WO2021193678A1 - 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 - Google Patents

電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 Download PDF

Info

Publication number
WO2021193678A1
WO2021193678A1 PCT/JP2021/012110 JP2021012110W WO2021193678A1 WO 2021193678 A1 WO2021193678 A1 WO 2021193678A1 JP 2021012110 W JP2021012110 W JP 2021012110W WO 2021193678 A1 WO2021193678 A1 WO 2021193678A1
Authority
WO
WIPO (PCT)
Prior art keywords
transporting substance
layer
photosensitive member
electrophotographic photosensitive
group
Prior art date
Application number
PCT/JP2021/012110
Other languages
English (en)
French (fr)
Inventor
明 安藤
長田 卓博
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2022510578A priority Critical patent/JPWO2021193678A1/ja
Priority to CN202180023763.6A priority patent/CN115335776A/zh
Publication of WO2021193678A1 publication Critical patent/WO2021193678A1/ja
Priority to US17/950,818 priority patent/US20230068130A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14717Macromolecular material obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14734Polymers comprising at least one carboxyl radical, e.g. polyacrylic acid, polycrotonic acid, polymaleic acid; Derivatives thereof, e.g. their esters, salts, anhydrides, nitriles, amides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/056Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group
    • G03G5/067Dyes containing a methine or polymethine group containing only one methine or polymethine group containing hetero rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0675Azo dyes
    • G03G5/0677Monoazo dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14704Cover layers comprising inorganic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14795Macromolecular compounds characterised by their physical properties

