、Nb、Ca、Zr、Al、Ti、Ta或La中的任意一种或至少两种的组合。
本发明提供的磁介电树脂组合物包括树脂和特定的磁性填料,二者相互配合,赋予了所述磁介电树脂组合物良好的磁导率和介电性能。所述磁性填料的温漂系数绝对值为0~1000ppm/℃,且其制备原料包括氧化铁和金属氧化物的组合;特定组分的磁性填料使所述磁介电树脂组合物在确保良好介电性能的前提 下,一方面具有较高的磁导率和低的磁损耗,以及适宜的截止频率,另一方面能够有效降低温漂系数,提高稳定性,使包含其的覆铜板在磁导率、磁损耗、介电性能、稳定性和截止频率等方面达到性能平衡,适用于高性能和小型化电子产品的制备。
本发明所述温漂系数为(ε r·μ r) 1/2温漂系数,其中,ε r代表相对介电常数,μ r代表相对磁导率;所述温漂系数代表-55~150℃的磁导率相对变化率,通过使用空气线测试方法(测试仪器为是德科技的E5071C、N1500或8050D等测试系统),测试材料0.1~18GHz的磁性能、介电性能,不同温度的性能测试放置在温度控制箱中测试。下文涉及到相同描述,均具有相同含义。
所述磁性填料在-55~150℃条件下的温漂系数的绝对值为0~1000ppm/℃,所述磁性填料包括正温漂系数磁性填料和/或负温漂系数磁性填料,不限定正温漂系数磁性填料、负温漂系数磁性填料的种类、含量等,只要其温漂系数的绝对值为0~1000ppm/℃即可满足本发明的要求。同样地,所述磁性填料可以是一种或至少两种的磁性填料的组合,只要其温漂系数的绝对值为0~1000ppm/℃即可满足本发明的要求。
本发明中,所述磁性填料的温漂系数的绝对值≤1000ppm/℃,使所述磁介电树脂组合物理想的磁介电性能。如果磁性填料的本征温飘系数绝对值大于1000ppm/℃,制备的磁介电树脂组合物的温飘系数会大于400ppm/℃,导致磁导率的变系数偏大,难以满足使用要求。
优选地,所述磁性填料在-55~150℃条件下的温漂系数的绝对值为5~500ppm/℃。
作为本发明的优选技术方案,所述磁性填料在-55~150℃条件下的温漂系数的绝对值为5~500ppm/℃,温飘系数的进一步优化使板材的温飘系数可以更小, 器件的抗环境性能更优。
优选地,所述磁性填料在0.1~18GHz条件下的温漂系数的绝对值为5~500ppm/℃,例如5ppm/℃、10ppm/℃、20ppm/℃、30ppm/℃、50ppm/℃、70ppm/℃、90ppm/℃、100ppm/℃、150ppm/℃、200ppm/℃、250ppm/℃、300ppm/℃、350ppm/℃、400ppm/℃、450ppm/℃或480ppm/℃,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
优选地,所述磁性填料的磁导率为5~1000,例如10、15、20、30、50、80、100、150、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900或950,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
作为本发明的优选技术方案,所述磁性填料的磁导率(相对磁导率)为5~1000,使磁介电树脂组合物具有高磁导率和适宜的截止频率。当磁性填料的磁导率小于5,则会使磁介电树脂组合物的磁导率小于1.5,难以满足使用要求。当磁性填料的磁导率大于1000,对应的截止频率小于200MHz,难以满足使用要求。
优选地,所述磁性填料的粒径为0.1~30μm(本文所指的填料的粒径,使用激光衍射散射法的粒度分布测定得到),例如0.5μm、1μm、1.5μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、11μm、13μm、15μm、17μm、19μm、20μm、21μm、23μm、25μm、27μm或29μm,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
作为本发明的优选技术方案,所述磁性填料的粒径为0.1~30μm,能够在树 脂体系中良好分散,得到性能均一稳定的磁介电树脂组合物。如果磁性填料的粒径超出上述范围,则会使其分散性降低,影响所述磁介电树脂组合物及包含其的覆铜板的性能稳定性和均一性。
