WO2022085728A1 - 電子写真感光体、これを用いたカートリッジ及び画像形成装置 - Google Patents

電子写真感光体、これを用いたカートリッジ及び画像形成装置 Download PDF

Info

Publication number
WO2022085728A1
WO2022085728A1 PCT/JP2021/038795 JP2021038795W WO2022085728A1 WO 2022085728 A1 WO2022085728 A1 WO 2022085728A1 JP 2021038795 W JP2021038795 W JP 2021038795W WO 2022085728 A1 WO2022085728 A1 WO 2022085728A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
htm
mass
parts
compound
Prior art date
Application number
PCT/JP2021/038795
Other languages
English (en)
French (fr)
Inventor
卓博 長田
由香 長尾
明 安藤
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2022557586A priority Critical patent/JPWO2022085728A1/ja
Priority to CN202180071643.3A priority patent/CN116507975A/zh
Publication of WO2022085728A1 publication Critical patent/WO2022085728A1/ja
Priority to US18/136,537 priority patent/US20230259046A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14791Macromolecular compounds characterised by their structure, e.g. block polymers, reticulated polymers, or by their chemical properties, e.g. by molecular weight or acidity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/047Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0605Carbocyclic compounds
    • G03G5/0607Carbocyclic compounds containing at least one non-six-membered ring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0609Acyclic or carbocyclic compounds containing oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06144Amines arylamine diamine
    • G03G5/061443Amines arylamine diamine benzidine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06145Amines arylamine triamine or greater
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06147Amines arylamine alkenylarylamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06149Amines enamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0675Azo dyes
    • G03G5/0677Monoazo dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14717Macromolecular material obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14734Polymers comprising at least one carboxyl radical, e.g. polyacrylic acid, polycrotonic acid, polymaleic acid; Derivatives thereof, e.g. their esters, salts, anhydrides, nitriles, amides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14795Macromolecular compounds characterised by their physical properties