Definitions

  • the present invention relates to an electrophotographic photosensitive member and an image forming apparatus used in a copying machine, a printer, and the like. More specifically, the present invention relates to a single-layer electrophotographic photosensitive member having excellent electrical properties, mechanical properties, and adhesiveness, and an image forming apparatus provided with the photosensitive member.
  • Electrophotographic technology is widely used in fields such as copiers, printers, multifunction devices, and digital printing because it can obtain high-speed, high-quality images.
  • electrophotographic photosensitive member hereinafter, also simply referred to as “photoreceptor”
  • photoreceptor an organic photoconductive substance having advantages such as pollution-free, easy film formation, and easy production is used.
  • the photoconductor used is mainly used.
  • the organic electrophotographic photosensitive member includes a single-layer type electrophotographic photosensitive member (hereinafter referred to as a single-layer type photosensitive member) having a charge generating substance and a charge transporting substance in the same layer, and an electric charge.
  • a laminated electrophotographic photosensitive member (hereinafter referred to as a laminated photosensitive member) in which a generating substance and a charge transporting substance are separated and laminated in separate layers (charge generating layer and charge transporting layer) is known.
  • the laminated photoconductor is usually used in a negative charging method in which a charge generating layer and a charge transporting layer are laminated in this order on a substrate to charge the surface of the photoconductor with a negative charge.
  • the amount of ozone generated from the charger is larger than that in the positive charging method in which the surface of the photoconductor is charged to a positive charge, so that it may be a problem to deteriorate the photoconductor.
  • the single-layer type photoconductor can be used by either the negative charge method or the positive charge method in principle, but the positive charge method causes a problem in the above-mentioned laminated photoconductor in the amount of ozone generated. It is advantageous because it is possible to suppress the above and generally it is easier to increase the sensitivity than the negative charging method.
  • the single-layer type photoconductor has an advantage that the number of coating steps is small and is advantageous in terms of resolution, and although it is inferior to the negatively charged laminated type photoconductor in terms of electrical characteristics, it has been partially put into practical use. , Various improvements have been studied up to the present (Patent Documents 1 and 2).
  • the electrophotographic photosensitive member is repeatedly used in the electrophotographic process, that is, the cycle of charging, exposure, development, transfer, cleaning, static elimination, etc., it deteriorates due to various stresses during that period.
  • scratches on the surface of the photosensitive layer due to rubbing of cleaning blades, magnetic brushes, etc., contact with developing agents, paper, etc., scratches, and damage due to mechanical deterioration such as film peeling are likely to appear on the image directly. Since it impairs quality, it is a major factor that limits the life of the photoconductor.
  • a layer containing a compound having a chain-growth functional group as a binder resin is formed on the outermost layer of the photoconductor, and heat, light, or radiation is formed on the layer.
  • a photoconductor in which a cured resin layer is formed by polymerizing by applying energy such as the above is disclosed. (See, for example, Patent Documents 3 and 4).
  • the positively charged single-layer type photoconductor is inferior to the negatively charged laminated type photoconductor in terms of electrical characteristics. Increasing the amount is considered to be effective.
  • the content of the hole transporting substance and the electron transporting substance in the single-layer type photosensitive layer is increased, the content of the binder resin is relatively reduced, so that there is a problem that the mechanical strength of the photosensitive layer is lowered.
  • rice field not only that, the hole-transporting substance and the electron-transporting substance tend to concentrate on the surface of the photosensitive layer, and when the outermost layer containing the cured resin is formed, the adhesiveness between the outermost layer and the photosensitive layer in contact with the outermost layer is formed.
  • the outermost layer is peeled off due to stress such as sliding with members such as charging rollers, developing rollers, transfer rollers and cleaning blades or printing paper placed in contact with the photoconductor in the electrophotographic process. , There was a problem of impairing mechanical strength.
  • an object of the present invention is a positively charged single-layer electrophotographic photosensitive member having excellent electrical and mechanical properties and excellent adhesion between the photosensitive layer and the outermost layer, and an electrophotographic photosensitive member using the electrophotographic photosensitive member. It is an object of the present invention to provide a photoconductor cartridge and an image forming apparatus.
  • the present inventors have determined the Martens hardness of the surface of the photoconductor for a positively charged single-layer type photosensitive member having a superficial layer containing a cured resin.
  • the above problems can be solved by satisfying the above conditions, and have arrived at the present invention.
  • the content of the hole-transporting substance and the electron-transporting substance in the photosensitive layer is increased, the content and the molecular weight of the hole-transporting substance and the electron-transporting substance satisfy a specific relational expression, and the surface of the photoconductor has a specific relational expression.
  • We have found that the above problems can be solved by satisfying a predetermined condition for Martens hardness, and have arrived at the present invention.
  • the gist of the present invention lies in the following [1] to [14].
  • a positively charged electrophotographic photosensitive member having at least a photosensitive layer and an outermost layer on a conductive support, wherein the photosensitive layer contains at least a binder resin, a charge generating substance, a hole transporting substance, and an electron transporting substance.
  • An electrophotographic photosensitive member which is a single layer containing the substance, has a structure in which the outermost surface layer is obtained by polymerizing a compound having a chain-growth functional group, and has a Martens hardness of 345 N / mm 2 or more on the surface of the photoconductor.
  • A is the content (parts by mass) of the hole transporting substance with respect to the content of the binder resin 100
  • a is the molecular weight of the hole transporting substance
  • B is the electron transporting substance with respect to the content of the binder resin 100.
  • b is the molecular weight of the electron transporting substance
  • A is the content (parts by mass) of the hole transporting substance with respect to the content of the binder resin 100
  • a is the molecular weight of the hole transporting substance
  • B is the electron transporting substance with respect to the content of the binder resin 100.
  • b is the molecular weight of the electron transporting substance
  • a positively charged electrophotographic photosensitive member having at least a photosensitive layer and an outermost layer on a conductive support, wherein the photosensitive layer contains at least a binder resin, a charge generating substance, a hole transporting substance, and an electron transporting substance. It is a single layer containing, the photosensitive layer satisfies the following formulas (1) and (2), and the outermost layer has a structure obtained by polymerizing a compound having a chain-growth functional group, and the surface of the photoconductor.
  • An electrophotographic photosensitive member having a Martens hardness of 350 N / mm 2 or more.
  • A is the content of the hole transporting substance (parts by mass) with respect to the content of the binder resin of 100
  • a is the molecular weight of the hole transporting substance
  • B is the content of the binder resin of 100.
  • b is the molecular weight of the electron-transporting substance
  • R 61 to R 64 are independently hydrogen atoms, alkyl groups having 1 or more and 20 or less carbon atoms which may be substituted, or 2 or more and 20 or less carbon atoms which may be substituted.
  • R 61 and R 62 , or R 63 and R 64 may be bonded to each other to form a cyclic structure.
  • X represents an organic residue having a molecular weight of 120 or more and 250 or less.
  • a positively charged single-layer electrophotographic photosensitive member having excellent electrical and mechanical properties and excellent adhesiveness
  • an electrophotographic photosensitive member cartridge using the electrophotographic photosensitive member can do.
  • the electrophotographic photosensitive member of the present invention has a single-layer photosensitive layer having a binder resin, a charge generating substance, a hole transporting substance, and an electron transporting substance in the same layer on a conductive support, and a chain-growth functional group. It has an outermost layer containing a structure formed by polymerizing a compound having.
  • the conductive support is not particularly limited as long as it supports the single-layer type photosensitive layer and the outermost layer, which will be described later, and exhibits conductivity.
  • the conductive support include metal materials such as aluminum, aluminum alloys, stainless steel, copper, and nickel, resin materials in which conductive powders such as metal, carbon, and tin oxide coexist to impart conductivity. Resin, glass, paper, etc., in which a conductive material such as aluminum, nickel, ITO (indium oxide tin oxide alloy) is vapor-deposited or coated on the surface thereof are mainly used.
  • a drum shape, a sheet shape, a belt shape, etc. are used as the form.
  • a conductive material having an appropriate resistance value may be coated on the conductive support of the metal material for controlling the conductivity and surface properties and for covering defects.
  • the metal material such as an aluminum alloy
  • the metal material may be anodized before use.
  • the average film thickness of the anodized film is usually 20 ⁇ m or less, particularly preferably 7 ⁇ m or less.
  • the surface of the conductive support may be smooth, or may be roughened by using a special cutting method or by performing a polishing treatment. Further, the surface may be roughened by mixing particles having an appropriate particle size with the material constituting the support.
  • An undercoat layer which will be described later, may be provided between the conductive support and the photosensitive layer in order to improve adhesiveness, blocking property, and the like.
  • Examples of the charge generating substance used in the photosensitive layer include selenium and its alloys, cadmium sulfide, and other inorganic photoconductive materials; phthalocyanine pigments, azo pigments, quinacridone pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, and anthanthrone pigments. , Organic pigments such as benzimidazole pigments; and various photoconductive materials can be used. Of these, organic pigments are particularly preferable, and phthalocyanine pigments and azo pigments are more preferable.
  • a phthalocyanine pigment when used as the charge generating substance, specifically, metal-free phthalocyanine, copper, indium, gallium, tin, titanium, zinc, vanadium, silicon, germanium and other metals, or oxides and halides thereof, etc. Phthalocyanines coordinated with are used.
  • ligands for trivalent or higher valent metal atoms include oxygen atoms and chlorine atoms shown above, as well as hydroxyl groups and alkoxy groups.
  • X-type, ⁇ -type metal-free phthalocyanines, A-type, B-type, D-type and other titanyl phthalocyanines, vanadyl phthalocyanines, chloroindium phthalocyanines, chlorogallium phthalocyanines, hydroxygallium phthalocyanines and the like are preferable.
  • the D type is a crystal type characterized by showing a clear peak at a diffraction angle of 2 ⁇ ⁇ 0.2 ° at 27.3 ° in powder X-ray diffraction using CuK ⁇ rays.
  • azo pigment When an azo pigment is used, various known bisazo pigments and trisazo pigments are preferably used. Examples of preferred azo pigments are shown below.
  • charge generating substance one kind may be used alone, or two or more kinds may be used in any combination and ratio. Further, when two or more kinds of charge generating substances are used in combination, as a method of mixing the charge generating substances to be used in combination, each charge generating substance may be mixed and used later, or synthesis, pigmentation, crystallization, etc. They may be mixed and used in the process of manufacturing and processing the charge generating substance. As such a treatment, an acid paste treatment, a grinding treatment, a solvent treatment and the like are known.
  • the particle size of the charge generating substance is small. Specifically, it is usually preferably 1 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • the amount of the charge generating substance in the single-layer type photosensitive layer is usually preferably 0.1% by mass or more, more preferably 0.5% by mass or more from the viewpoint of sensitivity. Further, from the viewpoint of sensitivity and chargeability, it is usually preferably 50% by mass or less, more preferably 20% by mass or less.
  • Charge-transporting substances are mainly classified into hole-transporting substances having a hole-transporting ability and electron-transporting substances having an electron-transporting ability.
  • the single-layer photosensitive layer used in the present invention contains both a hole transporting substance and an electron transporting substance.
  • the hole transporting substance is not particularly limited as long as it is a known material. Electrons such as aniline derivatives, hydrazone derivatives, arylamine derivatives, stilben derivatives, butadiene derivatives and enamine derivatives, those in which multiple types of these compounds are bonded, and polymers having a group consisting of these compounds in the main chain or side chain. Donating substances and the like can be mentioned.
  • carbazole derivatives Among these, carbazole derivatives, arylamine derivatives, stillben derivatives, butadiene derivatives and enamine derivatives, and those in which a plurality of types of these compounds are bound are preferable, and arylamine derivatives and enamine derivatives are more preferable.
  • the molecular weight of the hole transporting substance is preferably 350 or more, more preferably 450 or more, and even more preferably 700 or more. From the viewpoint of solubility, 1500 or less is preferable, and 1000 or less is more preferable.
  • hole transporting substance Only one type of hole transporting substance may be used alone, or two or more types may be used in any ratio and combination.
  • the molecular weight of the hole transporting substance having the maximum content (part by mass) in the photosensitive layer is more preferably 700 or more.
  • the structure of a preferable hole transporting substance is illustrated below.
  • HTM6, HTM7, HTM8, HTM9, HTM10, HTM12, HTM14, HTM26, HTM31, HTM32, HTM33, HTM34, HTM35, HTM36, HTM37, HTM38, HTM39, HTM40 , HTM41, HTM42, HTM43, HTM48 are preferred, HTM31, HTM32, HTM33, HTM34, HTM35, HTM36, HTM37, HTM38, HTM39, HTM40, HTM41, HTM42, HTM43, HTM48 are more preferred, HTM39, HTM40, HTM41, HTM42, HTM43 and HTM48 are more preferable.
  • the electron transporting substance is not particularly limited as long as it is a known material, but for example, an aromatic nitro compound such as 2,4,7-trinitrofluorenone, a cyano compound such as tetracyanoquinodimethane, or diphenoquinone.
  • aromatic nitro compound such as 2,4,7-trinitrofluorenone
  • cyano compound such as tetracyanoquinodimethane
  • diphenoquinone examples thereof include electron-withdrawing substances such as quinone compounds such as, and known cyclic ketone compounds and perylene pigments (perylene derivatives).
  • quinone compounds such as, and known cyclic ketone compounds and perylene pigments (perylene derivatives).
  • perylene derivatives perylene derivatives
  • R 61 to R 64 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted, or an alkenyl group having 2 to 20 carbon atoms.
  • alkyl group having 1 to 20 carbon atoms which may be substituted include a linear alkyl group, a branched alkyl group and a cyclic alkyl group, and a linear alkyl group or a branched alkyl group is preferable from the viewpoint of electron transport capacity. ..
  • the carbon number of these alkyl groups is usually 1 or more, preferably 4 or more, usually 20 or less, preferably 15 or less from the viewpoint of versatility of the raw material, more preferably 10 or less, and more preferably 5 or less from the viewpoint of handleability during production. More preferred.
  • a methyl group, a tert-butyl group or a tert-amyl group is preferable, and a tert-butyl group or a tert-amyl group is more preferable from the viewpoint of solubility in an organic solvent used in a coating liquid.
  • alkenyl group having 2 to 20 carbon atoms which may be substituted include a linear alkenyl group, a branched alkenyl group and a cyclic alkenyl group.
  • the carbon number of these alkenyl groups is usually 2 or more, preferably 4 or more, usually 20 or less, and preferably 10 or less from the viewpoint of light attenuation characteristics of the photoconductor.
  • Specific examples thereof include an ethenyl group, a 2-methyl-1-propenyl group and a cyclohexenyl group.
  • the substituents R 61 to R 64 may form a cyclic structure by binding R 61 and R 62 to each other or R 63 and R 64 to each other. From the viewpoint of electron mobility, when both R 61 and R 62 are alkenyl groups, it is preferable that they are bonded to each other to form an aromatic ring, and both R 61 and R 62 are ethenyl groups and are bonded to each other. It is more preferable to have a benzene ring structure.
  • X represents an organic residue having a molecular weight of 120 or more and 250 or less
  • the compounds represented by the formula (6) are represented by the following formulas (7) to (10) from the viewpoint of the light attenuation characteristics of the photoconductor. It is preferable that the compound is represented by any of the above.
  • R 71 to R 73 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 or more and 6 or less carbon atoms.
  • R 81 to R 84 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 or more and 6 or less carbon atoms.
  • R 91 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a halogen atom.
  • R 101 and R 102 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 or more and 6 or less carbon atoms, or an aryl group having 6 or more and 12 or less carbon atoms, respectively.
  • Examples of the alkyl group having 1 or more and 6 or less carbon atoms in R 71 to R 102 include a linear alkyl group, a branched alkyl group, and a cyclic alkyl group.
  • the carbon number of these alkyl groups is usually 1 or more and usually 6 or less.
  • Specific examples thereof include a methyl group, an ethyl group, a hexyl group, an iso-propyl group, a tert-butyl group, a tert-amyl group and a cyclohexyl group.
  • a methyl group, a tert-butyl group or a tert-amyl group is preferable from the viewpoint of electron transport capacity.
  • halogen atom examples include fluorine, chlorine, bromine and iodine, and chlorine is preferable from the viewpoint of electron transport capacity.
  • the number of carbon atoms of an aryl group having 6 or more and 12 or less carbon atoms is usually 6 or more and usually 12 or less. Specific examples thereof include a phenyl group and a naphthyl group, and a phenyl group is preferable from the viewpoint of film physical characteristics of the photosensitive layer. These aryl groups may be further substituted.
  • the formula (6) is preferably the formula (7) or the formula (8) from the viewpoint of image quality stability when repeatedly forming an image, and the formula (7). Is more preferable. Further, the compound represented by the formula (6) may be used alone, a compound represented by the formula (6) having a different structure may be used in combination, or a compound represented by another electron transporting substance may be used in combination. ..
  • the molecular weight of the electron transporting substance is preferably 300 or more, more preferably 350 or more, further preferably 400 or more, and particularly preferably 420 or more. From the viewpoint of solubility, 1000 or less is preferable, and 700 or less is more preferable.
  • the molecular weight of the electron-transporting substance having the maximum content (part by mass) in the photosensitive layer is more preferably 400 or more.
  • ET-1, ET-2, ET-3, ET-4, ET-5, ET-6, ET-8, ET-10, ET-11, ET-12, ET15, ET-16, and ET-17 are preferable, ET-1, ET-2, ET-3, ET-4, and ET-5 are more preferable, and ET-2 is further preferable.
  • the single-layer type photosensitive layer satisfies the formula (1) or the formula (2), and in particular, when the single-layer photosensitive layer is filled at the same time, a photoconductor having good electrical characteristics can be obtained.
  • the content of the binder resin contained in the single-layer photosensitive layer in the present invention is 100, the content of the hole transporting substance A (parts by mass), the content of the electron transporting substance B (parts by mass), and the positive
  • the molecular weight a of the hole-transporting substance and the molecular weight b of the electron-transporting substance preferably satisfy the following formulas (1) and (2).
  • (A / a) or (B / b) is the content of the hole-transporting substance or the electron-transporting substance divided by the molecular weight, and represents the amount of substance, that is, the number of molecules.
  • the hole and electron transport capacity is considered to increase in proportion to the number of holes and electron transport material molecules in the photosensitive layer. Therefore, from the viewpoint of electrical characteristics, there is a suitable range for the total amount of hole-transporting substance and electron-transporting substance required for sufficient charge transport, and both the hole-transporting substance and the electron-transporting substance. Has a suitable range of quantity ratios.
  • the value of (B / b) / (A / a) is usually 0.9 or more, preferably 1.1 or more, more preferably 1.3 or more, and 1.5 or more from the viewpoint of the above technical idea. More preferred. Further, from the viewpoint of the above technical idea, the value of (B / b) / (A / a) is usually 4.0 or less, preferably 3.0 or less, more preferably 2.5 or less, and 2.2. The following is more preferable.
  • the total value obtained by dividing the content of each substance by the respective molecular weight is defined as (A / a).
  • the total value obtained by dividing the content of each substance by the respective molecular weight is defined as (B / b).
  • the photosensitive layer is formed by setting the value of (A / a) + (B / b), which represents the sum of the amount of substance of the hole transporting substance and the amount of substance of the electron transporting substance, to the range of the formula (2). It is possible to secure the absolute amount of the charge transporting substance required for the charge transporting inside.
  • the value of (A / a) + (B / b) is usually 0.15 or more, preferably 0.17 or more, and more preferably 0.20 or more from the viewpoint of electrical characteristics.