本发明中,所述磁性填料的制备原料中氧化铁的摩尔百分含量为40~72%,例如42%、45%、48%、50%、52%、55%、58%、60%、62%、65%、68%或70%,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
优选地,所述金属氧化物中的金属选自Ba、Co、Ni、Cu、Zn、Mg、Mn、V或Bi中的任意一种或至少两种的组合。
为了改善铁氧体磁性材料的温度系数,通常需要调节磁晶各项异性常数K1以及磁滞伸缩系数λs,铁氧体本身具有较大的λs值,Co、Zn等金属离子掺杂,可以明显改善材料的K1、以及λs,从而改善温度系数。
本发明中,所述磁性填料采用如下方法进行制备,所述方法包括:将氧化铁、金属氧化物和任选的辅料混合后进行烧结,将烧结产物粉碎,得到所述磁性填料。
本发明中,所述磁性填料由氧化铁、金属氧化物和任选的辅料混合后烧结得到,高温烧结是化学过程,可使不同的金属氧化物之间发生反应,从而形成特定结构,改善磁性材料性能。物理混合是物理过程,单纯的氧化铁跟其它金属氧化物混合,无法形成新的结构,性能改善不明显。
优选地,所述混合的方法包括物理干法混合。
优选地,所述烧结的温度为800~2000℃,例如850℃、900℃、950℃、1000℃、1050℃、1100℃、1150℃、1200℃、1250℃、1300℃、1350℃、1400℃、1450℃、1500℃、1600℃、1700℃、1800℃、1900℃或1950℃,以及上述点值之间的具 体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
优选地,所述烧结的时间为1~8h,例如1.5h、2h、2.5h、3h、3.5h、4h、4.5h、5h、5.5h、6h、6.5h、7h或7.5h,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
优选地,所述粉碎的方法包括湿法球磨粉碎。
本发明中,所述磁性填料的质量占磁性填料与有机物总质量的20~90%,例如22%、25%、28%、30%、32%、35%、38%、40%、42%、45%、48%、50%、52%、55%、58%、60%、62%、65%、68%、70%、72%、75%、78%、80%、82%、85%或88%,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
所述“有机物”包括树脂,以及任选的固化剂、交联剂、引发剂和固化促进剂的组合。即所述磁介电树脂组合物中不包括非磁性填料,所述磁介电树脂组合物中磁性填料的质量百分比为20~90%;所述磁介电树脂组合物中还包括非磁性填料,所述磁性填料的质量占磁介电树脂组合物中除非磁性填料之外的其他组分的总质量的20~90%。
作为本发明的优选技术方案,所述磁性填料的质量占磁性填料与有机物总质量的20~90%;如果磁性填料的含量过高,则磁性填料在树脂体系中的分散性差,无法获得性能均一的磁介电树脂组合物,进而无法得到预浸料和覆铜板;如果磁性填料的含量过低,则会使所述磁介电树脂组合物及包含其的覆铜板磁导率降低,无法获得理想的磁介电性能。
本发明中,所述树脂包括环氧树脂、氰酸酯树脂、聚苯醚树脂、聚丁二烯树脂、丁苯树脂、马来酰亚胺-三嗪树脂、马来酰亚胺树脂、聚四氟乙烯树脂、 聚酰亚胺树脂、酚醛树脂、丙烯酸树脂、液晶树脂、苯并恶嗪树脂、酚氧树脂或丁腈橡胶中的任意一种或至少两种的组合。
优选地,所述丁腈橡胶包括端羧基丁腈橡胶和/或端羟基丁腈橡胶。
本发明中,所述磁介电树脂组合物中还包括引发剂。
优选地,所述引发剂包括有机过氧化物类引发剂、胺类引发剂、咪唑类引发剂、酚类引发剂、三氟化硼配合物类引发剂、磷酸三苯酯或亚磷酸三苯酯中的任意一种或至少两种的组合。
优选地,所述有机过氧化物类引发剂包括α,α'-二叔丁基过氧化间异丙基苯-苯、过氧化二异丙苯、叔丁基过氧化异丙苯、1,1-双叔己基过氧化-3,3,5-三甲基环己烷、2,5-二甲基-2,5-二叔丁基过氧基-3-己炔、过氧辛酸叔丁酯或过氧化苯甲酸叔丁酯中的任意一种或至少两种的组合。
优选地,所述胺类引发剂包括叔胺类引发剂和/或季铵盐类引发剂。
优选地,所述叔胺类引发剂包括苄基二甲胺和/或2,4,6-三(二甲胺基甲基)苯酚。
优选地,所述磁介电树脂组合物中还包括固化促进剂。