Definitions

  • the present invention relates to an electrophotographic photosensitive member used in a copying machine, a printer, etc., a cartridge using the electrophotographic photosensitive member, and an image forming apparatus.
  • the photoconductor is a core member.
  • This type of organic photoconductor has a lot of room for material selection and it is easy to control the characteristics of the photoconductor. Therefore, it is a "function-separated photoconductor" that divides the functions of negative charge generation and transfer into different compounds. Is becoming mainstream.
  • it contains a single-layer electrophotographic photosensitive member (hereinafter referred to as a single-layer photosensitive member) having a charge generating material (CGM) and a charge transporting material (CTM) in the same layer, and a charge generating material (CGM).
  • CGM charge generating material
  • CTM charge transporting material
  • a laminated electrophotographic photosensitive member (hereinafter referred to as a laminated photosensitive member) is known in which a charge generating layer and a charge transporting layer containing a charge transporting material (CTM) are laminated.
  • the charging method of the photoconductor include a negative charging method in which the surface of the photoconductor is charged with a negative charge and a positive charging method in which the surface of the photoconductor is charged with a positive charge.
  • Examples of the combination of the layer structure of the photoconductor and the charging method currently put into practical use include a "negatively charged laminated photoconductor" and a "positively charged single layer photoconductor".
  • the "negatively charged laminated photoconductor” is provided with an undercoat layer (UCL) made of resin or the like on a conductive support such as an aluminum tube, and charge generation made of a charge generating material (CGM) and resin or the like is provided on the undercoat layer (UCL).
  • a layer (CGL) is provided, and a charge transport layer (CTL) made of a hole transport material (HTM), a resin, or the like is provided on the layer (CGL).
  • CTL charge transport layer
  • HTM hole transport material
  • the surface of the photoconductor is negatively charged by a corona discharge method or a contact method, and then the photoconductor is exposed.
  • CGM charge generating material
  • CTL charge transport layer
  • HTM hole transport material
  • an undercoat layer (UCL) made of a resin or the like is provided on a conductive support such as an aluminum tube, and a charge generating material (CGM) and holes are provided on the undercoat layer (UCL).
  • a single photosensitive layer made of a transport material (HTM), an electron transport material (ETM), a resin or the like is provided (see, for example, Patent Document 1).
  • HTM transport material
  • ETM electron transport material
  • Patent Document 1 the surface of the photoconductor is positively charged by a corona discharge method or a contact method, and then the photoconductor is exposed.
  • CGM charge generating material
  • the surface charge of the photoconductor is neutralized, an electrostatic latent image is formed by the potential difference from the surrounding surface, and then the latent image is visualized by toner (powder colored resin ink) and toner paper.
  • toner powder colored resin ink
  • the basic structure of an electrophotographic photosensitive member is a photosensitive layer formed on a conductive support, but a protective layer may be provided on the photosensitive layer for the purpose of improving wear resistance and the like. It has been.
  • Patent Document 1 a surface containing a thermoplastic alcohol-soluble resin as a binder resin and a filler having an average primary particle diameter of 0.1 to 3 ⁇ m and a density of 3.0 g / cm 3 or less as the outermost surface layer. It is disclosed that the protective layer is provided on the photosensitive layer.
  • Patent Document 2 describes that a crosslinked surface layer containing a trimethylolpropane acrylate crosslinked product, an organosilica cured film, and a heat or photocurable crosslinked product is provided on the photosensitive layer.
  • Patent Document 3 has a surface protective layer on the surface side of the photosensitive layer, and the surface protective layer photocures a composition containing a hindered amine compound, a polymerizable compound for a binder, and a charge transport agent. What is a cured product is disclosed.
  • the degree of curing of the protective layer is high, the performance such as abrasion resistance is also enhanced. Therefore, for example, when the protective layer is cured by photocuring, the irradiation light intensity In general, the amount of irradiation light is increased to increase the degree of curing.
  • the hole transporting material (HTM) in the photosensitive layer is decomposed by the irradiation light, and the photosensitive layer is damaged. Among them, it was found that the strong exposure characteristics (electrical characteristics after exposure to fluorescent lamps) and transfer repetition characteristics deteriorated.
  • An object of the first embodiment of the present invention is that in an electrophotographic photosensitive member having a cured resin-based protective layer, the protective layer has a high degree of curing, good initial electrical characteristics, and strong exposure characteristics and transfer repeat characteristics. It is an object of the present invention to provide an excellent new electrophotographic photosensitive member.
  • an object of the second embodiment of the present invention is a new electrograph of an electrophotographic photosensitive member having a cured resin-based protective layer, which has good initial electrical characteristics and is also excellent in strong exposure characteristics and transfer repetition characteristics. The purpose is to provide a photoconductor.
  • the first embodiment of the present invention is in a photoconductor in which a photosensitive layer and a protective layer containing a cured product obtained by curing a curable compound are sequentially provided on a conductive support.
  • a / B is 0.0045 or less.
  • a second embodiment of the present invention is in a photoconductor in which a photosensitive layer and a protective layer containing a cured product obtained by curing a curable compound are sequentially provided on a conductive support.
  • the photosensitive layer contains at least a hole transport material (HTM) and a radical acceptor compound, and contains.
  • the electrophotographic photosensitive member is characterized in that the content of the radical acceptor compound in the photosensitive layer is 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the hole transport material (HTM).
  • the gist of the present invention lies in the following [1] to [16].
  • the protective layer is measured for infrared absorption spectroscopy.
  • the photosensitive layer is an electrophotographic photosensitive member containing at least a hole transporting material (HTM) and a radical acceptor compound.
  • HTM hole transporting material
  • a photosensitive member in which a photosensitive layer and a protective layer containing a cured product obtained by curing a curable compound are sequentially provided on a conductive support.
  • the photosensitive layer contains at least a hole transport material (HTM) and a radical acceptor compound, and contains.
  • the electrophotographic photosensitive member is characterized in that the content of the radical acceptor compound in the photosensitive layer is 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the hole transport material (HTM). ..
  • the energy difference between the HOMO level and the LUMO level of the hole transport material (HTM) is larger than the energy difference between the HOMO level and the LUMO level of the radical acceptor compound.
  • the electrophotographic photosensitive member according to any one of [1] to [8], wherein the photosensitive layer is a laminated photosensitive layer in which a charge generating layer and a charge transporting layer are laminated in this order. .. [10] Any one of [1] to [9], wherein the protective layer contains inorganic particles in a ratio of 0 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the protective layer.
  • HTM hole transporting material
  • the protective layer is a layer formed from a composition containing the curable compound and a polymerization initiator. It is an electrophotographic photosensitive member.
  • the protective layer is a layer cured by irradiation with ultraviolet light and / or visible light. Is.
  • a cartridge provided with the electrophotographic photosensitive member according to any one of the above [1] to [14].
  • An image forming apparatus comprising the electrophotographic photosensitive member according to any one of the above [1] to [14].
  • the photoconductor proposed by the first embodiment of the present invention has a cured resin-based protective layer, the degree of curing of the protective layer is high, the initial electrical characteristics are good, and the strong exposure characteristics and transfer repetition are repeated. The characteristics can be made excellent.
  • the photoconductor proposed by the second embodiment of the present invention has a cured resin-based protective layer, has good initial electrical characteristics, and has excellent strong exposure characteristics and transfer repetition characteristics. can.
  • Both the first embodiment of the present invention and the photoconductor proposed by the second embodiment of the present invention contain a hole transport material (HTM) and a radical acceptor compound in the photosensitive layer.
  • HTM hole transport material
  • the photosensitive layer contains a hole transport material (HTM) and a radical acceptor compound.
  • HTM hole transport material
  • the presence of the radical acceptor compound can suppress the decomposition of the HTM, and the damage of the photosensitive layer can be suppressed, and the strong exposure characteristics and the transfer repetition characteristics can be improved.
  • the radical acceptor compound a compound having a HOMO level and a LUMO level energy difference of 1.8 eV or more and 3.0 eV or less is used, and the excellent light-shielding property further enhances particularly strong exposure characteristics. Can be enhanced.
  • This electrophotographic photosensitive member ⁇ This electrophotographic photosensitive member >> The electrophotographic photosensitive member (referred to as “the present electrophotographic photosensitive member” or “the present photosensitive member”) according to an example of the first embodiment of the present invention and the second embodiment of the present invention is placed on a conductive support. , An electrophotographic photosensitive member including a photosensitive layer and a cured resin-based protective layer (also referred to as “main protective layer”) containing a cured product in sequence.
  • the photoconductor may optionally have a layer other than the photosensitizer layer and the protective layer.
  • the charging method of the present photoconductor may be either a negative charging method in which the surface of the photoconductor is charged with a negative charge or a positive charging method in which the surface of the photoconductor is charged with a positive charge.
  • the negative charging method is preferable in that the effect of the present invention can be further enjoyed.
  • the side opposite to the conductive support is the upper side or the front surface side, and the conductive support side is the lower side or the back surface side.
  • the photosensitive layer in the present photoconductor may be a layer containing at least a charge generating material (CGM), a hole transporting material (HTM), and a radical acceptor compound.
  • the photosensitive layer in the present photoconductor may be a single-layer photosensitive layer in which a charge generating material (CGM), a hole transporting material (HTM), and a radical acceptor compound are present in the same layer, or may be a charge. It may be a laminated photosensitive layer separated into a generation layer and a charge transport layer. Above all, the laminated photosensitive layer described below is more preferable.
  • a laminated photosensitive layer in which a charge generating layer (CGL) and a charge transporting layer (CTL) are laminated in this order for example, a charge generating layer (CGL) containing a charge generating material (CGM).
  • CGL charge generating layer
  • CGM charge generating material
  • CTL charge transport layer
  • HTM hole transport material
  • the charge generating layer usually contains a charge generating material (CGM) and a binder resin.
  • charge generating material examples include inorganic photoconducting materials such as selenium and its alloys and cadmium sulfide, and organic photoconducting materials such as organic pigments. Of these, organic photoconducting materials are preferable, and organic pigments are particularly preferable.
  • the organic pigment examples include phthalocyanine, azo, perylene and the like. Among these, phthalocyanine or azo is particularly preferable. Among them, phthalocyanine is the most preferable. All of these show the skeletal structure of the compound, and include a group of compounds having those skeletal structures, that is, a derivative. When an organic pigment is used as a charge generating material, the fine particles of these organic pigments are usually used in the form of a dispersed layer bonded with various binder resins.
  • the phthalocyanine has each crystal type of metal-free phthalocyanine, a metal such as copper, indium, gallium or an oxide thereof, and coordinated phthalocyanines such as a halide, a hydroxide, and an alkoxide.
  • phthalocyanine dimers and the like.
  • titanyl phthalocyanines also known as oxytitanium
  • X-type X-type
  • ⁇ -type metal-free phthalocyanine A-type (also known as ⁇ -type), B-type (also known as ⁇ -type), and D-type (also known as Y-type)
  • Phthalocyanine chlorogallium phthalocyanine such as type II, hydroxygallium phthalocyanine such as V type, and the like are suitable.
  • the diffraction angle 2 ⁇ ( ⁇ 0.2 °) of A type (also known as ⁇ type), B type (also known as ⁇ type), and powder X-ray diffraction is clearly 27.1 ° or 27.3 °.
  • Hydroxygallium phthalocyanines and X-type metal-free phthalocyanines which have a clear peak at 28.1 ° and have a half-value width W of 25.9 ° of 0.1 ° ⁇ W ⁇ 0.4 °, are available. Especially preferable.
  • phthalocyanine a single compound may be used, or several mixed or mixed crystal states may be used.
  • the mixed or mixed crystal state here, a mixture of each component may be used later, or a mixed state may be generated in the manufacturing / processing steps of the phthalocyanine compound such as synthesis, pigmentation, and crystallization. It may be a product.
  • the particle size of the charge generating material is usually 1 ⁇ m or less, preferably 0.5 ⁇ m or less.
  • the binder resin used for the charge generation layer can be used without particular limitation.
  • polyvinyl butyral resin, polyvinyl formal resin, polyvinyl acetal resin insulating resins such as polyarylate resin, polycarbonate resin, polyester resin, polyvinyl acetate resin, polyamide resin, polyurethane resin, polyvinyl alcohol resin, silicon-alkyd resin, etc.
  • Organic photoconductive polymers such as poly-N-vinylcarbazole and the like can be mentioned.
  • a polyvinyl acetal resin or a polyvinyl acetate resin is preferable from the viewpoints of pigment dispersibility, adhesiveness to a conductive support or an undercoat layer, and adhesiveness to a charge transport layer. Any one of these binder resins may be used alone, or two or more of these binder resins may be mixed and used in any combination.
  • the charge generation layer may contain other components, if necessary, in addition to the charge generation material and the binder resin.
  • known antioxidants, plasticizers, ultraviolet absorbers, electron-withdrawing compounds, and leveling agents for the purpose of improving film forming property, flexibility, coating property, stain resistance, gas resistance, light resistance, and the like.
  • Visible light shading agent, filler and other additives may be contained.
  • the blending ratio (mass) of the binder resin and the charge generation material is preferably 10 parts by mass or more, particularly 30 parts by mass or more, with respect to 100 parts by mass of the binder resin. It is preferably contained in an amount of 5 parts by mass or less, particularly preferably 500 parts by mass or less, more preferably 300 parts by mass or less, and further preferably 200 parts by mass or less from the viewpoint of film strength.
  • the thickness of the charge generation layer is preferably 0.1 ⁇ m or more, and more preferably 0.15 ⁇ m or more. On the other hand, it is preferably 1.0 ⁇ m or less, and more preferably 0.6 ⁇ m or less.
  • the charge transport layer (CTL) usually contains a radical acceptor compound and a hole transport material (HTM), and a binder resin.
  • the hole transporting material (HTM) contained in the photosensitive layer is not particularly limited, but the energy difference between the HOMO level and the LUMO level is the energy difference between the HOMO level and the LUMO level of the radical acceptor compound described later. When it is larger, the effect of the present invention is more remarkable. If the energy difference of the hole transporting material (HTM) is larger than that of the radical acceptor compound, the hole transporting material (HTM) when the photoconductor receives the irradiation light for curing the protective layer. Since the radical acceptor compound preferentially absorbs the energy of the irradiation light, the effect of the present invention can be further enjoyed by coexisting the radical acceptor compound. When a plurality of types of radical acceptor compounds are used for the photosensitive layer, the energy difference of the radical acceptor compounds having a large number of parts by mass is used as a reference.
  • the energy difference between the HOMO level and the LUMO level of the hole transport material (HTM) is 3.6 eV or less, particularly 3.60 eV or less, the effect of the present invention is further exhibited.
  • the energy difference is higher than 3.6 eV, the absorption capacity of light having a wavelength longer than 344 nm becomes smaller.
  • the irradiation light for curing the protective layer is generally 360 nm or more from the viewpoint of cost, etc., and in the case of metal halide light, the proportion of light having a shorter wavelength than 350 nm is small, so that the energy difference is large. It is considered that HTMs higher than 3.6 eV are less likely to be damaged by the irradiation light.
  • the energy difference of the hole transport material (HTM) is 3.6 eV or less, particularly 3.60 eV or less, it is easily damaged by the irradiation light, so that a predetermined radical acceptor compound coexists. Therefore, the effect of the present invention can be further enjoyed.
  • the energy difference of the hole transport material (HTM) is more preferably 3.5 eV or less, particularly 3.50 eV or less. Among them, it is more preferably 3.35 eV or less, and particularly preferably 3.20 eV or less.
  • the energy difference between the HOMO level and the LUMO level is larger than the energy difference between the HOMO level and the LUMO level of the radical acceptor compound described later, and the energy difference between the HOMO level and the LUMO level is 3.
  • the hole transporting material (HTM) having 6 eV or less include heterocyclic compounds such as carbazole derivatives, indol derivatives, imidazole derivatives, oxazole derivatives, pyrazole derivatives, thiadiazol derivatives and benzofuran derivatives, aniline derivatives, hydrazone derivatives and aromatics.
  • Examples thereof include amine derivatives, arylamine derivatives, stilben derivatives, butadiene derivatives, enamine derivatives, and those to which a plurality of these compounds are bound. From these compounds, compounds corresponding to the above energy levels (HOMO level and LUMO level) may be appropriately selected. In addition, two or more compounds corresponding to the above energy levels may be used in combination.
  • the energy level of HOMO (E_homo) and the energy level of LUMO (E_lumo) are B3LYP (A.D.Becke, J.Chem.Phys.98,5648 (1993), which is a kind of density semi-functional method. Stable by structural optimization calculations using C.Lee, et.al., Phys.Rev.B37,785 (1988) and B.Miehlich, et.al., Chem.Phys.Lett.157,200 (1989)) It can be obtained by asking for the structure.
  • 6-31G (d, p) obtained by adding a polarization function to 6-31G is used as the basis set system (R.Ditchfield, et.al., J.Chem.Phys.54,724 (1971).
  • the program used for the B3LYP / 6-31G (d, p) calculation is Gaussian03, Revision D.01 (M.J.Frisch, et.al., Gaussian, Inc., Wallingford CT, 2004.).
  • the hole transport material (HTM) is preferably a material having high hole mobility, and from this viewpoint, a compound having a triphenylamine structure is preferable.
  • HTM hole transport material
  • the "radical acceptor compound” means a compound having a property of being able to receive radicals from a hole transporting material (HTM), and more specifically, having an electron affinity of 3.5 eV or more. Means the compound of.
  • HTM hole transporting material
  • electron affinity means the energy generated when a substance takes in one electron, and is a kind of the above-mentioned density semi-functional method, B3LYP (AD Becke, J.Chem.Phys.98, Structural optimization using 5648 (1993), C.Lee, et.al., Phys.Rev.B37,785 (1988) and B.Miehlich, et.al., Chem.Phys.Lett.157,200 (1989))
  • a stable structure can be obtained by chemical calculation.
  • the same as described above can be used as the basis function system and the program used for the calculation.
  • the photosensitive layer contains a radical acceptor compound and a hole transport material (HTM).
  • HTM hole transport material
  • the presence of the radical acceptor compound can suppress the decomposition of the HTM, the damage of the photosensitive layer can be suppressed, and the strong exposure characteristics and the transfer repetition characteristics can be improved. ..
  • the reason for this is inferred as follows.
  • HTM hole transport material
  • HTM hole transport material
  • radical acceptor compound the radical acceptor compound
  • the HTM radical immediately abstracts the hydrogen atom from the radical acceptor compound. It is believed that it is converted to HTM, while radical acceptor compounds are converted to radicals. Therefore, it is possible to suppress the radicalization of HTM and photodecomposition by containing the radical acceptor compound together with the photosensitive layer, rather than containing HTM alone, and the strong exposure characteristics and transfer repetition characteristics are good. It is thought that it can be done.
  • the ETM is more likely to become a radical than the HTM, so that an HTM radical is generated.
  • the HTM radical immediately abstracts a hydrogen atom from the ETM, and the HTM radical is converted into HTM, so that the strong exposure characteristics and the transfer repetition characteristics can be improved.
  • all the electron transporting materials (ETM) are included in the "radical acceptor compound", and even when the electron transport material (ETM) is used, the radical acceptor compound is included. It is considered that the effect of improving the strong exposure characteristic and the transfer repetition characteristic can be obtained by the same mechanism of action as above.
  • the radical acceptor compound that can be used in the present photoconductor preferably has an energy difference of 1.8 eV or more and 3.0 eV or less between the HOMO level and the LUMO level.
  • the energy difference of the radical acceptor compound is 1.8 eV or more, it does not absorb general exposure light such as 780 nm and is unlikely to cause a decrease in sensitivity.
  • it is 3.0 eV or less, light having a wavelength that can damage the hole transport material (HTM) is absorbed with priority over the hole transport material (HTM), and the hole transport material (HTM) has a priority. Damage can be suppressed.
  • the energy difference of the radical acceptor compound is preferably 1.8 eV or more, more preferably 2.0 eV or more, and more preferably 2.2 eV or more, while the energy difference. Is preferably 3.0 eV or less, more preferably 2.8 eV or less, further preferably 2.6 eV or less, and particularly preferably 2.4 eV or less.
  • the method for measuring the energy of the HOMO level and the LUMO level in the radical acceptor compound is the same as that of the hole transport material (HTM).
  • the electron affinity of the radical acceptor compound is preferably 3.5 eV or more, particularly 3.50 eV or more, 3.7 eV or more, particularly 3.70 eV or more, and 3.8 eV or more. Above, especially 3.80 eV or more is more preferable.
  • the electron affinity of the radical acceptor compound is preferably 4.3 eV or less, particularly preferably 4.30 eV or less, more preferably 4.1 eV or less, particularly preferably 4.10 eV or less, and particularly preferably 4.0 eV or less, particularly 4.00 eV or less. More preferably, it is 3.9 eV or less, particularly preferably 3.90 eV or less.
  • the preferred embodiment of the electron transport material (ETM) described later can be similarly applied.
  • the radical acceptor compound can be selected from the electron transport materials (ETM) described below. Further, a compound other than the compound exemplified as the electron transport material (ETM) can also be used. Further, the compound exemplified as the electron transport material (ETM) and other compounds can be used in combination.
  • the content of the radical acceptor compound in the photosensitive layer of the photosensitive layer is preferably 0.1 part by mass or more with respect to 100 parts by mass of the hole transporting material (HTM) in the photosensitive layer. It is more preferably 0.3 parts by mass or more, further preferably 0.5 parts by mass or more, and particularly preferably 0.7 parts by mass or more. On the other hand, it is preferably 10 parts by mass or less, more preferably 7.0 parts by mass or less, still more preferably 5.0 parts by mass or less, and further preferably 3.0 parts by mass or less, 2.0 parts by mass. It is particularly preferably 1 part by mass or less, and more preferably 1.5 parts by mass or less.
  • HTM hole transporting material
  • the content of the radical acceptor compound in the charge transport layer (CTL) of the present photoconductor is the radical in the photosensitive layer described above. It is the same as the content of the accepting compound (amount of the hole transporting material in the charge transporting layer with respect to 100 parts by mass).
  • the molar ratio of the radical acceptor compound to the hole transport material (HTM) in the photosensitive layer of this photoconductor is 0.01 or more. It is preferably 0.02 or more, and more preferably 0.02 or more. On the other hand, it is preferably 0.1 or less, more preferably 0.05 or less, and further preferably 0.03 or less.
  • the photoconductor can contain a hole transporting material (HTM) and an electron transporting material (ETM) in the photosensitive layer.
  • HTM hole transporting material
  • ETM electron transporting material
  • the electron transport material (ETM) that can be used in the present photoconductor preferably has an energy difference of 1.8 eV or more and 3.0 eV or less between the HOMO level and the LUMO level.
  • the energy difference of the electron transport material (ETM) is 1.8 eV or more, it does not absorb general exposure light such as 780 nm and is unlikely to cause a decrease in sensitivity.
  • it is 3.0 eV or less, light having a wavelength that can damage the hole transport material (HTM) is absorbed with priority over the hole transport material (HTM), and the hole transport material (HTM) has a priority. Damage can be suppressed.
  • the energy difference of the electron transport material (ETM) is preferably 1.8 eV or more, more preferably 2.0 eV or more, and more preferably 2.2 eV or more, and on the other hand, the energy.
  • the difference is preferably 3.0 eV or less, more preferably 2.8 eV or less, and more preferably 2.6 eV or less.
  • the method for measuring the energy of the HOMO level and the LUMO level in the electron transport material (ETM) is the same as that of the hole transport material (HTM).
  • the electron transport material examples include aromatic nitro compounds such as 2,4,7-trinitrofluorenone, cyano compounds such as tetracyanoquinodimethane, and quinone compounds such as diphenoquinone and dinaphthylquinone.
  • aromatic nitro compounds such as 2,4,7-trinitrofluorenone
  • cyano compounds such as tetracyanoquinodimethane
  • quinone compounds such as diphenoquinone and dinaphthylquinone.
  • an electron-withdrawing substance such as, a compound in which a plurality of kinds of these compounds are bonded, and a polymer having a group composed of these compounds in the main chain or the side chain.
  • the present invention is not limited to these, and known electron transport materials can be used.
  • the electron transport material (ETM) is preferably a compound having a diphenoquinone structure or a dinaphthylquinone structure. Among them, a compound having a dinaphthylquinone structure is more preferable.
  • the above-mentioned electron transport material any one type may be used alone, or two or more types may be used in combination in any combination.
  • ETM electron transporting material