  • binder resin used for the photosensitive layer
  • examples of the binder resin used for the photosensitive layer include vinyl polymers such as polymethylmethacrylate, polystyrene, and polyvinyl chloride or copolymers thereof; butadiene resin; styrene resin; vinyl acetate resin; vinyl chloride resin and acrylic acid ester resin.
  • Methacrylic acid ester resin vinyl alcohol resin; Polymers and copolymers of vinyl compounds such as ethyl vinyl ether; Polyvinyl butyral resin; Polyvinylformal resin; Partially modified polyvinyl acetal resin; Polyarylate resin; Polyamide resin; Polyurethane resin; Cellulous ester Resins; silicone-alkyd resins; poly-N-vinylcarbazole resins; polycarbonate resins; polyester resins; polyester carbonate resins; polysulfone resins; polyimide resins; phenoxy resins; epoxy resins; silicone resins; and partially cross-linked cured products thereof. Be done. Further, the resin may be modified with a silicon reagent or the like. In addition, one of these may be used alone, or two or more thereof may be used in any ratio and combination.
  • the binder resin contains one kind or two or more kinds of polymers obtained by interfacial polymerization.
  • a polycarbonate resin and a polyester resin are preferable, and a polycarbonate resin or a polyarylate resin is particularly preferable.
  • a polymer using an aromatic diol as a raw material is particularly preferable, and a preferable aromatic diol compound includes a compound represented by the following formula (11).
  • X 111 represents a linking group represented by any of the following formulas or a single bond.
  • R 111 and R 112 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an optionally substituted aryl group, or an alkyl halide group.
  • Z represents a substituted or unsubstituted carbon ring having 4 to 20 carbon atoms.
  • Y 111 to Y 118 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an optionally substituted aryl group, or an alkyl halide group.
  • a bisphenol having the following structural formula, or a polycarbonate resin or polyarylate resin containing a biphenol component is preferable from the viewpoint of sensitivity and residual potential of the electrophotographic photosensitive member, and a polycarbonate resin is more preferable from the viewpoint of mobility.
  • This example is given for the purpose of clarifying the gist, and is not limited to the structure illustrated as long as it does not contradict the gist of the present invention.
  • polycarbonate containing a bisphenol derivative showing the following structure is preferable.
  • polyester especially polyarylate
  • bisphenol component having the following structure.
  • the acid component it is preferable to use one having the following structure.
  • terephthalic acid and isophthalic acid it is preferable that the molar ratio of terephthalic acid is large, and it is preferable to use one having the following structure.
  • antioxidants In addition to the above materials, there are well-known antioxidants, plasticizers, and ultraviolet absorbers in the photosensitive layer to improve film formation property, flexibility, coating property, stain resistance, gas resistance, light resistance, and the like. Additives such as agents, electron-withdrawing compounds, leveling agents, and visible light shading agents may be included. In addition, various additives such as sensitizers, dyes, pigments (excluding those which are the above-mentioned charge generating substances, hole transporting substances, and electron transporting substances), and surfactants are added to the photosensitive layer as needed. It may be included. Examples of surfactants include silicone oils and fluorine-based compounds. In the present invention, these can be appropriately used alone or in any ratio and combination of two or more.
  • the photosensitive layer may contain a fluorine-based resin, a silicone resin, or the like, and particles made of these resins or particles of an inorganic compound such as aluminum oxide may be contained.
  • the antioxidant is a kind of stabilizer used to prevent the oxidation of the electrophotographic photosensitive member of the present invention.
  • the antioxidant may be any as long as it has a function as a radical supplement, and specific examples thereof include phenol derivatives, amine compounds, phosphonic acid esters, sulfur compounds, vitamins and vitamin derivatives. Among these, phenol derivatives, amine compounds, vitamins and the like are preferable. Further, a hindered phenol or a trialkylamine derivative having a bulky substituent in the vicinity of the hydroxy group is more preferable.
  • an aryl compound derivative having a t-butyl group at the o-position of the hydroxy group and an aryl compound derivative having two t-butyl groups at the o-position of the hydroxy group are particularly preferable.
  • the molecular weight of the antioxidant is too large, the antioxidant ability may decrease, and a compound having a molecular weight of 1500 or less, particularly a molecular weight of 1000 or less is preferable.
  • the lower limit is usually 100 or more, preferably 150 or more, and more preferably 200 or more.
  • the amount of the antioxidant used is not particularly limited, but is 0.1 part by mass or more, preferably 1 part by mass or more per 100 parts by mass of the binder resin in the photosensitive layer. Further, in order to obtain good electrical characteristics and printing resistance, the amount is preferably 25 parts by mass or less, more preferably 20 parts by mass or less.
  • the photosensitive layer may contain an electron-withdrawing compound.
  • the electron-withdrawing compound include a sulfonic acid ester compound, a carboxylic acid ester compound, an organic cyano compound, a nitro compound, an aromatic halogen derivative, and the like, preferably a sulfonic acid ester compound and an organic cyano compound. Yes, particularly preferably a sulfonic acid ester compound. Only one type of the electron-withdrawing compound may be used alone, or two or more types may be used in any ratio and combination.
  • the electron-withdrawing ability of the electron-withdrawing compound can be predicted by the value of LUMO (hereinafter, appropriately referred to as LUMOcal).
  • LUMOcal by structural optimization using semi-empirical molecular orbital calculation using PM3 parameters (hereinafter, this may be simply referred to as semi-empirical molecular orbital calculation).
  • a compound having a value of 0.5 or more and 5.0 eV or less is preferably used.
  • the absolute value of LUMOcal is 0.5 eV or more, the effect of electron attraction can be expected more, and when it is 5.0 eV or less, better charging can be obtained.
  • the absolute value of LUMOcal is more preferably 1.0 eV or more, further preferably 1.1 eV or more, and particularly preferably 1.2 eV or more.
  • the absolute value is preferably 4.5 eV or less, more preferably 4.0 eV or less, and particularly preferably 3.5 eV or less.
  • Examples of compounds in which the absolute value of LUMOcal is within the above range include the following compounds.
  • the amount of the electron-withdrawing compound used in the electrophotographic photosensitive member in the present invention is not particularly limited, but when the electron-withdrawing compound is used for the photosensitive layer, it is 0 per 100 parts by mass of the binder resin contained in the photosensitive layer. It is preferably 0.01 parts by mass or more, and more preferably 0.05 parts by mass or more. Further, in order to obtain good electrical characteristics, it is usually preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and further preferably 30 parts by mass or less.
  • the method for forming the single-layer photosensitive layer is not particularly limited, but for example, the charge generating substance is contained in a coating liquid in which a charge transporting substance, a binder resin, and other substances are dissolved (or dispersed) in a solvent (or dispersion medium). Can be formed by dispersing and coating on a conductive support (in the case of providing intermediate layers such as an undercoat layer described later, on these intermediate layers).
  • solvent or dispersion medium examples include alcohols such as methanol, ethanol, propanol and 2-methoxyethanol; ethers such as tetrahydrofuran, 1,4-dioxane and dimethoxyethane; methyl formate and acetic acid.
  • Esters such as ethyl; Ketones such as acetone, methyl ethyl ketone, cyclohexanone; Aromatic hydrocarbons such as benzene, toluene, xylene, anisole; dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, 1, , 1,1-Trichloroethane, tetrachloroethane, 1,2-dichloropropane, trichloroethylene and other chlorinated hydrocarbons; n-butylamine, isopropanolamine, diethylamine, triethanolamine, ethylenediamine, triethylenediamine and other nitrogen-containing compounds; Examples thereof include aprotonic polar solvents such as acetonitrile, N-methylpyrrolidone, N, N-dimethylformamide and dimethylsulfoxide. One of these may be used alone, or two or more thereof may be used in combination
  • Examples of the coating method for forming the single-layer photosensitive layer include a spray coating method, a spiral coating method, a ring coating method, and a dip coating method.
  • Examples of the spray application method include air spray, airless spray, electrostatic air spray, electrostatic airless spray, rotary atomization type electrostatic spray, hot spray, hot airless spray and the like.
  • it is a rotary atomization type electrostatic spray, and the transport method disclosed in Republished Heisei 1-805198, that is, a cylindrical workpiece is used.
  • a method of continuously transporting the mixture while rotating the film without leaving an interval in the axial direction is preferable. As a result, it is possible to obtain a photosensitive layer having an overall high adhesion efficiency and excellent film thickness uniformity.
  • spiral coating method for example, a method using a liquid injection coating machine or a curtain coating machine disclosed in JP-A-52-119651, and a micro-opening disclosed in JP-A 1-231966.
  • a method of continuously flying the paint in a streak pattern a method of using a multi-nozzle body disclosed in Japanese Patent Application Laid-Open No. 3-193161, and the like.
  • the total solid content concentration of the coating liquid or the dispersion liquid is preferably 5% by mass or more, more preferably 10% by mass or more. Further, it is preferably 50% by mass or less, more preferably 35% by mass or less.
  • the viscosity of the coating liquid or the dispersion liquid is preferably 50 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or more. Further, it is preferably 700 mPa ⁇ s or less, and more preferably 500 mPa ⁇ s or less. As a result, a photosensitive layer having excellent film thickness uniformity can be obtained.
  • the coating film is dried, but it is preferable to adjust the drying temperature time so that necessary and sufficient drying is performed.
  • the drying temperature is usually 80 ° C. or higher, preferably 100 ° C. or higher, from the viewpoint of suppressing residual solvent. Further, from the viewpoint of preventing the generation of bubbles and electrical characteristics, the temperature is usually 250 ° C. or lower, preferably 170 ° C. or lower, more preferably 140 ° C. or lower, and the temperature may be changed stepwise.
  • a hot air dryer, a steam dryer, an infrared dryer, a far infrared dryer and the like can be used.
  • the optimum thickness of the photosensitive layer is appropriately selected depending on the material used, etc., but from the viewpoint of electrical characteristics and dielectric breakdown resistance, 5 ⁇ m or more is preferable, 10 ⁇ m or more is more preferable, and 15 ⁇ m or more is particularly preferable. Further, from the viewpoint of electrical characteristics, 100 ⁇ m or less is preferable, 50 ⁇ m or less is more preferable, and 30 ⁇ m or less is particularly preferable.
  • the outermost surface layer of the photoconductor of the present invention is characterized by having a structure formed by polymerizing a compound having a chain-growth functional group.
  • a compound having a chain-growth functional group usually has 2 or more, preferably 3 or more, more preferably 4 or more, and on the other hand, usually 15 or less, preferably 10 or less, from the viewpoint of abrasion resistance. , More preferably 8 or less.
  • Examples of the chain-growth functional group of the compound having a chain-growth functional group include an acryloyl group, a methacryloyl group, a vinyl group and an epoxy group.
  • the compound having a chain-growth functional group is not particularly limited as long as it is a known material, but from the viewpoint of curability, a monomer, an oligomer or a polymer having an acryloyl group or a methacryloyl group is preferable.
  • Examples of the monomer having an acryloyl group or a methacryloyl group include trimethylolpropantriacrylate (A-TMPT), trimethylolpropanetrimethacrylate, HPA-modified trimethylolpropanetriacrylate, EO-modified trimethylolpropanetriacrylate, and PO-modified trimethylolpropanetriacrylate.
  • A-TMPT trimethylolpropantriacrylate
  • HPA-modified trimethylolpropanetriacrylate HPA-modified trimethylolpropanetriacrylate
  • EO-modified trimethylolpropanetriacrylate EO-modified trimethylolpropanetriacrylate
  • PO-modified trimethylolpropanetriacrylate PO-modified trimethylolpropanetriacrylate.
  • Urethane acrylates include "EBECRYL8301”, “EBECRYL1290”, “EBECRYL1830”, “KRM8200” (Dycel Ornex Co., Ltd.), "UV1700B”, “UV7640B”, “UV7605B”, “UV6300B”, “UV7550B” (Mitsubishi Chemical Corporation). Co., Ltd.) etc.
  • ester acrylates As ester acrylates, "M-7100”, “M-7300K”, “M-8030”, “M-8060”, “M-8100”, “M-8530”, “M-8560”, “M-” 9050 ”(Toagosei Co., Ltd.) and the like.
  • the acrylic acrylate include "8BR-600”, “8BR-930MB”, “8KX-078”, “8KX-089", “8KX-168” (Taisei Fine Chemical Co., Ltd.) and the like.
  • urethane acrylate is preferably contained from the viewpoint of electrical characteristics.
  • the outermost surface layer of the electrophotographic photosensitive member according to the present invention may contain metal oxide particles and a charge transporting substance for the purpose of imparting charge transporting ability, in addition to the compound having a chain-growth functional group. Moreover, in order to promote the polymerization reaction, a polymerization initiator may be contained.
  • the materials used for the outermost layer (metal oxide particles, charge transport material, polymerization initiator) will be described in detail below.
  • the outermost layer of the present invention contains metal oxide particles from the viewpoint of imparting charge transporting ability and from the viewpoint of improving mechanical strength.
  • the metal oxide particles any metal oxide particles that can be usually used for an electrophotographic photosensitive member can be used. More specifically, the metal oxide particles include metal oxide particles containing one kind of metal element such as titanium oxide, tin oxide, aluminum oxide, indium oxide, silicon oxide, zirconium oxide, zinc oxide, and iron oxide, and oxidation. Examples thereof include metal oxide particles containing a plurality of metal elements such as indium tin, calcium titanate, strontium titanate, and barium titanate. Among these, metal oxide particles having a bandgap of 2 to 4 eV are preferable. As the metal oxide particles, only one type of particles may be used, or a plurality of types of particles may be mixed and used.
  • metal oxide particles only one type of particles may be used, or a plurality of types of particles may be mixed and used.
  • titanium oxide, tin oxide, indium tin oxide, aluminum aluminum oxide, silicon oxide, and zinc oxide are preferable, and titanium oxide and tin oxide are more preferable, from the viewpoint of electron transportability. Titanium oxide is particularly preferable.
  • any of rutile, anatase, brookite, and amorphous can be used. Further, from those having different crystal states, those having a plurality of crystal states may be included.
  • the surface of the metal oxide particles may be subjected to various surface treatments. For example, it may be treated with an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide or silicon oxide, or an organic substance such as stearic acid, polyol or organic silicon compound. In particular, when titanium oxide particles are used, it is preferable that the surface is treated with an organic silicon compound.
  • an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide or silicon oxide
  • an organic substance such as stearic acid, polyol or organic silicon compound.
  • titanium oxide particles it is preferable that the surface is treated with an organic silicon compound.
  • organic silicon compound examples include silicone oils such as dimethylpolysiloxane and methylhydrogenpolysiloxane, organosilanes such as methyldimethoxysilane and diphenyldidimethoxysilane, silazane such as hexamethyldisilazane, and 3-methacryloyloxypropyltrimethoxysilane, 3 -Examples include silane coupling agents such as acryloyloxypropyltrimethoxysilane, vinyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, and ⁇ -aminopropyltriethoxysilane.
  • silicone oils such as dimethylpolysiloxane and methylhydrogenpolysiloxane
  • organosilanes such as methyldimethoxysilane and diphenyldidimethoxysilane
  • silazane such as hexamethyldisilazane
  • 3-methacryloyloxypropyltrimethoxysilane, 3-acryloyloxypropyltrimethoxysilane, and vinyltrimethoxysilane having a chain-growth functional group are preferable.
  • the outermost surface of these surface-treated particles is treated with such a treatment agent, but even if it is treated with a treatment agent such as aluminum oxide, silicon oxide or zirconium oxide before the treatment. I do not care.
  • a treatment agent such as aluminum oxide, silicon oxide or zirconium oxide before the treatment. I do not care.
  • the metal oxide particles only one type of particles may be used, or a plurality of types of particles may be mixed and used.
  • the metal oxide particles used are usually preferably those having an average primary particle diameter of 500 nm or less, more preferably 1 nm to 100 nm, and further preferably 5 to 50 nm.
  • This average primary particle size can be determined by the arithmetic mean value of the particle size directly observed by a transmission electron microscope (hereinafter, also referred to as TEM).
  • titanium oxide particles include ultrafine titanium oxide "TTO-55 (N)” and “TTO-51 (N)” which have not been surface-treated. , Al 2 O 3 coated ultrafine titanium oxide “TTO-55 (A)”, “TTO-55 (B)”, ultrafine titanium oxide surface treated with stearic acid “TTO-55 (C)” , Ultrafine titanium oxide “TTO55 (S)” surface-treated with Al 2 O 3 and organosiloxane, high-purity titanium oxide "C-EL”, sulfuric acid titanium oxide “R-550”, “R-580” , “R-630", “R-670”, “R-680”, “R-780", "A-100", “A-220", “W-10”, Chlorine method titanium oxide “CR” -50 ",” CR-58 “,” CR-60 “,” CR-60-2 “,” CR-67 “, conductive titanium oxide” ET-300W “(all manufactured by Ishihara Sangyo Co., Ltd
  • Al oxide particles As a specific product name of aluminum oxide particles, "Aluminium Oxide C” (manufactured by Nippon Aerosil Co., Ltd.) and the like can be mentioned.
  • silicon oxide particles include “200CF”, “R972” (manufactured by Nippon Aerosil Co., Ltd.), “KEP-30” (manufactured by Nippon Shokubai Co., Ltd.), and the like.
  • tin oxide particles include "SN-100P", “SN-100D” (manufactured by Ishihara Sangyo Co., Ltd.), “SnO 2 " (manufactured by CIK Nanotech Co., Ltd.), and “S-2000”. , Lin-doped tin oxide “SP-2”, antimony-doped tin oxide “T-1”, indium-doped tin oxide “E-ITO” (Mitsubishi Materials Co., Ltd.) and the like.
  • zinc oxide particles include “MZ-305S” (manufactured by TAYCA CORPORATION), but the metal oxide particles that can be used in the present invention are not limited to these.
  • the content of the metal oxide particles in the outermost layer of the electrophotographic photosensitive member according to the present invention is not particularly limited, but from the viewpoint of electrical characteristics, it is preferably 10 parts by mass or more with respect to 100 parts by mass of the binder resin. It is preferably 20 parts by mass or more, and particularly preferably 30 parts by mass or more. Further, from the viewpoint of maintaining good surface resistance, it is preferably 300 parts by mass or less, more preferably 200 parts by mass or less, and particularly preferably 120 parts by mass or less.
  • Charge transport material As the charge transporting substance contained in the outermost layer, the same charge transporting substance as that used in the photosensitive layer can be used.
  • a structure formed by polymerizing a charge transporting substance having a chain-growth functional group may be contained.
  • the chain-growth functional group of the charge transporting substance having a chain-growth functional group include an acryloyl group, a methacryloyl group, a vinyl group and an epoxy group. Of these, an acryloyl group or a methacryloyl group is preferable from the viewpoint of curability.
  • the structure of the charge transport material portion of the charge transport material having a chain polymerizable functional group includes heterocyclic compounds such as carbazole derivatives, indol derivatives, imidazole derivatives, oxazole derivatives, pyrazole derivatives, thiadiazol derivatives, and benzofuran derivatives, aniline derivatives, and hydrazone.
  • heterocyclic compounds such as carbazole derivatives, indol derivatives, imidazole derivatives, oxazole derivatives, pyrazole derivatives, thiadiazol derivatives, and benzofuran derivatives, aniline derivatives, and hydrazone.
  • a carbazole derivative an aromatic amine derivative, an arylamine derivative, a stilben derivative, a butadiene derivative and an enamine derivative, and a combination of a plurality of these compounds are preferable.
  • the structure represented by the following formula (4) is preferable.
  • Ar 41 to Ar 43 are aromatic groups. Each of R 41 to R 43 is independently a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an alkyl halide group, a halogen group, a benzyl group or the following formula (5).
  • n 41 to n 43 are integers of 1 or more. However, when n 41 is 1, R 41 is equation (5), and when n 41 is an integer of 2 or more, R 41 may be the same or different, but at least one is equation (5). ). When n 42 is an integer of 2 or more, R 42 may be the same or different, and when n 43 is an integer of 2 or more, R 43 may be the same or different.
  • R 51 represents a hydrogen atom or a methyl group
  • R 52 and R 53 independently represent a hydrogen atom, a hydrocarbon group or an alkoxy group
  • R 54 represents a single bond or an oxygen atom.
  • n 51 represents an integer of 0 or more and 10 or less. * Indicates a bond with Ar 41 to Ar 43, and ** indicates a bond with an arbitrary atom.
  • Ar 41 to Ar 43 are aromatic groups, and examples of the monovalent aromatic group include a phenyl group, a naphthyl group, an anthracenyl group, a phenatorenyl group, a pyrene group, a biphenyl group and a fluorene group. .. Among these, a phenyl group is preferable from the viewpoint of solubility and photocurability.
  • Examples of the divalent aromatic group include a phenylene group, a naphthylene group, an anthrylene group, a phenanthrylene group, a pyrenylene group and a biphenylene group. Among these, a phenylene group is preferable from the viewpoint of solubility and photocurability.
  • Each of R 41 to R 43 is independently a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an alkyl halide group, a halogen group, a benzyl group or the above formula (5).
  • the alkyl group, the alkoxy group, and the alkyl halide group usually have 1 or more carbon atoms, while usually 10 or less, preferably 8 or less, more preferably 6 or less, and further preferably 4 or less.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, an isobutyl group, a cyclohexyl group and the like.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, a cyclohexoxy group and the like.