优选地,所述固化促进剂包括咪唑类化合物、哌啶类化合物、吡啶类化合物或有机金属盐路易斯酸中的任意一种或至少两种的组合。
优选地,所述咪唑类化合物包括2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、2-十一烷基咪唑、1-苄基-2-甲基咪唑、2-十七烷基咪唑、2-异丙基咪唑、2-苯基-4-甲基咪唑、2-十二烷基咪唑或1-氰乙基-2-甲基咪唑中的任意一种或至少两种的组合。
优选地,所述磁介电树脂组合物中还包括交联剂。
优选地,所述交联剂包括异氰脲酸三烯丙酯、聚异氰脲酸三烯丙酯、三聚 氰酸三烯丙酯、三甲基丙烯酸、邻苯二甲酸二烯丙酯、二乙烯基苯或多官能丙烯酸酯中的任意一种或至少两种的组合。
优选地,所述磁介电树脂组合物中还包括非磁性填料。
优选地,所述非磁性填料包括二氧化硅、二氧化钛、钛酸钡、钛酸锶、钛酸镁、钛酸钙、钛酸锶钡、钙钛酸钡、钛酸铅、锆钛酸铅、锆钛酸镧铅、钛酸镧钡、钛酸锆钡、二氧化铪、铌镁酸铅、铌镁酸钡、铌酸锂、铌酸钾、钽酸铝锶、铌酸钽钾、铌酸锶钡、铌酸钡铅、铌酸钛钡、钽酸铋锶、钛酸铋、钛酸钡铷、钛酸铜或铌镁酸铅-钛酸铅中的任意一种或至少两种的组合。
优选地,所述磁介电树脂组合物中还包括阻燃剂。
另一方面,本发明提供一种树脂胶液,所述树脂胶液是将如上所述的磁介电树脂组合物溶解或分散于溶剂中得到。
优选地,所述溶剂包括醇类溶剂、醚类溶剂、芳香烃类溶剂、酯类溶剂、酮类溶剂或含氮类溶剂中的任意一种或至少两种的组合。
优选地,所述醇类溶剂包括甲醇、乙醇或丁醇中的任意一种或至少两种的组合。
优选地,所述醚类溶剂包括乙基溶纤剂、丁基溶纤剂、乙二醇甲醚、二乙二醇乙醚或二乙二醇丁醚中的任意一种或至少两种的组合。
优选地,所述芳香烃类溶剂包括苯、甲苯、二甲苯或均三甲苯中的任意一种或至少两种的组合。
优选地,所述酯类溶剂包括乙酸乙酯、乙酸丁酯或乙氧基乙基乙酸酯中的任意一种或至少两种的组合。
优选地,所述酮类溶剂包括丙酮、丁酮、甲基乙基甲酮、甲基异丁基酮或环己酮中的任意一种或至少两种的组合。
优选地,所述含氮类溶剂包括N,N-二甲基甲酰胺、N,N-二甲基乙酰胺或N-甲基-2-吡咯烷酮中的任意一种或至少两种的组合。
优选地,所述树脂胶液的固含量为20~90%,例如22%、25%、28%、30%、32%、35%、38%、40%、42%、45%、48%、50%、52%、55%、58%、60%、62%、65%、68%、70%、72%、75%、78%、80%、82%、85%或88%,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
另一方面,本发明提供一种用如上所述的磁介电树脂组合物制备的涂树脂铜箔或树脂膜。
所述涂树脂铜箔,是将如上所述的磁介电树脂组合物以溶液形式以提供2~15g/m 2的涂层重量施用到所述导电金属层的表面上而获得。
所述树脂膜,是将如上所述的磁介电树脂组合物涂覆在离型材料上,经过干燥、半固化或固化等,去除离型材料,获得树脂膜。
另一方面,本发明提供一种预浸料,所述预浸料包括增强材料,以及通过浸渍干燥附着于所述增强材料上的如上所述的磁介电树脂组合物。
优选地,所述增强材料包括无机增强材料和/或有机增强材料。
优选地,所述增强材料包括玻纤布、无纺布、石英布或纸中的任意一种或至少两种的组合。
优选地,所述玻纤布可以为E-玻纤布、D-玻纤布、S-玻纤布、T玻纤布、NE-玻纤布、Q玻纤布、L玻纤布或QL玻纤布等。
示例性的,所述预浸料的制备方法为:将增强材料浸于所述磁介电树脂组合物的树脂胶液中,取出后干燥,得到所述预浸料。
优选地,所述干燥的温度为100~250℃,例如105℃、110℃、115℃、120℃、 130℃、140℃、150℃、160℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃、240℃或245℃等。
优选地,所述干燥的时间为1~15min,例如2min、3min、4min、5min、6min、7min、8min、9min、10min、11min、12min、13min或14min等。
另一方面,本发明提供一种层压板,所述层压板包括至少一张如上所述的预浸料。
另一方面,本发明提供一种覆铜板,所述覆铜板包括至少一张如上所述的预浸料,以及设置于所述预浸料的一侧或两侧的铜箔。