  • the compounds represented by the general formulas (ET1) to (ET3) exemplified in paragraphs 0043 to 0053 of JP-A-2017-09765 can be used. It can be exemplified. Further, a compound having any of the following structures can be mentioned. However, it is not limited to these. Further, any one of them may be used alone, or two or more of them may be used in combination in any combination.
  • the content of the electron transporting material (ETM) in the photosensitive layer is preferably 0.1 part by mass or more with respect to 100 parts by mass of the hole transporting material (HTM) in the photosensitive layer, and is 0.3. It is more preferably parts by mass or more, more preferably 0.5 parts by mass or more, and particularly preferably 0.7 parts by mass or more. On the other hand, it is preferably 10 parts by mass or less, more preferably 7.0 parts by mass or less, more preferably 5.0 parts by mass or less, and particularly preferably 3.0 parts by mass or less. It is more preferably 2.0 parts by mass or less, and particularly preferably 1.5 parts by mass or less.
  • the content ratio of the electron transport material (ETM) and the hole transport material (HTM) in the photoconductor is the same as the content ratio of the electron transport material (ETM) and the hole transport material (HTM) in the photosensitive layer.
  • the content ratio of the electron transport material (ETM) and the hole transport material (HTM) in the charge transport layer (CTL) is the content ratio of the electron transport material (ETM) and the hole transport material (HTM) in the photosensitive layer described above. Is similar to.
  • Binder resin examples of the binder resin for the charge transport layer include vinyl polymers such as polymethylmethacrylate, polystyrene, and polyvinyl chloride and copolymers thereof, polycarbonate, polyarylate, polyester, polyester polycarbonate, polysulfone, phenoxy, epoxy, and silicone resin. Examples thereof include thermoplastic resins and various thermosetting compounds. Among these resins, polycarbonate resin or polyarylate resin is preferable from the viewpoint of light attenuation characteristics as a photoconductor and mechanical strength.
  • the viscosity average molecular weight (Mv) of the binder resin is usually 5,000 to 300,000, preferably 10,000 to 200,000, more preferably 15,000 to 150,000, and particularly preferably 20,000. It is in the range of ⁇ 80,000.
  • the blending ratio of the binder resin constituting the photosensitive layer and the hole transporting material (HTM) is usually 20 parts by mass or more of the hole transporting material (HTM) with respect to 100 parts by mass of the binder resin. Is. Above all, from the viewpoint of reducing the residual potential, it is preferable to mix the hole transport material (HTM) in a ratio of 30 parts by mass or more with respect to 100 parts by mass of the binder resin, and further, stability and charge mobility when repeatedly used. From the viewpoint of mobility, it is more preferable to blend the hole transport material (HTM) in a proportion of 40 parts by mass or more.
  • the hole transport material (HTM) in a ratio of 200 parts by mass or less to 100 parts by mass of the binder resin, and further, the hole transport material (HTM).
  • HTM hole transport material
  • the hole transport material (HTM) is blended in a proportion of 120 parts by mass or less, the glass transition temperature of the photosensitive layer rises, and improvement in leak resistance can be expected.
  • the blending ratio of the binder resin constituting the charge transport layer and the hole transport material (HTM) is the same as the blending ratio of the binder resin constituting the photosensitive layer and the hole transport material (HTM) described above. be.
  • the content ratio of the hole transport material (HTM) to the mass of the entire photosensitive layer is usually 16 parts by mass or more of the hole transport material (HTM) with respect to 100 parts by mass of the photosensitive layer.
  • HTM hole transport material
  • the hole transport material (HTM) it is preferable to add 68 parts by mass or less of the hole transport material (HTM) to 100 parts by mass of the photosensitive layer, and from the viewpoint of uniformity of the photosensitive layer, 59. It is more preferable to add parts by mass or less, and from the viewpoint of the glass transition temperature, it is particularly preferable to add parts by mass or less.
  • HTM hole transport material
  • the blending ratio of the binder resin and the hole transport material (HTM) is such that the hole transport material (HTM) is blended in a ratio of 20 parts by mass or more with respect to 100 parts by mass of the binder resin. Is preferable. Above all, from the viewpoint of reducing the residual potential, it is more preferable to add the hole transport material (HTM) in a ratio of 30 parts by mass or more to 100 parts by mass of the binder resin, and further, stability and charge when repeatedly used. From the viewpoint of mobility, it is more preferable to add the hole transport material (HTM) in a proportion of 40 parts by mass or more.
  • the hole transport material (HTM) in a ratio of 200 parts by mass or less to 100 parts by mass of the binder resin, and further, the hole transport material (HTM).
  • HTM hole transport material
  • the hole transport material (HTM) is blended in a proportion of 120 parts by mass or less, the glass transition temperature of the photosensitive layer rises, and improvement in leak resistance can be expected.
  • the charge transport layer may contain, if necessary, other components in addition to the radical acceptor compound, the hole transport material (HTM) and the binder resin.
  • HTM hole transport material
  • Additives such as a visible light shading agent and a filler may be contained.
  • the thickness of the charge transport layer is not particularly limited. From the viewpoint of electrical characteristics, image stability, and high resolution, it is preferably 5 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or more or 35 ⁇ m or less, and more preferably 15 ⁇ m or more or 25 ⁇ m or less.
  • ⁇ Single layer type photosensitive layer> As the single-layer type photosensitive layer in the present photoconductor, a configuration in which a charge generating material (CGM), a hole transporting material (HTM), and a radical acceptor compound are present in the same layer can be mentioned. As the charge generating material (CGM), hole transporting material (HTM), and radical acceptor compound of the single-layer photosensitive layer, the same materials as those of the laminated photosensitive layer can be used. Further, the content and the content ratio of each in the single-layer type photosensitive layer are the same as those in the laminated type photosensitive layer.
  • CGM charge generating material
  • HTM hole transporting material
  • radical acceptor compound of the single-layer photosensitive layer the same materials as those of the laminated photosensitive layer can be used. Further, the content and the content ratio of each in the single-layer type photosensitive layer are the same as those in the laminated type photosensitive layer.
  • a coating liquid obtained by dissolving or dispersing the substance to be contained in a solvent is applied to a base layer, for example, a conductive support by dipping coating, spray coating, bar coating, or the like by a known method. It can be formed by repeating the coating and drying steps for each layer in sequence. However, the present invention is not limited to such a forming method.
  • the solvent or dispersion medium used to prepare the coating liquid is not particularly limited. Specific examples include alcohols such as methanol, ethers such as tetrahydrofuran, esters, ketones such as acetone and methyl ethyl ketone, aromatic hydrocarbons such as toluene, chlorinated hydrocarbons such as dichloromethane, and nitrogen-containing compounds. , Aprotic polar solvents and the like. In addition, one of these may be used alone, or two or more thereof may be used in any combination and type.
  • the amount of the solvent or the dispersion medium used is not particularly limited.
  • the coating film is preferably dried by touch at room temperature and then heated and dried in a temperature range of 30 ° C. or higher and 200 ° C. or lower for 1 minute to 2 hours at rest or under ventilation. Further, the heating temperature may be constant, or heating may be performed while changing the temperature during drying.
  • the protective layer is preferably a layer containing a cured product obtained by curing the curable compound.
  • the protective layer can be formed from a composition containing a curable compound and a polymerization initiator.
  • a curable compound a curable compound having an acryloyl group and / or a methacryloyl group is preferable. Further, among them, it is preferable to form the curable composition containing the curable compound and the polymerization initiator by heat-curing or photo-curing, and more preferably by photo-curing.
  • the area of the absorbance of the wavelength 1647 cm -1 to 1627 cm -1 is A
  • the area of the absorbance of the peak of the wavelength 1800 cm -1 to 1647 cm -1 is B when the infrared absorption spectrum of the protective layer is measured.
  • the area ratio A / B is preferably 0.0045 or less.
  • the absorbance ratio A / B is 0.0045 or less.
  • the area ratio A / B of the protective layer is preferably 0.0045 or less, and more preferably 0.0040 or less.
  • the lower limit of the area ratio A / B is not limited and may be 0 (zero).
  • the area ratio that is, the absorbance ratio defines the residual ratio of the double bonds remaining in the protective layer, and defines the degree of curing of the protective layer.
  • the area of absorbance is obtained from the area on the baseline of the absorption peak.
  • the degree of curing of the protective layer is preferably 70 or more, more preferably 75 or more, further preferably 80 or more, and particularly preferably 85 or more. When the degree of curing of the protective layer is 70 or more, it is possible to provide practically sufficient wear resistance.
  • the Martens hardness of the photoconductor is preferably 210 N / mm 2 or more, more preferably 215 N / mm 2 or more, and more preferably 220 N / mm 2 or more.
  • the Martens hardness of the photoconductor means the Martens hardness measured from the surface side of the photoconductor. The Martens hardness can be measured by the method described in Examples described later.
  • the elastic deformation rate of the present photoconductor is preferably 37.5% or more, more preferably 38.0% or more, further preferably 39.0% or more, and 40.0% or more. Is particularly preferable.
  • the elastic deformation rate of the photoconductor means the elastic deformation rate measured from the surface side of the photoconductor. The elastic deformation rate can be measured by the method described in Examples described later.
  • curable composition examples include a curable compound having an acryloyl group and / or a methacryloyl group and a polymerization initiator, and if necessary, a composition containing metal oxide particles and other materials.
  • curable compound As the curable compound, a monomer, an oligomer or a polymer having a radically polymerizable functional group is preferable. Of these, curable compounds having crosslinkability, particularly photocurable compounds, are preferable. For example, a curable compound having two or more radically polymerizable functional groups can be mentioned. A compound having one radically polymerizable functional group can also be used in combination. Examples of the radically polymerizable functional group include either or both of an acryloyl group (including an acryloyloxy group) and a methacryloyl group (including a methacryloyloxy group).
  • curable compounds having a radically polymerizable functional group will be exemplified.
  • the monomer having an acryloyl group or a methacryloyl group include trimethylol propanetriacrylate (TMPTA), trimethylol propanetrimethacrylate, HPA-modified trimethylol propanetriacrylate, EO-modified trimethylol propanetriacrylate, and PO-modified trimethylol propanetriacrylate.
  • examples of the oligomer and polymer having an acryloyl group or a methacryloyl group include urethane acrylate, ester acrylate, acrylic acrylate, and epoxy acrylate. Among them, urethane acrylate and ester acrylate are preferable, and among them, ester acrylate is more preferable.
  • the above compounds can be used alone or in combination of two or more.
  • polymer initiator examples include thermal polymerization initiators, photopolymerization initiators and the like.
  • thermal polymerization initiator include peroxide compounds such as 2,5-dimethylhexane-2,5-dihydroperoxide and azo compounds such as 2,2'-azobis (isobutyronitrile). be able to.
  • Photopolymerization initiators can be classified into direct cleavage type and hydrogen abstraction type depending on the radical generation mechanism.
  • direct cleavage type photopolymerization initiator absorbs light energy, a part of the covalent bond in the molecule is cleaved to generate a radical.
  • hydrogen extraction type photopolymerization initiator a molecule excited by absorbing light energy generates a radical by extracting hydrogen from a hydrogen donor.
  • Examples of the direct cleavage type photopolymerization initiator include acetophenone, 2-benzoyl-2-propanol, 1-benzoylcyclohexanol, 2,2-diethoxyacetophenone, benzyldimethylketal, 2-methyl-4'-(methylthio).
  • ketal compounds such as morpholinopropiophenone, benzoin ether compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isobutyl ether, benzoin isopropyl ether, O-tosylbenzoin, diphenyl ( Acylphosphins such as 2,4,6-trimethylbenzoyl) phosphine oxide, phenylbis (2,4,6-trimethylbenzoyl) phosphinoxide, lithium phenyl (2,4,6-trimethylbenzoyl) phosphonate, etc. Oxide compounds can be mentioned.
  • Examples of the hydrogen abstraction type photopolymerization initiator include benzophenone, 4-benzoylbenzoic acid, 2-benzoylbenzoic acid, methyl 2-benzoylbenzoate, methyl benzoylate, benzyl, p-anisyl, 2-benzoylnaphthalene, and the like.
  • Benzophenone compounds such as 4,4'-bis (dimethylamino) benzophenone, 4,4'-dichlorobenzophenone, 1,4-dibenzoylbenzene, 2-ethylanthraquinone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 2 , 4-Dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, and the like can be mentioned as anthraquinone-based or thioxanthone-based compounds.
  • photopolymerization initiators examples include camphorquinone, 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, an acridine-based compound, a triazine-based compound, and an imidazole-based compound. Can be done.
  • the photopolymerization initiator preferably has an absorption wavelength in the wavelength region of the light source used for light irradiation in order to efficiently absorb light energy and generate radicals.
  • the photopolymerization initiator cannot absorb sufficient light energy and the radical generation efficiency is lowered.
  • general binder resins, charge transport substances, and metal oxide particles have an absorption wavelength in the ultraviolet region (UV), this effect is particularly remarkable when the light source used for light irradiation is ultraviolet light (UV). Is.
  • an acylphosphine oxide-based compound having an absorption wavelength on the relatively long wavelength side among the photopolymerization initiators Since the acylphosphine oxide compound has a photobleaching effect in which the absorption wavelength region changes to the low wavelength side due to self-cleavage, light can be transmitted to the inside of the outermost layer, and the internal curability is good. It is also preferable from. Considering such an effect, it is more preferable to use an acylphosphine oxide-based compound and a hydrogen abstraction type initiator in combination from the viewpoint of supplementing the curability of the outermost layer surface.
  • the content ratio of the hydrogen abstraction type initiator to the acylphosphine oxide-based compound is not particularly limited. From the viewpoint of supplementing the surface curability, 0.1 part by mass or more is preferable with respect to 1 part by mass of the acylphosphine oxide compound, and from the viewpoint of maintaining the internal curability, 5 parts by mass or less is preferable.
  • a substance having a photopolymerization promoting effect can be used alone or in combination with the above-mentioned photopolymerization initiator.
  • examples of those having a photopolymerization promoting effect include triethanolamine, methyldiethanolamine, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, ethyl benzoate (2-dimethylamino), 4,4'-.
  • examples thereof include dimethylaminobenzophenone.
  • the polymerization initiator may be used alone or in combination of two or more.
  • the content of the polymerization initiator is 0.5 to 40 parts by mass, preferably 1 to 20 parts by mass with respect to 100 parts by mass of the total content having radical polymerization property.
  • the protective layer may contain a charge transporting substance from the viewpoint of imparting a charge transporting ability.
  • the same hole transport material and electron transport material used in the photosensitive layer can be used.
  • a structure formed by polymerizing a charge transporting substance having a chain-growth functional group may be contained.
  • the chain-growth functional group of the charge transporting substance having a chain-growth functional group include an acryloyl group, a methacryloyl group, a vinyl group and an epoxy group. Of these, an acryloyl group or a methacryloyl group is preferable from the viewpoint of curability.
  • the structure of the charge-transporting substance portion of the charge-transporting substance having a chain polymerizable functional group includes, for example, heterocyclic compounds such as carbazole derivatives, indol derivatives, imidazole derivatives, and oxazole derivatives, aniline derivatives, hydrazone derivatives, arylamine derivatives, and stylbens.
  • heterocyclic compounds such as carbazole derivatives, indol derivatives, imidazole derivatives, and oxazole derivatives, aniline derivatives, hydrazone derivatives, arylamine derivatives, and stylbens.
  • examples thereof include derivatives, butadiene derivatives and enamine derivatives, those in which a plurality of types of these compounds are bonded, and electron-donating substances such as polymers having a group consisting of these compounds in the main chain or side chain.
  • the content of the charge transporting substance in the protective layer is not particularly limited. From the viewpoint of electrical characteristics, it is preferably 10 parts by mass or more, more preferably 30 parts by mass or more, and particularly preferably 50 parts by mass or more with respect to 100 parts by mass of the binder resin in the present protective layer. Further, from the viewpoint of maintaining good surface resistance, it is preferably 300 parts by mass or less, more preferably 200 parts by mass or less, and particularly preferably 150 parts by mass or less.
  • a means for imparting a charge transporting ability to the protective layer in addition to the above-mentioned means for adding a charge transporting substance to the present protective layer, a means for adding inorganic particles described later to the present protective layer can be mentioned. Above all, in the present protective layer, since the effect of the present invention can be more enjoyed, the means for adding the charge transporting substance to the present protective layer is preferable.
  • the protective layer may contain inorganic particles from the viewpoint of improving strong exposure characteristics and mechanical strength, or from the viewpoint of imparting charge transporting ability.
  • the inorganic particles include metal powders such as copper, tin and aluminum, metal oxides such as silica, tin oxide, zinc oxide, titanium oxide, alumina, indium oxide and antimony-doped tin oxide, and metal fluorides. Examples include potassium titanate and boron nitride.
  • metal oxide particles as the inorganic particles.
  • metal oxide particles usually any metal oxide particles that can be used for an electrophotographic photosensitive member can be used.
  • the metal oxide particles include metal oxide particles containing one kind of metal element such as titanium oxide, tin oxide, aluminum oxide, silicon oxide, zirconium oxide, zinc oxide, and iron oxide, calcium titanate, and the like.
  • metal oxide particles containing a plurality of metal elements such as strontium titanate and barium titanate.
  • the metal oxide particles only one type of particles may be used, or a plurality of types of particles may be mixed and used. Among these, from the viewpoint of strong exposure characteristics, metal oxide particles having a bandgap smaller than the energy difference between the HOMO level and the LUMO level of the HTM of the photosensitive layer are preferable.
  • the HTM having a large number of parts by mass is used as a reference.
  • the band gap of the metal oxide particles is smaller than the energy difference, the wavelength absorbed by the hole transport material (HTM) can be cut according to the amount of addition, so that the strong exposure characteristics are good.
  • metal oxide particles such as titanium oxide, zinc oxide, tin oxide, calcium titanate, strontium titanate, and barium titanate are preferable. Among them, titanium oxide particles are particularly preferable.
  • any of rutile, anatase, brookite, and amorphous can be used.
  • the rutile type is preferable from the viewpoint of bandgap and photocatalytic activity. Further, from those having different crystal states, those having a plurality of crystal states may be included.
  • the surface of the metal oxide particles may be subjected to various surface treatments. For example, it may be treated with an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide or silicon oxide, or an organic substance such as stearic acid, a polyol or an organic silicon compound. In particular, when titanium oxide particles are used, those surface-treated with an organic silicon compound are preferable.
  • an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide or silicon oxide
  • an organic substance such as stearic acid, a polyol or an organic silicon compound.
  • titanium oxide particles those surface-treated with an organic silicon compound are preferable.
  • organic silicon compound examples include silicone oils such as dimethylpolysiloxane and methylhydrogenpolysiloxane, organosilanes such as methyldimethoxysilane and diphenyldidimethoxysilane, silazane such as hexamethyldisilazane, and 3-methacryloyloxypropyltrimethoxy.
  • silicone oils such as dimethylpolysiloxane and methylhydrogenpolysiloxane
  • organosilanes such as methyldimethoxysilane and diphenyldidimethoxysilane
  • silazane such as hexamethyldisilazane
  • 3-methacryloyloxypropyltrimethoxysilane examples include silane coupling agents such as silane, 3-acryloyloxypropyltrimethoxysilane, and vinyltrimethoxysilane.
  • 3-methacryloyloxypropyltrimethoxysilane, 3-acryloyloxypropyltrimethoxysilane, and vinyltrimethoxysilane having a chain-growth functional group are preferable.
  • the outermost surface of these surface-treated particles may be treated with a treatment agent such as aluminum oxide, silicon oxide or zirconium oxide before being treated with such a treatment agent.
  • a treatment agent such as aluminum oxide, silicon oxide or zirconium oxide
  • the metal oxide particles only one type of particles may be used, or a plurality of types of particles may be mixed and used.
  • the metal oxide particles used are usually preferably those having an average primary particle diameter of 500 nm or less, more preferably 1 nm to 100 nm, and further preferably 5 nm to 50 nm.
  • This average primary particle size can be determined by the arithmetic mean value of the particle size directly observed by a transmission electron microscope (hereinafter, also referred to as TEM).
  • the content of the inorganic particles in the protective layer is preferably 0 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the protective layer. If the content of the inorganic particles is high, the damage to the photosensitive layer when receiving light is small in the first place. Therefore, from the viewpoint of further enjoying the effects of the present invention, it is preferable that the content of the inorganic particles is low. From this point of view, the content of the inorganic particles in the protective layer is preferably 0 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the protective layer, particularly 15 parts by mass or less, and among them. It is more preferably 10 parts by mass or less.
  • the protective layer may contain other materials, if necessary.
  • other materials include stabilizers (heat stabilizers, ultraviolet absorbers, light stabilizers, antioxidants, etc.), dispersants, antistatic agents, colorants, lubricants, and the like. These can be used alone or in any ratio and combination of two or more as appropriate.
  • the curing method any method such as heat curing, photo-curing, electron beam curing, and radiation curing is possible. Above all, photocuring, which is excellent in safety and energy saving, is preferable.
  • photocuring curing by irradiation with ultraviolet light and / or visible light is preferable, and curing by metal halide light or LED light is preferable, and curing by LED light capable of controlling the reaction and suppressing heat generation is more preferable.
  • the wavelength of the LED light is preferably 400 nm or less, more preferably 385 nm or less, from the viewpoint of curing speed. Further, from the viewpoint of cost, 360 nm or more is preferable.
  • a curable composition containing, for example, a curable compound and a polymerization initiator, and if necessary, metal oxide particles, etc. is dissolved in a solvent as necessary to prepare a coating liquid, or a dispersion medium. It can be formed by dispersing it in a coating liquid, applying the coating liquid, and then curing the coating liquid.
  • the organic solvent used for forming the protective layer a known organic solvent may be appropriately selected and used.
  • Examples of the coating method for forming the protective layer include a spray coating method, a ring coating method, and a dip coating method. However, the method is not limited to these methods. It is preferable to dry the coating film after forming the coating film by the above coating method.
  • the curing composition can be cured by irradiating the curing composition with heat, light (for example, ultraviolet light or / and visible light), radiation, or the like as external energy.
  • light for example, ultraviolet light or / and visible light
  • radiation or the like as external energy.
  • a method of adding heat energy for example, it is performed by heating from the coating surface side or the support side using various heat media, infrared rays, electromagnetic waves, gas such as air and nitrogen, steam, or various heat media.
  • the heating temperature is preferably 100 ° C. or higher and 170 ° C. or lower.
  • UV irradiation light sources such as high-pressure mercury lamps, metal halide lamps, electrodeless lamp valves, and light emitting diodes that have an emission wavelength of ultraviolet light (UV) can be mainly used. It is also possible to select a visible light source according to the absorption wavelength of the curable compound or the photopolymerization initiator.
  • the light intensity (light illuminance) is preferably 100 mW / cm 2 or more, more preferably 300 mW / cm 2 or more, more preferably 600 mW / cm 2 or more, and more preferably 800 mW / cm 2 or more.
  • 1000 mW / cm 2 or more is more preferable, and 1200 mW / cm 2 or more is particularly preferable.
  • 5000 mW / cm 2 or less is preferable, 3000 mW / cm 2 or less is more preferable, 2000 mW / cm 2 or less is further preferable, and 1500 mW / cm 2 or less is particularly preferable.
  • the light intensity (light illuminance) can be measured using an ultraviolet integrated photometer.
  • a UV integrated photometer UIT-250 (receiver UVD-C365) manufactured by Ushio, Inc. can be used.
  • the light irradiation amount is preferably 10 J / cm 2 or more, more preferably 30 J / cm 2 or more, more preferably 50 J / cm 2 or more, and among them 100 J / cm 2 or more. Is more preferable, 120 J / cm 2 or more is further preferable, and 150 J / cm 2 or more is particularly preferable. Further, from the viewpoint of electrical characteristics, 500 J / cm 2 or less is preferable, 300 J / cm 2 or less is further preferable, and 200 J / cm 2 or less is particularly preferable.
  • Examples of the energy of radiation include those using an electron beam (EB).
  • EB electron beam
  • those using light energy are preferable from the viewpoints of ease of reaction rate control, simplicity of the apparatus, and length of pot life.
  • a heating step may be added from the viewpoints of relaxation of residual stress, relaxation of residual radicals, and improvement of electrical characteristics.
  • the heating temperature is preferably 60 ° C. or higher, more preferably 100 ° C. or higher, preferably 200 ° C. or lower, and more preferably 150 ° C. or lower.
  • the conductive support is not particularly limited as long as it supports the layer formed on the conductive support and exhibits conductivity.
  • the conductive support include metal materials such as aluminum, aluminum alloys, stainless steel, copper, and nickel, and resin materials in which conductive powders such as metal, carbon, and tin oxide coexist to impart conductivity.
  • metal materials such as aluminum, aluminum alloys, stainless steel, copper, and nickel