  • alkyl halide group examples include a chloroalkyl group and a fluoroalkyl group.
  • the halogen group examples include a fluoro group, a chloro group, a bromo group and the like. More preferably, it is a methyl group, an ethyl group or a phenyl group.
  • n 41 to n 43 are integers of 1 or more, usually 1 or more, usually 5 or less, preferably 3 or less, and 1 is most preferable. However, when n 41 is 1, R 41 is equation (5), and when n 41 is an integer of 2 or more, R 41 may be the same or different, but at least one is equation (5). ). When n 42 is an integer of 2 or more, R 42 may be the same or different, and when n 43 is an integer of 2 or more, R 43 may be the same or different. From the viewpoint of the strength of the cured film, n 41 to n 43 is 1, R 41 is the formula (5), and either one of R 42 and R 43 is the formula (5), or n 41 to n.
  • R 41 to R 43 are of the formula (5), and from the viewpoint of solubility, n 41 to n 43 are 1, R 41 is the formula (5) and R 42 and R. It is more preferable that either one of 43 is of the formula (5).
  • R 52 and R 53 are equivalent to those of R 22 and R 23 described above.
  • n 51 is an integer of 0 or more and 10 or less, and is usually 0 or more, usually 10 or less, preferably 6 or less, more preferably 4 or less, and further preferably 3 or less.
  • the raw material of the polymer having the structure represented by the formula (4) is not particularly limited, but it is preferably obtained by polymerizing the compound having the structure represented by the following formula (4').
  • R 51 represents a hydrogen atom or a methyl group
  • R 52 and R 53 independently represent a hydrogen atom, a hydrocarbon group or an alkoxy group
  • R 54 represents a single bond or an oxygen atom.
  • N 51 represent an integer of 0 or more and 10 or less. * Indicates a bond with Ar 41 to Ar 43.
  • formula (4-1), formula (4-2), formula (4-3), formula (4-4), formula (4-6), formula (4) -7) is preferable, and the formula (4-1), the formula (4-2), and the formula (4-3) are more preferable.
  • the amount of the charge transporting substance used in the outermost surface layer of the electrophotographic photosensitive member according to the present invention is not particularly limited, but from the viewpoint of electrical characteristics, it is preferably 10 parts by mass or more, more preferably 10 parts by mass or more, based on 100 parts by mass of the binder resin. Is 30 parts by mass or more, particularly preferably 50 parts by mass or more. Further, from the viewpoint of maintaining good surface resistance, it is preferably 300 parts by mass or less, more preferably 20 parts by mass or less, and particularly preferably 150 parts by mass or less.
  • the polymerization initiator includes a thermal polymerization initiator, a photopolymerization initiator and the like.
  • thermal polymerization initiator examples include 2,5-dimethylhexane-2,5-dihydroperoxide, dicumyl peroxide, benzoyl peroxide, t-butyl peroxide, t-butyl cumyl peroxide, and t-butyl hydroperoxide.
  • Peroxide compounds such as cumenehydroperoxide, lauroyl peroxide, 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2-methylbutyronitrile), 2,2'- Azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (cyclohexanecarbonitrile), 2,2'-azobis (methyl isobutyrate), 2,2'-azobis (isobutylamidin hydrochloride), 4, Examples thereof include azo compounds such as 4'-azobis-4-cyanovaleric acid.
  • Photopolymerization initiators can be classified into direct cleavage type and hydrogen abstraction type depending on the radical generation mechanism.
  • direct cleavage type photopolymerization initiator absorbs light energy, a part of the covalent bond in the molecule is cleaved to generate a radical.
  • hydrogen abstraction type photopolymerization initiator a molecule excited by absorbing light energy generates a radical by abstracting hydrogen from a hydrogen donor.
  • acetophenone, 2-benzoyl-2-propanol, 1-benzoylcyclohexanol, 2,2-diethoxyacetophenone, benzyl dimethyl ketal, 2-methyl-4'-(methylthio)- Acetphenone or ketal compounds such as 2-morpholinopropiophenone, benzoyl ether compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isobutyl ether, benzoin isopropyl ether, O-tosyl benzoin, diphenyl (2, Acylphosphine oxides such as 4,6-trimethylbenzoyl) phosphine oxide, phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide, lithium phenyl (2,4,6-trimethylbenzoyl) phosphonate, etc.
  • examples include compounds.
  • hydrogen abstraction type photopolymerization initiators examples include benzophenone, 4-benzoylbenzoic acid, 2-benzoylbenzoic acid, methyl 2-benzoylbenzoate, methyl benzoylate, benzyl, p-anisyl, 2-benzoylnaphthalene, 4, Benzophenone compounds such as 4'-bis (dimethylamino) benzophenone, 4,4'-dichlorobenzophenone, 1,4-dibenzoylbenzene, 2-ethylanthraquinone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 2,4 Examples thereof include anthraquinone-based or thioxanthone-based compounds such as dimethylthioxanthone, 2,4-diethylthioxanthone, and 2,4-dichlorothioxanthone.
  • photopolymerization initiators include camphorquinone, 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, acridine-based compounds, triazine-based compounds, and imidazole-based compounds.
  • the photopolymerization initiator preferably has an absorption wavelength in the wavelength region of the light source used for light irradiation in order to efficiently absorb light energy and generate radicals.
  • the photopolymerization initiator cannot absorb sufficient light energy and the radical generation efficiency is lowered.
  • general binder resins, charge transport substances, and metal oxide particles have an absorption wavelength in the ultraviolet region (UV), this effect is remarkable especially when the light source used for light irradiation is ultraviolet light (UV). Is.
  • an acylphosphine oxide-based compound having an absorption wavelength on the relatively long wavelength side among the photopolymerization initiators it is preferable to contain an acylphosphine oxide-based compound having an absorption wavelength on the relatively long wavelength side among the photopolymerization initiators. Further, since the acylphosphine oxide compound has a photobleaching effect in which the absorption wavelength region changes to the low wavelength side by self-cleavage, light can be transmitted to the inside of the outermost layer, and the internal curability is good. It is also preferable from the point of view. In this case, it is more preferable to use a hydrogen abstraction type initiator in combination from the viewpoint of supplementing the curability of the outermost layer surface.
  • the content ratio of the hydrogen abstraction type initiator to the acylphosphine oxide-based compound is not particularly limited, but from the viewpoint of supplementing the surface curability, 0.1 part by mass with respect to 1 part by mass of the acylphosphine oxide-based compound. The above is preferable, and from the viewpoint of maintaining the internal curability, 5 parts by mass or less is preferable.
  • those having a photopolymerization promoting effect can be used alone or in combination with the above-mentioned photopolymerization initiator.
  • triethanolamine, methyldiethanolamine, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, ethyl benzoate (2-dimethylamino), 4,4'-dimethylaminobenzophenone, and the like can be mentioned.
  • polymerization initiators may be used alone or in admixture of two or more.
  • the content of the polymerization initiator is 0.5 to 40 parts by mass, preferably 1 to 20 parts by mass with respect to 100 parts by mass of the total content having radical polymerization property.
  • the method for forming the outermost layer is not particularly limited, and for example, a coating solution in which a compound having a chain polymerizable functional group, a charge transport substance, a metal oxide particle, and other substances are dissolved in a solvent or a coating solution dispersed in a dispersion medium is used. It can be formed by applying a liquid.
  • solvent used for coating liquid for forming the outermost layer any organic solvent that can dissolve the substance according to the present invention can be used. Specifically, alcohols such as methanol, ethanol, propanol and 2-methoxyethanol; ethers such as tetrahydrofuran, 1,4-dioxane and dimethoxyethane; esters such as methyl formate and ethyl acetate; acetone, methyl ethyl ketone and cyclohexanone.
  • alcohols such as methanol, ethanol, propanol and 2-methoxyethanol
  • ethers such as tetrahydrofuran, 1,4-dioxane and dimethoxyethane
  • esters such as methyl formate and ethyl acetate
  • acetone methyl ethyl ketone and cyclohexanone.
  • Ketones such as; aromatic hydrocarbons such as benzene, toluene, xylene, anisole; dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, 1,1,1-trichloroethane, tetrachloroethane, etc.
  • 2-Dichloropropane chlorinated hydrocarbons such as trichloroethylene; nitrogen-containing compounds such as n-butylamine, isopropanolamine, diethylamine, triethanolamine, ethylenediamine, triethylenediamine; acetonitrile, N-methylpyrrolidone, N, N- Examples thereof include aprotic polar solvents such as dimethylformamide and dimethylsulfoxide. Any combination and any ratio of mixed solvents can be used. Further, even an organic solvent that does not dissolve the substance for the outermost layer according to the present invention by itself can be used as long as it can be dissolved by, for example, a mixed solvent with the above-mentioned organic solvent.
  • the dip coating method is used in the coating method described later, it is preferable to select a solvent that does not dissolve the lower layer. From this point of view, it is preferable to contain polycarbonate, which is preferably used for the photosensitive layer, and alcohols, which have low solubility in polyarylate.
  • the ratio of the amount of the organic solvent used in the coating liquid for forming the outermost layer of the present invention to the solid content differs depending on the coating method of the coating liquid for forming the outermost layer, and is appropriate so that a uniform coating film is formed in the coating method to be applied. It may be changed and used.
  • the coating method of the coating liquid for forming the outermost layer is not particularly limited, and examples thereof include a spray coating method, a spiral coating method, a ring coating method, and a dip coating method.
  • the coating film After forming the coating film by the above coating method, the coating film is dried, but the temperature and time do not matter as long as necessary and sufficient drying can be obtained. However, when the outermost layer is coated only by air drying after coating the photosensitive layer, it is preferable to sufficiently dry the photosensitive layer by the method described in [Applying Method].
  • the optimum thickness of the outermost layer is appropriately selected depending on the material used, etc., but from the viewpoint of life, 0.1 ⁇ m or more is preferable, 0.2 ⁇ m or more is more preferable, and 0.5 ⁇ m or more is particularly preferable. From the viewpoint of electrical characteristics, 10 ⁇ m or less is preferable, 5 ⁇ m or less is more preferable, and 3 ⁇ m or less is particularly preferable.
  • the outermost layer is formed by applying such a coating liquid and then applying energy from the outside to cure it.
  • the external energy used at this time includes heat, light, and radiation.
  • the method of applying heat energy is performed by heating from the coating surface side or the support side using air, a gas such as nitrogen, steam, various heat media, infrared rays, or electromagnetic waves.
  • the heating temperature is preferably 100 ° C. or higher and 170 ° C. or lower, and above the lower limit temperature, the reaction rate is sufficient and the reaction proceeds completely. Below the upper limit temperature, the reaction proceeds uniformly and it is possible to suppress the occurrence of large strain in the outermost layer.
  • it is also effective to heat at a relatively low temperature of less than 100 ° C. and then further heat to 100 ° C. or higher to complete the reaction.
  • UV irradiation light sources such as high-pressure mercury lamps, metal halide lamps, electrodeless lamp valves, and light emitting diodes that have an emission wavelength of ultraviolet light (UV) can be used, but chain-polymerizable compounds and photopolymerization initiators can be used. It is also possible to select a visible light source according to the absorption wavelength.
  • Light irradiation amount is preferably 0.1 J / cm 2 or more from the viewpoint of curability, still more preferably 0.5 J / cm 2 or more, 1 J / cm 2 or more is particularly preferable. Further, from the viewpoint of electrical characteristics, 150 J / cm 2 or less is preferable, 100 J / cm 2 or less is more preferable, and 50 J / cm 2 or less is particularly preferable.
  • Examples of radiation energy include those using an electron beam (EB).
  • EB electron beam
  • those using light energy are preferable from the viewpoints of ease of reaction rate control, convenience of equipment, and length of pod life.
  • a heating step may be added from the viewpoints of relaxation of residual stress, relaxation of residual radicals, and improvement of electrical characteristics.
  • the heating temperature is preferably 60 ° C. or higher, more preferably 100 ° C. or higher, preferably 200 ° C. or lower, and more preferably 150 ° C. or lower.
  • the present inventors have found that good adhesion between the photosensitive layer and the outermost layer can be maintained by setting the Martens hardness of the surface of the photoconductor to 345 N / mm 2 or more. Further, it was found that even if the contents of the hole transporting substance and the electron transporting substance in the photosensitive layer are increased, the same effect can be obtained by setting the Martens hardness of the surface of the photoconductor to 350 N / mm 2 or more. rice field. The reason for this is under intensive study, but by setting the Martens hardness of the surface of the photoconductor to 345 N / mm 2 or more, the cured resin contained in the outermost layer can have sufficient mechanical strength.
  • the adhesiveness is improved. More specifically, when the Martens hardness of the surface of the photoconductor is smaller than 345 N / mm 2 , the interface between the outermost layer and the single-layer type photosensitive layer is soft, and the bite of both layers at the interface is weak, so that the anchor effect is obtained. It is considered that the strength becomes weak and the adhesiveness between the two layers deteriorates.
  • the Martens hardness of the surface of the photoconductor is 345 N / mm 2 or more, the interface between the outermost layer and the single-layer type photosensitive layer is hard, and the bite of both layers at the interface is strong, so that the anchor effect becomes strong. , It is considered that the adhesiveness of both layers is good. Further, if the Martens hardness of the surface of the photoconductor is smaller than 345 N / mm 2 , the adhesiveness between the outermost layer and the single-layer type photosensitive layer is poor, and it becomes difficult to transfer charges at the interface. It is considered that the charge transport from the photosensitive layer to the outermost layer is hindered and the electrical characteristics deteriorate.
  • the Martens hardness of the surface of the photoconductor is 345 N / mm 2 or more, the adhesiveness at the interface between the outermost layer and the single-layer type photosensitive layer becomes good, and the electric charge can be smoothly transferred at the interface. It is considered that the charge transport from the layered photosensitive layer to the outermost layer is carried out without delay and the electrical characteristics are improved.
  • Martens hardness of the photosensitive member surface from the viewpoint of adhesiveness, preferably 350 N / mm 2 or more, more preferably 370N / mm 2 or more, 390 N / mm 2 or more is more preferable. Martens hardness of the surface of the photosensitive member, the residual stress, in view of suppressing the occurrence of cracks, preferably 600N / mm 2 or less, more preferably 500 N / mm 2.
  • the Martens hardness of the surface of the photoconductor can be measured using a micro hardness tester FISCHERSCOPEHM2000 manufactured by Fisher.
  • the measurement was carried out at any part of the surface of the photoconductor using a Vickers quadrangular pyramid diamond indenter with a facing angle of 136 ° in an environment of a temperature of 25 ° C. and a relative humidity of 50%, and the measurement conditions were set as follows.
  • the load applied to the indenter and the pushing depth under the load are continuously read, and the profiles as shown in FIG. 1 plotted on the Y-axis and the X-axis are obtained, respectively.
  • ⁇ Measurement conditions Maximum push-in load 0.2 mN Load time required 10 seconds Unloading time 10 seconds
  • the electrophotographic photosensitive member of the present invention may have an undercoat layer between the photosensitive layer and the conductive support.
  • the undercoat layer for example, a resin or a resin in which particles such as an organic pigment or a metal oxide are dispersed is used.
  • organic pigments used for the undercoat layer include phthalocyanine pigments, azo pigments, quinacridone pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, anthanthronic pigments, benzimidazole pigments and the like.
  • phthalocyanine pigments and azo pigments specifically, phthalocyanine pigments and azo pigments when used as the above-mentioned charge generating substance can be mentioned.
  • metal oxide particles used for the undercoat layer include metal oxide particles containing one kind of metal element such as titanium oxide, aluminum oxide, silicon oxide, zirconium oxide, zinc oxide, and iron oxide, calcium titanate, and titanium. Examples thereof include metal oxide particles containing a plurality of metal elements such as strontium acid acid and barium titanate. Only one kind of particles may be used for the undercoat layer, or a plurality of kinds of particles may be mixed and used in an arbitrary ratio and combination.
  • titanium oxide and aluminum oxide are preferable, and titanium oxide is particularly preferable.
  • the surface of the titanium oxide particles may be treated with an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide or silicon oxide, or an organic substance such as stearic acid, polyol or silicone.
  • an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide or silicon oxide, or an organic substance such as stearic acid, polyol or silicone.
  • any of rutile, anatase, brookite and amorphous can be used. Further, a plurality of crystalline states may be included.
  • the particle size of the metal oxide particles used in the undercoat layer is not particularly limited, but the average primary particle size is 10 nm from the viewpoint of the characteristics of the undercoat layer and the stability of the solution for forming the undercoat layer. It is preferably 100 nm or less, more preferably 50 nm or less.
  • the undercoat layer is formed in a form in which particles are dispersed in a binder resin.
  • the binder resin used for the undercoat layer include polyvinyl butyral resin, polyvinyl formal resin, polyvinyl acetal resin such as formal, a partially acetalized polyvinyl butyral resin in which a part of butyral is modified with acetal, and polyarylate.
  • polycarbonate resin polycarbonate resin, polyester resin, modified ether-based polyester resin, phenoxy resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl acetate resin, polystyrene resin, acrylic resin, methacrylic resin, polyacrylamide resin, polyamide resin, polyvinylpyridine Resin, cellulose resin, polyurethane resin, epoxy resin, silicone resin, polyvinyl alcohol resin, polyvinylpyrrolidone resin, casein, vinyl chloride-vinyl acetate copolymer, hydroxy-modified vinyl chloride-vinyl acetate copolymer, carboxyl-modified vinyl chloride -Vinyl chloride-vinyl acetate copolymer such as vinyl acetate copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer, styrene-butadiene copolymer, vinylidene chloride-acrylonitrile copolymer, st
  • binder resins may be used alone, in combination of two or more, or in a cured form together with a curing agent.
  • polyvinyl butyral resin polyvinyl formal resin, partially acetalized polyvinyl butyral resin in which a part of butyral is modified with acetal, etc., polyvinyl acetal resin, alcohol-soluble copolymerized polyamide, modified polyamide, etc. It is preferable because it shows good dispersibility and coatability.
  • the mixing ratio of the particles to the binder resin can be arbitrarily selected, but it is preferable to use the particles in the range of 10% by mass to 500% by mass in terms of stability and coatability of the dispersion liquid.
  • the film thickness of the undercoat layer can be arbitrarily selected, but is usually preferably 0.1 ⁇ m or more and 20 ⁇ m or less in view of the characteristics of the electrophotographic photosensitive member and the coatability of the dispersion liquid. Further, the undercoat layer may contain a known antioxidant or the like.
  • the electrophotographic photosensitive member of the present invention may have other layers as needed in addition to the above-mentioned conductive support, photosensitive layer, outermost layer and undercoat layer.
  • -Dimethoxyethane was mixed to prepare a coating solution for the undercoat layer.
  • This coating liquid was applied on an aluminum plate (conductive support) having a thickness of 0.3 mm with a wire bar so that the film thickness after drying was 0.4 ⁇ m, and air-dried to form an undercoat layer.
  • This coating liquid was applied onto the single-layer photosensitive layer with a wire bar so that the film thickness after curing was 1 ⁇ m, and heated at 125 ° C. for 20 minutes. From the surface side of this coating film, UV light was irradiated so as to have an integrated light amount of 25.5 J / cm 2 using a UV light irradiation device equipped with a UV-LED lamp having a peak at a wavelength of 385 nm. Further, after heating at 125 ° C. for 10 minutes, the mixture was allowed to cool to 25 ° C. to form the outermost layer.
  • Examples 2 to 21, Comparative Examples 1 to 7 include the hole-transporting substances and electron-transporting substances used in the single-layer photosensitive layer and their contents, and the compounds having chain-growth functional groups used in the outermost layer as shown in Tables 1 and 2. Photoreceptors of Examples 2 to 21 and Comparative Examples 1 to 7 were prepared by the same procedure as in 1.
  • the retention rate of the surface potential after being charged and left in a dark place for 5 seconds was set to DDR-5 (%).
  • the measurement environment was a temperature of 25 ° C. and a relative humidity of 50%.
  • the total work amount Wt (nJ) indicates the area surrounded by ABDA in FIG. 1
  • the elastic deformation work amount We (nJ) is the area surrounded by CBDC. Is shown.
  • ⁇ Adhesion test> Using an NT cutter (manufactured by NT), make 6 vertical and 6 horizontal cuts at 2 mm intervals on the single-layer type photoconductors produced in Examples and Comparative Examples, and make 25 squares of 5 ⁇ 5. Made. A cellophane tape (manufactured by 3M) was closely attached from above, and the adhesive surface was pulled up to 90 ° to test the adhesiveness between the photosensitive layer and the outermost layer. The ratio of the number of cells in the outermost layer remaining on the photosensitive layer was evaluated as the residual rate. The larger the number of remaining cells, the higher the residual rate and the better the adhesiveness. In any of the tests, no peeling was observed between the aluminum plate as a support and the photosensitive layer, and in all cases of peeling, the peeling occurred near the interface between the photosensitive layer and the outermost layer. The results are shown in Tables 1 and 2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