示例性的,所述覆铜板的制备方法为:在一张预浸料的一侧或两侧压合铜箔,固化,得到所述覆铜板;或,将至少两张预浸料粘合制成层压板,然后在所述层压板的一侧或两侧压合铜箔,固化,得到所述覆铜板。
优选地,所述固化在热压机中进行。
优选地,所述固化的温度为150~250℃,例如150℃、155℃、160℃、165℃、170℃、175℃、180℃、185℃、190℃、195℃、200℃、205℃、210℃、215℃、220℃、225℃、230℃、235℃、240℃或245℃等。
另一方面,本发明提供一种印刷线路板,所述印刷线路板包括至少一张如上所述的预浸料或如上所述的覆铜板。
相对于现有技术,本发明具有以下有益效果:
本发明提供的磁介电树脂组合物通过树脂和磁性填料的配合,具有良好的磁性能和介电性能。所述磁性填料的温漂系数的绝对值为0~1000ppm/℃,制备原料包括氧化铁和金属氧化物的组合,特定组分的磁性填料使所述磁介电树脂组合物在确保良好介电性能的前提下,一方面具有高磁导率、低磁损耗和适宜的截止频率,另一方面能够降低温漂系数,提高稳定性。包含所述磁介电树脂 组合物的覆铜板相对磁导率高,能够达到6~10,而且磁损耗低,磁损耗正切值为0.01~0.045,温漂系数的绝对值为30~100ppm/℃,具有高的磁导率、低磁损耗、低温漂系数和高的性能稳定性,能够充分满足覆铜板在制备高性能和小型化的电子产品中的应用需求。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
制备例
本发明以下实施例和对比例中所使用的磁性填料的组分及其性能如表1所示;表1中,各组分的含量为摩尔百分含量。
表1
Figure PCTCN2020127788-appb-000001
磁性填料的制备方法如下:
按照表1所示的配方,按照摩尔比例称取各原料组分,物理干法混合1h,制备成环状胚体,然后1300℃烧结4h;得到的烧结产物为环形样品(内径3.04mm、外径6.96mm、厚度3mm);将烧结产物在球磨机中湿法球磨粉碎,转速 为3000转/min,时间为1~5h,锆珠的粒径为1~10mm复配;球磨后干燥,得到磁性填料;通过球磨时间的控制实现不同粒径的制备。
表1中,磁导率和温漂系数的测试方法为:
(1)样品制备:将各原料组分物理干法混合后,制备成环状胚体,1300℃烧结4h,得到的烧结产物为成环形样品(内径3.04mm、外径6.96mm、厚度3mm),测试烧结产物的磁导率和温漂系数;
(2)磁导率测试:采用阻抗分析仪测试材料0.1~18GHz的磁导率,测试仪器为是德科技E5071C网络分析仪+N1500测试系统;
(3)温飘系数测试:将上述测试系统放入高低温烘箱中,分别测试-55℃、25℃、150℃的磁导率,按照以下公示计算温飘系数。
温飘系数=1000000×(磁导率 150℃-磁导率 -55℃)/(200×磁导率 25℃)。
本发明以下实施例中所用到的实验材料包括:
(1)树脂:环氧树脂:双酚A型诺夫拉克环氧树脂(美国Momentive化学公司的EPR627);溴化环氧树脂:台湾长春的BEB531A80P;酚氧树脂:新日铁的YP-50EK35;聚苯醚树脂:沙比克SA9000;
(2)固化促进剂:咪唑类固化促进剂,德国巴斯夫的2-MI;
(3)固化剂:4,4'-二胺基二苯砜(DDS);
(4)交联剂:TAIC交联剂,购自浏阳市有机化工有限公司;
(5)引发剂:过氧化二异丙苯(DCP),上海高桥石油化工公司;
(6)增强材料:玻纤布,中国巨石股份有限公司。
实施例1
一种磁介电树脂组合物,按照重量份包括如下组分:20重量份溴化环氧树脂、15重量份酚氧树脂、35重量份聚苯醚树脂、20重量份磁性填料DZC-100、 4.9重量份的TAIC、4.5重量份的DDS、0.5重量份2-MI、0.1重量份DCP。
所述磁介电树脂组合物用于覆铜板的制备,具体方法如下:
(1)将所述磁介电树脂组合物与乙二醇甲醚混合,室温下分散均匀,得到固含量为80%的树脂胶液;
(2)使用增强材料(玻纤布)浸渍步骤(1)得到的树脂胶液,置于155℃烘箱中烘烤5min实现固化,得到预浸料;将所述预浸料置于两个铜箔之间,在热压机中210℃、5MPa压力层压并固化2h,得到所述覆铜板。
实施例2