  • resin materials in which conductive powders such as metal, carbon, and tin oxide coexist to impart conductivity.
  • Aluminum, nickel, resin, glass, paper or the like on which a conductive material such as ITO (indium oxide tin oxide alloy) is vapor-deposited or coated on the surface thereof can be mainly used.
  • a drum shape, a sheet shape, a belt shape, or the like is used as the form of the conductive support.
  • the metal material such as an aluminum alloy
  • the metal material may be anodized before use.
  • the surface of the conductive support may be smooth, or may be roughened by using a special cutting method or by applying a polishing treatment. Further, the surface may be roughened by mixing particles having an appropriate particle size with the material constituting the support.
  • An undercoat layer which will be described later, may be provided between the conductive support and the photosensitive layer in order to improve adhesiveness, blocking property, and the like.
  • the present photosensitive member may have an undercoat layer between the photosensitive layer and the conductive support.
  • the undercoat layer for example, a resin or a resin in which particles such as an organic pigment or a metal oxide are dispersed is used.
  • the organic pigment used for the undercoat layer include phthalocyanine pigments, azo pigments, perylene pigments and the like. Among them, phthalocyanine pigments and azo pigments, specifically, phthalocyanine pigments and azo pigments when used as the above-mentioned charge generating substance can be mentioned.
  • metal oxide particles used for the undercoat layer include metal oxide particles containing one kind of metal element such as titanium oxide, aluminum oxide, silicon oxide, and zinc oxide, and a plurality of metal elements such as strontium titanate. Metal oxide particles can be mentioned. Only one kind of particles may be used for the undercoat layer, or a plurality of kinds of particles may be mixed and used in any ratio and combination.
  • titanium oxide and aluminum oxide are preferable, and titanium oxide is particularly preferable.
  • the surface of the titanium oxide particles may be treated with an inorganic substance, an organic substance, or the like.
  • any of rutile, anatase, brookite and amorphous can be used. Further, a plurality of crystalline states may be included.
  • the particle size of the metal oxide particles used in the undercoat layer is not particularly limited. From the viewpoint of the characteristics of the undercoat layer and the stability of the solution for forming the undercoat layer, the average primary particle size is preferably 10 nm or more, and more preferably 100 nm or less, more preferably 50 nm or less.
  • the undercoat layer is formed in a form in which particles are dispersed in a binder resin.
  • the binder resin used for the undercoat layer include polyvinyl butyral resin, polyvinyl formal resin, polyvinyl acetal resin; polyarylate resin, polycarbonate resin, polyester resin, polyamide resin, polyurethane resin, polyvinyl alcohol resin, and silicone-alkyd resin. It can be selected and used from insulating resins such as; and organic photoconductive polymers such as poly-N-vinylcarbazole. However, the present invention is not limited to these polymers. Further, these binder resins may be used alone, in combination of two or more, or in a cured form together with a curing agent.
  • polyvinyl butyral resin polyvinyl formal resin, polyvinyl acetal resin, alcohol-soluble copolymerized polyamide, modified polyamide and the like are preferable because they show good dispersibility and coatability.
  • alcohol-soluble copolymerized polyamide is particularly preferable.
  • the mixing ratio of the particles to the binder resin can be arbitrarily selected. It is preferable to use it in the range of 10% by mass to 500% by mass in terms of stability and coatability of the dispersion liquid.
  • the film thickness of the undercoat layer can be selected arbitrarily. From the viewpoint of the characteristics of the electrophotographic photosensitive member and the coatability of the dispersion liquid, it is usually preferably 0.1 ⁇ m or more and 20 ⁇ m or less. Further, the undercoat layer may contain a known antioxidant or the like.
  • This image forming device can be configured by using the present photoconductor. That is, the image forming apparatus according to an example of the embodiment of the present invention is an image forming apparatus provided with the photoconductor.
  • the image forming apparatus includes the photoconductor 1, the charging device 2, the exposure device 3, and the developing device 4, and further, if necessary, a transfer device 5, a cleaning device 6, and a fixing device 4.
  • the device 7 is provided.
  • the photoconductor 1 is not particularly limited as long as it is the above-mentioned electrophotographic photosensitive member of the present invention.
  • FIG. 1 shows, as an example, a drum-shaped photoconductor in which the above-mentioned photosensitive layer is formed on the surface of a cylindrical conductive support.
  • a charging device 2, an exposure device 3, a developing device 4, a transfer device 5, and a cleaning device 6 are arranged along the outer peripheral surface of the photoconductor 1.
  • the charging device 2 charges the photoconductor 1, and uniformly charges the surface of the photoconductor 1 to a predetermined potential.
  • Examples of a general charging device include a non-contact corona charging device such as a corotron or a scorotron, or a contact type charging device (direct type charging device).
  • Examples of the contact charging device include a charging roller, a charging brush, and the like. Note that FIG. 1 shows a roller-type charging device (charging roller) as an example of the charging device 2.
  • a direct current voltage can be used, or an alternating current can be superimposed on the direct current.
  • the type of the exposure apparatus 3 is not particularly limited as long as it can expose the photoconductor 1 to form an electrostatic latent image on the photosensitive surface of the photoconductor 1.
  • Specific examples include halogen lamps, fluorescent lamps, lasers, LEDs and the like.
  • the exposure may be performed by the photoconductor internal exposure method.
  • the light used for exposure is arbitrary. For example, exposure may be performed with monochromatic light having a wavelength of 780 nm.
  • toner T is arbitrary, and in addition to powdery toner, polymerized toner and the like can be used.
  • the type of the transfer device 5 is not particularly limited, and a device using any method such as an electrostatic transfer method, a pressure transfer method, and an adhesive transfer method can be used.
  • the transfer device 5 is composed of a transfer charger, a transfer roller, a transfer belt, and the like arranged so as to face the photoconductor 1.
  • the transfer device 5 applies a predetermined voltage value (transfer voltage) having a polarity opposite to the charging potential of the toner T, and transfers the toner image formed on the photoconductor 1 to the recording paper (paper, medium) P. Is.
  • the cleaning device 6 is not particularly limited, and any cleaning device such as a brush cleaner, a magnetic roller cleaner, or a blade cleaner can be used.
  • the cleaning device 6 scrapes off the residual toner adhering to the photoconductor 1 with a cleaning member and collects the residual toner. However, if the toner remaining on the surface of the photoconductor is small or almost nonexistent, the cleaning device 6 may be omitted.
  • an image is recorded as follows. First, the surface (photosensitive surface) of the photoconductor 1 is charged to a predetermined potential (for example, 600 V) by the charging device 2. At this time, it may be charged by a DC voltage, or may be charged by superimposing an AC voltage on the DC voltage. Subsequently, the photosensitive surface of the charged photoconductor 1 is exposed by the exposure apparatus 3 according to the image to be recorded, and an electrostatic latent image is formed on the photosensitive surface. Then, the developing apparatus 4 develops the electrostatic latent image formed on the photosensitive surface of the photoconductor 1.
  • a predetermined potential for example, 600 V
  • the toner T supplied by the supply roller 43 is thinned by the regulating member (development blade) 45, and has a predetermined polarity (here, the same polarity as the charging potential of the photoconductor 1), and has a positive polarity. ) Is triboelectrically charged, and is carried while being carried on the developing roller 44 to be brought into contact with the surface of the photoconductor 1.
  • a toner image corresponding to the electrostatic latent image is formed on the photosensitive surface of the photoconductor 1.
  • this toner image is transferred to the recording paper P by the transfer device 5. After that, the toner remaining on the photosensitive surface of the photoconductor 1 without being transferred is removed by the cleaning device 6.
  • the image forming apparatus may be configured to be capable of performing, for example, a static elimination step.
  • the image forming apparatus may be further modified and configured, for example, a configuration capable of performing steps such as a preexposure step and an auxiliary charging step, a configuration capable of performing offset printing, and a plurality of types.
  • a full-color tandem system configuration using the above toner may be used.
  • the electrophotographic cartridge according to an example of the embodiment of the present invention (referred to as “this picture electrophotographic cartridge”) is an electrophotographic cartridge provided with the present photoconductor.
  • the photoconductor 1 may be configured as an integrated cartridge by combining one or two or more of a charging device 2, an exposure device 3, a developing device 4, a transfer device 5, a cleaning device 6, and a fixing device 7. can.
  • This electrophotographic cartridge can be configured to be removable from the main body of an electrophotographic device such as a copier or a laser beam printer. In that case, for example, when the photoconductor 1 and other members are deteriorated, the electrophotographic photosensitive member cartridge is removed from the image forming apparatus main body, and another new electrophotographic photosensitive member cartridge is attached to the image forming apparatus main body. , The maintenance and management of the image forming apparatus becomes easy.
  • Martens hardness (Measurement conditions for Martens hardness and elastic deformation rate)
  • Indenter Vickers quadrangular pyramid diamond indenter with a facing angle of 136 °
  • Maximum pushing load 0.2 mN
  • Time required for loading 10 seconds
  • Time required for unloading 10 seconds
  • Martens hardness is calculated by the following formula.
  • Martens hardness (N / mm 2 ) maximum indentation load / indentation area at maximum indentation load
  • the elastic deformation rate is a value defined by the following formula, and is the value defined by the following formula when unloading the total work required for indentation. The percentage of work done by the membrane by elasticity.
  • Elastic deformation rate (%) (We / Wt) x 100
  • the total work amount Wt (nJ) indicates the area surrounded by ABDA in FIG. 2
  • the elastic deformation work amount We (nJ) is the area surrounded by CBD. Is shown. The larger the elastic deformation rate, the less likely it is that the deformation with respect to the load remains, and when the elastic deformation rate is 100, it means that no deformation remains.
  • Coating liquid P1 for forming an undercoat layer The composition molar ratio of rutyl-type white titanium oxide surface-treated with methyldimethoxysilane and ⁇ -caprolactam / bis (4-amino-3-methylcyclohexyl) methane / hexamethylenediamine / decamethylenedicarboxylic acid / octadecamethylenedicarboxylic acid
  • a mixed solvent mass ratio of methanol / 1-propanol / toluene is 7/1/2
  • a copolymerized polyamide ⁇ mass ratio of titanium oxide and copolymerized polyamide 3/1> which is 60/15/5/15/5.
  • a coating liquid P1 for forming an undercoat layer contained therein was obtained at a solid content concentration of 18%.
  • Coating liquid Q1 for forming a charge generation layer 10 parts of oxytitanium phthalocyanine showing a characteristic peak at Bragg angle (2 ⁇ ⁇ 0.2 °) 27.3 ° in powder X-ray spectral pattern by CuK ⁇ ray as a charge generation material, and polyvinyl acetal resin (electrochemical) as a binder resin. 5 parts of DK31) manufactured by Kogyo Co., Ltd. and 500 parts of 1,2-dimethoxyethane were mixed, pulverized and dispersed with a sand grind mill to obtain a coating liquid Q1 for forming a charge generation layer.
  • binder resin 100 parts by mass of the polyarylate resin (viscosity average molecular weight 43,000) represented by the following structural formula (A) and the hole transport material (HTM) (HOMO level) represented by the following structural formula (B).
  • Coating liquid R2 for forming a charge transport layer The same as the charge transport layer forming coating liquid R1 except that the radical acceptor compound (electron transport material (ETM)) was changed to the compound represented by the following structural formula (D) (molecular weight: 324.5). , A coating liquid R2 for forming a charge transport layer was obtained.
  • ETM electron transport material
  • Coating liquid R3 for forming a charge transport layer The same as the charge transport layer forming coating liquid R1 except that the radical acceptor compound (electron transport material (ETM)) was changed to the compound represented by the following structural formula (E) (molecular weight: 363.5). , A coating liquid R3 for forming a charge transport layer was obtained.
  • ETM electron transport material
  • Coating liquid R4 for forming a charge transport layer Coating for charge transport layer formation, except that the content of the radical acceptor compound (electron transport material (ETM)) was changed to 0.5 parts by mass (that is, 0.7 parts by mass with respect to 100 parts by mass of HTM).
  • ETM electron transport material
  • a coating liquid R5 for forming a charge transport layer having a solid content concentration of 18.0% by mass was obtained.
  • binder resin 100 parts by mass of the polyarylate resin (viscosity average molecular weight 43,000) represented by the structural formula (A), 75 parts by mass of the hole transport material (HTM) represented by the structural formula (B), the following structural formula. 2 parts by mass of light-shielding agent represented by (F), 4 parts by mass of hindered phenol-based antioxidant (trade name Irg1076 manufactured by BASF), and silicone oil (trade name KF-96 manufactured by Shinetsu Silicone) 0.05.
  • polyarylate resin viscosity average molecular weight 43,000
  • HTM hole transport material
  • F 2 parts by mass of light-shielding agent represented by (F)
  • F 4 parts by mass of hindered phenol-based antioxidant
  • silicone oil trade name KF-96 manufactured by Shinetsu Silicone
  • HTM hole transport material
  • benzophenone Omnirad TPO
  • H / F-563 100/100/1/2 / 0.1
  • the solvent composition is 2-propanol / tetrahydrofuran.
  • Example 1 The coating liquid P1 for forming an undercoat layer was dipped and applied to an aluminum cylinder having a surface of 30 mm ⁇ and a length of 248 mm, and an undercoat layer was provided so that the dry film thickness was 1.5 ⁇ m. ..
  • the coating liquid Q1 for forming a charge generating layer was immersed and coated on the undercoat layer, and the charge generating layer was provided so that the dry film thickness was 0.3 ⁇ m.
  • a coating liquid R1 for forming a charge transport layer was immersed and coated on the charge generation layer, and a charge transport layer was provided so that the dry film thickness thereof was 20.0 ⁇ m.
  • a coating liquid S1 for forming a protective layer is ring-coated on the charge transport layer, dried at room temperature for 20 minutes, and then rotated at 60 rpm in a nitrogen atmosphere (oxygen concentration of 1% or less) at 385 nm.
  • a protective layer having a cured film thickness of 1.0 ⁇ m was formed.
  • heating was performed at 125 ° C. for 10 minutes.
  • the photoconductor A was prepared by aging at 55 ° C. overnight. The intensity of the LED light was measured using an ultraviolet integrated photometer UIT-250 (receiver UVD-C365) manufactured by Ushio, Inc.
  • the photoconductor B was produced in the same manner as the photoconductor A except that the coating liquid R1 for forming the charge transport layer was changed to the coating liquid R2 for forming the charge transport layer.
  • Example 3 The photoconductor C was produced in the same manner as the photoconductor A except that the coating liquid R1 for forming the charge transport layer was changed to the coating liquid R3 for forming the charge transport layer.
  • Example 4 The photoconductor D was produced in the same manner as the photoconductor A except that the charge transport layer forming coating liquid R1 was changed to the charge transport layer forming coating liquid R4.
  • the photoconductor E was produced in the same manner as the photoconductor A except that the coating liquid R1 for forming the charge transport layer was changed to the coating liquid R5 for forming the charge transport layer.
  • the photoconductor F was produced in the same manner as the photoconductor A except that the coating liquid R1 for forming the charge transport layer was changed to the coating liquid R6 for forming the charge transport layer.
  • the photoconductor G was produced in the same manner as the photoconductor A except that the intensity of the LED light at 385 nm was changed to 685 mW / cm 2 and the irradiation time was changed to 1 minute.
  • the photoconductor H was produced in the same manner as the photoconductor E except that the intensity of the LED light at 385 nm was changed to 685 mW / cm 2 and the irradiation time was changed to 1 minute.
  • the photoconductor I was produced in the same manner as the photoconductor F except that the intensity of the LED light at 385 nm was changed to 685 mW / cm 2 and the irradiation time was changed to 1 minute.
  • the initial surface potential was ⁇ 700 V
  • monochromatic light of 780 nm for exposure and 660 nm for static elimination was used, and the surface potential (VL) at the time of irradiation with the exposure light of 1.0 ⁇ J / cm 2 was measured.
  • the time required from the exposure to the potential measurement was set to 60 ms.
  • the measurement environment was a temperature of 25 ° C. and a relative humidity of 50% (N / N environment). The smaller the VL, the better the initial electrical characteristics. In the present invention, the case where the VL is 75 ( ⁇ V) or less is evaluated as “pass”.
  • Photoreceptors A to I are mounted on an electrophotographic property evaluation device manufactured according to the measurement standard of the electrophotographic society (following basics and applications of electrophotographic technology, edited by the Electrophotograph Society, Corona Publishing Co., Ltd., pp. 404-405) and charged. , The electrical characteristics of the cycle of exposure, potential measurement, and static elimination were measured as follows. First, the grid voltage was adjusted in an environment of a temperature of 25 ° C. and a humidity of 50% so that the initial surface potential (V0) of the photoconductor was ⁇ 700 V. Next, the exposure light was irradiated at 0.44 ⁇ J / cm 2 and the surface potential (VL) was measured 100 milliseconds after the irradiation.
  • the light of the halogen lamp was used as monochromatic light of 780 nm by an interference filter.
  • each photoconductor was irradiated with light from a white fluorescent lamp (Neorumi Super FL20SS / W / 18 manufactured by Mitsubishi Osram Co., Ltd.) for 10 minutes after adjusting the light intensity on the surface of the photoconductor to 2000 looks. Then, immediately after irradiation, 10 minutes after irradiation, and 60 minutes after irradiation, the same measurement was performed with the initial grid voltage, and V0 and VL were measured.
  • the measurement environment was a temperature of 25 ° C. and a relative humidity of 50% (N / N environment).
  • ⁇ V0 is a value obtained by subtracting V0 before irradiation with the white fluorescent lamp from V0 after irradiation with the white fluorescent lamp.
  • ⁇ VL is a value obtained by subtracting the VL before the white fluorescent lamp irradiation from the VL after the white fluorescent lamp irradiation. The smaller the absolute values of ⁇ V0 and ⁇ VL, the smaller the change in each potential even when irradiated with strong white light, indicating that the strong exposure characteristics are good. In the present invention, the cases where the absolute values of ⁇ V0 and ⁇ VL are as follows are evaluated as “pass”.
  • ⁇ V0 (immediately after irradiation) 11 or less ⁇ V0 (10 minutes after irradiation) 8 or less ⁇ V0 (60 minutes after irradiation) 7 or less ⁇ VL (immediately after irradiation) 14 or less ⁇ VL (10 minutes after irradiation) 10 or less ⁇ VL (60 minutes after irradiation) 5 or less
  • the initial surface potential was ⁇ 700 V
  • monochromatic light of 780 nm was used for exposure and 660 nm was used for static elimination
  • the surface potential (VL) at the time of irradiation with the exposure light of 0.44 ⁇ J / cm 2 was measured.
  • the time required from the exposure to the potential measurement was set to 100 ms.
  • the VL after repeated transcription was evaluated by the following procedure. While the charging (scorotron charging device) conditions were fixed so that the initial surface potential of the photoconductor was ⁇ 700V, a positive voltage of 6.5 kV was applied to another corotron charging device and the photoconductor was rotated 4000 times. This Corotron charger was installed between potential measurement and static elimination.
  • the positive voltage was turned off and the surface potential VL was measured in the same manner as in the initial stage. Both before and after the transfer repetition, the measurement environment was performed at a temperature of 25 ° C. and a relative humidity of 50% (N / N environment). The difference between the VL before the transcription repetition and the VL after the transcription repetition was defined as ⁇ VL. The smaller the absolute value of ⁇ VL, the smaller the change in potential even after repeated transfer, indicating that the transfer repeat characteristics are better. In the present invention, the case where the absolute value of ⁇ VL is 130 or less is evaluated as “pass”.
  • Comparing Example 1 and Comparative Example 1 when the hole transporting material (HTM) and the electron transporting material (ETM) are present in the photosensitive layer, all of the initial electrical characteristics, the strong exposure characteristics, and the transfer repetition characteristics are improved. It was found that in the absence of the electron transporting material (ETM) in the photosensitive layer, either property deteriorates. Further, when a known light-shielding agent (compound of the formula (F)) is present in the photosensitive layer instead of the electron transport material (ETM) in Example 1, the initial electrical characteristics are particularly deteriorated (Comparative Example 2). I understood. It is presumed that the compound of the formula (F) itself was partially photodecomposed by the curing light (LED light), and the electrical characteristics deteriorated due to the influence of the photodecomposed product.
  • LED light curing light
  • the radical acceptor compound (ETM) is more radical than the HTM. Even if HTM radicals are generated, the HTM radicals immediately extract hydrogen atoms from the radical acceptor compound (ETM), and the HTM radicals are converted to HTM, thereby achieving the same effect as in Example 1. It can be considered to be expressed.
  • a sample of the sheet photoconductor was prepared as follows, and the degree of curing, initial electrical characteristics, strong exposure characteristics, and transfer repetition characteristics were evaluated. Since it is difficult to accurately measure the Martens hardness and the elastic deformation rate in the sheet photoconductor sample, these characteristics were not measured.
  • Coating liquid R7 for forming a charge transport layer The same as the charge transport layer forming coating liquid R1 except that the radical acceptor compound (electron transport material (ETM)) was changed to the compound represented by the following structural formula (H) (molecular weight: 356.9). , A coating liquid R7 for forming a charge transport layer was obtained.
  • ETM electron transport material
  • the undercoat layer forming coating liquid P1 is applied on a polyethylene terephthalate sheet (thickness 75 ⁇ m) with aluminum vapor deposition on the surface with a wire bar so that the film thickness after drying is 1.2 ⁇ m, and the undercoat layer is dried.
  • a coating liquid Q1 for forming a charge generating layer was applied with a wire bar so that the film thickness after drying was 0.2 ⁇ m, and dried to provide a charge generating layer.
  • a coating liquid R7 for forming a charge transport layer was applied onto the charge generation layer with an applicator so that the film thickness after drying was 20 ⁇ m, and dried at 125 ° C. for 20 minutes to provide a charge transport layer.
  • the coating liquid S1 for forming a protective layer is applied onto the charge transport layer with a wire bar, dried at room temperature for 20 minutes, and then the sheet is wound around an aluminum cylinder (30 ⁇ , length: 248 mm).
  • the coating film all layers formed on the vapor-deposited aluminum
  • the sheet is attached.
  • the continuity of the cylinder was taken.
  • the same curing treatment as in Example 1 was carried out to form a protective layer having a film thickness of 1.0 ⁇ m.
  • heating and aging were carried out in the same manner as in Example 1 to prepare a sheet photosensitive member J.
  • the protective layer is formed by allowing the radical acceptor compound and the hole transporting material (HTM) to exist in the photosensitive layer. It was found that even if the degree of curing of the radical is high, the initial electrical characteristics, the strong exposure characteristics, and the transfer repetition characteristics can be excellent. It is presumed that this is because the presence of the radical acceptor compound can suppress the decomposition of the HTM and the damage to the photosensitive layer can be suppressed. Furthermore, by using a radical acceptor compound having a HOMO level and LUMO level energy difference of 1.8 eV or more and 3.0 eV or less, particularly strong exposure characteristics can be obtained due to its excellent light-shielding property. It turns out that it can be further enhanced.
  • HTM hole transporting material
  • Photoreceptor 2-B was produced in the same manner as Photoreceptor 2-A, except that the coating liquid R1 for forming a charge transport layer was changed to the coating liquid R2 for forming a charge transport layer.
  • Photoreceptor 2-C was produced in the same manner as Photoreceptor 2-A, except that the coating liquid R1 for forming a charge transport layer was changed to the coating liquid R3 for forming a charge transport layer.
  • Photoreceptor 2-D was produced in the same manner as Photoreceptor 2-A, except that the coating liquid R1 for forming a charge transport layer was changed to the coating liquid R4 for forming a charge transport layer.
  • Photoreceptor 2-E was produced in the same manner as Photoreceptor 2-A, except that the coating liquid R1 for forming a charge transport layer was changed to the coating liquid R5 for forming a charge transport layer.
  • Photoreceptor 2-F was produced in the same manner as Photoreceptor 2-A, except that the coating liquid R1 for forming a charge transport layer was changed to the coating liquid R6 for forming a charge transport layer.
  • Photoreceptor 2-G was produced in the same manner as Photoreceptor 2-A except that the intensity of LED light at 385 nm was changed to 685 mW / cm 2 and the irradiation time was changed to 1 minute.
  • Photoreceptor 2-H was produced in the same manner as Photoreceptor 2-E except that the intensity of LED light at 385 nm was changed to 685 mW / cm 2 and the irradiation time was changed to 1 minute.
  • Photoreceptor 2-I was produced in the same manner as Photoreceptor 2-F except that the intensity of LED light at 385 nm was changed to 685 mW / cm 2 and the irradiation time was changed to 1 minute.
  • the photosensitive layer contains at least a hole transporting material (HTM) and a radical acceptor compound, and the content of the radical acceptor compound in the photosensitive layer is the hole transport material (HTM).
  • HTM hole transporting material
  • HTM hole transport material
  • the radical acceptor compound (ETM) is more radical than the HTM. Even if HTM radicals are generated, the HTM radicals immediately extract hydrogen atoms from the radical acceptor compound (ETM), and the HTM radicals are converted to HTM, as in Experimental Example 2-1. It can be considered to exert an effect.
  • Example 2-11> A sheet photoconductor 2-K was produced in the same manner as the photoconductor sheet 2-J, except that the charge transport layer forming coating liquid R7 was changed to the charge transport layer forming coating liquid R5.
  • the photosensitive layer contains at least a hole transport material (HTM) and a radical acceptor compound, and is contained in the photosensitive layer.
  • HTM hole transport material
  • the content of the radical acceptor compound is 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the hole transport material (HTM)
  • HTM hole transport material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