最表層を有する正帯電単層型電子写真感光体において、機械的強度、電気特性、および接着性に優れた電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置を提供する。 単層型感光層と最表層を有する正帯電電子写真感光体において、感光体表面のマルテンス硬さが所定の条件を満たし、好ましくは該感光層が含有する正孔輸送物質、電子輸送物質の含有量と分子量が特定の関係式を満たすことで、上記課題を解決する。

Description

電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
 本発明は、複写機やプリンター等に用いられる電子写真感光体及び画像形成装置に関する。詳しくは、電気特性、機械的特性、接着性に優れた単層型電子写真感光体、及び該感光体を備えた画像形成装置に関するものである。
 電子写真技術は、高速で高品質な画像が得られること等から、複写機、プリンター、複合機、デジタル印刷等の分野で広く使われている。電子写真技術の中核となる電子写真感光体(以下、単に「感光体」ともいう)については、無公害で成膜が容易、製造が容易である等の利点を有する有機系の光導電物質を使用した感光体が主に使用されている。
 有機系電子写真感光体は、層構成の観点からは、電荷発生物質と電荷輸送物質を同一の層中に有する単層型の電子写真感光体(以下、単層型感光体という)と、電荷発生物質と電荷輸送物質を別々の層(電荷発生層と電荷輸送層)中に分離、積層する積層型の電子写真感光体(以下、積層型感光体という)が知られている。
 このうち積層型感光体は、感光体設計上からは、層ごとに機能の最適化が図り易く、特性の制御も容易なことから、現行感光体の大部分はこのタイプになっている。積層型感光体のほとんどのものは、基体上に電荷発生層、電荷輸送層をこの順序で有している。電荷輸送層においては、好適な電子輸送物質が極めて少ないのに対して、正孔輸送物質は特性良好な材料が数多く知られている。このことから、積層型感光体は通常、基体上に電荷発生層、電荷輸送層がこの順で積層され、感光体表面を負電荷に帯電させる負帯電方式で使用される。負帯電方式では、感光体表面を正電荷に帯電させる正帯電方式に比べて、帯電器から発生するオゾンの発生量が多いため、感光体を劣化させることが課題となる場合がある。
 一方、単層型感光体は、原理的には負帯電方式及び正帯電方式のいずれでも利用可能であるが、正帯電方式の方が、前述の積層型感光体において問題となるオゾンの発生量を抑制することができ、かつ負帯電方式より一般に高感度にし易いことから有利である。また、単層型感光体は塗布工程が少なく、解像度面で有利である利点も有しており、電気特性面では負帯電の積層型感光体よりも劣る点を有するものの、一部実用化され、現在に至るまで様々な改良検討がなされている(特許文献1、2)。
 また、電子写真感光体は、電子写真プロセス、即ち、帯電・露光・現像・転写・クリーニング・除電等のサイクルで繰返し使用されるため、その間の様々なストレスを受けて劣化する。特に、クリーニングブレード、磁気ブラシ等の摺擦、現像剤、紙との接触等による感光層表面の摩耗、傷の発生、膜の剥がれ等の機械的劣化による損傷は、画像上に現れやすく直接画像品質を損なうため、感光体の寿命を制限する大きな要因となっている。
 感光体表面の機械的強度ないし耐摩耗性を改良する技術としては、感光体の最表層にバインダー樹脂として連鎖重合性官能基を有する化合物を含有する層を形成し、これに熱や光、放射線などのエネルギーを与えることで重合させて硬化樹脂層を形成した感光体が開示されている。(例えば特許文献3、4を参照)。
特開2001-33997号公報 特開2005-331965号公報 米国特許第9417538号明細書 国際公開第2010/035683号
 前述のとおり、正帯電単層型感光体は負帯電積層型感光体よりも電気特性が劣るが、電気特性の改良には、単層型感光層中の正孔輸送物質及び電子輸送物質の含有量を増量することが効果的であると考えられる。
 しかしながら、単層型感光層中の正孔輸送物質及び電子輸送物質の含有量を増量すると、相対的にバインダー樹脂の含有量が減少するため、感光層の機械的強度が低下するという問題があった。またそれだけでなく、正孔輸送物質及び電子輸送物質が感光層表面に濃化する傾向があり、硬化樹脂を含有する最表層を形成した場合に、最表層とこれに接する感光層との接着性が著しく悪化するため、電子写真プロセス内で感光体に接触して配置された帯電ローラー、現像ローラー、転写ローラー及びクリーニングブレードなどの部材ないし印刷紙との摺動などのストレスにより、最表層が剥がれ、機械的強度を損なうという課題があった。
 本発明は上述の課題に鑑みてなされたものである。即ち、本発明の目的は、電気特性、機械的特性に優れ、かつ感光層と最表層間の接着性に優れた正帯電単層型電子写真感光体、該電子写真感光体を用いた電子写真感光体カートリッジ及び画像形成装置を提供することにある。
 本発明者らは、上記の目的を満足し得る電子写真感光体について鋭意研究したところ、硬化樹脂を含有する最表層を有する正帯電単層型感光体について、感光体表面のマルテンス硬さが所定の条件を満たすことで、上記課題を解決できることを見いだし、本発明に至った。
 また、感光層中の正孔輸送物質及び電子輸送物質の含有量を増量しても、正孔輸送物質及び電子輸送物質の含有量と分子量が特定の関係式を満たし、かつ、感光体表面のマルテンス硬さが所定の条件を満たすことで、上記課題を解決できることを見いだし、本発明に至った。
 本発明の要旨は、以下[1]~[14]に存する。
[1] 導電性支持体上に、少なくとも感光層と最表層を有する正帯電電子写真感光体であって、該感光層が、少なくともバインダー樹脂、電荷発生物質、正孔輸送物質及び電子輸送物質を含有する単層であり、該最表層が連鎖重合性官能基を有する化合物を重合させてなる構造を有し、該感光体表面のマルテンス硬さが345N/mm以上である電子写真感光体。
[2] 前記感光層が下記式(1)を満たすことを特徴とする[1]に記載の電子写真感光体。
  0.9≦(B/b)/(A/a)≦4.0 (1)
(式(1)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、aは正孔輸送物質の分子量、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)、bは電子輸送物質の分子量)
[3] 前記感光層が下記式(2)を満たすことを特徴とする[1]又は[2]に記載の電子写真感光体。
  0.15≦(A/a)+(B/b)    (2)
(式(2)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、aは正孔輸送物質の分子量、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)、bは電子輸送物質の分子量)
[4] 導電性支持体上に、少なくとも感光層と最表層を有する正帯電電子写真感光体であって、該感光層が、少なくともバインダー樹脂、電荷発生物質、正孔輸送物質及び電子輸送物質を含有する単層であり、該感光層が下記式(1)および式(2)を満たし、該最表層が連鎖重合性官能基を有する化合物を重合させてなる構造を有し、該感光体表面のマルテンス硬さが350N/mm以上である電子写真感光体。
  0.9≦(B/b)/(A/a)≦4.0 (1)
  0.15≦(A/a)+(B/b)    (2)
(式(1)および式(2)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、aは正孔輸送物質の分子量、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)、bは電子輸送物質の分子量)
[5] 前記最表層が金属酸化物微粒子を含有することを特徴とする[1]~[4]のいずれかに記載の電子写真感光体。
[6] 前記金属酸化物微粒子が、重合性官能基を有する表面処理剤で表面処理されていることを特徴とする[5]に記載の電子写真感光体。
[7] 前記感光層が、分子量が700以上である正孔輸送物質を含有することを特徴とする[1]~[6]のいずれかに記載の電子写真感光体。
[8] 前記連鎖重合性官能基を有する化合物が、連鎖重合性官能基を2以上有する化合物を含むことを特徴とする[1]~[7]のいずれかに記載の電子写真感光体。
[9] 前記連鎖重合性官能基を有する化合物がアクリロイル基又はメタクリロイル基を有する化合物を含むことを特徴とする[1]~[8]のいずれかに記載の電子写真感光体。
[10] 前記連鎖重合性官能基を有する化合物がウレタンアクリレートを含むことを特徴とする[1]~[9]のいずれかに記載の電子写真感光体。
[11] 前記感光層が、分子量が400以上である電子輸送物質を含有することを特徴とする[1]~[10]のいずれかに記載の電子写真感光体。
[12] 前記感光層が含有する電子輸送物質が、下記式(6)で表される構造であることを特徴とする、[1]~[11]のいずれかに記載の電子写真感光体。
Figure JPOXMLDOC01-appb-C000002
(式(6)中、R61~R64はそれぞれ独立して、水素原子、置換されていてもよい炭素数1以上20以下のアルキル基、又は置換されていてもよい炭素数2以上20以下のアルケニル基を表し、R61とR62同士、またはR63とR64同士は互いに結合して環状構造を形成してもよい。Xは分子量120以上250以下の有機残基を表す。)
[13] [1]~[12]のいずれかに記載の電子写真感光体を有する電子写真感光体カートリッジ。
[14] [1]~[12]のいずれかに記載の電子写真感光体を有する画像形成装置。
 本発明によれば、電気特性、機械的特性に優れ、かつ接着性に優れた正帯電単層型電子写真感光体、該電子写真感光体を用いた電子写真感光体カートリッジ及び画像形成装置を提供することができる。
感光体表面のマルテンス硬さを測定する際の、圧子の押込み深さに対する荷重曲線を示したグラフである。
<電子写真感光体>
 本発明の電子写真感光体は、導電性支持体上に、バインダー樹脂、電荷発生物質、正孔輸送物質及び電子輸送物質を同一の層内に有する単層型感光層と、連鎖重合性官能基を有する化合物を重合させてなる構造を含有する最表層を有する。
 以下、本発明の電子写真感光体を構成する各部(導電性支持体、単層型感光層、最表層)について説明する。
<導電性支持体>
 まず、本発明の感光体に用いられる導電性支持体について説明する。
 導電性支持体としては、後述する単層型感光層、最表層を支持し、導電性を示すものであれば、特に限定されない。導電性支持体としては、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料や金属、カーボン、酸化錫などの導電性粉体を共存させて導電性を付与した樹脂材料や、アルミニウム、ニッケル、ITO(酸化インジウム酸化錫合金)等の導電性材料をその表面に蒸着または塗布した樹脂、ガラス、紙等を主として使用する。
 形態としては、ドラム状、シート状、ベルト状などのものが用いられる。金属材料の導電性支持体の上に、導電性・表面性などの制御のためや欠陥被覆のため、適当な抵抗値を持つ導電性材料を塗布したものでもよい。
 導電性支持体としてアルミニウム合金等の金属材料を用いる場合、金属材料に陽極酸化被膜を施してから用いてもよい。
 陽極酸化被膜の平均膜厚は、通常20μm以下、特に7μm以下とされることが好ましい。
 上記導電性支持体の表面は、平滑であってもよく、また特別な切削方法を用いたり、研磨処理を施したりすることにより、粗面化されていてもよい。また、支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化されたものであってもよい。
 なお、上記導電性支持体と感光層との間には、接着性・ブロッキング性等の改善のために、後述する下引き層を設けてもよい。
<単層型感光層>
 以下、単層型感光層に用いられる材料(電荷発生物質、正孔輸送物質、電子輸送物質、バインダー樹脂など)について説明する。
(電荷発生物質)
 感光層に用いる電荷発生物質としては、例えば、セレン及びその合金、硫化カドミウム、その他無機系光導電材料;フタロシアニン顔料、アゾ顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、アントアントロン顔料、ベンズイミダゾール顔料などの有機顔料;などの各種光導電材料が使用できる。中でも、特に有機顔料が好ましく、更に、フタロシアニン顔料、アゾ顔料がより好ましい。
 特に、電荷発生物質としてフタロシアニン顔料を用いる場合、具体的には、無金属フタロシアニン、銅、インジウム、ガリウム、錫、チタン、亜鉛、バナジウム、シリコン、ゲルマニウム等の金属、またはその酸化物、ハロゲン化物等の配位したフタロシアニン類などが使用される。3価以上の金属原子への配位子の例としては、上に示した酸素原子、塩素原子の他、水酸基、アルコキシ基などが挙げられる。中でも、特に感度の高いX型、τ型無金属フタロシアニン、A型、B型、D型等のチタニルフタロシアニン、バナジルフタロシアニン、クロロインジウムフタロシアニン、クロロガリウムフタロシアニン、ヒドロキシガリウムフタロシアニン等が好適である。
 なお、ここで挙げたチタニルフタロシアニンの結晶型のうち、A型、B型についてはW.HellerらによってそれぞれI相、II相として示されており(Zeit.Kristallogr.159(1982)173)、A型は安定型として知られているものである。D型は、CuKα線を用いた粉末X線回折において、回折角2θ±0.2°が27.3°に明瞭なピークを示すことを特徴とする結晶型である。
 またアゾ顔料を使用する場合には、各種公知のビスアゾ顔料、トリスアゾ顔料が好適に用いられる。好ましいアゾ顔料の例を下記に示す。
Figure JPOXMLDOC01-appb-C000003
 電荷発生物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。さらに、電荷発生物質を2種以上併用する場合、併用する電荷発生物質の混合方法としては、それぞれの電荷発生物質を後から混合して用いてもよいし、合成、顔料化、結晶化等の電荷発生物質の製造・処理工程において混合して用いてもよい。このような処理としては、酸ペースト処理・磨砕処理・溶剤処理等が知られている。
 電荷発生物質の粒子径は小さいことが望ましい。具体的には、通常、1μm以下が好ましく、より好ましくは0.5μm以下である。
 さらに、単層型感光層内の電荷発生物質の量は、感度の観点から、通常0.1質量%以上が好ましく、0.5質量%以上がより好ましい。また、感度及び帯電性の観点から、通常50質量%以下が好ましく、より好ましくは20質量%以下とする。
(電荷輸送物質)
 電荷輸送物質は、主に正孔輸送能を有する正孔輸送物質と、主に電子輸送能を有する電子輸送物質に分類される。本発明に用いられる単層型感光層は、正孔輸送物質と電子輸送物質の両方を含有する。
[正孔輸送物質]
 正孔輸送物質としては、公知の材料であれば特に限定されるものではないが、例えば、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、オキサゾール誘導体、ピラゾール誘導体、チアジアゾール誘導体、ベンゾフラン誘導体等の複素環化合物、アニリン誘導体、ヒドラゾン誘導体、アリールアミン誘導体、スチルベン誘導体、ブタジエン誘導体及びエナミン誘導体並びにこれらの化合物の複数種が結合したもの、及びこれらの化合物からなる基を主鎖若しくは側鎖に有する重合体等の電子供与性物質等が挙げられる。
 これらの中でも、カルバゾール誘導体、アリールアミン誘導体、スチルベン誘導体、ブタジエン誘導体及びエナミン誘導体並びにこれらの化合物の複数種が結合したものが好ましく、アリールアミン誘導体、エナミン誘導体がより好ましい。
 正孔輸送物質の分子量が大きい方が、受け取った正孔を非局在化する効果が高く、良好な電気特性を示す傾向がある。また、分子量が大きい方が表面への移行性が低いため、最表層との接着性の観点からも有利である。この観点から、正孔輸送物質の分子量は350以上が好ましく、450以上がより好ましく、700以上がさらに好ましい。溶解性の観点から、1500以下が好ましく、1000以下がより好ましい。
 正孔輸送物質は1種のみを単独で用いてもよく、また2種以上を任意の比率及び組み合わせで用いてもよい。正孔輸送物質を2種以上用いる場合は、前述の電気特性および表面への移行性の観点から、分子量が700以上の正孔輸送物質を用いることが好ましい。また、感光層が含有する2種以上の正孔輸送物質のうち、感光層中の含有量(質量部)が最大である正孔輸送物質の分子量が700以上であることがさらに好ましい。
 以下に好ましい正孔輸送物質の構造を例示する。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 上記の正孔輸送物質の中でも、電気特性の点から、HTM6、HTM7、HTM8、HTM9、HTM10、HTM12、HTM14、HTM26、HTM31、HTM32、HTM33、HTM34、HTM35、HTM36、HTM37、HTM38、HTM39、HTM40、HTM41、HTM42,HTM43、HTM48が好ましく、HTM31、HTM32、HTM33、HTM34、HTM35、HTM36、HTM37、HTM38、HTM39、HTM40、HTM41、HTM42,HTM43、HTM48がより好ましく、HTM39,HTM40,HTM41,HTM42,HTM43,HTM48がさらに好ましい。
[電子輸送物質]
 電子輸送物質としては、公知の材料であれば特に限定されるものではないが、例えば、2,4,7-トリニトロフルオレノン等の芳香族ニトロ化合物、テトラシアノキノジメタン等のシアノ化合物、ジフェノキノン等のキノン化合物等の電子吸引性物質や、公知の環状ケトン化合物やペリレン顔料(ペリレン誘導体)が挙げられる。 特に、下記式(6)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 R61~R64はそれぞれ独立して水素原子、置換されていてもよい炭素数1以上20以下のアルキル基、又は炭素数2以上20以下のアルケニル基を表す。
 置換されていてもよい炭素数1以上20以下のアルキル基としては、直鎖アルキル基、分岐アルキル基及び環状アルキル基が挙げられ、電子輸送能力の面から直鎖アルキル基又は分岐アルキル基が好ましい。これらのアルキル基の炭素数としては、通常1以上、好ましくは4以上、通常20以下、原料の汎用性の面から15以下が好ましく、製造時の取り扱い性から10以下がより好ましく、5以下が更に好ましい。具体的には、メチル基、エチル基、ヘキシル基、iso-プロピル基、tert-ブチル基、tert-アミル基、シクロヘキシル基及びシクロペンチル基が挙げられる。この中でも、メチル基、tert-ブチル基又はtert-アミル基が好ましく、塗布液に用いる有機溶剤への溶解性の面から、tert-ブチル基又はtert-アミル基がより好ましい。
 置換されていてもよい炭素数2以上20以下のアルケニル基としては、直鎖アルケニル基、分岐アルケニル基及び環状アルケニル基が挙げられる。これらのアルケニル基の炭素数としては、通常2以上、好ましくは4以上であり、通常20以下、感光体の光減衰特性の面から10以下が好ましい。具体的には、エテニル基、2-メチル-1-プロペニル基及びシクロヘキセニル基が挙げられる。
 前記置換基R61~R64は、R61とR62同士、またはR63とR64同士が互いに結合して環状構造を形成してもよい。電子移動度の観点から、R61とR62が共にアルケニル基である場合、お互いに結合して芳香環を形成することが好ましく、R61とR62が共にエテニル基で、お互いに結合し、ベンゼン環構造を有することがより好ましい。
 前記式(6)中、Xは分子量120以上250以下の有機残基を表し、感光体の光減衰特性の観点から、式(6)で表される化合物は下記式(7)~(10)のいずれかで表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
(式(7)中、R71~R73はそれぞれ独立して水素原子、ハロゲン原子、又は炭素数1以上6以下のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000009
(式(8)中、R81~R84はそれぞれ独立して水素原子、ハロゲン原子、又は炭素数1以上6以下のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000010
(式(9)中、R91は水素原子、炭素数1以上6以下のアルキル基、又はハロゲン原子を表す。)
Figure JPOXMLDOC01-appb-C000011
(式(10)中、R101及びR102はそれぞれ独立して水素原子、ハロゲン原子、炭素数1以上6以下のアルキル基、又は炭素数6以上12以下のアリール基を表す。)
 R71~R102における、炭素数1以上6以下のアルキル基としては、直鎖アルキル基、分岐アルキル基、及び環状アルキル基が挙げられる。これらのアルキル基の炭素数としては、通常1以上、通常6以下である。具体的には、メチル基、エチル基、ヘキシル基、iso-プロピル基、tert-ブチル基、tert-アミル基及びシクロヘキシル基が挙げられる。この中でも、電子輸送能力の面から、メチル基、tert-ブチル基又はtert-アミル基が好ましい。
 ハロゲン原子としては、例えば、フッ素、塩素、臭素及びヨウ素が挙げられ、電子輸送能力の面から、塩素が好ましい。
 炭素原子6以上12以下のアリール基の炭素数としては、通常6以上、通常12以下である。具体的には、フェニル基及びナフチル基が挙げられ、感光層の膜物性の観点から、フェニル基が好ましい。これらのアリール基は、さらに置換されていてもよい。
 式(6)は、前記式(7)~(10)の中でも、繰り返し画像形成した際の画質安定性の観点から、式(7)又は式(8)であることが好ましく、式(7)であることがより好ましい。また、式(6)で表される化合物を単独で用いてもよいし、構造の異なる式(6)で表される化合物を併用してもよく、その他の電子輸送物質と併用することもできる。
 電子輸送物質の分子量が大きい方が、受け取った電子を非局在化する効果が高く、良好な電気特性を示す傾向がある。また、分子量が大きい方が表面への移行性が低いため、最表層との接着性の観点からも有利である。この観点から、電子輸送物質の分子量は300以上が好ましく、350以上がより好ましく、400以上がさらに好ましく、420以上が特に好ましい。溶解性の観点から、1000以下が好ましく、700以下がより好ましい。
 電子輸送物質は1種のみを単独で用いてもよく、また2種以上を任意の比率及び組み合わせで用いてもよい。正孔輸送物質を2種以上用いる場合は、前述の電気特性および表面への移行性の観点から、分子量が400以上の電子輸送物質を用いることが好ましい。また、感光層が含有する2種以上の電子輸送物質のうち、感光層中の含有量(質量部)が最大である電子輸送物質の分子量が400以上であることがさらに好ましい。
 以下に好ましい電子輸送物質の構造を例示する。
Figure JPOXMLDOC01-appb-C000012
 上記の電子輸送物質の中でも、電気特性の点から、ET-1、ET-2、ET-3、ET-4、ET-5、ET-6、ET-8、ET-10、ET-11、ET-12、ET15、ET-16、ET-17が好ましく、ET-1、ET-2、ET-3、ET-4、ET-5がより好ましく、ET-2がさらに好ましい。
[正孔輸送物質と電子輸送物質の含有量]
 本発明においては、単層型感光層が式(1)又は式(2)を満たすことが好ましく、特に、同時に満たすことで、良好な電気特性を備えた感光体を得ることができる。
 本発明における単層型感光層が含有するバインダー樹脂の含有量を100としたときの、正孔輸送物質の含有量A(質量部)、電子輸送物質の含有量B(質量部)、該正孔輸送物質の分子量a、該電子輸送物質の分子量bは、下記式(1)および式(2)を満たすことが好ましい。
  0.9≦(B/b)/(A/a)≦4.0 (1)
  0.15≦(A/a)+(B/b)    (2)
 (A/a)又は(B/b)は、正孔輸送物質又は電子輸送物質の含有量を分子量で除したものであり、物質量すなわち分子の数量を表す。
 正帯電方式の場合、単層型感光層中の電荷分離によって発生した正孔及び電子を、正孔は導電性支持体側に、電子は感光体表面側に、どちらもバランスよく輸送する必要がある。正孔及び電子の輸送能力は、感光層中の正孔輸送物質及び電子輸送物質の分子の数に比例して高くなると考えられる。
 そのため、電気特性の観点からは、十分な電荷輸送を行うために必要な正孔輸送物質と電子輸送物質の総量には好適な範囲が存在し、また、正孔輸送物質と電子輸送物質の両者には好適な量比の範囲が存在する。
 本発明においては、正孔輸送物質の物質量と電子輸送物質の物質量の比を表す(B/b)/(A/a)を式(1)の範囲とすることで、単層型感光層中で発生する正孔および電子の双方をバランスよく輸送することが可能となる。
 (B/b)/(A/a)が0.9以下の場合、正孔輸送物質に対して電子輸送物質の分子の数量が少ない状態になる。このとき、正孔は導電性支持体側に十分に輸送ができる状態である一方で、電子は輸送を担う分子の数が少ないために感光体表面側への輸送が途中で滞ってしまう。この状態で繰り返し印刷を続けると、感光層中にトラップされた電子、あるいは移動度が遅すぎるために感光層中に取り残される電子の数が増加することで負の空間電荷を形成し、感光層中の電界強度が弱められてしまう。そのため、結局は正孔輸送も滞ってしまう可能性がある。
 一方、(B/b)/(A/a)が4.0以上の場合、電子輸送物質に対して正孔輸送物質の分子の数量が少ない状態になる。このとき、電子は感光体表面側に十分に輸送ができる状態である一方で、正孔は輸送を担う分子の数が少ないために導電性支持体側への輸送が途中で滞ってしまう。この状態で繰り返し印刷を続けると、感光層中にトラップされた正孔、あるいは移動度が遅すぎるために感光層中に取り残される正孔の数が増加することで正の空間電荷を形成し、感光層中の電界強度が弱められてしまう。そのため、結局は電子輸送も滞ってしまう可能性がある。
 すなわち、(B/b)/(A/a)が0.9以上であれば、感光層中の電子輸送性が確保され、また、(B/b)/(A/a)が4.0以下であれば、感光層中の正孔輸送性が確保される傾向にある。
 (B/b)/(A/a)の値は、上記の技術思想の観点から通常0.9以上であり、1.1以上が好ましく、1.3以上がより好ましく、1.5以上がさらに好ましい。また、上記の技術思想の観点から、(B/b)/(A/a)の値は通常4.0以下であり、3.0以下が好ましく、2.5以下がより好ましく、2.2以下がさらに好ましい。単層型感光層中に複数種の正孔輸送物質を含有する場合には、各物質の含有量をそれぞれの分子量で除した値を合計した値を(A/a)とする。同様に、単層型感光層中に複数種の電子輸送剤を含有する場合には、各物質の含有量をそれぞれの分子量で除した値を合計した値を(B/b)とする。
 本発明においては、正孔輸送物質の物質量と電子輸送物質の物質量の和を表す(A/a)+(B/b)の値を式(2)の範囲とすることで、感光層中の電荷輸送に必要な電荷輸送物質の絶対量を確保することができる。
 (A/a)+(B/b)の値は、電気特性の観点から通常0.15以上であり、0.17以上が好ましく、0.20以上がより好ましい。
(バインダー樹脂)