一种磁介电树脂组合物,按照重量份包括如下组分:2.97重量份环氧树脂、4.5重量份溴化环氧树脂、2重量份酚氧树脂、90重量份磁性填料DZC-80、0.5重量份DDS、0.03重量份2-MI。
所述磁介电树脂组合物用于覆铜板的制备,具体方法与实施例1相同,得到所述覆铜板。
实施例3
一种磁介电树脂组合物,按照重量份包括如下组分:16重量份环氧树脂、20.35重量份溴化环氧树脂、5重量份酚氧树脂、50重量份磁性填料DFC-230、8重量份DDS、0.65重量份2-MI。
所述磁介电树脂组合物用于覆铜板的制备,具体方法与实施例1相同,得到所述覆铜板。
实施例4
一种磁介电树脂组合物,按照重量份包括如下组分:5.97重量份环氧树脂、8.5重量份溴化环氧树脂、5重量份酚氧树脂、70重量份磁性填料DZC-80、10重量份硅微粉、0.5重量份DDS、0.03重量份2-MI。
所述磁介电树脂组合物用于覆铜板的制备,具体方法与实施例1相同,得到所述覆铜板。
实施例5
一种磁介电树脂组合物,按照重量份包括如下组分:16重量份环氧树脂、20.35重量份溴化环氧树脂、5重量份酚氧树脂、25重量份磁性填料DZC-100、25重量份磁性填料DFC-230、8重量份DDS、0.65重量份2-MI。
所述磁介电树脂组合物用于覆铜板的制备,具体方法与实施例1相同,得到所述覆铜板。
对比例1
一种磁介电树脂组合物,其组分与实施例3的区别仅在于,将磁性填料DFC-230用等质量的磁性填料DFC-500替换。
所述磁介电树脂组合物用于覆铜板的制备,具体方法与实施例1相同,得到所述覆铜板。
对比例2
一种磁介电树脂组合物,按照重量份包括如下组分:7重量份环氧树脂A、26.5重量份溴化环氧树脂、15重量份酚氧树脂、38.5重量份聚苯醚树脂、3重量份磁性填料DZC-100、4.9重量份的TAIC、4.5重量份DDS、0.5重量份2-MI、0.1重量份DCP。
所述磁介电树脂组合物用于覆铜板的制备,具体方法与实施例1相同,得到所述覆铜板。
对比例3
一种磁介电树脂组合物,其组分与实施例1的区别仅在于,将磁性填料DZC-100用等质量的磁性填料DZC-430替换。
所述磁介电树脂组合物用于覆铜板的制备,具体方法与实施例1相同,得到所述覆铜板。
性能测试:
(1)样品制备:将板材加工成环形样品(内径3.04mm、外径6.96mm、厚度3mm);
(2)相对磁导率、磁损耗角正切:采用阻抗分析仪测试材料0.1~18GHz的磁导率,测试仪器为是德科技E5071C网络分析仪+N1500测试系统;
(3)温漂系数:将上述测试系统放入高低温烘箱中,分别测试-55℃、25℃、150℃的磁导率,按照以下公示计算温飘系数。
温飘系数=1000000×(磁导率 150℃-磁导率 -55℃)/(200×磁导率 25℃)。
按照上述性能测试方法测试实施例1~5、对比例1~3得到的覆铜板的各项性能,将磁介电树脂组合物的组分及包含其的覆铜板性能测试结果进行总结,如表2所示。
表2
Figure PCTCN2020127788-appb-000002
Figure PCTCN2020127788-appb-000003
根据表2的数据可知,本发明实施例1~5提供的磁介电树脂组合物用于制备覆铜板,得到的覆铜板具有高的磁导率、低磁损耗、低温漂系数和高的性能稳定性,相对磁导率高能够达到6~10,磁损耗正切值低至0.01~0.045,温漂系数的绝对值为30~100ppm/℃,能够满足覆铜板在制备高性能和小型化的电子产 品中的应用需求。
所述磁介电树脂组合物中,所述磁性填料的温漂系数绝对值为0~1000ppm/℃,得到的磁介电树脂组合物及包含其的覆铜板具有优异的磁介电性能;如果磁性填料的温漂系数绝对值大于1000ppm/℃(对比例1、对比例3),都会导致覆铜板的性能降低。
所述磁介电树脂组合物中,磁性填料的质量占有机物与磁性填料总质量的20~90%,二者相互配合,一方面使磁性填料在有机体系中分散均匀,另一方面使组合物具有优异的磁性能和介电性能;而且所述磁性填料的粒径为0.1~30μm,能够获得更好的分散性。如果磁性填料的含量过低(对比例2),则会使覆铜板的磁导率低,无法达到理想的磁介电性能。
申请人声明,本发明通过上述实施例来说明本发明的一种磁介电树脂组合物及包含其的预浸料和覆铜板,但本发明并不局限于上述实施例,即不意味着本发明必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种磁介电树脂组合物,其特征在于,所述磁介电树脂组合物包括树脂和磁性填料;所述磁性填料在-55~150℃条件下的温漂系数的绝对值为0~1000ppm/℃;