導電性支持体上に、感光層と、硬化性化合物が硬化してなる硬化物を含有する保護層とを順次備えた感光体において、当該保護層を赤外吸収スペクトル測定した際の、波長1647cm-1~1627cm-1の吸光度の面積をA、波長1800cm-1~1647cm-1のピークの吸光度の面積をBとした時、面積比A/Bが0.0045以下であり、前記感光層は、少なくとも正孔輸送材料(HTM)とラジカルアクセプター性化合物を含有することを特徴とする、電子写真感光体は、保護層の硬化程度が高く、初期電気特性も良好で、しかも、強露光特性及び転写繰り返し特性に優れた電子写真感光体である。

Description

電子写真感光体、これを用いたカートリッジ及び画像形成装置
 本発明は、複写機やプリンター等に用いられる電子写真感光体、これを用いたカートリッジ及び画像形成装置に関する。
 プリンター及び複写機などでは、帯電した有機系感光体(OPC)ドラムに光を照射すると、その部分が除電されて静電潜像が生じ、静電潜像にトナーが付着することにより画像を得ることができる。このように電子写真技術を利用した機器において、感光体は基幹部材である。
 この種の有機系感光体は、材料選択の余地が大きく、感光体の特性を制御し易いことから、負電荷の発生と移動の機能を別々の化合物に分担させる“機能分離型の感光体”が主流となってきている。例えば、電荷発生材料(CGM)と電荷輸送材料(CTM)を同一層中に有する単層型の電子写真感光体(以下、単層型感光体という)と、電荷発生材料(CGM)を含有する電荷発生層と電荷輸送材料(CTM)を含有する電荷輸送層を積層してなる積層型の電子写真感光体(以下、積層型感光体という)とが知られている。また、感光体の帯電方式としては、感光体表面を負電荷に帯電させる負帯電方式と、感光体表面を正電荷に帯電させる正帯電方式が挙げられる。
 現在実用化されている感光体の層構成と帯電方式の組み合わせとしては、“負帯電積層型感光体”と、“正帯電単層型感光体”とを挙げることができる。
 “負帯電積層型感光体”は、アルミニウム管等の導電性支持体上に、樹脂等からなる下引き層(UCL)を設け、その上に電荷発生材料(CGM)と樹脂などからなる電荷発生層(CGL)を設け、さらにその上に、正孔輸送材料(HTM)と樹脂などからなる電荷輸送層(CTL)を設けてなる構成を有するものが一般的である。
 負帯電積層型感光体の場合、コロナ放電方式や接触方式で感光体の表面を負に帯電させた後、感光体を露光する。この光を電荷発生材料(CGM)が吸収して正孔と電子の電荷キャリアーが生成し、このうちの正孔すなわち正電荷キャリアーは、電荷輸送層(CTL)内を、正孔輸送材料(HTM)を介して移動し、感光層表面に到達して表面電荷を中和する。他方、電荷発生材料(CGM)で生成した電子、すなわち負電荷キャリアーは、下引き層(UCL)を通過して基体に到達するようになる。このように、負帯電積層型感光体においては感光層中を主に移動するのは正孔であるため、感光層には、電荷輸送材料として正孔輸送材料のみを含有させるのが通常である。
 一方で、“正帯電単層型感光体”は、アルミニウム管等の導電性支持体上に、樹脂等からなる下引き層(UCL)を設け、その上に電荷発生材料(CGM)、正孔輸送材料(HTM)及び電子輸送材料(ETM)と樹脂などからなる単層の感光層を設けてなる構成を有するものが一般的である(例えば特許文献1参照)。
 このような正帯電単層型感光体の場合、コロナ放電方式や接触方式で感光体の表面を正に帯電させた後、感光体を露光する。この光を、感光層表面近傍の電荷発生材料(CGM)が吸収して正孔と電子の電荷キャリアーが生成し、このうちの電子すなわち負電荷キャリアーは感光層表面の表面電荷を中和する。他方、電荷発生材料(CGM)で生成した正孔、すなわち正電荷キャリアーは感光層や下引き層(UCL)を通過して基体に到達するようになる。
 いずれの感光体においても、感光体の表面電荷が中和され、周囲表面との電位差により静電潜像が形成され、その後、トナー(粉末着色樹脂インク)による潜像の可視化と、トナーの紙などへの転写・加熱溶融定着とを経てプリントが完成する。
 上述のように、電子写真感光体は、導電性支持体上に感光層を形成したものが基本構成であるが、耐摩耗性等の改良目的で、感光層上に保護層を設けることも行われている。
 例えば特許文献1には、最表面層として、バインダー樹脂として熱可塑性のアルコール可溶性樹脂と平均一次粒子径が0.1~3μm、且つ密度が3.0g/cm3以下のフィラーとを含有する表面保護層を感光層上に設ける旨が開示されている。
 特許文献2には、トリメチロールプロパンアクリレート架橋体と、オルガノシリカ硬化膜と、熱又は光硬化型の架橋体を含有する架橋型表面層を、感光層上に設けることが記載されている。
 さらに、特許文献3には、感光層の表面側に表面保護層を有しており、当該表面保護層は、ヒンダードアミン化合物、バインダー用重合性化合物、及び電荷輸送剤を含有する組成物を光硬化させてなる硬化物であるものが開示されている。
特開2014-163984号公報 特開2008-26689号公報 特開2019-35856号公報
 硬化樹脂系保護層を有する感光体に関しては、該保護層の硬化の程度が高ければ、耐摩耗性等の性能も高まるため、例えば光硬化によって該保護層を硬化させる場合には、照射光強度等を高めるなど、照射光量を高めて硬化の程度を高めるのが一般的であった。
 しかし、本発明者らの検討の結果、照射光量が高過ぎると、感光層中の正孔輸送材料(HTM)が照射光によって分解するなど、感光層がダメージを受けるため、感光体の電気特性の中でも特に強露光特性(蛍光灯に曝露した後の電気特性)や転写繰り返し特性が悪化することが分かった。
 本発明の第一の実施態様の目的は、硬化樹脂系保護層を有する電子写真感光体において、該保護層の硬化程度が高く、初期電気特性も良好で、しかも、強露光特性及び転写繰り返し特性に優れた新たな電子写真感光体を提供することにある。
 他方、本発明の第二の実施態様の目的は、硬化樹脂系保護層を有する電子写真感光体において、初期電気特性も良好で、しかも、強露光特性及び転写繰り返し特性に優れた新たな電子写真感光体を提供することにある。
 本発明の第一の実施態様は、導電性支持体上に、感光層と、硬化性化合物が硬化してなる硬化物を含有する保護層とを順次備えた感光体において、
 当該保護層を赤外吸収スペクトル測定した際の、波長1647cm-1~1627cm-1の吸光度の面積をA、波長1800cm-1~1647cm-1のピークの吸光度の面積をBとした時、面積比A/Bが0.0045以下であり、
 前記感光層は、少なくとも正孔輸送材料(HTM)とラジカルアクセプター性化合物を含有することを特徴とする、電子写真感光体を提案する。
 本発明の第二の実施態様は、導電性支持体上に、感光層と、硬化性化合物が硬化してなる硬化物を含有する保護層とを順次備えた感光体において、
 前記感光層は、少なくとも正孔輸送材料(HTM)とラジカルアクセプター性化合物を含有し、
 前記感光層中のラジカルアクセプター性化合物の含有量が、正孔輸送材料(HTM)100質量部に対して0.1質量部以上10質量部以下であることを特徴とする、電子写真感光体を提案する。
 即ち、本発明の要旨は、以下[1]~[16]に存する。
 [1]導電性支持体上に、感光層と、硬化性化合物が硬化してなる硬化物を含有する保護層とを順次備えた感光体において、当該保護層を赤外吸収スペクトル測定した際の、波長1647cm-1~1627cm-1の吸光度の面積をA、波長1800cm-1~1647cm-1のピークの吸光度の面積をBとした時、面積比A/Bが0.0045以下であり、前記感光層は、少なくとも正孔輸送材料(HTM)とラジカルアクセプター性化合物を含有することを特徴とする、電子写真感光体。
 [2]前記感光層は、正孔輸送材料(HTM)100質量部に対して0.1~10質量部の割合でラジカルアクセプター性化合物を含むことを特徴とする、[1]に記載の電子写真感光体。
 [3]導電性支持体上に、感光層と、硬化性化合物が硬化してなる硬化物を含有する保護層とを順次備えた感光体において、
 前記感光層は、少なくとも正孔輸送材料(HTM)とラジカルアクセプター性化合物を含有し、
 前記感光層中のラジカルアクセプター性化合物の含有量が、正孔輸送材料(HTM)100質量部に対して0.1質量部以上10質量部以下であることを特徴とする、電子写真感光体。
 [4]前記正孔輸送材料(HTM)と前記ラジカルアクセプター性化合物が同一層に含まれることを特徴とする、[1]~[3]の何れか1に記載の電子写真感光体。
 [5]前記硬化性化合物が、光硬化性化合物であることを特徴とする、[1]~[4]の何れか1に記載の電子写真感光体。
 [6]前記ラジカルアクセプター性化合物のHOMO準位とLUMO準位のエネルギー差が1.8eV以上且つ3.0eV以下であることを特徴とする、[1]~[5]の何れか1に記載の電子写真感光体。
 [7]前記正孔輸送材料(HTM)のHOMO準位とLUMO準位のエネルギー差が、前記ラジカルアクセプター性化合物のHOMO準位とLUMO準位のエネルギー差より大きいことを特徴とする、[1]~[6]の何れか1に記載の電子写真感光体。
 [8]前記正孔輸送材料(HTM)のHOMO準位とLUMO準位のエネルギー差が3.6eV以下であることを特徴とする、[7]に記載の電子写真感光体。
 [9]前記感光層が、電荷発生層、電荷輸送層をこの順に積層した積層型感光層であることを特徴とする、[1]~[8]の何れか1に記載の電子写真感光体。
 [10]前記保護層は、該保護層100質量部に対して0質量部以上20質量部以下の割合で無機粒子を含有することを特徴とする、[1]~[9]の何れか1に記載の電子写真感光体。
 [11]前記感光層の正孔輸送材料(HTM)が、トリフェニルアミン構造を有する化合物であることを特徴とする、前記[1]~[10]の何れか1に記載の電子写真感光体である。
 [12]前記感光層のラジカルアクセプター性化合物が、ジフェノキノン構造又はジナフチルキノン構造を有する化合物であることを特徴とする、前記[1]~[11]の何れか1に記載の電子写真感光体である。
 [13]前記保護層は、前記硬化性化合物と、重合開始剤とを含有する組成物から形成された層であることを特徴とする、前記[1]~[12]の何れか1に記載の電子写真感光体である。
 [14]前記保護層が、紫外光又は/及び可視光の照射により硬化されてなる層であることを特徴とする、前記[1]~[13]の何れか1に記載の電子写真感光体である。
 [15]前記[1]~[14]の何れか1に記載の電子写真感光体を具備するカートリッジである。
 [16]前記[1]~[14]の何れか1に記載の電子写真感光体を具備する画像形成装置である。
 本発明の第一の実施態様が提案する感光体は、硬化樹脂系保護層を有しており、該保護層の硬化程度が高く、初期電気特性も良好で、しかも、強露光特性及び転写繰り返し特性を優れたものとすることができる。
 本発明の第二の実施態様が提案する感光体は、硬化樹脂系保護層を有しており、初期電気特性も良好で、しかも、強露光特性及び転写繰り返し特性を優れたものとすることができる。
 本発明の第一の実施態様及び本発明の第二の実施態様が提案する感光体はいずれも、感光層中に正孔輸送材料(HTM)とラジカルアクセプター性化合物を含有する。該保護層の硬化程度を高めるために、例えば、該保護層を光重合させる際の光照射量を高めたとしても、感光層中に正孔輸送材料(HTM)とラジカルアクセプター性化合物を含有することにより、ラジカルアクセプター性化合物の存在によって、前記HTMの分解を抑制することができるなど、感光層のダメージが抑えられ、強露光特性及び転写繰り返し特性を優れたものとすることができる。
 さらに前記ラジカルアクセプター性化合物として、HOMO準位とLUMO準位エネルギー差が、1.8eV以上且つ3.0eV以下であるものを用いることにより、その優れた遮光性によって、特に強露光特性をさらに高めることができる。
本発明の一例に係る電子写真感光体を用いて構成することができる画像形成装置の構成例を概略的に示した図である。 感光体のマルテンス硬度及び弾性変形率を測定する際の、圧子の押込み深さに対する荷重曲線を示したグラフである。
 次に、実施の形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。
 <<本電子写真感光体>>
 本発明の第一の実施態様及び本発明の第二の実施態様の一例に係る電子写真感光体(「本電子写真感光体」又は「本感光体」と称する)は、導電性支持体上に、感光層と、硬化物を含有する硬化樹脂系保護層(「本保護層」とも称する)とを順次備えた電子写真感光体である。
 本感光体は、感光層及び本保護層以外の層を有することは任意に可能である。
 また、本感光体の帯電方式は、感光体表面を負電荷に帯電させる負帯電方式、感光体表面を正電荷に帯電させる正帯電方式のいずれであってもよい。中でも、本発明の効果をより享受できる点で、負帯電方式であるのが好ましい。
 本発明の感光体においては、導電性支持体とは反対側が、上側又は表面側となり、導電性支持体側が、下側又は裏面側となる。
 <感光層>
 本感光体における感光層は、少なくとも電荷発生材料(CGM)、正孔輸送材料(HTM)及びラジカルアクセプター性化合物を含有する層であればよい。
 本感光体における感光層は、電荷発生材料(CGM)、正孔輸送材料(HTM)及びラジカルアクセプター性化合物が同一層内に存在する単層型感光層であってもよいし、また、電荷発生層と電荷輸送層とに分離された積層型感光層であってもよい。中でも、次に説明する積層型感光層がより好ましい。
 <積層型感光層>
 本感光体における積層型感光層として、電荷発生層(CGL)及び電荷輸送層(CTL)をこの順に積層した積層型感光層、例えば、電荷発生材料(CGM)を含有する電荷発生層(CGL)上に、ラジカルアクセプター性化合物及び正孔輸送材料(HTM)を含有する電荷輸送層(CTL)を積層してなる構成を挙げることができる。この際、電荷発生層(CGL)及び電荷輸送層(CTL)以外の他の層を備えることも可能である。
 <電荷発生層(CGL)>
 電荷発生層は、通常、電荷発生材料 (CGM)とバインダー樹脂を含有する。
 (電荷発生材料(CGM))
 電荷発生材料としては、セレン及びその合金、硫化カドミウム等の無機系光導電材料と、有機顔料等の有機系光導電材料とを挙げることができる。中でも、有機系光導電材料の方が好ましく、特に有機顔料が好ましい。
 有機顔料としては、例えば、フタロシアニン、アゾ、ペリレン等を挙げることができる。これらの中でも、特にフタロシアニン又はアゾが好ましい。その中でも、フタロシアニンが最も好ましい。これらは何れも、化合物の骨格構造を示したものであり、それらの骨格構造をもつ化合物群すなわち誘導体を包含する。
 電荷発生材料として有機顔料を使用する場合、通常はこれらの有機顔料の微粒子を、各種のバインダー樹脂で結着した分散層の形で使用する。
 上記フタロシアニンとしては、具体的には、例えば、無金属フタロシアニン、銅、インジウム、ガリウムなどの金属又はその酸化物、ハロゲン化物、水酸化物、アルコキシドなどの配位したフタロシアニン類の各結晶型を持ったもの、フタロシアニンダイマー類などを挙げることができる。特に、感度の高い結晶型であるX型、τ型無金属フタロシアニン、A型(別称β型)、B型(別称α型)、D型(別称Y型)等のチタニルフタロシアニン(別称:オキシチタニウムフタロシアニン)、II型等のクロロガリウムフタロシアニン、V型等のヒドロキシガリウムフタロシアニンなどが好適である。
 これらフタロシアニンの中でも、A型(別称β型)、B型(別称α型)、及び粉末X線回折の回折角2θ(±0.2゜)が27.1゜、もしくは27.3゜に明瞭なピークを示すことを特徴とするD型(Y型)チタニルフタロシアニン、II型クロロガリウムフタロシアニン、V型及び28.1゜にもっとも強いピークを有するか、もしくは、26.2゜にピークを持たず28.1゜に明瞭なピークを有し、かつ25.9゜の半値幅Wが0.1゜≦W≦0.4゜であることを特徴とするヒドロキシガリウムフタロシアニン、X型無金属フタロシアニンが特に好ましい。
 フタロシアニンは、単一の化合物を用いてもよいし、幾つかの混合又は混晶状態のものを用いてもよい。ここでの混合又は混晶状態としては、それぞれの構成要素を後から混合したものを用いてもよいし、合成、顔料化、結晶化等のフタロシアニン化合物の製造・処理工程において混合状態を生じさせたものでもよい。
 電荷発生材料の粒子径は、通常1μm以下であり、好ましくは0.5μm以下である。
 (バインダー樹脂)
 電荷発生層に用いるバインダー樹脂は、特に制限なく用いることができる。例えば、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリビニルアセタール系樹脂;ポリアリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリビニルアルコール樹脂、シリコン-アルキッド樹脂等の絶縁性樹脂や;ポリ-N-ビニルカルバゾール等の有機光導電性ポリマーなどを挙げることができる。これら樹脂の中でも、顔料の分散性、導電性支持体又は下引き層との接着性及び電荷輸送層との接着性の面から、ポリビニルアセタール樹脂又はポリ酢酸ビニル樹脂が好ましい。
 これらのバインダー樹脂は、何れか1種を単独で用いてもよく、2種類以上を任意の組み合わせで混合して用いてもよい。
 (その他の成分)
 電荷発生層は、電荷発生材料及びバインダー樹脂のほかに、必要に応じて、他の成分を含有することができる。例えば、成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性等を向上させる目的で、公知の酸化防止剤、可塑剤、紫外線吸収剤、電子吸引性化合物、レベリング剤、可視光遮光剤、充填剤等の添加物を含有させてもよい。
 (配合比)
 電荷発生層において、バインダー樹脂と電荷発生材料との配合比(質量)は、バインダー樹脂100質量部に対して、電荷発生材料を10質量部以上、中でも30質量部以上含有するのが好ましく、1000質量部以下、中でも500質量部以下の割合で含有するのが好ましく、膜強度の観点からは、300質量部以下であるのがより好ましく、200質量部以下であるのがさらに好ましい。
 (層厚)
 電荷発生層の厚さは、0.1μm以上であるのが好ましく、中でも0.15μm以上であるのがさらに好ましい。他方、1.0μm以下であるのが好ましく、中でも0.6μm以下であるのがさらに好ましい。
 <電荷輸送層(CTL)>
 電荷輸送層(CTL)は、通常、ラジカルアクセプター性化合物及び正孔輸送材料(HTM)と、バインダー樹脂とを含有する。
 (正孔輸送材料(HTM))
 感光層が含有する正孔輸送材料(HTM)は、特に限定されないが、HOMO準位とLUMO準位とのエネルギー差が、後述するラジカルアクセプター性化合物のHOMO準位とLUMO準位のエネルギー差より大きい場合に、本発明の効果が一層顕著に発揮される。
 正孔輸送材料(HTM)の前記エネルギー差が、ラジカルアクセプター性化合物のそれよりも大きければ、保護層を硬化する際の照射光を本感光体が受けた際、正孔輸送材料(HTM)よりもラジカルアクセプター性化合物の方が優先して前記照射光のエネルギーを吸収するため、ラジカルアクセプター性化合物を併存させることによる本発明の効果をより一層享受することができる。
 なお、感光層に複数種のラジカルアクセプター性化合物を用いる場合は、質量部数の多いラジカルアクセプター性化合物のエネルギー差を基準とする。
 さらに、正孔輸送材料(HTM)のHOMO準位とLUMO準位とのエネルギー差が3.6eV以下、特に3.60eV以下である場合に、本発明の効果がより一層顕著に発揮される。
 当該エネルギー差が3.6eVより高い場合には、344nmより長波長の光の吸収能が小さくなる。保護層を硬化する際の照射光は、LED光の場合はコスト等の観点から360nm以上が一般的であり、メタルハライド光の場合も350nmより短波長の光の割合は少ないため、前記エネルギー差が3.6eVより高いHTMは、前記照射光によってダメージを受けることが少ないと考えられる。それに対し、正孔輸送材料(HTM)の前記エネルギー差が3.6eV以下、特に3.60eV以下である場合は、前記照射光によってダメージを受けやすいため、所定のラジカルアクセプター性化合物を併存させることによる本発明の効果をより一層享受することができる。
 かかる観点から、正孔輸送材料(HTM)の前記エネルギー差は、3.5eV以下、特に3.50eV以下であるのがより好ましい。その中でも、特に3.35eV以下、中でも3.20eV以下であるのがさらに好ましい。
 HOMO準位とLUMO準位とのエネルギー差が、後述するラジカルアクセプター性化合物のHOMO準位とLUMO準位のエネルギー差より大きく、且つ、HOMO準位とLUMO準位とのエネルギー差が3.6eV以下である正孔輸送材料(HTM)としては、例えば、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、オキサゾール誘導体、ピラゾール誘導体、チアジアゾール誘導体、ベンゾフラン誘導体等の複素環化合物、アニリン誘導体、ヒドラゾン誘導体、芳香族アミン誘導体、アリールアミン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体及びこれらの化合物の複数種が結合したもの等を挙げることができる。
 これらの化合物の中から、上記のエネルギー準位(HOMO準位及びLUMO準位)に該当する化合物を適宜選択してもよい。また、上記のエネルギー準位に該当する化合物を2種以上併用してもよい。
 本発明において、HOMOのエネルギーレベル(E_homo)、および、LUMOのエネルギーレベル(E_lumo)は、密度半関数法の一種である、B3LYP(A.D.Becke,J.Chem.Phys.98,5648(1993)、C.Lee,et.al.,Phys.Rev.B37,785(1988)及びB.Miehlich,et.al.,Chem.Phys.Lett.157,200(1989)参照)を用い、構造最適化計算により安定構造を求めて得ることができる。
 この時、基底関数系として、6-31Gに分極関数を加えた6-31G(d,p)を用いるものとする(R.Ditchfield,et.al.,J.Chem.Phys.54,724(1971)、W.J.Hehre,et.al.,J.Chem.Phys.56,2257(1972)、P.C.Hariharan et.al.,Mol.Phys.27,209(1974)、M.S.Gordon,Chem.Phys.Lett.76,163(1980)、P.C.Hariharan et.al.,Theo.Chim.Acta28,213(1973)、J.-P.Blaudeau,et.al.,J.Chem.Phys.107,5016(1997)、M.M.Francl,et.al.,J.Chem.Phys.77,3654(1982)、R.C.Binning Jr.et.al.,J.Comp.Chem.11,1206(1990)、V.A.Rassolov,et.al.,J.Chem.Phys.109,1223(1998)、及びV.A.Rassolov,et.al.,J.Comp.Chem.22,976(2001)を参照)。
 本発明において6-31G(d,p)を用いたB3LYP計算を「B3LYP/6-31G(d,p)」と記述する。
 本発明では、B3LYP/6-31G(d,p)計算に用いたプログラムはGaussian03,Revision D.01(M.J.Frisch,et.al.,Gaussian,Inc.,Wallingford CT,2004.)である。
 正孔輸送材料(HTM)は、ホール移動度が高い材料であることが好ましく、この観点から、トリフェニルアミン構造を有する化合物であるのが好ましい。
 正孔輸送材料(HTM)として好適な例として、次に示す一般式で表される構造の何れかを有する化合物を挙げることができる。但し、これらに限定するものではない。また、何れか1種を単独で用いてもよいし、又、2種以上を任意の組み合わせで併用してもよい。
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
 (ラジカルアクセプター性化合物)
 本発明において「ラジカルアクセプター性化合物」とは、正孔輸送材料(HTM)からラジカルを受け取ることができる性質を持つ化合物のことを意味し、さらに具体的には、電子親和力が3.5eV以上の化合物を意味する。
 ここで、電子親和力とは、ある物質が電子を1つ取り込んだときに生じるエネルギーのことを意味し、前述した密度半関数法の一種である、B3LYP(A.D.Becke,J.Chem.Phys.98,5648(1993),C.Lee,et.al.,Phys.Rev.B37,785(1988)及びB.Miehlich,et.al.,Chem.Phys.Lett.157,200(1989)参照)を用い構造最適化計算により安定構造を求めて得ることができる。電子親和力を求めるにあたり、基底関数系及び計算に用いるプログラムは、前述と同様のものを使用することができる。
 保護層の硬化程度を高めるために、例えば、該保護層を光重合させる際の光照射量を高めたとしても、本感光層がラジカルアクセプター性化合物と正孔輸送材料(HTM)とを含有することにより、前記ラジカルアクセプター性化合物の存在によって、前記HTMの分解を抑制することができるなど、感光層のダメージが抑えられ、強露光特性及び転写繰り返し特性を優れたものとすることができる。
 この理由は、次のように推察される。
 硬化樹脂系保護層を形成する際、重合開始剤等によるラジカルの関与で、硬化が進むことが一般的である。そのため、ラジカルが感光層の正孔輸送材料(HTM)にも伝搬し、HTMラジカルが生成しやすくなる。一般に、通常状態の化合物よりもラジカル状態の化合物の方が、活性が高いため、蛍光灯などの光に対しても、ラジカル状態の化合物の方が光分解されやすいと考えられる。すなわち、硬化樹脂系保護層を設けた感光体では、HTMがラジカル化し、さらに光分解されることで、正孔輸送性を発揮できなくなった結果、強露光特性や転写繰り返し特性などの電気特性を悪化させると推察される。
 ここで、正孔輸送材料(HTM)だけでなく、ラジカルアクセプター性化合物も感光層に含有される場合、HTMラジカルが発生しても、直ぐにHTMラジカルがラジカルアクセプター性化合物から水素原子を引き抜きHTMに変換され、一方、ラジカルアクセプター性化合物はラジカルに変換されると考えられる。
 よって、感光層にHTMを単独で含有させるよりも、ラジカルアクセプター性化合物も一緒に含有させる方が、HTMがラジカル化して光分解されるのを抑制でき、強露光特性や転写繰り返し特性を良好にすることができると考えられる。
 また、正孔輸送材料(HTM)だけでなく、後述の電子輸送材料(ETM)を感光層に含有させた場合も、HTMよりもETMの方がラジカルになり易いため、HTMラジカルが発生しても、直ぐにHTMラジカルがETMから水素原子を引き抜き、HTMラジカルはHTMに変換されることにより、強露光特性及び転写繰り返し特性を優れたものとすることができる。この作用機序を勘案すれば、当該電子輸送材料(ETM)はすべて「ラジカルアクセプター性化合物」に包含されるものであり、電子輸送材料(ETM)を用いた場合も、ラジカルアクセプター性化合物と同様の作用機序により、強露光特性及び転写繰り返し特性の向上効果を得ることができるものと考えられる。
 本感光体に用いることができるラジカルアクセプター性化合物は、HOMO準位とLUMO準位のエネルギー差が1.8eV以上且つ3.0eV以下であるのが好ましい。
 ラジカルアクセプター性化合物の前記エネルギー差が1.8eV以上であれば、780nmなどの一般的な露光光を吸収せず、感度低下を起こしにくい。他方、3.0eV以下であれば、正孔輸送材料(HTM)にダメージを与え得る波長の光を、正孔輸送材料(HTM)よりも優先して吸収し、正孔輸送材料(HTM)のダメージを抑えることができる。
 かかる観点から、前記ラジカルアクセプター性化合物の前記エネルギー差は、1.8eV以上であるのが好ましく、中でも2.0eV以上、その中でも2.2eV以上であるのがさらに好ましく、他方、当該エネルギー差は、3.0eV以下であるのが好ましく、2.8eV以下であるのがより好ましく、2.6eV以下であるのがさらに好ましく、2.4eV以下であるのが特に好ましい。
 なお、ラジカルアクセプター性化合物における、HOMO準位及びLUMO準位のエネルギーの測定方法については、正孔輸送材料(HTM)のそれと同様である。
 本発明の効果をより享受できることから、ラジカルアクセプター性化合物の電子親和力は、3.5eV以上、特に3.50eV以上が好ましく、3.7eV以上、特に3.70eV以上がより好ましく、3.8eV以上、特に3.80eV以上がさらに好ましい。他方、ラジカルアクセプター性化合物の電子親和力は、4.3eV以下、特に4.30eV以下が好ましく、4.1eV以下、特に4.10eV以下がより好ましく、4.0eV以下、特に4.00eV以下がさらに好ましく、3.9eV以下、特に3.90eV以下が特に好ましい。
 ラジカルアクセプター性化合物の好ましい態様は、後述の電子輸送材料(ETM)において好ましい態様を同様に適用することができる。
 ラジカルアクセプター性化合物は、次に説明する電子輸送材料(ETM)の中から選択することができる。また、電子輸送材料(ETM)として例示した化合物以外の化合物を用いることもできる。更には、電子輸送材料(ETM)として例示した化合物と、それ以外の化合物とを併用して用いることもできる。
 本感光体の感光層中のラジカルアクセプター性化合物の含有量は、感光層中の正孔輸送材料(HTM)の含有量100質量部に対して0.1質量部以上であるのが好ましく、0.3質量部以上であるのがより好ましく、0.5質量部以上であるのがさらに好ましく、0.7質量部以上であるのが特に好ましい。他方、10質量部以下であるのが好ましく、7.0質量部以下であるのがより好ましく、5.0質量部以下、その中でも3.0質量部以下であるのがさらに好ましく、2.0質量部以下、その中でも1.5質量部以下であるのが特に好ましい。
 なお、本感光体の電荷輸送層(CTL)中のラジカルアクセプター性化合物の含有量(電荷輸送層中の正孔輸送材料の含有量100質量部に対する量)は、前記した感光層中のラジカルアクセプター性化合物の含有量(電荷輸送層中の正孔輸送材料の含有量100質量部に対する量)と同様である。
 また、本感光体の感光層中のラジカルアクセプター性化合物と正孔輸送材料(HTM)のモル比(ラジカルアクセプター性化合物のモル量/正孔輸送材料のモル量)は、0.01以上であることが好ましく、0.02以上であることがより好ましい。一方、0.1以下であることが好ましく、0.05以下であることがより好ましく、0.03以下であることがさらに好ましい。
 (電子輸送材料(ETM))
 前述の通り、本感光体は、感光層中に正孔輸送材料(HTM)と、電子輸送材料(ETM)と、を含有することができる。
 本感光体に用いることができる電子輸送材料(ETM)は、HOMO準位とLUMO準位のエネルギー差が1.8eV以上且つ3.0eV以下であるのが好ましい。
 電子輸送材料(ETM)の前記エネルギー差が1.8eV以上であれば、780nmなどの一般的な露光光を吸収せず、感度低下を起こしにくい。他方、3.0eV以下であれば、正孔輸送材料(HTM)にダメージを与え得る波長の光を、正孔輸送材料(HTM)よりも優先して吸収し、正孔輸送材料(HTM)のダメージを抑えることができる。
 かかる観点から、前記電子輸送材料(ETM)の前記エネルギー差は、1.8eV以上であるのが好ましく、中でも2.0eV以上、その中でも2.2eV以上であるのがさらに好ましく、他方、当該エネルギー差は、3.0eV以下であるのが好ましく、中でも2.8eV以下、その中でも2.6eV以下であるのがさらに好ましい。
 なお、電子輸送材料(ETM)における、HOMO準位及びLUMO準位のエネルギーの測定方法については、正孔輸送材料(HTM)のそれと同様である。
 前記電子輸送材料(ETM)の具体例としては、例えば、2,4,7-トリニトロフルオレノン等の芳香族ニトロ化合物、テトラシアノキノジメタン等のシアノ化合物、ジフェノキノン、ジナフチルキノン等のキノン化合物等の電子吸引性物質及びこれらの化合物の複数種が結合したもの、或いはこれらの化合物からなる基を主鎖又は側鎖に有する重合体等を挙げることができる。但し、これらに限定するものではなく、公知の電子輸送材料が使用可能である。
 以上の中でも、電気特性の観点から、電子輸送材料(ETM)は、ジフェノキノン構造又はジナフチルキノン構造を有する化合物が好ましい。その中でも、ジナフチルキノン構造を有する化合物が更に好ましい。
 なお、上記の電子輸送材料は、何れか1種を単独で用いてもよいし、又、2種以上を任意の組み合わせで併用してもよい。
 本感光体に用いることができる電子輸送材料(ETM)の具体例として、特開2017-09765号公報の段落0043~0053に例示されている一般式(ET1)~(ET3)で示される化合物を例示することができる。
 また、次に示す構造の何れかを有する化合物を挙げることができる。