 次に、上記感光層に用いるバインダー樹脂について説明する。上記感光層に用いるバインダー樹脂としては、例えば、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル等のビニル重合体またはその共重合体;ブタジエン樹脂;スチレン樹脂;酢酸ビニル樹脂;塩化ビニル樹脂、アクリル酸エステル樹脂;メタクリル酸エステル樹脂;ビニルアルコール樹脂;エチルビニルエーテル等のビニル化合物の重合体及び共重合体;ポリビニルブチラール樹脂;ポリビニルホルマール樹脂;部分変性ポリビニルアセタール樹脂;ポリアリレート樹脂;ポリアミド樹脂;ポリウレタン樹脂;セルロースエステル樹脂;シリコーン-アルキッド樹脂;ポリ-N-ビニルカルバゾール樹脂;ポリカーボネート樹脂;ポリエステル樹脂;ポリエステルカーボネート樹脂;ポリスルホン樹脂;ポリイミド樹脂;フェノキシ樹脂;エポキシ樹脂;シリコーン樹脂;及びこれらの部分的架橋硬化物が挙げられる。また上記樹脂は珪素試薬等で修飾されていてもよい。またこれらは1種を単独で用いてもよく、また2種以上を任意の比率及び組み合わせで用いることもできる。
 また、特にバインダー樹脂として、界面重合で得られた1種、または2種類以上のポリマーを含有することが好ましい。
 上記界面重合により得られるバインダー樹脂としては、ポリカーボネート樹脂、ポリエステル樹脂が好ましく、特にポリカーボネート樹脂、またはポリアリレート樹脂が好ましい。また、特に芳香族ジオールを原料とするポリマーであることが好ましく、好ましい芳香族ジオール化合物としては、下記式(11)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 上記式(11)中、X111は下記の式のいずれかで表される連結基、または単結合を示す。
Figure JPOXMLDOC01-appb-C000014
 上記式中、R111及びR112は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、置換されていてもよいアリール基、またはハロゲン化アルキル基を示す。Zは、炭素数4~20の置換または非置換の炭素環を示す。
 式(11)中、Y111ないしY118は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20のアルキル基、置換されていてもよいアリール基、または、ハロゲン化アルキル基を示す。
 さらに、下記構造式を有するビスフェノール、またはビフェノール成分が含有されるポリカーボネート樹脂、ポリアリレート樹脂が電子写真感光体の感度及び残留電位の点から好ましく、中でも移動度の面からポリカーボネート樹脂がより好ましい。
 本例示は、趣旨を明確にするために行うものであり、本発明の趣旨に反しない限り、例示される構造に限定されるものではない。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 また特に、本発明の効果を最大限に発揮するためには、下記構造を示すビスフェノール誘導体を含有するポリカーボネートが好ましい。
Figure JPOXMLDOC01-appb-C000017
 また、機械特性向上のためには、ポリエステル、特にポリアリレートを使用することが好ましく、この場合は、ビスフェノール成分として下記構造を有するものを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 また酸成分としては、下記構造を有するものを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000019
 また、テレフタル酸とイソフタル酸を使用する際は、テレフタル酸のモル比が多い方が好ましく、下記構造を有するものを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000020
(その他の物質)
 上記材料以外にも、感光層中には、成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性等を向上させるために周知の酸化防止剤、可塑剤、紫外線吸収剤、電子吸引性化合物、レベリング剤、可視光遮光剤などの添加物を含有させてもよい。また、感光層には必要に応じて増感剤、染料、顔料(但し、前記した電荷発生物質、正孔輸送物質、電子輸送物質であるものを除く)、界面活性剤等の各種添加剤を含んでいてもよい。界面活性剤の例としては、シリコ-ンオイル、フッ素系化合物などが挙げられる。本発明では、これらを適宜、1種単独で、または2種以上を任意の比率及び組み合わせで用いることができる。
 また感光層表面の摩擦抵抗を軽減する目的で、感光層にフッ素系樹脂、シリコーン樹脂等を含んでもよく、これらの樹脂からなる粒子や酸化アルミニウム等の無機化合物の粒子を含有させてもよい。
(酸化防止剤)
 酸化防止剤は、本発明の電子写真感光体の酸化を防止するために用いられる安定剤の一種である。
 酸化防止剤は、ラジカル補足剤としての機能があるものであればよく、具体的には、フェノール誘導体、アミン化合物、ホスホン酸エステル、硫黄化合物、ビタミン、ビタミン誘導体等が挙げられる。
 この中でも、フェノール誘導体、アミン化合物、ビタミン等が好ましい。また、嵩高い置換基をヒドロキシ基近辺に有する、ヒンダードフェノール、またはトリアルキルアミン誘導体等がより好ましい。
 またさらに、ヒドロキシ基のo位にt-ブチル基を有するアリール化合物誘導体、及びヒドロキシ基のo位にt-ブチル基を2つ有するアリール化合物誘導体が特に好ましい。
 また、該酸化防止剤の分子量が大きすぎると、酸化防止能が低下する場合があり、分子量1500以下、特には分子量1000以下の化合物が好ましい。また下限は通常100以上、好ましくは150以上であり、更に好ましくは200以上である。
 上記酸化防止剤の使用量は、特に制限されないが、感光層中のバインダー樹脂100質量部当り0.1質量部以上、好ましくは1質量部以上である。また良好な電気特性および耐刷性を得るため、好ましくは25質量部以下、より好ましくは20質量部以下である。
(電子吸引性化合物)
 また、感光層中には電子吸引性化合物を有してもよい。電子吸引性化合物の例として具体的には、スルホン酸エステル化合物、カルボン酸エステル化合物、有機シアノ化合物、ニトロ化合物、芳香族ハロゲン誘導体等が挙げられ、好ましくは、スルホン酸エステル化合物、有機シアノ化合物であり、特に好ましくはスルホン酸エステル化合物である。上記電子吸引性化合物は1種のみを単独で用いてもよく、また2種以上を任意の比率及び組み合わせで用いてもよい。
 また電子吸引性化合物の電子吸引能力は、LUMOの値(以下、適宜LUMOcalとする)で予見することが可能であると解される。本発明においては、上記の中でも特に、PM3パラメーターを使った半経験的分子軌道計算を用いた構造最適化による(以下これを単に、半経験的分子軌道計算による、と記載する場合がある)LUMOcalの値が0.5以上~5.0eV以下である化合物が好ましく用いられる。LUMOcalの絶対値を0.5eV以上とすることで電子吸引性の効果がより期待でき、5.0eV以下とすることでより良好な帯電が得られる。LUMOcalの絶対値は、より好ましくは、1.0eV以上であり、さらに好ましくは、1.1eV以上であり、特に好ましくは、1.2eV以上である。上記絶対値は、4.5eV以下が好ましく、さらに好ましくは、4.0eV以下であり、特に好ましくは、3.5eV以下である。
 上記LUMOcalの絶対値が上記範囲内とされる化合物としては、以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000021
 本発明における電子写真感光体に用いられる上記電子吸引性化合物の量は、特に制限されないが、上記電子吸引性化合物が感光層に使用される場合、感光層に含まれるバインダー樹脂100質量部当り0.01質量部以上が好ましく、より好ましくは0.05質量部以上である。また良好な電気特性を得るため、通常50質量部以下が好ましく、より好ましくは40質量部以下、さらに好ましくは30質量部以下である。
(単層型感光層の形成方法)
 次に、単層型感光層の形成方法について説明する。上記単層型感光層の形成方法は特に限定されないが、例えば、電荷輸送物質、バインダー樹脂、及びその他の物質を溶媒(または分散媒)に溶解(または分散)した塗布液中に上記電荷発生物質を分散させ、導電性支持体上(後述する下引き層等の中間層を設ける場合は、これらの中間層上)に塗布することにより形成することができる。
 以下、単層型感光層の形成に用いられる溶媒または分散媒、及び塗布方法を説明する。
[溶媒または分散媒]
 感光層の形成に用いられる溶媒または分散媒としては、例えば、メタノール、エタノール、プロパノール、2-メトキシエタノール等のアルコール類;テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン等のエーテル類;ギ酸メチル、酢酸エチル等のエステル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、アニソール等の芳香族炭化水素類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、1,1,1-トリクロロエタン、テトラクロロエタン、1,2-ジクロロプロパン、トリクロロエチレン等の塩素化炭化水素類;n-ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン等の含窒素化合物類;アセトニトリル、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶剤類等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意の比率及び組み合わせで併用して用いてもよい。
[塗布方法]
 単層型感光層を形成するための塗布液の塗布方法としては、例えば、スプレー塗布法、スパイラル塗布法、リング塗布法、浸漬塗布法等が挙げられる。
 スプレー塗布法としては、例えば、エアスプレー、エアレススプレー、静電エアスプレー、静電エアレススプレー、回転霧化式静電スプレー、ホットスプレー、ホットエアレススプレー等がある。均一な膜厚を得るための微粒化度、付着効率等を考えると回転霧化式静電スプレーであって、再公表平1-805198号公報に開示されている搬送方法、すなわち円筒状ワークを回転させながらその軸方向に間隔を開けることなく連続して搬送する方法が好ましい。これにより、総合的に高い付着効率で膜厚の均一性に優れた感光層を得ることができる。
 またスパイラル塗布法としては、例えば、特開昭52-119651号公報に開示されている注液塗布機またはカーテン塗布機を用いた方法、特開平1-231966号公報に開示されている微小開口部から塗料を筋状に連続して飛翔させる方法、特開平3-193161号公報に開示されているマルチノズル体を用いた方法等がある。
 浸漬塗布法では、塗布液または分散液の全固形分濃度を好ましくは5質量%以上、さらに好ましくは10質量%以上とする。また好ましくは50質量%以下、さらに好ましくは35質量%以下とする。
 また、塗布液または分散液の粘度を好ましくは50mPa・s以上、より好ましくは100mPa・s以上とする。また、好ましくは700mPa・s以下、より好ましくは500mPa・s以下とする。これにより膜厚の均一性に優れた感光層とすることができる。
 上記塗布法により塗布膜を形成した後、塗膜を乾燥させるが、必要且つ充分な乾燥が行われる様に乾燥温度時間を調整することが好ましい。乾燥温度は、残留溶媒抑制の観点から、通常80℃以上、好ましくは100℃以上である。また、気泡の発生防止、電気特性の観点から、通常250℃以下、好ましくは170℃以下、さらに好ましくは140℃以下であり、段階的に温度を変更してもよい。乾燥方法としては、熱風乾燥機、蒸気乾燥機、赤外線乾燥機および遠赤外線乾燥機等を用いることができる。
 また、本発明では最表層を設けるため、感光層の塗布後は室温での風乾のみを実施し、最表層塗布後に上記方法での熱乾燥を実施してもよい。
 感光層の厚みは使用される材料などにより適宜最適な厚みが選択されるが、電気特性、耐絶縁破壊性の観点より、5μm以上が好ましく、10μm以上がより好ましく、15μm以上が特に好ましい。また、電気特性の観点より、100μm以下が好ましく、50μm以下がより好ましく、30μm以下が特に好ましい。
<最表層>
 本発明の感光体の最表層は、連鎖重合性官能基を有する化合物を重合させてなる構造を有することを特徴とする。
 連鎖重合性官能基を有する化合物は、耐摩耗性の観点から、連鎖重合性官能基を通常2以上、好ましくは3以上、より好ましくは4以上有し、他方、通常15以下、好ましくは10以下、より好ましくは8以下有する。
 連鎖重合性官能基を有する化合物の連鎖重合性官能基としては、アクリロイル基、メタクリロイル基、ビニル基、エポキシ基が挙げられる。連鎖重合性官能基を有する化合物としては、公知の材料であれば特に限定はされないが、硬化性の観点から、アクリロイル基またはメタクリロイル基を有するモノマー、オリゴマー、ポリマーが好ましい。
 以下に好ましい化合物を例示する。アクリロイル基またはメタクリロイル基を有するモノマーとしては、トリメチロールプロパントリアクリレート(A-TMPT)、トリメチロールプロパントリメタクリレート、HPA変性トリメチロールプロパントリアクリレート、EO変性トリメチロールプロパントリアクリレート、PO変性トリメチロールプロパントリアクリレート、カプロラクトン変性トリメチロールプロパントリアクリレート、HPA変性トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセロールトリアクリレート、ECH変性グリセロールトリアクリレート、EO変性グリセロールトリアクリレート、PO変性グリセロールトリアクリレート、トリス(アクリロキシエチル)イソシアヌレート、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート、EO変性トリス(アクリロキシエチル)イソシアヌレート、PO変性トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート(A-DPH)、カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート、アルキル変性ジペンタエリスリトールテトラアクリレート、アルキル変性ジペンタエリスリトールトリアクリレート、ジメチロールプロパンテトラアクリレート、ペンタエリスリトールエトキシテトラアクリレート、EO変性リン酸トリアクリレート、2,2,5,5,-テトラヒドロキシメチルシクロペンタノンテトラアクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリテトラメチレングリコールジアクリレート、EO変性ビスフェノールAジアクリレート、PO変性ビスフェノールAジアクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、トリシクロデカンジメタノールジアクリレート、デカンジオールジアクリレート、ヘキサンジオールジアクリレート、エチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、EO変性ビスフェノールAジメタクリレート、PO変性ビスフェノールAジメタクリレート、トリシクロデカンジメタノールジメタクリレート、デカンジオールジメタクリレート、ヘキサンジオールジメタクリレート等が挙げられる。
 アクリロイル基またはメタクリロイル基を有するオリゴマー、ポリマーとしては、公知のウレタンアクリレート、エステルアクリレート、アクリルアクリレート、エポキシアクリレート等を使用できる。ウレタンアクリレートとしては、「EBECRYL8301」、「EBECRYL1290」、「EBECRYL1830」、「KRM8200」(ダイセル・オルネクス株式会社)、「UV1700B」、「UV7640B」、「UV7605B」、「UV6300B」、「UV7550B」(三菱ケミカル株式会社)等が挙げられる。エステルアクリレートとしては、「M-7100」、「M-7300K」、「M-8030」、「M-8060」、「M-8100」、「M-8530」、「M-8560」、「M-9050」(東亜合成株式会社)等が挙げられる。アクリルアクリレートとしては、「8BR-600」、「8BR-930MB」、「8KX―078」、「8KX-089」、「8KX-168」(大成ファインケミカル株式会社)等が挙げられる。
 これらは、単独又は2種類以上を併用しても差し支えない。これらの中でも電気特性の観点から、ウレタンアクリレートを含有することが好ましい。
 本発明に係る電子写真感光体の最表層は、連鎖重合性官能基を有する化合物の他に、電荷輸送能を付与する目的で、金属酸化物粒子や電荷輸送物質を含有させてもよい。また、重合反応を促進するため、重合開始剤を含有させてもよい。
 以下に最表層に用いられる材料(金属酸化物粒子、電荷輸送物質、重合開始剤)について詳述する。
(金属酸化物粒子)
 本発明の最表層には電荷輸送能を付与する観点から、また、機械的強度を向上させる観点から、金属酸化物粒子を含有させることが好ましい。
 金属酸化物粒子としては、通常、電子写真感光体に使用可能な如何なる金属酸化物粒子も使用することができる。金属酸化物粒子として、より具体的には、酸化チタン、酸化スズ、酸化アルミニウム、酸化インジウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の1種の金属元素を含む金属酸化物粒子、酸化インジウムスズ、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数の金属元素を含む金属酸化物粒子が挙げられる。これらの中でもバンドギャップが2~4eVの金属酸化物粒子が好ましい。金属酸化物粒子は、一種類の粒子のみを用いてもよいし、複数の種類の粒子を混合して用いてもよい。これらの金属酸化物粒子の中でも、電子輸送性の観点から、酸化チタン、酸化スズ、酸化インジウムスズ、酸化アルミニウム、酸化珪素、酸化亜鉛が好ましく、より好ましくは酸化チタンおよび酸化スズである。特には酸化チタンが好ましい。
 酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルッカイト、アモルファスのいずれも用いることができる。また、これらの結晶状態の異なるものから、複数の結晶状態のものが含まれていてもよい。
 金属酸化物粒子は、その表面に種々の表面処理を行ってもよい。例えば、酸化スズ、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、またはステアリン酸、ポリオール、有機珪素化合物等の有機物による処理を施していてもよい。特に、酸化チタン粒子を用いる場合には、有機珪素化合物により表面処理されていることが好ましい。有機珪素化合物としては、ジメチルポリシロキサン、メチル水素ポリシロキサン等のシリコーンオイル、メチルジメトキシシラン、ジフェニルジジメトキシシラン等のオルガノシラン、ヘキサメチルジシラザン等のシラザン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン等のシランカップリング剤等が挙げられる。特に、最表層の機械的強度を向上させる観点から、連鎖重合性官能基を有する、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン、ビニルトリメトキシシランが好ましい。
 なお、これらの表面処理された粒子の最表面はこのような処理剤で処理されているが、該処理のその前に酸化アルミニウム、酸化珪素または酸化ジルコニウム等の処理剤などで処理されていても構わない。金属酸化物粒子は、一種類の粒子のみを用いてもよいし、複数の種類の粒子を混合して用いてもよい。
 使用する金属酸化物粒子は、通常、平均一次粒子径が500nm以下のものが好ましく用いられ、より好ましくは1nm~100nmのものが用いられ、さらに好ましくは5~50nmのものが用いられる。この平均一次粒子径は、透過型電子顕微鏡(Transmission electron microscope 以下、TEMとも称する)により直接観察される粒子の径の算術平均値によって求めることが可能である。
 本発明に係る金属酸化物粒子のうち、酸化チタン粒子の具体的な商品名としては、表面処理を施していない超微粒子酸化チタン「TTO-55(N)」、「TTO-51(N)」、Al被覆を施した超微粒子酸化チタン「TTO-55(A)」、「TTO-55(B)」、ステアリン酸で表面処理を施した超微粒子酸化チタン「TTO-55(C)」、Alとオルガノシロキサンで表面処理を施した超微粒子酸化チタン「TTO55(S)」、高純度酸化チタン「C-EL」、硫酸法酸化チタン「R-550」、「R-580」、「R-630」、「R-670」、「R-680」、「R-780」、「A-100」、「A-220」、「W-10」、塩素法酸化チタン「CR-50」、「CR-58」、「CR-60」、「CR-60-2」、「CR-67」、導電性酸化チタン「ET-300W」(以上、石原産業株式会社製)や、「R-60」、「A-110」、「A-150」などの酸化チタンをはじめ、Al被覆を施した「SR-1」、「RGL」、「R-5N」、「R-5N-2」、「R-52N」、「RK-1」、「A-SP」、SiO、Al被覆を施した「R-GX」、「R-7E」、ZnO、SiO、Al被覆を施した「R-650」、ZrO、Al被覆を施した「R-61N」(以上、堺化学工業株式会社製)、また、SiO、Alで表面処理された「TR-700」、ZnO、SiO、Alで表面処理された「TR-840」、「TA-500」の他、「TA-100」、「TA-200」、「TA-300」など表面未処理の酸化チタン、Alで表面処理を施した「TA-400」(以上、富士チタン工業株式会社製)、表面処理を施していない「MT-150W」、「MT-500B」、SiO、Alで表面処理された「MT-100SA」、「MT-500SA」、SiO,Alとオルガノシロキサンで表面処理された「MT-100SAS」、「MT-500SAS」(テイカ株式会社製)等が挙げられる。
 また、酸化アルミニウム粒子の具体的な商品名としては、「Aluminium Oxide C」(日本アエロジル社製)等が挙げられる。
 また、酸化珪素粒子の具体的な商品名としては、「200CF」、「R972」(日本アエロジル社製)、「KEP-30」(日本触媒株式会社製)等が挙げられる。
 また、酸化スズ粒子の具体的な商品名としては、「SN-100P」、「SN-100D」(石原産業株式会社製)、「SnO」(CIKナノテック株式会社製)、「S-2000」、リンドープ酸化スズ「SP-2」、アンチモンドープ酸化スズ「T-1」、インジウムドープ酸化スズ「E-ITO」(三菱マテリアル株式会社)等が挙げられる。
 酸化亜鉛粒子の具体的な商品名としては「MZ-305S」(テイカ株式会社製)が挙げられるが、本発明において使用可能な金属酸化物粒子は、これらに限定されるものではない。
 本発明に係る電子写真感光体の最表層中での金属酸化物粒子の含有量は特に限定されないが、電気特性の観点から、バインダー樹脂100質量部に対して、好ましくは10質量部以上、より好ましくは、20質量部以上、特に好ましくは30質量部以上である。また、表面抵抗を良好に保持する観点から、好ましくは300質量部以下、より好ましくは200質量部以下、特に好ましくは120質量部以下である。
(電荷輸送物質)
 最表層に含有させる電荷輸送物質は、前記感光層に用いられる電荷輸送物質と同様のものを用いることができる。
 また、感光体表面のマルテンス硬さを向上させる観点から、連鎖重合性官能基を有する電荷輸送物質を重合させてなる構造を含有させてもよい。連鎖重合性官能基を有する電荷輸送物質の連鎖重合性官能基としては、アクリロイル基、メタクリロイル基、ビニル基及びエポキシ基が挙げられる。この中でも硬化性の観点から、アクリロイル基またはメタクリロイル基が好ましい。連鎖重合性官能基を有する電荷輸送物質の電荷輸送物質部分の構造としては、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、オキサゾール誘導体、ピラゾール誘導体、チアジアゾール誘導体、ベンゾフラン誘導体等の複素環化合物、アニリン誘導体、ヒドラゾン誘導体、芳香族アミン誘導体、アリールアミン誘導体、スチルベン誘導体、ブタジエン誘導体及びエナミン誘導体並びにこれらの化合物の複数種が結合したもの、及びこれらの化合物からなる基を主鎖若しくは側鎖に有する重合体等の電子供与性物質が挙げられる。これらの中でも、電気特性の観点から、カルバゾール誘導体、芳香族アミン誘導体、アリールアミン誘導体、スチルベン誘導体、ブタジエン誘導体及びエナミン誘導体並びにこれらの化合物の複数種が結合したものが好ましい。
 前記電荷輸送能を有する部分構造としては、下記式(4)で表される構造が好ましい。
Figure JPOXMLDOC01-appb-C000022
 式(4)中、Ar41~Ar43は芳香族基である。R41~R43はそれぞれ独立に、水素原子、アルキル基、アルコキシ基、アリール基、ハロゲン化アルキル基、ハロゲン基、ベンジル基または下記式(5)である。n41~n43は1以上の整数である。ただし、n41が1の場合、R41は式(5)であり、n41が2以上の整数の場合、R41はそれぞれ同一であっても異なってもよいが少なくとも1つは式(5)である。n42が2以上の整数の場合、R42はそれぞれ同一であっても異なってもよく、n43が2以上の整数の場合、R43はそれぞれ同一であっても異なってもよい。
Figure JPOXMLDOC01-appb-C000023
 式(5)中、R51は水素原子またはメチル基を表し、R52、R53はそれぞれ独立に、水素原子、炭化水素基またはアルコキシ基を表し、R54は単結合または酸素原子を表し、n51は、0以上10以下の整数を表す。*はAr41~Ar43との結合手を示し、**は任意の原子との結合手を示す。
 式(4)中、Ar41~Ar43は芳香族基であり、1価の芳香族基としては、フェニル基、ナフチル基、アントラセニル基、フェナトレニル基、ピレン基、ビフェニル基及びフルオレン基が挙げられる。この中でも、溶解性や光硬化性の観点から、フェニル基が好ましい。2価の芳香族基としては、フェニレン基、ナフチレン基、アントリレン基、フェナントリレン基、ピレニレン基及びビフェニレン基が挙げられる。この中でも、溶解性や光硬化性の観点から、フェニレン基が好ましい。
 R41~R43はそれぞれ独立に、水素原子、アルキル基、アルコキシ基、アリール基、ハロゲン化アルキル基、ハロゲン基、ベンジル基または前記式(5)である。このうち、アルキル基、アルコキシ基、ハロゲン化アルキル基の炭素数は、通常1以上、一方通常10以下、好ましくは8以下、より好ましくは6以下、更に好ましくは4以下である。アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、イソブチル基、シクロヘキシル基等が挙げられる。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、シクロヘキソキシ基等が挙げられる。ハロゲン化アルキル基としては、クロロアルキル基、フルオロアルキル基等が挙げられる。ハロゲン基としては、フルオロ基、クロロ基、ブロモ基等が挙げられる。より好ましくはメチル基、エチル基、フェニル基である。