    所述磁性填料的制备原料包括氧化铁和金属氧化物的组合;所述金属氧化物中的金属选自Ba、Sr、Co、Ni、Cu、Zn、Mg、Mn、V、Mo、Cr、Sn、W、Bi、Hf、Nb、Ca、Zr、Al、Ti、Ta或La中的任意一种或至少两种的组合。
  2. 根据权利要求1所述的磁介电树脂组合物,其特征在于,所述磁性填料在-55~150℃条件下的温漂系数的绝对值为5~500ppm/℃;
    优选地,所述磁性填料在0.1~18GHz条件下的温漂系数的绝对值为5~500ppm/℃;
    优选地,所述磁性填料的磁导率为5~1000;
    优选地,所述磁性填料的粒径为0.1~30μm。
  3. 根据权利要求1或2所述的磁介电树脂组合物,其特征在于,所述磁性填料的制备原料中氧化铁的摩尔百分含量为40~72%;
    优选地,所述金属氧化物中的金属选自Ba、Co、Ni、Cu、Zn、Mg、Mn、V或Bi中的任意一种或至少两种的组合。
  4. 根据权利要求1~3任一项所述的磁介电树脂组合物,其特征在于,所述磁性填料采用如下方法进行制备,所述方法包括:将氧化铁、金属氧化物和任选的辅料混合后进行烧结,将烧结产物粉碎,得到所述磁性填料;
    优选地,所述混合的方法包括物理干法混合;
    优选地,所述烧结的温度为800~2000℃;
    优选地,所述烧结的时间为1~8h;
    优选地,所述粉碎的方法包括湿法球磨粉碎。
  5. 根据权利要求1~4任一项所述的磁介电树脂组合物,其特征在于,所述磁性填料的质量占磁性填料与有机物总质量的20~90%;
    优选地,所述树脂包括环氧树脂、氰酸酯树脂、聚苯醚树脂、聚丁二烯树脂、丁苯树脂、马来酰亚胺-三嗪树脂、马来酰亚胺树脂、聚四氟乙烯树脂、聚酰亚胺树脂、酚醛树脂、丙烯酸树脂、液晶树脂、苯并恶嗪树脂、酚氧树脂或丁腈橡胶中的任意一种或至少两种的组合。
  6. 根据权利要求1~5任一项所述的磁介电树脂组合物,其特征在于,所述磁介电树脂组合物中还包括引发剂;
    优选地,所述引发剂包括有机过氧化物类引发剂、胺类引发剂、咪唑类引发剂、酚类引发剂、三氟化硼配合物类引发剂、磷酸三苯酯或亚磷酸三苯酯中的任意一种或至少两种的组合;
    优选地,所述磁介电树脂组合物中还包括固化促进剂;
    优选地,所述固化促进剂包括咪唑类化合物、哌啶类化合物、吡啶类化合物或有机金属盐路易斯酸中的任意一种或至少两种的组合;
    优选地,所述咪唑类化合物包括2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、2-十一烷基咪唑、1-苄基-2-甲基咪唑、2-十七烷基咪唑、2-异丙基咪唑、2-苯基-4-甲基咪唑、2-十二烷基咪唑或1-氰乙基-2-甲基咪唑中的任意一种或至少两种的组合;
    优选地,所述磁介电树脂组合物中还包括交联剂;
    优选地,所述交联剂包括异氰脲酸三烯丙酯、聚异氰脲酸三烯丙酯、三聚氰酸三烯丙酯、三甲基丙烯酸、邻苯二甲酸二烯丙酯、二乙烯基苯或多官能丙烯酸酯中的任意一种或至少两种的组合;
    优选地,所述磁介电树脂组合物中还包括非磁性填料;
    优选地,所述非磁性填料包括二氧化硅、二氧化钛、钛酸钡、钛酸锶、钛酸镁、钛酸钙、钛酸锶钡、钙钛酸钡、钛酸铅、锆钛酸铅、锆钛酸镧铅、钛酸镧钡、钛酸锆钡、二氧化铪、铌镁酸铅、铌镁酸钡、铌酸锂、铌酸钾、钽酸铝锶、铌酸钽钾、铌酸锶钡、铌酸钡铅、铌酸钛钡、钽酸铋锶、钛酸铋、钛酸钡铷、钛酸铜或铌镁酸铅-钛酸铅中的任意一种或至少两种的组合;
    优选地,所述磁介电树脂组合物中还包括阻燃剂。
  7. 一种用权利要求1~6任一项所述的磁介电树脂组合物制备的涂树脂铜箔或树脂膜。
  8. 一种预浸料,其特征在于,所述预浸料包括增强材料,以及通过浸渍干燥附着于所述增强材料上的如权利要求1~6任一项所述的磁介电树脂组合物;
    优选地,所述增强材料包括无机增强材料和/或有机增强材料;
    优选地,所述增强材料包括玻纤布、无纺布、石英布或纸中的任意一种或至少两种的组合。
  9. 一种覆铜板,其特征在于,所述覆铜板包括至少一张如权利要求8所述的预浸料,以及设置于所述预浸料的一侧或两侧的铜箔。