 但し、これらに限定するものではない。また、何れか1種を単独で用いてもよいし、又、2種以上を任意の組み合わせで併用してもよい。
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
 感光層中の電子輸送材料(ETM)の含有量は、感光層中の正孔輸送材料(HTM)の含有量100質量部に対して0.1質量部以上であるのが好ましく、0.3質量部以上であるのがより好ましく、0.5質量部以上であるのがさらに好ましく、0.7質量部以上であるのが特に好ましい。他方、10質量部以下であるのが好ましく、7.0質量部以下であるのがより好ましく、5.0質量部以下であるのがより好ましく、その中でも3.0質量部以下であるのがさらに好ましく、2.0質量部以下であるのがより好ましく、その中でも1.5質量部以下であるのが特に好ましい。
 本感光体における電子輸送材料(ETM)と正孔輸送材料(HTM)の含有割合は、前記した感光層における電子輸送材料(ETM)と正孔輸送材料(HTM)の含有割合と同様である。
 また、電荷輸送層(CTL)における電子輸送材料(ETM)と正孔輸送材料(HTM)の含有割合は、前記した感光層における電子輸送材料(ETM)と正孔輸送材料(HTM)の含有割合と同様である。
 (バインダー樹脂)
 電荷輸送層のバインダー樹脂としては、例えば、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル等のビニル重合体およびその共重合体、ポリカーボネート、ポリアリレート、ポリエステル、ポリエステルポリカーボネート、ポリスルホン、フェノキシ、エポキシ、シリコーン樹脂等の熱可塑性樹脂や種々の熱硬化性化合物などを挙げることができる。これら樹脂の中でも、感光体としての光減衰特性、機械強度の面から、ポリカーボネート樹脂またはポリアリレート樹脂が好ましい。
 バインダー樹脂の粘度平均分子量(Mv)は、通常、5,000~300,000、好ましくは、10,000~200,000、さらに好ましくは、15,000~150,000、特に好ましくは20,000~80,000の範囲である。
 感光層を構成するバインダー樹脂と前記正孔輸送材料(HTM)との配合割合は、バインダー樹脂100質量部に対して正孔輸送材料(HTM)を20質量部以上の比率で配合するのが通常である。中でも、残留電位低減の観点からは、バインダー樹脂100質量部に対して正孔輸送材料(HTM)を30質量部以上の割合で配合することが好ましく、更に繰り返し使用した際の安定性や電荷移動度の観点からは、正孔輸送材料(HTM)を40質量部以上の割合で配合することがより好ましい。一方、感光層の熱安定性の観点からは、バインダー樹脂100質量部に対して正孔輸送材料(HTM)を200質量部以下の割合で配合することが好ましく、更に正孔輸送材料(HTM)とバインダー樹脂との相溶性の観点からは、正孔輸送材料(HTM)を150質量部以下の割合で配合することがより好ましく、ガラス転移温度の観点からは、120質量部以下の割合で配合することが特に好ましい。正孔輸送材料(HTM)を120質量部以下の割合で配合すると、感光層のガラス転移温度が上がり、耐リーク特性の向上が期待できる。
 なお、電荷輸送層を構成するバインダー樹脂と前記正孔輸送材料(HTM)との配合割合は、前述した感光層を構成するバインダー樹脂と前記正孔輸送材料(HTM)との配合割合と同様である。
 感光層全体の質量に対する正孔輸送材料(HTM)の含有割合は、感光層100質量部に対して正孔輸送材料(HTM)を16質量部以上配合するのが通常である。中でも、残留電位低減の観点からは、感光層100質量部に対して正孔輸送材料(HTM)を22質量部以上配合することが好ましく、更に、繰り返し使用した際の安定性や電荷移動度の観点からは、28質量部以上配合することがより好ましい。一方、感光層の熱安定性の観点からは、感光層100質量部に対して正孔輸送材料(HTM)を68質量部以下配合することが好ましく、感光層の均一性の観点からは、59質量部以下配合することがより好ましく、ガラス転移温度の観点からは、53質量部以下配合することが特に好ましい。正孔輸送材料(HTM)を53質量部以下配合すると、感光層のガラス転移温度が上がり、耐リーク特性の向上が期待できる。
 電荷輸送層(CTL)において、バインダー樹脂と前記正孔輸送材料(HTM)との配合割合は、バインダー樹脂100質量部に対して正孔輸送材料(HTM)を20質量部以上の比率で配合するのが好ましい。中でも、残留電位低減の観点からは、バインダー樹脂100質量部に対して正孔輸送材料(HTM)を30質量部以上の割合で配合することがさらに好ましく、更に繰り返し使用した際の安定性や電荷移動度の観点からは、正孔輸送材料(HTM)を40質量部以上の割合で配合することがより好ましい。一方、感光層の熱安定性の観点からは、バインダー樹脂100質量部に対して正孔輸送材料(HTM)を200質量部以下の割合で配合することが好ましく、更に正孔輸送材料(HTM)とバインダー樹脂との相溶性の観点からは、正孔輸送材料(HTM)を150質量部以下の割合で配合することがより好ましく、ガラス転移温度の観点からは、120質量部以下の割合で配合することが特に好ましい。正孔輸送材料(HTM)を120質量部以下の割合で配合すると、感光層のガラス転移温度が上がり、耐リーク特性の向上が期待できる。
 (その他の成分)
 電荷輸送層は、ラジカルアクセプター性化合物、正孔輸送材料(HTM)及びバインダー樹脂のほかに、必要に応じて他の成分を含有することができる。例えば成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性等を向上させる目的で、公知の酸化防止剤、可塑剤、紫外線吸収剤、電子吸引性化合物、レベリング剤、可視光遮光剤、充填剤等の添加物を含有させてもよい。
 (層厚)
 電荷輸送層の層厚は、特に制限するものではない。電気特性、画像安定性の観点、更には高解像度の観点から、5μm以上50μm以下であるのが好ましく、中でも10μm以上或いは35μm以下、その中でも15μm以上或いは25μm以下であるのがさらに好ましい。
 <単層型感光層>
 本感光体における単層型感光層として、電荷発生材料(CGM)、正孔輸送材料(HTM)及びラジカルアクセプター性化合物が同一層内に存在する構成を挙げることができる。
 単層型感光層の電荷発生材料(CGM)、正孔輸送材料(HTM)、ラジカルアクセプター性化合物はそれぞれ、積層型感光層と同様のものを用いることができる。また、単層型感光層におけるそれぞれの含有量及び含有割合も、積層型感光層と同様である。
 (各層の形成方法)
 上記の各層は、含有させる物質を溶剤に溶解又は分散させて得られた塗布液を、下地となる層、例えば導電性支持体上に浸漬塗布、スプレー塗布、バーコート等の公知の方法により、各層ごとに順次塗布・乾燥工程を繰り返すことにより形成することができる。但し、このような形成方法に限定するものではない。
 塗布液の作製に用いられる溶媒又は分散媒は、特に制限は無い。具体例としては、メタノール等のアルコール類、テトラヒドロフラン等のエーテル類、エステル類、アセトン、メチルエチルケトン等のケトン類、トルエン等の芳香族炭化水素類、ジクロロメタン等の塩素化炭化水素類、含窒素化合物類、非プロトン性極性溶剤類等が挙げられる。また、これらは1種を単独で用いてもよいし、2種以上を任意の組み合わせ及び種類で併用してもよい。
 溶媒又は分散媒の使用量は特に制限されない。
 塗布膜の乾燥は、室温における指触乾燥後、通常30℃以上、200℃以下の温度範囲で、1分から2時間の間、静止又は送風下で加熱乾燥させることが好ましい。また、加熱温度は一定であってもよく、乾燥時に温度を変更させながら加熱を行ってもよい。
 <本保護層>
 本保護層は、硬化性化合物が硬化してなる硬化物を含有する層であるのが好ましい。
 本保護層は、硬化性化合物及び重合開始剤を含有する組成物から形成することができる。前記硬化性化合物としては、アクリロイル基又は/及びメタクリロイル基を有する硬化性化合物が好ましい。また、中でも、前記硬化性化合物及び重合開始剤を含有する硬化性組成物を熱硬化又は光硬化させて形成するのが好ましく、光硬化させて形成するのがより好ましい。
 本保護層は、該本保護層を赤外吸収スペクトル測定した際の、波長1647cm-1~1627cm-1の吸光度の面積をA、波長1800cm-1~1647cm-1のピークの吸光度の面積をBとした時、面積比A/Bが0.0045以下であるのが好ましい。
 該本保護層の当該面積比A/B、言い換えれば当該吸光度比A/Bが0.0045以下であれば、本保護層が十分に硬化されており、優れた耐摩耗性を得ることができる。
 当該吸光度比A/Bが0.0045以下であれば、保護層の硬化が十分となり、耐摩耗性の低下を防ぐことができる。よって、保護層の硬化程度を高くすることを課題とする本発明の第一の実施態様では、当該吸光度比A/Bが0.0045以下であることを必須構成要件とするのに対し、そのことを課題としない本発明の第二の実施態様では、必須構成要件とするものではない。
 かかる観点から、該本保護層の当該面積比A/Bは0.0045以下であるのが好ましく、中でも0.0040以下であるのがより好ましい。当該当該面積比A/Bの下限値に制限は無く、0(ゼロ)であってもよい。
 この際、前記当該面積比すなわち吸光度の比は、保護層中に残留する二重結合の残存割合を規定するものであり、該保護層の硬化程度を規定するものである。
 保護層の硬化程度は、エネルギー線硬化前後でその化学構造に変化のあるアクリロイル基又はメタクリロイル基の二重結合(CH=CH-)の化学構造に由来する特性吸収波長の吸光度と、エネルギー線硬化前後でその化学構造に変化のないアクリロイル基のカルボニル結合(C=O)の化学構造に由来する特性吸収波長の吸光度の比を用いて定量することができる。
 ここで、波長1647cm-1~1627cm-1の吸光度は、主に、アクリロイル基又は、メタクリロイル基の二重結合(C=C)に由来する。一方、波長1800cm-1~1647cm-1の吸光度は、アクリロイル基又は、メタクリロイル基のカルボニル基(C=O)に由来する。
 また、本発明において吸光度の面積は、吸収ピークのベースライン上の面積から求められる。
 (硬化度)
 前述の面積比A/Bについて、硬化前後それぞれでの値を求めて下記式に代入することで、本保護層の硬化度を算出することができる。
 硬化度=[1-〔(硬化後のA/B)/(硬化前のA/B)〕]×100
 本保護層の硬化度は、70以上であることが好ましく、75以上であることがより好ましく、80以上であることがさらに好ましく、85以上であることが特に好ましい。保護層の硬化度が70以上であると、実用上十分な耐摩耗性を備えることができる。
 (マルテンス硬度)
 本感光体では、上述のように、本保護層の硬化程度が高いことから、本感光体のマルテンス硬度も大きい。そのため、実用上十分な耐摩耗性を備えることができる。
 本感光体は、そのマルテンス硬度が210N/mm2以上であることが好ましく、中でも215N/mm2以上、その中でも220N/mm2以上であることがより好ましい。
 本発明において、感光体のマルテンス硬度とは、感光体の表面側から測定したマルテンス硬度を意味する。
 前記マルテンス硬度は、後述の実施例に記載の方法で測定することができる。
 (弾性変形率)
 本感光体では、上述のように、本保護層の硬化程度が高いことから、本感光体の弾性変形率も大きい。弾性変形率が大きいので、実用上十分な耐摩耗性を備えることができる。
 本感光体は、その弾性変形率が37.5%以上であることが好ましく、38.0%以上であることがより好ましく、39.0%以上であることがさらに好ましく、40.0%以上であることが特に好ましい。
 本発明において、感光体の弾性変形率とは、感光体の表面側から測定した弾性変形率を意味する。
 前記弾性変形率は、後述の実施例に記載の方法で測定することができる。
 (硬化性組成物)
 硬化性組成物の一例として、アクリロイル基又は/及びメタクリロイル基を有する硬化性化合物及び重合開始剤、必要に応じて金属酸化物粒子、その他の材料を含有する組成物を挙げることができる。
 (硬化性化合物)
 硬化性化合物としては、ラジカル重合性官能基を有するモノマー、オリゴマー又はポリマーが好ましい。中でも、架橋性を有する硬化性化合物、特に光硬化性化合物が好ましい。例えば、2個以上のラジカル重合性官能基を有する硬化性化合物を挙げることができる。ラジカル重合性官能基を1個有する化合物を併用することもできる。
 ラジカル重合性官能基としては、アクリロイル基(アクリロイルオキシ基を包含する)及びメタクリロイル基(メタクリロイルオキシ基を包含する)のいずれか、又は、これらの両方の基を挙げることができる。
 以下に、ラジカル重合性官能基を有する硬化性化合物として好ましい化合物を例示する。
 アクリロイル基またはメタクリロイル基を有するモノマーとしては、例えば、トリメチロールプロパントリアクリレート(TMPTA)、トリメチロールプロパントリメタクリレート、HPA変性トリメチロールプロパントリアクリレート、EO変性トリメチロールプロパントリアクリレート、PO変性トリメチロールプロパントリアクリレート、カプロラクトン変性トリメチロールプロパントリアクリレート、HPA変性トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセロールトリアクリレート、ECH変性グリセロールトリアクリレート、EO変性グリセロールトリアクリレート、PO変性グリセロールトリアクリレート、トリス(アクリロキシエチル)イソシアヌレート、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート、EO変性トリス(アクリロキシエチル)イソシアヌレート、PO変性トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート、カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート、アルキル変性ジペンタエリスリトールテトラアクリレート、アルキル変性ジペンタエリスリトールトリアクリレート、ジメチロールプロパンテトラアクリレート、ペンタエリスリトールエトキシテトラアクリレート、EO変性リン酸トリアクリレート、2,2,5,5,-テトラヒドロキシメチルシクロペンタノンテトラアクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリテトラメチレングリコールジアクリレート、EO変性ビスフェノールAジアクリレート、PO変性ビスフェノールAジアクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、トリシクロデカンジメタノールジアクリレート、デカンジオールジアクリレート、ヘキサンジオールジアクリレート、エチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、EO変性ビスフェノールAジメタクリレート、PO変性ビスフェノールAジメタクリレート、トリシクロデカンジメタノールジメタクリレート、デカンジオールジメタクリレート、ヘキサンジオールジメタクリレート等が挙げられる。
 また、アクリロイル基またはメタクリロイル基を有するオリゴマー、ポリマーとして、例えば、ウレタンアクリレート、エステルアクリレート、アクリルアクリレート、エポキシアクリレート等を挙げることができる。その中でも、ウレタンアクリレート、エステルアクリレートが好ましく、その中でもエステルアクリレートがより好ましい。
 以上の化合物は、単独で用いることもできるし、又、2種類以上を併用することもできる。
 (重合開始剤)
 重合開始剤としては、熱重合開始剤、光重合開始剤等を挙げることができる。
 熱重合開始剤としては、例えば、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイドなどの過酸化物系化合物、2,2’-アゾビス(イソブチロニトリル)などのアゾ系化合物を挙げることができる。
 光重合開始剤は、ラジカル発生機構の違いにより、直接開裂型と水素引き抜き型に分類できる。
 直接開裂型の光重合開始剤は、光エネルギーを吸収すると、分子内の共有結合の一部が開裂することでラジカルを発生する。一方、水素引き抜き型の光重合開始剤は、光エネルギーを吸収することで励起状態となった分子が、水素供与体から水素を引き抜くことでラジカルを発生する。
 直接開裂型の光重合開始剤としては、例えば、アセトフェノン、2-ベンゾイル-2-プロパノール、1-ベンゾイルシクロヘキサノール、2,2-ジエトキシアセトフェノン、ベンジルジメチルケタール、2-メチル-4’-(メチルチオ)-2-モルフォリノプロピオフェノン、などのアセトフェノン系またはケタール系化合物、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、O-トシルベンゾイン、などのベンゾインエーテル系化合物、ジフェニル(2,4,6-トリメチルベンゾイル)フォスフィンオキサイド、フェニルビス(2,4,6-トリメチルベンゾイル)フォスフィンオキサイド、リチウムフェニル(2,4,6-トリメチルベンゾイル)フォスフォネート、などのアシルフォスフィンオキサイド系化合物を挙げることができる。
 水素引き抜き型の光重合開始剤としては、例えば、ベンゾフェノン、4-ベンゾイル安息香酸、2-ベンゾイル安息香酸、2-ベンゾイル安息香酸メチル、ベンゾイルぎ酸メチル、ベンジル、p-アニシル、2-ベンゾイルナフタレン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ジクロロベンゾフェノン、1,4-ジベンゾイルベンゼン、などのベンゾフェノン系化合物、2-エチルアントラキノン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、などのアントラキノン系またはチオキサントン系化合物等を挙げることができる。
 その他の光重合開始剤としては、例えば、カンファーキノン、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、アクリジン系化合物、トリアジン系化合物、イミダゾール系化合物、を挙げることができる。
 光重合開始剤は、効率的に光エネルギーを吸収してラジカルを発生させるために、光照射に用いられる光源の波長領域に、吸収波長を有することが好ましい。一方、最外層に含まれる化合物の内、光重合開始剤以外の成分が、この波長領域に吸収を持つ場合、光重合開始剤が十分な光エネルギーを吸収できず、ラジカル発生効率が低下する場合がある。一般的なバインダー樹脂や電荷輸送物質、金属酸化物粒子は、紫外域(UV)に吸収波長を有するため、光照射に用いる光源が紫外光(UV)である場合には、特にこの効果が顕著である。このような不具合を防止する観点から、光重合開始剤の中でも比較的長波長側に吸収波長を有する、アシルフォスフィンオキサイド系化合物を含有することが好ましい。
 当該アシルフォスフィンオキサイド系化合物は、自己開裂により吸収波長領域が低波長側に変化する、フォトブリーチ効果を有するため、最外層内部まで光を透過させることができ、内部硬化性が良好である点からも好ましい。このような効果を考慮すると、最外層表面の硬化性を補う観点から、アシルフォスフィンオキサイド系化合物と水素引き抜き型開始剤を併用することがさらに好ましい。この際、アシルフォスフィンオキサイド系化合物に対する水素引き抜き型開始剤の含有割合は、特に限定されるものではない。表面硬化性を補う観点から、アシルフォスフィンオキサイド系化合物1質量部に対し、0.1質量部以上が好ましく、内部硬化性を維持する観点から、5質量部以下が好ましい。
 また、光重合促進効果を有するものを、単独または上記光重合開始剤と併用して用いることもできる。光重合促進効果を有するものとしては、例えば、トリエタノールアミン、メチルジエタノールアミン、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、安息香酸(2-ジメチルアミノ)エチル、4,4 ’-ジメチルアミノベンゾフェノンなどを挙げることができる。
 重合開始剤は1種又は2種以上を混合して用いてもよい。重合開始剤の含有量は、ラジカル重合性を有する総含有物100質量部に対し、0.5~40質量部、好ましくは1~20質量部である。
 (電荷輸送物質)
 本保護層には、電荷輸送能を付与する観点から、電荷輸送物質を含有させてもよい。
 本保護層に含有させる電荷輸送物質は、前記感光層に用いられる正孔輸送材料及び電子輸送材料と同様のものを用いることができる。
 また、本感光体表面のマルテンス硬度を向上させる観点から、連鎖重合性官能基を有する電荷輸送物質を重合させてなる構造を含有させてもよい。
 連鎖重合性官能基を有する電荷輸送物質の連鎖重合性官能基としては、例えば、アクリロイル基、メタクリロイル基、ビニル基及びエポキシ基が挙げられる。この中でも硬化性の観点から、アクリロイル基またはメタクリロイル基が好ましい。
 連鎖重合性官能基を有する電荷輸送物質の電荷輸送物質部分の構造としては、例えば、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、オキサゾール誘導体等の複素環化合物、アニリン誘導体、ヒドラゾン誘導体、アリールアミン誘導体、スチルベン誘導体、ブタジエン誘導体及びエナミン誘導体並びにこれらの化合物の複数種が結合したもの、及びこれらの化合物からなる基を主鎖若しくは側鎖に有する重合体等の電子供与性物質が挙げられる。これらの中でも、電気特性の観点から、カルバゾール誘導体、アリールアミン誘導体、スチルベン誘導体、ブタジエン誘導体及びエナミン誘導体並びにこれらの化合物の複数種が結合したものが好ましい。
 本保護層における前記電荷輸送物質の含有量は、特に限定するものではない。電気特性の観点から、本保護層におけるバインダー樹脂100質量部に対して、好ましくは10質量部以上、より好ましくは30質量部以上、特に好ましくは50質量部以上である。また、表面抵抗を良好に保持する観点から、好ましくは300質量部以下、より好ましくは200質量部以下、特に好ましくは150質量部以下である。
 本保護層に電荷輸送能を付与する手段としては、前述した電荷輸送物質を本保護層に添加する手段のほかに、後述する無機粒子を本保護層に添加する手段を挙げることができる。中でも、本保護層においては、本発明の効果をより享受できることから、電荷輸送物質を本保護層に添加する手段の方が好ましい。
 (無機粒子)
 本保護層には、強露光特性や機械的強度を向上させる観点、ないし電荷輸送能を付与する観点から、無機粒子を含有させてもよい。
 当該無機粒子としては、例えば、銅、スズ、アルミニウムなどの金属粉末、シリカ、酸化錫、酸化亜鉛、酸化チタン、アルミナ、酸化インジウム、アンチモンをドープした酸化錫等の金属酸化物、金属フッ化物、チタン酸カリウム、窒化硼素などが挙げられる。
 中でも、前記無機粒子として金属酸化物粒子を含有させるのが好ましい。
 このような金属酸化物粒子としては、通常、電子写真感光体に使用可能な如何なる金属酸化物粒子も使用することができる。
 金属酸化物粒子の具体例としては、例えば、酸化チタン、酸化スズ、酸化アルミニウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の1種の金属元素を含む金属酸化物粒子、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数の金属元素を含む金属酸化物粒子を挙げることができる。金属酸化物粒子は、一種類の粒子のみを用いてもよいし、複数の種類の粒子を混合して用いてもよい。
 これらの中でも、強露光特性の観点から、バンドギャップが、感光層のHTMのHOMO準位とLUMO準位のエネルギー差より小さい金属酸化物粒子が好ましい。ここで、感光層に複数種のHTMを用いる場合は、質量部数の多いHTMを基準とする。金属酸化物粒子のバンドギャップが前記エネルギー差より小さいと、正孔輸送材料(HTM)が吸収する波長を、添加量に応じてカットできることから、強露光特性が良好となる。かかる観点から、酸化チタン、酸化亜鉛、酸化スズ、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウムなどの金属酸化物粒子が好ましい。その中でも、酸化チタン粒子が特に好ましい。
 酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルッカイト、アモルファスのいずれも用いることができる。バンドギャップ及び光触媒活性の観点からルチル型が好ましい。また、これらの結晶状態の異なるものから、複数の結晶状態のものが含まれていてもよい。
 金属酸化物粒子は、その表面に種々の表面処理が施されたものであってもよい。例えば、酸化スズ、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、またはステアリン酸、ポリオール、有機珪素化合物等の有機物による処理が施されたものでもよい。特に、酸化チタン粒子を用いる場合には、有機珪素化合物により表面処理されたものが好ましい。
 当該有機珪素化合物としては、例えば、ジメチルポリシロキサン、メチル水素ポリシロキサン等のシリコーンオイル、メチルジメトキシシラン、ジフェニルジジメトキシシラン等のオルガノシラン、ヘキサメチルジシラザン等のシラザン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等のシランカップリング剤等を挙げることができる。特に、最外層の機械的強度を向上させる観点から、連鎖重合性官能基を有する、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン、ビニルトリメトキシシランが好ましい。
 なお、これらの表面処理された粒子の最表面は、このような処理剤で処理される前に、酸化アルミニウム、酸化珪素または酸化ジルコニウム等の処理剤などで処理されていても構わない。
 金属酸化物粒子は、一種類の粒子のみを用いてもよいし、複数の種類の粒子を混合して用いてもよい。
 使用する金属酸化物粒子は、通常、平均一次粒子径が500nm以下のものが好ましく用いられ、より好ましくは1nm~100nmのものが用いられ、さらに好ましくは5nm~50nmのものが用いられる。
 この平均一次粒子径は、透過型電子顕微鏡(Transmission electron microscope 以下、TEMとも称する)により直接観察される粒子の径の算術平均値によって求めることが可能である。
 本保護層中での無機粒子の含有量は、本保護層100質量部に対して0質量部以上20質量部以下の割合であるのが好ましい。
 無機粒子の含有量が多ければ、光を受光した際の本感光層のダメージはそもそも少ないから、本発明の効果をより一層享受できる観点からは、無機粒子の含有量が少ない方が好ましい。
 かかる観点から、本保護層中での無機粒子の含有量は、本保護層100質量部に対して0質量部以上20質量部以下の割合であるのが好ましく、中でも15質量部以下、その中でも10質量部以下であるのがさらに好ましい。
 (その他の材料)
 本保護層は、必要に応じて、他の材料を含んでいてもよい。他の材料としては、例えば、安定剤(熱安定剤、紫外線吸収剤、光安定剤、酸化防止剤など)、分散剤、帯電防止剤、着色剤、潤滑剤などを挙げることができる。これらは適宜1種単独で、または2種以上を任意の比率及び組み合わせで用いることができる。
 (硬化方法)
 硬化方法としては、熱硬化、光硬化、電子線硬化、放射線硬化等いずれの方法でも可能である。中でも、安全性や省エネルギー性に優れる光硬化が好ましい。光硬化の中でも、紫外光又は/及び可視光の光照射による硬化、その中でもメタルハライド光、LED光による硬化が好ましく、反応の制御性及び発熱を抑制できるLED光による硬化がより好ましい。LED光の波長としては、硬化速度の観点から、400nm以下が好ましく、385nm以下がより好ましい。また、コストの観点から、360nm以上が好ましい。
 (本保護層の形成方法)
 本保護層は、例えば硬化性化合物及び重合開始剤、必要に応じて金属酸化物粒子などを含有する硬化性組成物を、必要に応じて溶媒に溶解して塗布液とするか、または分散媒に分散して塗布液とし、該塗布液を塗布した後、硬化させて形成することができる。
 この際、本保護層の形成に用いる有機溶媒は、公知の有機溶媒を適宜選択して用いればよい。中でも、感光層に好適に用いられるポリカーボネート、ポリアリレートへの溶解性が低い、アルコール類を含有させることが好ましい。
 本保護層を形成する際の塗布方法としては、例えば、スプレー塗布法、リング塗布法、浸漬塗布法等を挙げることができる。但し、これらの方法に限定するものではない。
 上記塗布法により塗布膜を形成した後、塗膜を乾燥させるのが好ましい。
 硬化組成物の硬化は、外部エネルギーとして、熱、光(例えば紫外光又は/及び可視光)、放射線などを硬化組成物に照射して硬化させることができる。
 熱のエネルギーを加える方法としては、例えば、空気、窒素などの気体、蒸気、或いは各種熱媒体、赤外線、電磁波を用い塗工表面側若しくは支持体側から加熱することによって行なわれる。加熱温度は100℃以上、170℃以下が好ましい。
 光のエネルギーとしては、主に紫外光(UV)に発光波長をもつ高圧水銀灯やメタルハライドランプ、無電極ランプバルブ、発光ダイオードなどのUV照射光源を利用することができる。硬化性化合物や光重合開始剤の吸収波長に合わせて、可視光光源の選択も可能である。
 光強度(光照度)は、硬化性の観点から、100mW/cm以上が好ましく、その中でも300mW/cm以上がより好ましく、600mW/cm以上がより好ましく、その中でも800mW/cm以上がより好ましく、1000mW/cm以上がさらに好ましく、1200mW/cm以上が特に好ましい。また、電気特性の観点から、5000mW/cm以下が好ましく、3000mW/cm以下がより好ましく、2000mW/cm以下がさらに好ましく、1500mW/cm以下が特に好ましい。
 前記光強度(光照度)は、紫外線積算光量計を用いて測定することができる。例えば、ウシオ電機製 紫外線積算光量計UIT-250(受光器UVD-C365)を用いることができる。
 光照射量(積算光量)は、硬化性の観点から、10J/cm以上が好ましく、その中でも30J/cm以上がより好ましく、50J/cm以上がより好ましく、その中でも100J/cm以上がより好ましく、120J/cm以上がさらに好ましく、150J/cm以上が特に好ましい。また、電気特性の観点から、500J/cm以下が好ましく、300J/cm以下がさらに好ましく、200J/cm以下が特に好ましい。
 放射線のエネルギーとしては、電子線(EB)を用いるものを挙げることができる。
 これらのエネルギーの中で、反応速度制御の容易さ、装置の簡便さ、ポットライフの長さの観点から、光のエネルギーを用いたものが好ましい。
 該保護層を硬化した後、残留応力の緩和、残留ラジカルの緩和、電気特性改良の観点から、加熱工程を加えてもよい。加熱温度としては、好ましくは60℃以上、より好ましくは100℃以上であり、好ましくは200℃以下、より好ましくは150℃以下である。
 <導電性支持体>
 導電性支持体としては、その上に形成される層を支持し、導電性を示すものであれば、特に限定されない。
 導電性支持体としては、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料や、金属、カーボン、酸化錫などの導電性粉体を共存させて導電性を付与した樹脂材料や、アルミニウム、ニッケル、ITO(酸化インジウム酸化錫合金)等の導電性材料をその表面に蒸着または塗布した樹脂、ガラス、紙等を主として使用することができる。
 導電性支持体の形態としては、例えば、ドラム状、シート状、ベルト状などのものが用いられる。
 導電性支持体としてアルミニウム合金等の金属材料を用いる場合、金属材料に陽極酸化被膜を施してから用いてもよい。
 上記導電性支持体の表面は、平滑であってもよく、また特別な切削方法を用いたり、研磨処理を施したりすることにより、粗面化されていてもよい。また、支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化されたものであってもよい。
 なお、上記導電性支持体と感光層との間には、接着性・ブロッキング性等の改善のために、後述する下引き層を設けてもよい。
 <下引き層>
 本感光体は、感光層と導電性支持体との間に下引き層を有していてもよい。
 下引き層としては、例えば、樹脂、樹脂に有機顔料や金属酸化物等の粒子を分散したもの等が用いられる。
 下引き層に用いる有機顔料の例としては、例えば、フタロシアニン顔料、アゾ顔料、ペリレン顔料などを挙げることができる。中でも、フタロシアニン顔料、アゾ顔料、具体的には、前述した電荷発生物質として用いる場合のフタロシアニン顔料やアゾ顔料を挙げることができる。
 下引き層に用いる金属酸化物粒子の例としては、酸化チタン、酸化アルミニウム、酸化珪素、酸化亜鉛等の1種の金属元素を含む金属酸化物粒子、チタン酸ストロンチウム等の複数の金属元素を含む金属酸化物粒子を挙げることができる。下引き層には、上記1種類の粒子のみを用いてもよく、複数の種類の粒子を任意の比率及び組み合わせで混合して用いてもよい。