 n41~n43は1以上の整数であり、通常1以上、通常5以下、好ましくは3以下であり、1が最も好ましい。ただし、n41が1の場合、R41は式(5)であり、n41が2以上の整数の場合、R41はそれぞれ同一であっても異なってもよいが少なくとも1つは式(5)である。n42が2以上の整数の場合、R42はそれぞれ同一であっても異なってもよく、n43が2以上の整数の場合、R43はそれぞれ同一であっても異なってもよい。硬化膜の強度の観点から、n41~n43が1であり、R41が式(5)かつR42とR43のどちらか一方が式(5)である場合、または、n41~n43が1であり、R41~R43が式(5)である場合が好ましく、溶解性の観点から、n41~n43が1であり、R41が式(5)かつR42とR43のどちらか一方が式(5)である場合がより好ましい。
 R52、R53は、上記R22、R23と同等のものが挙げられる。
 n51は、0以上10以下の整数であり、通常0以上、通常10以下、好ましくは6以下、より好ましくは4以下であり、更に好ましくは3以下である。
 前記式(4)で表される構造を有する重合体の原料に特に制限はないが、下記式(4´)で表される構造を有する化合物を重合して得ることが好ましい。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 式(5´)中、R51は水素原子またはメチル基を表し、R52、R53はそれぞれ独立に、水素原子、炭化水素基またはアルコキシ基を表し、R54は単結合または酸素原子を表し、n51は、0以上10以下の整数を表す。*はAr41~Ar43との結合手を示す。
 以下に、式(4´)で表される構造を有する化合物を例示する。
Figure JPOXMLDOC01-appb-C000026
 上記の化合物の中でも、電気特性の点から、式(4-1)、式(4-2)、式(4-3)、式(4-4)、式(4-6)、式(4-7)が好ましく、式(4-1)、式(4-2)、式(4-3)がより好ましい。
 本発明に係る電子写真感光体の最表層中での電荷輸送物質の使用量は特に限定されないが、電気特性の観点から、バインダー樹脂100質量部に対して、好ましくは10質量部以上、より好ましくは、30質量部以上、特に好ましくは50質量部以上である。また、表面抵抗を良好に保持する観点から、好ましくは300質量部以下、より好ましくは20質量部以下、特に好ましくは150質量部以下である。
(重合開始剤)
 重合開始剤には、熱重合開始剤、光重合開始剤等が含まれる。
 熱重合開始剤としては、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、t-ブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、ラウロイルパーオキサイドなどの過酸化物系化合物、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(シクロヘキサンカルボニトリル)、2,2’-アゾビス(イソ酪酸メチル)、2,2’-アゾビス(イソブチルアミジン塩酸塩)、4,4’-アゾビス-4-シアノ吉草酸などのアゾ系化合物が挙げられる。
 光重合開始剤は、ラジカル発生機構の違いにより、直接開裂型と水素引き抜き型に分類できる。直接開裂型の光重合開始剤は、光エネルギーを吸収すると、分子内の共有結合の一部が開裂することでラジカルを発生する。一方、水素引き抜き型の光重合開始剤は、光エネルギーを吸収することで励起状態となった分子が、水素供与体から水素を引き抜くことでラジカルを発生する。
 直接開裂型の光重合開始剤としては、アセトフェノン、2-ベンゾイル-2-プロパノール、1-ベンゾイルシクロヘキサノール、2,2-ジエトキシアセトフェノン、ベンジルジメチルケタール、2-メチル-4’-(メチルチオ)-2-モルフォリノプロピオフェノン、などのアセトフェノン系またはケタール系化合物、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、O-トシルベンゾイン、などのベンゾインエーテル系化合物、ジフェニル(2,4,6-トリメチルベンゾイル)フォスフィンオキサイド、フェニルビス(2,4,6-トリメチルベンゾイル)フォスフィンオキサイド、リチウムフェニル(2,4,6-トリメチルベンゾイル)フォスフォネート、などのアシルフォスフィンオキサイド系化合物が挙げられる。
 水素引き抜き型の光重合開始剤としては、ベンゾフェノン、4-ベンゾイル安息香酸、2-ベンゾイル安息香酸、2-ベンゾイル安息香酸メチル、ベンゾイルぎ酸メチル、ベンジル、p-アニシル、2-ベンゾイルナフタレン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ジクロロベンゾフェノン、1,4-ジベンゾイルベンゼン、などのベンゾフェノン系化合物、2-エチルアントラキノン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、などのアントラキノン系またはチオキサントン系化合物等が挙げられる。その他の光重合開始剤としては、カンファーキノン、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、アクリジン系化合物、トリアジン系化合物、イミダゾール系化合物が挙げられる。
 光重合開始剤は、効率的に光エネルギーを吸収してラジカルを発生させるために、光照射に用いられる光源の波長領域に、吸収波長を有することが好ましい。一方、最表層に含まれる化合物の内、光重合開始剤以外の成分が、この波長領域に吸収を持つ場合、光重合開始剤が十分な光エネルギーを吸収できず、ラジカル発生効率が低下する場合がある。一般的なバインダー樹脂や電荷輸送物質、金属酸化物粒子は、紫外域(UV)に吸収波長を有するため、光照射に用いる光源が紫外光(UV)である場合には特に、この効果が顕著である。このような不具合を防止する観点から、光重合開始剤の中でも比較的長波長側に吸収波長を有する、アシルフォスフィンオキサイド系化合物を含有することが好ましい。また、アシルフォスフィンオキサイド系化合物は、自己開裂により吸収波長領域が低波長側に変化する、フォトブリーチ効果を有するため、最表層内部まで光を透過させることができ、内部硬化性が良好である点からも好ましい。この場合、最表層表面の硬化性を補う観点から、水素引き抜き型開始剤を併用することがさらに好ましい。アシルフォスフィンオキサイド系化合物に対する水素引き抜き型開始剤の含有割合は特に限定されるものではないが、表面硬化性を補う観点から、アシルフォスフィンオキサイド系化合物1質量部に対し、0.1質量部以上が好ましく、内部硬化性を維持する観点から、5質量部以下が好ましい。
 また、光重合促進効果を有するものを単独または上記光重合開始剤と併用して用いることもできる。例えば、トリエタノールアミン、メチルジエタノールアミン、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、安息香酸(2-ジメチルアミノ)エチル、4,4’-ジメチルアミノベンゾフェノン、などが挙げられる。
 これらの重合開始剤は1種又は2種以上を混合して用いてもよい。重合開始剤の含有量は、ラジカル重合性を有する総含有物100質量部に対し、0.5~40質量部、好ましくは1~20質量部である。
(最表層の形成方法)
 次に、最表層の形成方法について説明する。上記最表層の形成方法は特に限定されないが、例えば、連鎖重合性官能基を有する化合物、電荷輸送物質、金属酸化物粒子、及びその他の物質を溶媒に溶解した塗布液または分散媒に分散した塗布液を塗布することにより形成することができる。
 以下、最表層の形成に用いられる溶媒または分散媒、及び塗布方法を説明する。
[最表層形成用塗布液に用いる溶媒]
 本発明の最表層形成用塗布液に用いる有機溶媒としては、本発明に係る物質を溶解することができる有機溶媒であれば、どのようなものでも使用することができる。具体的には、メタノール、エタノール、プロパノール、2-メトキシエタノール等のアルコール類;テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン等のエーテル類;ギ酸メチル、酢酸エチル等のエステル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、アニソール等の芳香族炭化水素類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、1,1,1-トリクロロエタン、テトラクロロエタン、1,2-ジクロロプロパン、トリクロロエチレン等の塩素化炭化水素類;n-ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン等の含窒素化合物類;アセトニトリル、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶剤類等が挙げられる。これらの中から任意の組み合わせ及び任意の割合の混合溶媒を用いることもできる。また、単独では本発明に係る最表層用の物質を溶解しない有機溶媒であっても、例えば、上記の有機溶媒との混合溶媒とすることで溶解可能であれば、使用することができる。一般に、混合溶媒を用いた方が塗布ムラを少なくすることができる。後述の塗布方法において浸漬塗布法を用いる場合、下層を溶解しない溶媒を選択することが好ましい。この観点から、感光層に好適に用いられるポリカーボネート、ポリアリレートへの溶解性が低い、アルコール類を含有させることが好ましい。
 本発明の最表層形成用塗布液に用いる有機溶媒と、固形分の量比は、最表層形成用塗布液の塗布方法により異なり、適用する塗布方法において均一な塗膜が形成されるように適宜変更して用いればよい。
[塗布方法]
 最表層を形成するための塗布液の塗布方法は特に限定されず、例えば、スプレー塗布法、スパイラル塗布法、リング塗布法、浸漬塗布法等が挙げられる。
 上記塗布法により塗布膜を形成した後、塗膜を乾燥させるが、必要且つ充分な乾燥が得られれば温度、時間は問わない。ただし、感光層塗布後に風乾のみで最表層の塗布を行った場合は、前述の感光層の[塗布方法]に記載の方法で、充分な乾燥を行うことが好ましい。
 最表層の厚みは使用される材料などにより適宜最適な厚みが選択されるが、寿命の観点より、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.5μm以上が特に好ましい。電気特性の観点より、10μm以下が好ましく、5μm以下がより好ましく、3μm以下が特に好ましい。
[最表層の硬化方法]
 該最表層は、かかる塗工液を塗布後、外部からエネルギーを与え硬化させて形成するものである。このとき用いられる外部エネルギーとしては熱、光、放射線がある。熱のエネルギーを加える方法としては、空気、窒素などの気体、蒸気、あるいは各種熱媒体、赤外線、電磁波を用い塗工表面側あるいは支持体側から加熱することによって行なわれる。加熱温度は100℃以上、170℃以下が好ましく、前記下限温度以上では、充分な反応速度となり、完全に反応が進行する。前記上限温度以下では、反応が均一に進行し最表層中に大きな歪みが発生するのを抑制できる。硬化反応を均一に進めるために、100℃未満の比較的低温で加熱後、さらに100℃以上に加温し反応を完結させる方法も有効である。
 光のエネルギーとしては主に紫外光(UV)に発光波長をもつ高圧水銀灯やメタルハライドランプ、無電極ランプバルブ、発光ダイオードなどのUV照射光源が利用できるが、連鎖重合性化合物や光重合開始剤の吸収波長に合わせ可視光光源の選択も可能である。光照射量は、硬化性の観点から0.1J/cm以上が好ましく、0.5J/cm以上がさらに好ましく、1J/cm以上が特に好ましい。また、電気特性の観点から、150J/cm以下が好ましく、100J/cm以下がさらに好ましく、50J/cm以下が特に好ましい。
 放射線のエネルギーとしては電子線(EB)を用いるものが挙げられる。
 これらのエネルギーの中で、反応速度制御の容易さ、装置の簡便さ、ポッドライフの長さの観点から、光のエネルギーを用いたものが好ましい。
 該最表層を硬化した後、残留応力の緩和、残留ラジカルの緩和、電気特性改良の観点から、加熱工程を加えてもよい。加熱温度としては、好ましくは60℃以上、より好ましくは100℃以上であり、好ましくは200℃以下、より好ましくは150℃以下である。
[感光体表面のマルテンス硬さ]
 本発明においては、例えば、単層型感光層が式(1)および式(2)を同時に満たすことで、電荷輸送に十分な数の正孔輸送物質及び電子輸送物質を確保することができ、良好な電気特性を備えた感光体を得ることができるが、一方で、単層型感光層中において、正孔輸送物質ないし電子輸送物質の分子の数がそこまで多くなると、バインダー樹脂の高分子鎖の隙間に入り込む分子の数が多くなるため、高分子鎖同士の絡み合いが阻害され、結果として分子が高分子鎖の間を通り抜けて感光層表面に濃化しやすくなる。
 しかしながら、本発明者らは、感光体表面のマルテンス硬さを345N/mm以上とすることで、感光層と最表層との間で良好な接着性を維持することができることを見出した。また、感光層中の正孔輸送物質及び電子輸送物質の含有量を増量しても、感光体表面のマルテンス硬さを350N/mm以上とすることで、同様の効果が得られることを見出した。
 この理由については鋭意検討中であるが、感光体表面のマルテンス硬さを345N/mm以上とすることで、最表層に含まれる硬化樹脂が十分な機械的強度を持つことが可能となり、単層型感光層との界面においてアンカー効果を十分に働かせることができるため、接着性が向上するものと推察する。より具体的には、感光体表面のマルテンス硬さが345N/mmより小さいと、最表層と単層型感光層との界面が柔らかく、界面での両層の食い込みが弱いため、アンカー効果が弱くなり、両層の接着性が悪くなると考えられる。一方で、感光体表面のマルテンス硬さが345N/mm以上であると、最表層と単層型感光層との界面が硬く、界面での両層の食い込みが強いため、アンカー効果が強くなり、両層の接着性が良好となると考えられる。また、感光体表面のマルテンス硬さが345N/mmより小さいと、最表層と単層型感光層との界面の接着性が悪く、界面での電荷の受け渡しが行いづらくなるため、単層型感光層から最表層への電荷輸送が阻害され、電気特性が悪化すると考えられる。一方、感光体表面のマルテンス硬さが345N/mm以上であると、最表層と単層型感光層との界面の接着性が良好となり、界面での電荷の受け渡しをスムーズに行えるため、単層型感光層から最表層への電荷輸送が滞りなく行われ、電気特性が良好になると考えられる。
 感光体表面のマルテンス硬さは、接着性の観点から、350N/mm以上が好ましく、370N/mm以上がより好ましく、390N/mm以上がさらに好ましい。感光体表面のマルテンス硬さは、残留応力、クラックの発生を抑制する観点から、600N/mm以下が好ましく、500N/mm以下がより好ましい。
 感光体表面のマルテンス硬さは、Fischer社製微小硬度計FISCHERSCOPEHM2000を用いて測定することができる。測定は、感光体表面の任意の箇所について、温度25℃、相対湿度50%の環境下で、対面角136°のビッカース四角錐ダイヤモンド圧子を用い、測定条件は以下の通りに設定して行い、圧子にかかる荷重とその荷重下における押し込み深さとを連続的に読み取り、それぞれY軸、X軸にプロットした図1に示すようなプロファイルを取得する。
・測定条件
最大押込み加重 0.2mN
負荷所要時間 10秒
除荷所要時間 10秒
 マルテンス硬さは、その時の押込み深さから以下の式により定義される値である。
 マルテンス硬さ(N/mm)=試験荷重(N)/試験荷重下でのビッカース圧子の表面積(mm
<下引き層>
 本発明の電子写真感光体は、上記感光層と導電性支持体との間に下引き層を有していてもよい。
 下引き層としては、例えば、樹脂、樹脂に有機顔料や金属酸化物等の粒子を分散したもの等が用いられる。下引き層に用いる有機顔料の例としては、フタロシアニン顔料、アゾ顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、アントアントロン顔料、ベンズイミダゾール顔料などが挙げられる。中でも、フタロシアニン顔料、アゾ顔料、具体的には、前述した電荷発生物質として用いる場合のフタロシアニン顔料やアゾ顔料が挙げられる。
 下引き層に用いる金属酸化物粒子の例としては、酸化チタン、酸化アルミニウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の1種の金属元素を含む金属酸化物粒子、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数の金属元素を含む金属酸化物粒子が挙げられる。下引き層には、上記1種類の粒子のみを用いてもよく、複数の種類の粒子を任意の比率及び組み合わせで混合して用いてもよい。
 上記金属酸化物粒子の中でも、酸化チタンおよび酸化アルミニウムが好ましく、特に酸化チタンが好ましい。なお、酸化チタン粒子は、例えば、その表面が酸化錫、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、またはステアリン酸、ポリオール、シリコーン等の有機物等によって処理されていてもよい。また酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルッカイト、アモルファスのいずれも用いることができる。また複数の結晶状態のものが含まれていてもよい。
 下引き層に用いられる金属酸化物粒子の粒径としては、特に限定されないが、下引き層の特性、および下引き層を形成するための溶液の安定性の面から、平均一次粒径として10nm以上であることが好ましく、また100nm以下、より好ましくは50nm以下である。
 ここで、下引き層は粒子をバインダー樹脂に分散した形で形成することが望ましい。下引き層に用いられるバインダー樹脂としては、例えば、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールや、アセタール等で変性された部分アセタール化ポリビニルブチラール樹脂等のポリビニルアセタール系樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、変性エーテル系ポリエステル樹脂、フェノキシ樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、ポリビニルピリジン樹脂、セルロース系樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコーン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、カゼインや、塩化ビニル-酢酸ビニル共重合体、ヒドロキシ変性塩化ビニル-酢酸ビニル共重合体、カルボキシル変性塩化ビニル-酢酸ビニル共重合体、塩化ビニル-酢酸ビニル-無水マレイン酸共重合体等の塩化ビニル-酢酸ビニル系共重合体、スチレン-ブタジエン共重合体、塩化ビニリデン-アクリロニトリル共重合体、スチレン-アルキッド樹脂、シリコーン-アルキッド樹脂、フェノール-ホルミアルデヒド樹脂等の絶縁性樹脂や、ポリ-Nビニルカルバゾール、ポリビニルアントラセン、ポリビニルペリレン等の有機光導電性ポリマーの中から選択し、用いることができるが、これらポリマーに限定されるものではない。また、これら結着樹脂は単独で用いても、2種類以上を混合して用いてもよく、硬化剤とともに硬化した形でも使用してもよい。なかでも、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールや、アセタール等で変性された部分アセタール化ポリビニルブチラール樹脂当のポリビニルアセタール系樹脂や、アルコール可溶性の共重合ポリアミド、変性ポリアミド等が良好な分散性及び塗布性を示すことから好ましい。
 上記バインダー樹脂に対する粒子の混合比は任意に選べるが、10質量%から500質量%の範囲で使用することが、分散液の安定性及び塗布性の面で好ましい。また下引き層の膜厚は、任意に選ぶことができるが、電子写真感光体の特性、および上記分散液の塗布性から通常0.1μm以上、20μm以下とすることが好ましい。また下引き層には、公知の酸化防止剤等を含んでいてもよい。
<その他の層>
 また本発明の電子写真感光体は、上述した導電性支持体、感光層、最表層及び下引き層以外に必要に応じて適宜他の層を有していてもよい。
 以下、実施例を示して本発明の実施の形態をさらに具体的に説明する。ただし、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその要旨を逸脱しない限り、以下に示した実施例に限定されるものではなく任意に変形して実施することができる。また、以下の実施例、及び比較例中の「部」の記載は、特に指定しない限り「質量部」を示す。
[実施例1]
<単層型感光体の作製>
 以下の手順により、単層型感光体を作製した。
(下引き層の形成)
 CuKα線を用いた粉末X線回折において、回折角2θ±0.2°が27.3°に明瞭なピークを示すD型チタニルフタロシアニン20部と、1,2-ジメトキシエタン280部を混合し、サンドグラインドミルで2時間粉砕して分散液を得た。続いて、前記分散液に、ポリビニルブチラール(電気化学工業(株)製、商品名「デンカブチラール」#6000C)の2.5%1,2-ジメトキシエタン溶液400部と、170部の1,2-ジメトキシエタンを混合して下引き層用塗布液を作製した。この塗布液を、厚さ0.3mmのアルミ板(導電性支持体)上に、乾燥後の膜厚が0.4μmとなるようにワイヤーバーで塗布、風乾して下引き層を形成した。
(単層型感光層の形成)
 CuKα線を用いた粉末X線回折において、回折角2θ±0.2°が27.3°に明瞭なピークを示すD型チタニルフタロシアニンを2.6部、下記構造のペリレン顔料1を1.3部、前述の正孔輸送物質(HTM48)を60部、電子輸送物質(ET-2)を50部、下記のバインダー樹脂1を100部、レベリング剤としてシリコーンオイル(信越シリコーン社製:商品名KF-96)を0.05部を、テトラヒドロフラン(以下適宜THFと略)とトルエン(以下適宜TLと略)の混合溶媒(THF80質量%、TL20質量%)974部と混合し、単層型感光層用塗布液を作製した。この塗布液を、上記下引き層上に、乾燥後の膜厚が約20μmになるようにバーコーターで塗布し、100℃で20分間乾燥させ、単層型感光層を形成した。
Figure JPOXMLDOC01-appb-C000027
(最表層の形成)
 ウレタンアクリレートUV7600B(三菱ケミカル株式会社)を100部、粒子に対し7質量%の3-メタクリロイルオキシプロピルトリメトキシシランで表面処理した酸化チタン粒子を55部(TTO55N、石原産業株式会社)、光重合開始剤として、ベンゾフェノンを1部、ジフェニル(2,4,6-トリメチルベンゾイル)フォスフィンオキサイドを2部を、メタノール、1-プロパノール、トルエンの混合溶媒(メタノール 70質量%、1-プロパノール 10質量%、トルエン 20質量%)745部と混合し、最表層用塗布液を作製した。この塗布液を、上記単層型感光層上に、硬化後の膜厚が1μmになるようにワイヤーバーで塗布し、125℃で20分加熱した。この塗膜の表面側から、波長385nmにピークを有するUV-LEDランプを搭載したUV光照射装置を用いて、積算光量25.5J/cmとなるようにUV光を照射した。さらに、125℃で10分間加熱した後、25℃まで放冷し、最表層を形成した。
[実施例2~21、比較例1~7]
 単層型感光層に用いた正孔輸送物質および電子輸送物質とその含有量、また、最表層に用いた連鎖重合性官能基を有する化合物を表1,2のとおりとした他は、実施例1と同様の手順により、実施例2~21および比較例1~7の感光体を作成した。
<電気特性試験>
 川口電気社製EPA8200を使用し、実施例、比較例で得られた感光体を、スコロトロン帯電器に+30μAの電流を印可して正極性に帯電させ、その表面電位をV0(+V)とした。帯電させた感光体に、ハロゲンランプの光に780nm単色光フィルターを通して55nwの単色光とした光を10秒間照射した。この時の表面電位を残留電位Vr(+V)とし、表面電位がV0からV0の半値に減衰する半減露光量を感度E1/2(μJ/cm)とした。さらに、帯電させたのち暗所で5秒間放置した後の表面電位の保持率をDDR-5(%)とした。測定環境は、温度25℃、相対湿度50%で行なった。Vrの絶対値が小さい方が、残留電位が小さく電気特性が良好な感光体であることを示す。また、E1/2の絶対値が小さい方が、光に対する感度が良好な感光体であることを示す。結果を表1,2に示す。
<感光体表面のマルテンス硬さ>
 感光体表面のマルテンス硬さ、弾性変形率を、Fischer社製微小硬度計FISCHERSCOPE HM2000を用いて、温度25℃、相対湿度50%の環境下で測定した。測定には対面角136°のビッカース四角錐ダイヤモンド圧子を用いた。測定条件は以下の通りに設定して行い、圧子にかかる荷重とその荷重下における押し込み深さとを連続的に読み取り、それぞれY軸、X軸にプロットした図1に示すようなプロファイルを取得した。圧子に負荷をかけることで、図1中のAからBへ移行し、負荷を除くことで図1中のBからCへ移行する。結果を表1,2に示す。
・測定条件
最大押込み加重 0.2mN
負荷所要時間 10秒
除荷所要時間 10秒
 マルテンス硬さは、その時の押込み深さから以下の式により定義される値である。
 マルテンス硬さ(N/mm)=試験荷重(N)/試験荷重下でのビッカース圧子の表面積(mm
 弾性変形率は下記式により定義される値であり、押し込みに要した全仕事量に対して、除荷の際に膜が弾性によって行う仕事の割合である。
  弾性変形率(%)=(We/Wt)×100
 上記式中、全仕事量Wt(nJ)は図1中のA-B-D-Aで囲まれる面積を示し、弾性変形仕事量We(nJ)はC-B-D-Cで囲まれる面積を示す。弾性変形率が大きいほど、負荷に対する変形が残留しにくく、弾性変形率が100の場合には変形が残らないことを意味する。
<接着性試験>
 実施例及び比較例で作製した単層型感光体上に、NTカッター(エヌティー社製)を用いて、2mm間隔で縦に6本、横に6本切り込みを入れ、5×5の25マスを作製した。その上からセロハンテープ(3M社製)を密着して貼り付け、接着面に対し90゜に引き上げることで、感光層と最表層の接着性を試験した。感光層上に残留した最表層のマス数の割合を残存率として評価した。残存したマス数が多いほど残存率は高く、接着性は良好である。なお、いずれの試験においても、支持体であるアルミ板と感光層との間に剥離は見られず、剥離した場合はすべて感光層と最表層との界面付近で剥離した。結果を表1,2に示す。
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
<測定結果>
 表1,2に示した結果から、最表層が連鎖重合性官能基を有する化合物を重合させてなる構造を含有し、感光体表面のマルテンス硬さが345N/mm以上である場合に、残留電位Vrが小さく、接着性試験において残存したマス数も多くなっていることが分かる。すなわち、電気特性、機械的特性及び感光層と最表層間の接着性に優れた感光体となっていることが分かる。これに対し、比較例では感光体表面のマルテンス硬度が低いため、残留電位Vrが大きいか、或いは接着性試験の結果が悪いことが分かる。