  10. 一种印刷线路板,其特征在于,所述印刷线路板包括至少一张如权利要求8所述的预浸料或如权利要求9所述的覆铜板。
PCT/CN2020/127788 2020-10-27 2020-11-10 一种磁介电树脂组合物及包含其的预浸料和覆铜板 WO2022088247A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/033,829 US20240010810A1 (en) 2020-10-27 2020-11-10 Magnetic dielectric resin composition, and prepreg and copper clad laminate comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011165215.0 2020-10-27
CN202011165215.0A CN114479417B (zh) 2020-10-27 2020-10-27 一种磁介电树脂组合物及包含其的预浸料和覆铜板

Publications (1)

Publication Number Publication Date
WO2022088247A1 true WO2022088247A1 (zh) 2022-05-05

Family

ID=81329379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127788 WO2022088247A1 (zh) 2020-10-27 2020-11-10 一种磁介电树脂组合物及包含其的预浸料和覆铜板

Country Status (4)

Country Link
US (1) US20240010810A1 (zh)
CN (1) CN114479417B (zh)
TW (1) TWI755974B (zh)
WO (1) WO2022088247A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104910823A (zh) * 2014-03-11 2015-09-16 味之素株式会社 粘接膜
CN106928660A (zh) * 2015-12-30 2017-07-07 广东生益科技股份有限公司 一种含填料的复合材料、片材以及含有它的电路基板
WO2018194100A1 (ja) * 2017-04-19 2018-10-25 味の素株式会社 樹脂組成物
CN109553955A (zh) * 2018-11-12 2019-04-02 陕西生益科技有限公司 一种磁介电树脂组合物及其应用
CN110494493A (zh) * 2017-04-19 2019-11-22 味之素株式会社 树脂组合物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2550738B (en) * 2015-03-19 2021-08-18 Rogers Corp Magneto-dielectric substrate, circuit material, and assembly having the same
CN107365476B (zh) * 2016-05-12 2019-11-08 中山台光电子材料有限公司 树脂组合物及由其制得的成品
CN106205942B (zh) * 2016-09-22 2018-04-13 电子科技大学 一种形成pcb埋嵌电感磁芯的磁性复合材料及其制备方法和应用
JP6748967B2 (ja) * 2016-11-30 2020-09-02 パナソニックIpマネジメント株式会社 シート状熱硬化性樹脂組成物、並びにそれを用いた樹脂シート、モジュール部品、パワーデバイス及びコイル部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104910823A (zh) * 2014-03-11 2015-09-16 味之素株式会社 粘接膜
CN106928660A (zh) * 2015-12-30 2017-07-07 广东生益科技股份有限公司 一种含填料的复合材料、片材以及含有它的电路基板