 上記金属酸化物粒子の中でも、酸化チタンおよび酸化アルミニウムが好ましく、特に酸化チタンが好ましい。なお、酸化チタン粒子は、例えば、その表面が無機物または有機物等によって処理されていてもよい。また酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルッカイト、アモルファスのいずれも用いることができる。また複数の結晶状態のものが含まれていてもよい。
 下引き層に用いられる金属酸化物粒子の粒径としては、特に限定されない。下引き層の特性、および下引き層を形成するための溶液の安定性の面から、平均一次粒径として10nm以上であることが好ましく、また100nm以下、より好ましくは50nm以下である。
 ここで、下引き層は粒子をバインダー樹脂に分散した形で形成することが望ましい。下引き層に用いられるバインダー樹脂としては、例えば、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリビニルアセタール系樹脂;ポリアリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリビニルアルコール樹脂、シリコーン-アルキッド樹脂等の絶縁性樹脂や;ポリ-N-ビニルカルバゾール等の有機光導電性ポリマーの中から選択し、用いることができる。但し、これらポリマーに限定されるものではない。また、これらバインダー樹脂は単独で用いても、2種類以上を混合して用いてもよく、硬化剤とともに硬化した形でも使用してもよい。
 中でも、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリビニルアセタール系樹脂や、アルコール可溶性の共重合ポリアミド、変性ポリアミド等が良好な分散性及び塗布性を示すことから好ましい。その中でも、アルコール可溶性の共重合ポリアミドが特に好ましい。
 上記バインダー樹脂に対する粒子の混合比は、任意に選ぶことができる。10質量%から500質量%の範囲で使用することが、分散液の安定性及び塗布性の面で好ましい。
 下引き層の膜厚は、任意に選ぶことができる。電子写真感光体の特性、および上記分散液の塗布性の観点から、通常0.1μm以上、20μm以下とすることが好ましい。また下引き層には、公知の酸化防止剤等を含んでいてもよい。
 <<本画像形成装置>>
 本感光体を用いて画像形成装置(「本画像形成装置」)を構成することができる。 すなわち、本発明の実施形態の一例に係る本画像形成装置は、本感光体を具備する画像形成装置である。
 図1に示すように、本画像形成装置は、本感光体1、帯電装置2、露光装置3及び現像装置4を備えて構成され、更に、必要に応じて転写装置5、クリーニング装置6及び定着装置7が設けられる。
 本感光体1は、上述した本発明の電子写真感光体であれば特に制限はない。図1ではその一例として、円筒状の導電性支持体の表面に上述した感光層を形成したドラム状の感光体を示している。この本感光体1の外周面に沿って、帯電装置2、露光装置3、現像装置4、転写装置5及びクリーニング装置6がそれぞれ配置されている。
 帯電装置2は、本感光体1を帯電させるもので、本感光体1の表面を所定電位に均一帯電させる。一般的な帯電装置としては、コロトロンやスコロトロン等の非接触のコロナ帯電装置、或いは接触型帯電装置(直接型帯電装置)を挙げることができる。接触帯電装置の例としては、帯電ローラー、帯電ブラシ等を挙げることができる。なお、図1では、帯電装置2の一例としてローラー型の帯電装置(帯電ローラー)を示している。
 なお、帯電時に印可する電圧としては、直流電圧だけの場合、及び直流に交流を重畳させて用いることもできる。
 露光装置3は、本感光体1に露光を行って本感光体1の感光面に静電潜像を形成することができるものであれば、その種類に特に制限はない。具体例としては、例えば、ハロゲンランプ、蛍光灯、レーザー、LED等を挙げることができる。
 また、感光体内部露光方式によって露光を行うようにしてもよい。露光を行う際の光は任意である。例えば、波長が780nmの単色光等で露光を行えばよい。
 トナーTの種類は任意であり、粉状トナーのほか、重合トナー等を用いることができる。
 転写装置5は、その種類に特に制限はなく、静電転写法、圧力転写法、粘着転写法等、任意の方式を用いた装置を使用することができる。ここでは、転写装置5が本感光体1に対向して配置された転写チャージャー、転写ローラー、転写ベルト等から構成されるものとする。この転写装置5は、トナーTの帯電電位とは逆極性で所定電圧値(転写電圧)を印加し、本感光体1に形成されたトナー像を記録紙(用紙、媒体)Pに転写するものである。
 クリーニング装置6について特に制限はなく、ブラシクリーナー、磁気ローラークリーナー、ブレードクリーナー等、任意のクリーニング装置を用いることができる。クリーニング装置6は、感光体1に付着している残留トナーをクリーニング部材で掻き落とし、残留トナーを回収するものである。但し、感光体表面に残留するトナーが少ないか、ほとんど無い場合には、クリーニング装置6は無くても構わない。
 以上のように構成された本画像形成装置では、次のようにして画像の記録が行われる。先ず、感光体1の表面(感光面)が、帯電装置2によって所定の電位(例えば600V)に帯電される。この際、直流電圧により帯電させてもよく、直流電圧に交流電圧を重畳させて帯電させてもよい。
 続いて、帯電された感光体1の感光面を、記録すべき画像に応じて露光装置3により露光し、感光面に静電潜像を形成する。そして、その感光体1の感光面に形成された静電潜像の現像を、現像装置4で行う。
 現像装置4は、供給ローラー43により供給されるトナーTを、規制部材(現像ブレード)45により薄層化するとともに、所定の極性(ここでは感光体1の帯電電位と同極性であり、正極性)に摩擦帯電させ、現像ローラー44に担持しながら搬送して、感光体1の表面に接触させる。
 現像ローラー44に担持された帯電トナーTが感光体1の表面に接触すると、静電潜像に対応するトナー像が感光体1の感光面に形成される。そしてこのトナー像は、転写装置5によって記録紙Pに転写される。この後、転写されずに感光体1の感光面に残留しているトナーが、クリーニング装置6で除去される。
 トナー像の記録紙P上への転写後、定着装置7を通過させてトナー像を記録紙P上へ熱定着することで、最終的な画像が得られる。
 なお、画像形成装置は、上述した構成に加え、例えば除電工程を行うことができる構成としてもよい。
 また、本画像形成装置は更に変形して構成してもよく、例えば、前露光工程、補助帯電工程等の工程を行うことができる構成としたり、オフセット印刷を行う構成としたり、更には複数種のトナーを用いたフルカラータンデム方式の構成としてもよい。
 <<本電子写真カートリッジ>>
 本発明の実施形態の一例に係る電子写真カートリッジ(「本画電子写真カートリッジ」と称する)は、本感光体を具備する電子写真カートリッジである。
 本感光体1を、帯電装置2、露光装置3、現像装置4、転写装置5、クリーニング装置6及び定着装置7のうち1つ又は2つ以上と組み合わせて、一体型のカートリッジとして構成することができる。
 本電子写真カートリッジは、複写機やレーザービームプリンタ等の電子写真装置本体に対して着脱可能な構成とすることができる。その場合、例えば本感光体1やその他の部材が劣化した場合に、この電子写真感光体カートリッジを画像形成装置本体から取り外し、別の新しい電子写真感光体カートリッジを画像形成装置本体に装着することにより、画像形成装置の保守・管理が容易となる。
 <<語句の説明>>
 本発明において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
 本発明は、以下の実施例により更に説明されるが、実施例はいかなる方法でも本発明を限定することを意図するものではない。
 先ず、本発明の第一の実施態様の実施例、比較例について説明する。
 [吸光度の測定及び吸光度の面積比の算出]
 実施例及び比較例で得られた感光体の保護層に対して、フーリエ変換赤外分光光度計(サーモフィッシャーサイエンティフィック株式会社製 Nicolet iS5)を使用して、ATRアタッチメント(結晶:ゲルマニウム)にて、波長800cm-1から波長4000cm-1の吸光度を測定した。そのチャートより、波長1647cm-1~1627cm-1の吸光度の面積をA、波長1800cm-1~1647cm-1のピークの吸光度の面積をBとすることにより、面積比A/Bすなわち吸光度比A/Bを求めた。なお、上記面積は、ベースライン以上の面積である。
 [硬化度の測定及び計算]
 実施例及び比較例の硬化前の感光層に対して、硬化後の面積比A/Bを求めるのと全く同様にして、硬化前の面積比A/Bを求めた。硬化度は、下記式より求めた。
 硬化度=[1-〔(硬化後のA/B)/(硬化前のA/B)〕]×100
 [マルテンス硬度及び弾性変形率測定]
 実施例及び比較例で得られた感光体A~I、温度25℃、相対湿度50%の環境下で、微小硬度計(Fischer社製:FISCHERSCOPE HM2000)を用いて、感光体の表面側から、下記測定条件で測定した。各サンプルのマルテンス硬度及び弾性変形率を表1に示す。
 (マルテンス硬度及び弾性変形率測定条件)
 圧子:対面角136°のビッカース四角錐ダイヤモンド圧子
 最大押し込み荷重:0.2mN
 負荷所要時間:10秒
 除荷所要時間:10秒
 マルテンス硬度は、下記式より求められる。
 マルテンス硬度(N/mm)=最大押し込み荷重/最大押し込み荷重時のくぼみ面積
 弾性変形率は下記式により定義される値であり、押し込みに要した全仕事量に対して、除荷の際に膜が弾性によって行う仕事の割合である。
 弾性変形率(%)=(We/Wt)×100
 上記式中、全仕事量Wt(nJ)は図2中のA-B-D-Aで囲まれる面積を示し、弾性変形仕事量We(nJ)はC-B-D-Cで囲まれる面積を示す。弾性変形率が大きいほど、負荷に対する変形が残留しにくく、弾性変形率が100の場合には変形が残らないことを意味する。
 [下引き層形成用塗布液P1]
 メチルジメトキシシランで表面処理したルチル型白色酸化チタンと、ε-カプロラクタム/ビス(4-アミノ-3-メチルシクロヘキシル)メタン/ヘキサメチレンジアミン/デカメチレンジカルボン酸/オクタデカメチレンジカルボン酸の組成モル比率が60/15/5/15/5である共重合ポリアミド<酸化チタンと共重合ポリアミドの質量比3/1>を、混合溶媒(メタノール/1-プロパノール/トルエンの質量比が7/1/2)中に、固形分濃度18%で含有させた下引き層形成用塗布液P1を得た。
 [電荷発生層形成用塗布液Q1]
 電荷発生材料としてCuKα線により粉末X線スペクトルパターンにおいてブラッグ角(2θ±0.2゜)27.3゜に特徴的なピークを示すオキシチタニウムフタロシアニン10部と、バインダー樹脂としてポリビニルアセタール樹脂(電気化学工業(株)製、商品名DK31)5部と、1,2-ジメトキシエタン500部とを混合し、サンドグラインドミルで粉砕、分散処理を行い、電荷発生層形成用塗布液Q1を得た。
 [電荷輸送層形成用塗布液R1]
 バインダー樹脂として下記構造式(A)で表されるポリアリレート樹脂(粘度平均分子量43,000)100質量部、下記構造式(B)で表される正孔輸送材料(HTM)(HOMO準位とLUMO準位とのエネルギー差:3.05eV、分子量:745.0)75質量部、下記構造式(C)で表されるラジカルアクセプター性化合物(電子輸送材料(ETM)、分子量:424.6)1質量部(すなわち、HTM 100質量部に対して1.3質量部)、ヒンダードフェノール系酸化防止剤(BASF社製 商品名Irg1076)4質量部、及び、シリコーンオイル(信越シリコーン社製 商品名KF-96)0.05質量部を、テトラヒドロフラン:トルエン=8/2(質量比)の混合溶媒に溶解、撹拌混合することで、固形分濃度18.0質量%の電荷輸送層形成用塗布液R1を得た。
 式(A)
Figure JPOXMLDOC01-appb-I000016
 式(B)
Figure JPOXMLDOC01-appb-I000017
 式(C)
Figure JPOXMLDOC01-appb-I000018
 [電荷輸送層形成用塗布液R2]
 ラジカルアクセプター性化合物(電子輸送材料(ETM))を下記構造式(D)で表される化合物(分子量:324.5)に変更した以外は、電荷輸送層形成用塗布液R1と同様にして、電荷輸送層形成用塗布液R2を得た。
 式(D)
Figure JPOXMLDOC01-appb-I000019
 [電荷輸送層形成用塗布液R3]
 ラジカルアクセプター性化合物(電子輸送材料(ETM))を下記構造式(E)で表される化合物(分子量:363.5)に変更した以外は、電荷輸送層形成用塗布液R1と同様にして、電荷輸送層形成用塗布液R3を得た。
 式(E)
Figure JPOXMLDOC01-appb-I000020
 [電荷輸送層形成用塗布液R4]
 ラジカルアクセプター性化合物(電子輸送材料(ETM))の含有量を0.5質量部(すなわち、HTM 100質量部に対して0.7質量部)に変更した以外は、電荷輸送層形成用塗布液R1と同様にして、電荷輸送層形成用塗布液R4を得た。
 [電荷輸送層形成用塗布液R5]
 バインダー樹脂として構造式(A)で表されるポリアリレート樹脂(粘度平均分子量43,000)100質量部、構造式(B)で表される正孔輸送材料(HTM)75質量部、ヒンダードフェノール系酸化防止剤(BASF社製 商品名Irg1076)4質量部、及び、シリコーンオイル(信越シリコーン社製 商品名KF-96)0.05質量部を、テトラヒドロフラン:トルエン=8/2(質量比)の混合溶媒に溶解、撹拌混合することで、固形分濃度18.0質量%の電荷輸送層形成用塗布液R5を得た。
 [電荷輸送層形成用塗布液R6]
 バインダー樹脂として構造式(A)で表されるポリアリレート樹脂(粘度平均分子量43,000)100質量部、構造式(B)で表される正孔輸送材料(HTM)75質量部、下記構造式(F)で表される遮光剤2質量部、ヒンダードフェノール系酸化防止剤(BASF社製 商品名Irg1076)4質量部、及び、シリコーンオイル(信越シリコーン社製 商品名KF-96)0.05質量部を、テトラヒドロフラン:トルエン=8/2(質量比)の混合溶媒に溶解、撹拌混合することで、固形分濃度18.0質量%の電荷輸送層形成用塗布液R6を得た。
 式(F)
Figure JPOXMLDOC01-appb-I000021
 [保護層形成用塗布液S1]
 予め2-プロパノール溶媒に溶解したポリエステルアクリレート(東亜合成(株)製 製品名M-9050)と、予めテトラヒドロフラン溶媒に溶解した式(G)で表される正孔輸送材料(HTM)と、重合開始剤として、ベンゾフェノン及びOmnirad TPO H(2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキシド)と、フッ素系レベリング剤(DIC(株)製 製品名F-563)とを、M-9050/式(G)で表される正孔輸送材料(HTM)/ベンゾフェノン/Omnirad TPO H/F-563=100/100/1/2/0.1の質量割合で混合して、溶媒組成が2-プロパノール/テトラヒドロフラン=8/2である溶媒を用いて、固形分濃度9.7質量%の保護層形成用塗布液S1を得た。
 式(G)
Figure JPOXMLDOC01-appb-I000022
 <実施例1>
 下引き層形成用塗布液P1を、表面が切削加工された30mmφで、長さが248mmアルミニウム製シリンダーに浸漬塗布し、その乾燥膜厚が、1.5μmとなるように下引き層を設けた。下引き層上に電荷発生層形成用塗布液Q1を浸漬塗布し、その乾燥膜厚が0.3μmとなるようにして電荷発生層を設けた。電荷発生層上に電荷輸送層形成用塗布液R1を浸漬塗布し、その乾燥膜厚が20.0μmとなるように電荷輸送層を設けた。電荷輸送層上に保護層形成用塗布液S1をリング塗布し、室温下で20分間乾燥させた後、窒素雰囲気下(酸素濃度1%以下)で、感光体を60rpmで回転させながら、385nmのLED光を、1285mW/cmの強度で、2分間照射することにより、その硬化膜厚が、1.0μmの保護層を形成した。保護層形成後、125℃で10分間の加熱を行った。その後、55℃で1晩エージングすることにより、感光体Aを作製した。
 なお、前記LED光の強度は、ウシオ電機製 紫外線積算光量計UIT-250(受光器UVD-C365)を用いて測定した。
 <実施例2>
 電荷輸送層形成用塗布液R1を電荷輸送層形成用塗布液R2に変更した以外は、感光体Aと同様にして感光体Bを作製した。
 <実施例3>
 電荷輸送層形成用塗布液R1を電荷輸送層形成用塗布液R3に変更した以外は、感光体Aと同様にして感光体Cを作製した。
 <実施例4>
 電荷輸送層形成用塗布液R1を電荷輸送層形成用塗布液R4に変更した以外は、感光体Aと同様にして感光体Dを作製した。
 <比較例1>
 電荷輸送層形成用塗布液R1を電荷輸送層形成用塗布液R5に変更した以外は、感光体Aと同様にして感光体Eを作製した。
 <比較例2>
 電荷輸送層形成用塗布液R1を電荷輸送層形成用塗布液R6に変更した以外は、感光体Aと同様にして感光体Fを作製した。
 <比較例3>
 385nmのLED光の強度を685mW/cmに、照射時間を1分間に変更した以外は、感光体Aと同様にして感光体Gを作製した。
 <比較例4>
 385nmのLED光の強度を685mW/cmに、照射時間を1分間に変更した以外は、感光体Eと同様にして感光体Hを作製した。
 <比較例5>
 385nmのLED光の強度を685mW/cmに、照射時間を1分間に変更した以外は、感光体Fと同様にして感光体Iを作製した。
 [初期電気特性(初期電特)]
 電子写真学会測定標準に従って作製された電子写真特性評価装置(続電子写真技術の基礎と応用、電子写真学会編、コロナ社、404-405頁記載)を使用し、感光体A~Iを一定回転数で回転させ、帯電、露光、電位測定、除電のサイクルによる電気特性評価試験を行った。その際、初期表面電位を-700Vとし、露光は780nm、除電は660nmの単色光を用い、露光光を1.0μJ/cm2照射した時点の表面電位(VL)を測定した。VL測定に際しては、露光から電位測定に要する時間を60msとした。測定環境は、温度25℃、相対湿度50%下(N/N環境)で行った。
 VLが小さいほど、初期電気特性が良好であることを示す。本発明では、VLが75(-V)以下の場合を「合格」と評価した。
 [強露光特性]
 感光体A~Iを、電子写真学会測定標準に従って作製された電子写真特性評価装置(続電子写真技術の基礎と応用、電子写真学会編、コロナ社、404~405頁 記載)に装着し、帯電、露光、電位測定、除電のサイクルによる電気特性を以下のように測定した。
 初めに、温度25℃、湿度50%の環境下、グリッド電圧を調整して、感光体の初期表面電位(V0)が-700Vとなるように帯電させた。次に、露光光を0.44μJ/cm照射し、照射してから100ミリ秒後の表面電位(VL)を測定した。露光光は、ハロゲンランプの光を干渉フィルターで780nmの単色光としたものを用いた。
 続いて、各感光体に白色蛍光灯(三菱オスラム社製ネオルミスーパーFL20SS・W/18)の光を、感光体表面での光強度が2000ルックスになるように調整して10分間照射した。その後、照射直後、照射10分後及び照射60分後に、初期のグリッド電圧で同様の測定を行い、V0及びVLを測定した。
 測定環境は、温度25℃、相対湿度50%下(N/N環境)で行った。
 ΔV0は、白色蛍光灯照射後のV0から、白色蛍光灯照射前のV0を引いた値である。ΔVLは、白色蛍光灯照射後のVLから、白色蛍光灯照射前のVLを引いた値である。ΔV0及びΔVLの絶対値が小さいほど、強度の強い白色光を照射しても各電位の変化が小さく、強露光特性が良好であることを示す。本発明では、ΔV0及びΔVLの絶対値が下記の場合を「合格」と評価した。
 ΔV0(照射直後)    11以下
 ΔV0(照射10分後)  8以下
 ΔV0(照射60分後)  7以下
 ΔVL(照射直後)    14以下
 ΔVL(照射10分後)  10以下
 ΔVL(照射60分後)  5以下
 [転写繰り返し特性(転写ロング)]
 最初に、以下の手順で、初期(転写繰り返し前)のVLを測定した。電子写真学会測定標準に従って作製された電子写真特性評価装置(続電子写真技術の基礎と応用、電子写真学会編、コロナ社、404-405頁記載)を使用し、実施例及び比較例で得られた感光体A~Iを、60rpmの回転数で、帯電、露光、電位測定、除電のサイクルによる電気特性評価試験を行った。その際、初期表面電位を-700Vとし、露光は780nm、除電は660nmの単色光を用い、露光光を0.44μJ/cm2照射した時点の表面電位(VL)を測定した。VL測定に際しては、露光から電位測定に要する時間を100msとした。
 次に、以下の手順で、転写繰り返し後のVLを評価した。感光体の初期表面電位が-700Vになるように帯電(スコロトロン帯電器)条件を固定したまま、別のコロトロン帯電器に6.5kVのプラス電圧を印可して4000回転させた。なお、このコロトロン帯電器は、電位測定と除電の間に設置した。4000回転後にプラス電圧をOFFして、初期と同様に表面電位VLを測定した。
 転写繰り返し前と転写繰り返し後のどちらも、測定環境は、温度25℃、相対湿度50%下(N/N環境)で行った。
 転写繰り返し前のVLと転写繰り返し後のVLの差をΔVLとした。ΔVLの絶対値が小さいほど、転写を繰り返しても電位の変化が小さく、転写繰り返し特性が良好であることを示す。本発明は、ΔVLの絶対値が130以下の場合を「合格」と評価した。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 表1及び表2より、実施例1~4及び比較例1~5を対比すると、保護層を赤外吸収スペクトル測定した際の、波長1647cm-1~1627cm-1の吸光度の面積をA、波長1800cm-1~1647cm-1のピークの吸光度の面積をBとした時の面積比A/Bが0.0045以下であり、感光層が少なくとも正孔輸送材料(HTM)とラジカルアクセプター性化合物を含有すると、保護層の硬化程度は高くなり、硬化度も高く、マルテンス硬度及び弾性変形率も高く、初期電気特性、強露光特性及び転写繰り返し特性の全てが良好となっていることが確認できた。
 実施例1と比較例1を対比すると、感光層に正孔輸送材料(HTM)と共に電子輸送材料(ETM)が存在すると、初期電気特性、強露光特性及び転写繰り返し特性のいずれも良好になる一方、感光層に電子輸送材料(ETM)が存在しないと、いずれかの特性が悪くなることが分かった。
 また、実施例1における電子輸送材料(ETM)の代わりに、公知の遮光剤(式(F)の化合物)を感光層に存在させた場合(比較例2)、特に初期電気特性が悪化することが分かった。これは、式(F)の化合物自身が硬化光(LED光)によって一部光分解し、その光分解物の影響で、電気特性が悪化したと推定される。
 ここで、正孔輸送材料(HTM)だけでなくラジカルアクセプター性化合物(電子輸送材料(ETM))も感光層に含有させた場合、HTMよりもラジカルアクセプター性化合物(ETM)の方がラジカルになり易いため、HTMラジカルが発生しても、直ぐにHTMラジカルがラジカルアクセプター性化合物(ETM)から水素原子を引き抜き、HTMラジカルはHTMに変換されることにより、実施例1のような効果を発現すると考えることができる。
 さらに、シート感光体のサンプルを以下の通り作製し、硬化度、初期電気特性、強露光特性、転写繰り返し特性をそれぞれ評価した。
 なお、シート感光体サンプルではマルテンス硬度及び弾性変形率を正確に測定することが難しいため、これらの特性については測定しなかった。
 [電荷輸送層形成用塗布液R7]
 ラジカルアクセプター性化合物(電子輸送材料(ETM))を下記構造式(H)で表される化合物(分子量:356.9)に変更した以外は、電荷輸送層形成用塗布液R1と同様にして、電荷輸送層形成用塗布液R7を得た。
 式(H)
Figure JPOXMLDOC01-appb-I000025
 <実施例5>
 下引き層形成用塗布液P1を、表面にアルミ蒸着したポリエチレンテレフタレートシート(厚さ75μm)上に、乾燥後の膜厚が1.2μmになるようにワイヤーバーで塗布、乾燥して下引き層を設けた。この下引き層上に、電荷発生層形成用塗布液Q1を、乾燥後の膜厚が0.2μmとなるようにワイヤーバーで塗布、乾燥して電荷発生層を設けた。次に、この電荷発生層上に電荷輸送層形成用塗布液R7を、乾燥後の膜厚が20μmとなるようにアプリケーターで塗布、125℃で20分乾燥して電荷輸送層を設けた。
 最後に、この電荷輸送層上に、保護層形成用塗布液S1をワイヤーバーで塗布し、室温下で20分乾燥させた後、当該シートをアルミニウム製シリンダー(30φ、長さ:248mm)に巻き付け、端部の約1cmだけ塗布膜(蒸着アルミ上に形成された全ての層)を剥離して、剥離後にむき出しになった蒸着アルミ部分から前記シリンダーにかけて導電性テープを貼ることで、当該シートと前記シリンダーの導通を取った。その後、実施例1と同様の硬化処理を行い、膜厚1.0μmの保護層を形成した。
 保護層形成後、実施例1と同様に加熱とエージングを行い、シート感光体Jを作製した。
 <比較例6>
 電荷輸送層形成用塗布液R7を電荷輸送層形成用塗布液R5に変更した以外は、感光体シートJと同様にしてシート感光体Kを作製した。
 シート感光体J及びKについて、前述の手順で硬化度、初期電気特性、強露光特性、転写繰り返し特性をそれぞれ測定した。なお、各シート感光体は、アルミニウム製シリンダーのアルミ蒸着層と導通をとったうえで、各測定に使用した。
 測定結果を表3及び表4に示す。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 表3及び表4より、実施例5と比較例6とを対比すると、シート型の感光体の場合も、ドラム型の感光体と同様に、保護層を赤外吸収スペクトル測定した際の、波長1647cm-1~1627cm-1の吸光度の面積をA、波長1800cm-1~1647cm-1のピークの吸光度の面積をBとした時の面積比A/Bが0.0045以下であり、感光層が少なくとも正孔輸送材料(HTM)とラジカルアクセプター性化合物を含有すると、保護層の硬化程度は高くなり、硬化度も高く、初期電気特性、強露光特性及び転写繰り返し特性の全てが良好となっていることが確認できた。
 上記実施例・比較例の結果、及び、これまで本発明者が行ってきた試験結果から、感光層中にラジカルアクセプター性化合物と正孔輸送材料(HTM)とを存在させることにより、保護層の硬化程度が高くても、初期電気特性、強露光特性及び転写繰り返し特性を優れたものとすることができることが分かった。これは、ラジカルアクセプター性化合物が存在することによって、前記HTMの分解を抑制することができるなど、感光層のダメージを抑えることができるためであると推定される。
 さらに、前記ラジカルアクセプター性化合物として、HOMO準位とLUMO準位エネルギー差が、1.8eV以上且つ3.0eV以下であるものを用いることにより、その優れた遮光性によって、特に強露光特性をさらに高めることができることが分かった。
 次に、本発明の第二の実施態様の実験例について説明する。
 <実験例2-1>
 前述の実施例1と同様にして、感光体2-Aを作製した。
 <実験例2-2>
 電荷輸送層形成用塗布液R1を電荷輸送層形成用塗布液R2に変更した以外は、感光体2-Aと同様にして感光体2-Bを作製した。
 <実験例2-3>
 電荷輸送層形成用塗布液R1を電荷輸送層形成用塗布液R3に変更した以外は、感光体2-Aと同様にして感光体2-Cを作製した。
 <実験例2-4>
 電荷輸送層形成用塗布液R1を電荷輸送層形成用塗布液R4に変更した以外は、感光体2-Aと同様にして感光体2-Dを作製した。
 <実験例2-5>
 電荷輸送層形成用塗布液R1を電荷輸送層形成用塗布液R5に変更した以外は、感光体2-Aと同様にして感光体2-Eを作製した。
 <実験例2-6>
 電荷輸送層形成用塗布液R1を電荷輸送層形成用塗布液R6に変更した以外は、感光体2-Aと同様にして感光体2-Fを作製した。
 <実験例2-7>
 385nmのLED光の強度を685mW/cmに、照射時間を1分間に変更した以外は、感光体2-Aと同様にして感光体2-Gを作製した。
 <実験例2-8>
 385nmのLED光の強度を685mW/cmに、照射時間を1分間に変更した以外は、感光体2-Eと同様にして感光体2-Hを作製した。
 <実験例2-9>
 385nmのLED光の強度を685mW/cmに、照射時間を1分間に変更した以外は、感光体2-Fと同様にして感光体2-Iを作製した。
 [初期電気特性(初期電特)]
 感光体2-A~2-Iについて、前述の方法で初期電気特性を測定した。
 本発明の第二の実施態様では、VLが75(-V)以下の場合を「合格」と評価した。
 [強露光特性]
 感光体2-A~2-Iについて、前述の方法で強露光特性を測定した。
 本発明の第二の実施態様では、ΔV0及びΔVLの絶対値が下記の場合を「合格」と評価した。
 ΔV0(照射直後)    11以下
 ΔV0(照射10分後)  8以下
 ΔV0(照射60分後)  8以下
 ΔVL(照射直後)    14以下
 ΔVL(照射10分後)  10以下
 ΔVL(照射60分後)  6以下
 [転写繰り返し特性(転写ロング)]
 感光体2-A~2-Iについて、前述の方法で転写繰り返し特性を測定した。
 本発明の第二の実施態様では、ΔVLの絶対値が130以下の場合を「合格」と評価した。
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
 表5及び表6より、感光層が少なくとも正孔輸送材料(HTM)とラジカルアクセプター性化合物を含有し、前記感光層中のラジカルアクセプター性化合物の含有量が、正孔輸送材料(HTM)100質量部に対して0.1質量部以上10質量部以下であると、初期電気特性、強露光特性及び転写繰り返し特性の全てが良好となっていることが確認できた。
 実験例2-1と実験例2-5を対比すると、感光層に正孔輸送材料(HTM)と共に電子輸送材料(ETM)が存在すると、初期電気特性、強露光特性及び転写繰り返し特性のいずれも良好になる一方、感光層に電子輸送材料(ETM)が存在しないと、いずれかの特性が悪くなることが分かった。
 また、実験例2-1における電子輸送材料(ETM)の代わりに、公知の遮光剤(式(F)の化合物)を感光層に存在させた場合(実験例2-6)、特に初期電気特性が悪化することが分かった。これは、式(F)の化合物自身が硬化光(LED光)によって一部光分解し、その光分解物の影響で、電気特性が悪化したと推定される。
 ここで、正孔輸送材料(HTM)だけでなくラジカルアクセプター性化合物(電子輸送材料(ETM))も感光層に含有させた場合、HTMよりもラジカルアクセプター性化合物(ETM)の方がラジカルになり易いため、HTMラジカルが発生しても、直ぐにHTMラジカルがラジカルアクセプター性化合物(ETM)から水素原子を引き抜き、HTMラジカルはHTMに変換されることにより、実験例2-1のような効果を発現すると考えることができる。
 さらに、シート感光体のサンプルを以下の通り作製し、初期電気特性、強露光特性、転写繰り返し特性をそれぞれ評価した。
 <実験例2-10>
 前述の実施例5と同様にして、感光体2-Jを作製した。
 <実験例2-11>
 電荷輸送層形成用塗布液R7を電荷輸送層形成用塗布液R5に変更した以外は、感光体シート2-Jと同様にしてシート感光体2-Kを作製した。
 シート感光体2-J及び2-Kについて、前述の手順で初期電気特性、強露光特性、転写繰り返し特性をそれぞれ測定した。なお、各シート感光体は、アルミニウム製シリンダーのアルミ蒸着層と導通をとったうえで、各測定に使用した。
 測定結果を表7及び表8に示す。
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
 表7及び表8より、シート型の感光体の場合も、ドラム型の感光体と同様に、感光層が少なくとも正孔輸送材料(HTM)とラジカルアクセプター性化合物を含有し、前記感光層中のラジカルアクセプター性化合物の含有量が、正孔輸送材料(HTM)100質量部に対して0.1質量部以上10質量部以下であると、初期電気特性、強露光特性及び転写繰り返し特性の全てが良好となっていることが確認できた。
 上記実験例の結果、及び、これまで本発明者が行ってきた試験結果から、感光層中にラジカルアクセプター性化合物と正孔輸送材料(HTM)とを存在させることにより、初期電気特性、強露光特性及び転写繰り返し特性を優れたものとすることができることが分かった。これは、ラジカルアクセプター性化合物が存在することによって、前記HTMの分解を抑制することができるなど、感光層のダメージを抑えることができるためであると推定される。
 さらに、前記ラジカルアクセプター性化合物として、HOMO準位とLUMO準位エネルギー差が、1.8eV以上且つ3.0eV以下であるものを用いることにより、その優れた遮光性によって、特に強露光特性をさらに高めることができることが分かった。