Claims (14)

  1.  導電性支持体上に、少なくとも感光層と最表層を有する正帯電電子写真感光体であって、
     該感光層が、少なくともバインダー樹脂、電荷発生物質、正孔輸送物質及び電子輸送物質を含有する単層であり、
     該最表層が連鎖重合性官能基を有する化合物を重合させてなる構造を有し、該感光体表面のマルテンス硬さが345N/mm以上である電子写真感光体。
  2.  前記感光層が下記式(1)を満たすことを特徴とする請求項1に記載の電子写真感光体。
      0.9≦(B/b)/(A/a)≦4.0 (1)
    (式(1)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、aは正孔輸送物質の分子量、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)、bは電子輸送物質の分子量)
  3.  前記感光層が下記式(2)を満たすことを特徴とする請求項1又は2に記載の電子写真感光体。
      0.15≦(A/a)+(B/b)    (2)
    (式(2)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、aは正孔輸送物質の分子量、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)、bは電子輸送物質の分子量)
  4.  導電性支持体上に、少なくとも感光層と最表層を有する正帯電電子写真感光体であって、該感光層が、少なくともバインダー樹脂、電荷発生物質、正孔輸送物質及び電子輸送物質を含有する単層であり、該感光層が下記式(1)および式(2)を満たし、該最表層が連鎖重合性官能基を有する化合物を重合させてなる構造を有し、該感光体表面のマルテンス硬さが350N/mm以上である電子写真感光体。
      0.9≦(B/b)/(A/a)≦4.0 (1)
      0.15≦(A/a)+(B/b)    (2)
    (式(1)および式(2)中、Aはバインダー樹脂の含有量100に対する正孔輸送物質の含有量(質量部)、aは正孔輸送物質の分子量、Bはバインダー樹脂の含有量100に対する電子輸送物質の含有量(質量部)、bは電子輸送物質の分子量)
  5.  前記最表層が金属酸化物微粒子を含有することを特徴とする請求項1~4のいずれか1項に記載の電子写真感光体。
  6.  前記金属酸化物微粒子が、重合性官能基を有する表面処理剤で表面処理されていることを特徴とする請求項5に記載の電子写真感光体。
  7.  前記感光層が、分子量が700以上である正孔輸送物質を含有することを特徴とする請求項1~6のいずれか1項に記載の電子写真感光体。
  8.  前記連鎖重合性官能基を有する化合物が、連鎖重合性官能基を2以上有する化合物を含むことを特徴とする請求項1~7のいずれか1項に記載の電子写真感光体。
  9.  前記連鎖重合性官能基を有する化合物がアクリロイル基又はメタクリロイル基を有する化合物を含むことを特徴とする請求項1~8のいずれか1項に記載の電子写真感光体。
  10.  前記連鎖重合性官能基を有する化合物がウレタンアクリレートを含むことを特徴とする請求項1~9のいずれか1項に記載の電子写真感光体。
  11.  前記感光層が、分子量が400以上である電子輸送物質を含有することを特徴とする請求項1~10のいずれか1項に記載の電子写真感光体。
  12.  前記感光層が含有する電子輸送物質が、下記式(6)で表される構造であることを特徴とする、請求項1~11のいずれか1項に記載の電子写真感光体。
    Figure JPOXMLDOC01-appb-C000001
    (式(6)中、R61~R64はそれぞれ独立して、水素原子、置換されていてもよい炭素数1以上20以下のアルキル基、又は置換されていてもよい炭素数2以上20以下のアルケニル基を表し、R61とR62同士、またはR63とR64同士は互いに結合して環状構造を形成してもよい。Xは分子量120以上250以下の有機残基を表す。)
  13.  請求項1~12のいずれか1項に記載の電子写真感光体を有する電子写真感光体カートリッジ。
  14.  請求項1~12のいずれか1項に記載の電子写真感光体を有する画像形成装置。
PCT/JP2021/012110 2020-03-25 2021-03-24 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置 WO2021193678A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022510578A JPWO2021193678A1 (ja) 2020-03-25 2021-03-24
CN202180023763.6A CN115335776A (zh) 2020-03-25 2021-03-24 电子照相感光体、电子照相感光体盒和图像形成装置
US17/950,818 US20230068130A1 (en) 2020-03-25 2022-09-22 Electrophotographic Photoreceptor, Electrophotographic Photoreceptor Cartridge, and Image Formation Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020054603 2020-03-25
JP2020-054603 2020-03-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/950,818 Continuation US20230068130A1 (en) 2020-03-25 2022-09-22 Electrophotographic Photoreceptor, Electrophotographic Photoreceptor Cartridge, and Image Formation Device

Publications (1)

Publication Number Publication Date
WO2021193678A1 true WO2021193678A1 (ja) 2021-09-30

Family

ID=77890687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012110 WO2021193678A1 (ja) 2020-03-25 2021-03-24 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置

Country Status (4)

Country Link
US (1) US20230068130A1 (ja)
JP (1) JPWO2021193678A1 (ja)
CN (1) CN115335776A (ja)
WO (1) WO2021193678A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085677A1 (ja) * 2020-10-20 2022-04-28 三菱ケミカル株式会社 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083094A (ja) * 1996-07-09 1998-03-31 Canon Inc 電子写真感光体、この電子写真感光体を用いた電子写真装置及びプロセスカートリッジ
JPH10221874A (ja) * 1997-02-05 1998-08-21 Showa Denko Kk 電子写真感光体
JP2012098500A (ja) * 2010-11-02 2012-05-24 Konica Minolta Business Technologies Inc 電子写真感光体
JP2012123238A (ja) * 2010-12-09 2012-06-28 Konica Minolta Business Technologies Inc 電子写真感光体
JP2015114647A (ja) * 2013-12-16 2015-06-22 コニカミノルタ株式会社 画像形成装置および画像形成方法
JP2015132640A (ja) * 2014-01-09 2015-07-23 三星電子株式会社Samsung Electronics Co.,Ltd. 有機感光体、電子写真装置、及びプロセスカート
JP2017107004A (ja) * 2015-12-08 2017-06-15 サムスン エレクトロニクス カンパニー リミテッド 電子写真感光体及び電子写真装置
WO2018198590A1 (ja) * 2017-04-28 2018-11-01 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2019015927A (ja) * 2017-07-10 2019-01-31 株式会社リコー 画像形成装置
JP2019095679A (ja) * 2017-11-24 2019-06-20 キヤノン株式会社 プロセスカートリッジ及び電子写真装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083094A (ja) * 1996-07-09 1998-03-31 Canon Inc 電子写真感光体、この電子写真感光体を用いた電子写真装置及びプロセスカートリッジ
JPH10221874A (ja) * 1997-02-05 1998-08-21 Showa Denko Kk 電子写真感光体
JP2012098500A (ja) * 2010-11-02 2012-05-24 Konica Minolta Business Technologies Inc 電子写真感光体
JP2012123238A (ja) * 2010-12-09 2012-06-28 Konica Minolta Business Technologies Inc 電子写真感光体
JP2015114647A (ja) * 2013-12-16 2015-06-22 コニカミノルタ株式会社 画像形成装置および画像形成方法
JP2015132640A (ja) * 2014-01-09 2015-07-23 三星電子株式会社Samsung Electronics Co.,Ltd. 有機感光体、電子写真装置、及びプロセスカート
JP2017107004A (ja) * 2015-12-08 2017-06-15 サムスン エレクトロニクス カンパニー リミテッド 電子写真感光体及び電子写真装置
WO2018198590A1 (ja) * 2017-04-28 2018-11-01 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置
JP2019015927A (ja) * 2017-07-10 2019-01-31 株式会社リコー 画像形成装置
JP2019095679A (ja) * 2017-11-24 2019-06-20 キヤノン株式会社 プロセスカートリッジ及び電子写真装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085677A1 (ja) * 2020-10-20 2022-04-28 三菱ケミカル株式会社 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置

Also Published As

Publication number Publication date
US20230068130A1 (en) 2023-03-02
CN115335776A (zh) 2022-11-11
JPWO2021193678A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
JP6842992B2 (ja) 電子写真感光体、電子写真装置、プロセスカートリッジおよび電子写真感光体の製造方法
JP6815758B2 (ja) 電子写真感光体、電子写真感光体の製造方法、該電子写真感光体を有する電子写真装置およびプロセスカートリッジ
US10310395B2 (en) Electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge
JP6949620B2 (ja) 電子写真感光体、該電子写真感光体を有する電子写真装置およびプロセスカートリッジ
JP7034829B2 (ja) 電子写真感光体、その製造方法、プロセスカートリッジおよび電子写真画像形成装置
CN111552153B (zh) 电子照相感光体、处理盒以及图像形成装置
CN111552155B (zh) 电子照相感光体、处理盒及图像形成装置
JP2020201467A (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
EP2733537B1 (en) Electrophotographic photosensitive member, method for producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
WO2021193678A1 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP6983543B2 (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
WO2022085677A1 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
WO2020218259A1 (ja) 電子写真感光体及びその製造方法、電子写真感光体カートリッジ並びに画像形成装置
EP2600196B1 (en) Electrophotographic photosensitive member, method of producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
WO2022210315A1 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
CN112631092A (zh) 电子照相感光体、处理盒及图像形成装置
WO2021201007A1 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
WO2022260157A1 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP2004093802A (ja) 電子写真感光体、プロセスカートリッジおよび電子写真装置
US20230296995A1 (en) Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming device
WO2023095834A1 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP2022188852A (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP2023177034A (ja) 電子写真感光体保護層形成用塗布液及び電子写真感光体
JP7067157B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP2022154942A (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776073

Country of ref document: EP

Kind code of ref document: A1