WO2018194100A1 (ja) * 2017-04-19 2018-10-25 味の素株式会社 樹脂組成物
CN110494493A (zh) * 2017-04-19 2019-11-22 味之素株式会社 树脂组合物
CN109553955A (zh) * 2018-11-12 2019-04-02 陕西生益科技有限公司 一种磁介电树脂组合物及其应用

Also Published As

Publication number Publication date
US20240010810A1 (en) 2024-01-11
CN114479417B (zh) 2023-09-12
TWI755974B (zh) 2022-02-21
TW202216876A (zh) 2022-05-01
CN114479417A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
CN109135193B (zh) 热固性树脂组合物、预浸料、层压板和印制电路板
WO2016090859A1 (zh) 可降解导热铝基覆铜板用热固性树脂组合物、导热铝基覆铜板、制备方法及其回收方法
US20160243798A1 (en) Thermosetting resin sandwich prepreg, preparation method thereof and copper clad laminate therefrom
CN112552630B (zh) 一种树脂组合物及包含其的树脂胶液、预浸料、层压板、覆铜板和印刷电路板
WO2017092472A1 (zh) 无卤环氧树脂组合物以及含有它的预浸料、层压板和印制电路板
WO2017092482A1 (zh) 无卤环氧树脂组合物以及含有它的预浸料、层压板和印制电路板
KR102660753B1 (ko) 수지 조성물, 수지를 구비하는 구리박, 유전체층, 동장 적층판, 커패시터 소자 및 커패시터 내장 프린트 배선판
KR102311641B1 (ko) 수지 조성물, 이를 포함하는 프리프레그, 이를 포함하는 적층판, 및 이를 포함하는 수지 부착 금속박
JP2009073987A (ja) 高誘電樹脂組成物
KR20150047880A (ko) 인쇄회로기판용 절연 수지 조성물 및 이를 이용한 제품
CN115139589B (zh) 一种高导热覆铜板及其制备方法
KR20180007306A (ko) 열경화성 수지 조성물, 이를 이용한 프리프레그, 적층 시트 및 인쇄회로기판
TWI771826B (zh) 一種磁介電樹脂組成物及其應用
CN112679936B (zh) 一种热固性树脂组合物及包含其的树脂胶液、预浸料、层压板、覆铜板和印刷电路板
TWI755974B (zh) 一種磁介電樹脂組成物及包含其的預浸料及覆銅板
CN115198563A (zh) 一种无纺布及其制备方法和应用
CN115651335A (zh) 一种树脂组合物及包含其的预浸料、覆铜板
CN112538253A (zh) 一种磁介电树脂组合物、包含其的层压板及其印刷电路板
CN112538254A (zh) 一种磁介电树脂组合物、包含其的层压板及其印刷电路板
JPH05128912A (ja) 複合誘電体および回路用基板
CN115073864B (zh) 一种磁介电无纺布预浸料、包含其的覆铜板及应用
WO2024024850A1 (ja) プリプレグ、積層板、プリント配線板及び半導体パッケージ
CN112662127A (zh) 一种磁介电树脂组合物、包含其的层压板及其印刷电路板
CN114957893A (zh) 一种无纺布预浸料、覆铜板及其应用
TW202411318A (zh) 預浸體、積層板、印刷線路板及半導體封裝體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959407

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18033829

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/09/2023).