Claims (16)

  1.  導電性支持体上に、感光層と、硬化性化合物が硬化してなる硬化物を含有する保護層とを順次備えた感光体において、
     当該保護層を赤外吸収スペクトル測定した際の、波長1647cm-1~1627cm-1の吸光度の面積をA、波長1800cm-1~1647cm-1のピークの吸光度の面積をBとした時、面積比A/Bが0.0045以下であり、
     前記感光層は、少なくとも正孔輸送材料(HTM)とラジカルアクセプター性化合物を含有することを特徴とする、電子写真感光体。
  2.  前記感光層は、正孔輸送材料(HTM)100質量部に対して0.1~10質量部の割合でラジカルアクセプター性化合物を含むことを特徴とする、請求項1に記載の電子写真感光体。
  3.  導電性支持体上に、感光層と、硬化性化合物が硬化してなる硬化物を含有する保護層とを順次備えた感光体において、
     前記感光層は、少なくとも正孔輸送材料(HTM)とラジカルアクセプター性化合物を含有し、
     前記感光層中のラジカルアクセプター性化合物の含有量が、正孔輸送材料(HTM)100質量部に対して0.1質量部以上10質量部以下であることを特徴とする、電子写真感光体。
  4.  前記正孔輸送材料(HTM)と前記ラジカルアクセプター性化合物が同一層に含まれることを特徴とする、請求項1~3の何れか1項に記載の電子写真感光体。
  5.  前記硬化性化合物が、光硬化性化合物であることを特徴とする、請求項1~4の何れか1項に記載の電子写真感光体。
  6.  前記ラジカルアクセプター性化合物のHOMO準位とLUMO準位のエネルギー差が1.8eV以上且つ3.0eV以下であることを特徴とする、請求項1~5の何れか1項に記載の電子写真感光体。
  7.  前記正孔輸送材料(HTM)のHOMO準位とLUMO準位のエネルギー差が、前記ラジカルアクセプター性化合物のHOMO準位とLUMO準位のエネルギー差より大きいことを特徴とする、請求項1~6の何れか1項に記載の電子写真感光体。
  8.  前記正孔輸送材料(HTM)のHOMO準位とLUMO準位のエネルギー差が3.6eV以下であることを特徴とする、請求項7に記載の電子写真感光体。
  9.  前記感光層が、電荷発生層、電荷輸送層をこの順に積層した積層型感光層であることを特徴とする、請求項1~8の何れか1項に記載の電子写真感光体。
  10.  前記保護層は、該保護層100質量部に対して0質量部以上20質量部以下の割合で無機粒子を含有することを特徴とする、請求項1~9の何れか1項に記載の電子写真感光体。
  11.  前記感光層の正孔輸送材料(HTM)が、トリフェニルアミン構造を有する化合物であることを特徴とする、請求項1~10の何れか1項に記載の電子写真感光体。
  12.  前記感光層のラジカルアクセプター性化合物が、ジフェノキノン構造又はジナフチルキノン構造を有する化合物であることを特徴とする、請求項1~11の何れか1項に記載の電子写真感光体。
  13.  前記保護層は、前記硬化性化合物と、重合開始剤とを含有する組成物から形成された層であることを特徴とする、請求項1~12の何れか1項に記載の電子写真感光体。
  14.  前記保護層が、紫外光又は/及び可視光の照射により硬化されてなる層であることを特徴とする、請求項1~13の何れか1項に記載の電子写真感光体。
  15.  請求項1~14の何れか1項に記載の電子写真感光体を具備するカートリッジ。
  16.  請求項1~14の何れか1項に記載の電子写真感光体を具備する画像形成装置。
PCT/JP2021/038795 2020-10-21 2021-10-20 電子写真感光体、これを用いたカートリッジ及び画像形成装置 WO2022085728A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022557586A JPWO2022085728A1 (ja) 2020-10-21 2021-10-20
CN202180071643.3A CN116507975A (zh) 2020-10-21 2021-10-20 电子照相感光体、使用该电子照相感光体的盒和图像形成装置
US18/136,537 US20230259046A1 (en) 2020-10-21 2023-04-19 Electrophotographic photoreceptor, cartridge using same, and image forming device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-176998 2020-10-21
JP2020176998 2020-10-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/136,537 Continuation US20230259046A1 (en) 2020-10-21 2023-04-19 Electrophotographic photoreceptor, cartridge using same, and image forming device

Publications (1)

Publication Number Publication Date
WO2022085728A1 true WO2022085728A1 (ja) 2022-04-28

Family

ID=81289766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038795 WO2022085728A1 (ja) 2020-10-21 2021-10-20 電子写真感光体、これを用いたカートリッジ及び画像形成装置

Country Status (4)

Country Link
US (1) US20230259046A1 (ja)
JP (1) JPWO2022085728A1 (ja)
CN (1) CN116507975A (ja)
WO (1) WO2022085728A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242574A (ja) * 2010-05-18 2011-12-01 Konica Minolta Business Technologies Inc 有機感光体、画像形成装置及びプロセスカートリッジ
JP2013041259A (ja) * 2011-07-19 2013-02-28 Ricoh Co Ltd 電子写真感光体、画像形成方法、画像形成装置及びプロセスカートリッジ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242574A (ja) * 2010-05-18 2011-12-01 Konica Minolta Business Technologies Inc 有機感光体、画像形成装置及びプロセスカートリッジ
JP2013041259A (ja) * 2011-07-19 2013-02-28 Ricoh Co Ltd 電子写真感光体、画像形成方法、画像形成装置及びプロセスカートリッジ

Also Published As

Publication number Publication date
US20230259046A1 (en) 2023-08-17
JPWO2022085728A1 (ja) 2022-04-28
CN116507975A (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
JP6815758B2 (ja) 電子写真感光体、電子写真感光体の製造方法、該電子写真感光体を有する電子写真装置およびプロセスカートリッジ
CN103038709B (zh) 电子照相光电导体以及利用该电子照相光电导体的图像形成方法、图像形成设备和图像形成设备的处理盒
JPS61156131A (ja) 光導電性像形成部材
JP6056256B2 (ja) 電子写真感光体、該感光体を有する画像形成装置、画像形成方法、プロセスカートリッジ、及び、電子写真感光体表面層用塗工液
JP5660460B2 (ja) 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP5618258B2 (ja) 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP5557029B2 (ja) 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP6983543B2 (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2016066062A (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
WO2022085728A1 (ja) 電子写真感光体、これを用いたカートリッジ及び画像形成装置
WO2021193678A1 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
WO2022085382A1 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP6464863B2 (ja) 電子写真感光体、プロセスカートリッジ、画像形成装置
CN113805443B (zh) 电子照相感光体及图像形成装置
WO2021201007A1 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP6089916B2 (ja) 電子写真感光体および画像形成装置
WO2023095834A1 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
WO2022085677A1 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP6620461B2 (ja) 電子写真感光体、プロセスカートリッジ、及び画像形成装置
WO2022260157A1 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP2012247605A (ja) 電子写真感光体、画像形成装置用プロセスカートリッジ、画像形成装置および画像形成方法
WO2023190690A1 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置、化合物
WO2020218259A1 (ja) 電子写真感光体及びその製造方法、電子写真感光体カートリッジ並びに画像形成装置
WO2023190691A1 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
WO2022210315A1 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557586

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180071643.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882869

Country of ref document: EP

Kind code of ref document: A1