WO2022082944A1 - 硫化物纳米晶的优化方法和Sn-S-Co纳米晶及其优化产物 - Google Patents

硫化物纳米晶的优化方法和Sn-S-Co纳米晶及其优化产物 Download PDF

Info

Publication number
WO2022082944A1
WO2022082944A1 PCT/CN2020/134205 CN2020134205W WO2022082944A1 WO 2022082944 A1 WO2022082944 A1 WO 2022082944A1 CN 2020134205 W CN2020134205 W CN 2020134205W WO 2022082944 A1 WO2022082944 A1 WO 2022082944A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocrystals
sulfide
nanocrystal
temperature
drying
Prior art date
Application number
PCT/CN2020/134205
Other languages
English (en)
French (fr)
Inventor
陈昌云
刘光祥
颜森林
穆雪琴
崔雨佳
聂浩楠
徐鼎天
Original Assignee
南京晓庄学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京晓庄学院 filed Critical 南京晓庄学院
Priority to ZA2022/02231A priority Critical patent/ZA202202231B/en
Publication of WO2022082944A1 publication Critical patent/WO2022082944A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the invention belongs to the field of nanometers, in particular to the application of nanomaterials in renewable energy technology, and more specifically relates to an optimization method of sulfide nanocrystals, Sn-S-Co nanocrystals and optimized products thereof.
  • Ru/Ir - based materials such as RuO and IrO are considered to be the most efficient and powerful OER electrocatalysts.
  • the scarcity and high cost of precious metals limit their applications. Therefore, there is an urgent need to develop an efficient, low-cost, high-availability, and high-durability OER electrocatalyst to replace noble metal-based materials.
  • Layered non-precious metal sulfides and their composites exhibit excellent OER activity due to their high electrical conductivity, abundant active sites, and environmental friendliness.
  • the existence of layered metal sulfide electrocatalysts in the field of OER has unlimited potential.
  • One of the technical problems to be solved by the present invention is to optimize the sulfide nanocrystals to improve the electrocatalytic efficiency of the sulfide nanocrystal composites used as catalysts for OER.
  • Another problem to be solved by the present invention is to provide a new sulfide nanocrystalline composite material with high electrocatalytic efficiency, and to optimize the material so that it has high electrocatalytic efficiency.
  • the present invention discloses an optimization method for sulfide nanocrystals, wherein the sulfide nanocrystals are layered nanocrystals, and the optimization method is to control the phosphating of the sulfide nanocrystals. Include the following steps:
  • S3 is also included: the optimized sulfide nanocrystal product is obtained through dispersion, sedimentation and separation.
  • it also includes S4: vacuum drying to obtain a dried sulfide nanocrystal product.
  • step S1 the sulfide nanocrystals are first dried at low temperature, and then dissolved.
  • the low-temperature drying is performed below 50 ⁇ 2°C.
  • step S2 the sulfide nanocrystals are heated in a sand bath.
  • step S2 the temperature is uniformly heated to 230 ⁇ 5°C, and the temperature increase rate is 5°C ⁇ min -1 .
  • step S2 the holding time is 30 minutes.
  • the phosphating agent is tri-n-octylphosphine.
  • the added amount of the phosphating agent is 3-10 mL. More preferably, the addition amount of the phosphating agent is 5 mL.
  • a mixed solution of n-heptane and anhydrous ethanol is used for sedimentation, and the mixed molar ratio of n-heptane and anhydrous ethanol is 3:1.
  • the present invention also discloses a novel sulfide nanocrystal composite Sn-S-Co with a layered structure, wherein the Sn-S-Co nanocrystals are layered nanocrystals.
  • the present invention also discloses a method for preparing the aforementioned Sn-S-Co layered nanocrystals, comprising the following steps:
  • A1 Dissolve thiourea (CS(NH 2 ) 2 ), SnCl 2 ⁇ 2H 2 O, CoCl 2 ⁇ 6H 2 O in H 2 O;
  • A2 The oil bath is heated to 120°C;
  • A3 Insulation reaction until a crystalline film appears
  • A4 The crystal film is dried to obtain Sn-S-Co layered nanocrystals.
  • the drying is low-temperature drying, and the low-temperature drying is drying at below 50 ⁇ 2°C.
  • the molar ratio of CS(NH 2 ) 2 , SnCl 2 ⁇ 2H 2 O and CoCl 2 ⁇ 6H 2 O is 5:0.75:0.25.
  • the present invention also discloses an optimized sulfide nanocrystal composite material Sn-S-Co, wherein the Sn-S-Co nanocrystals are polycrystalline layered nanocrystals.
  • the present invention further discloses the preparation method of the sulfide nanocrystal composite Sn-S-Co with a sheet-like structure, including the preparation of the Sn-S-Co layered nanocrystals and the sulfide nanocrystals. Phosphating two parts, including the following steps:
  • the molar ratio of CS(NH 2 ) 2 , SnCl 2 ⁇ 2H 2 O and CoCl 2 ⁇ 6H 2 O is 5:0.75:0.25.
  • the drying in the B4 is low-temperature drying, and further preferably, the low-temperature drying is preferably performed below 50 ⁇ 2°C.
  • step B5 dodecylamine (DDA) solution is used to dissolve the sulfide nanocrystals.
  • DDA dodecylamine
  • step B6 the sulfide nanocrystals are heated in a sand bath.
  • step B6 the temperature is uniformly heated to 230 ⁇ 5°C, and the heating rate is 5°C ⁇ min -1 .
  • step B6 the holding time is 30 minutes.
  • the phosphating agent is tri-n-octylphosphine (TOP).
  • the added amount of the phosphating agent is 3-10 mL. More preferably, the addition amount of the phosphating agent is 5 mL.
  • B7 is also included: the product is obtained by dispersion sedimentation and centrifugal separation, and vacuum-dried to obtain a product containing Sn-S-Co nanosheets.
  • the precipitation adopts a mixed solution of n-heptane and absolute ethanol, and the mixed molar ratio of n-heptane and absolute ethanol is 3:1.
  • the present invention further discloses the application of Sn-S-Co nanocrystals in preparing fuel cell catalysts and the application of optimized Sn-S-Co nanocrystals in preparing fuel cell catalysts.
  • controllable phosphating optimization method disclosed in the present invention can significantly improve the crystal morphology of sulfide nanocrystals, thereby significantly improving the OER performance of the material, thereby improving its OER application as a catalyst in high-efficiency catalytic fuel cells. After testing, its excellent performance is far superior to the currently available IrO2, which has important guiding significance for the development of renewable energy technology.
  • the synthesis method of Sn-S-Co alloy nanocrystals disclosed in the present invention is simple, and can be synthesized only by a simple solid-liquid phase solvothermal method, and has high OER application after optimized synthesis combined with controllable phosphating value. It meets the requirements of industrial production and is suitable for mass production.
  • Fig. 1 is the TEM image of Sn-S-Co-1, Sn-S-Co-2, Sn-S-Co-3 and Sn-S-Co-4 synthesized by the present invention
  • Fig. 2 is the XRD pattern of Sn-S-Co-1, Sn-S-Co-2, Sn-S-Co-3 and Sn-S-Co-4 synthesized by the present invention
  • Fig. 3 is the linear sweep voltammogram of the OER test of the Sn-S-Co composite material synthesized by the present invention
  • Fig. 4 is the double capacitance test diagram of the OER test of the Sn-S-Co composite material synthesized by the present invention
  • FIG. 5 is an impedance diagram of the OER test of the Sn-S-Co composite material synthesized in the present invention.
  • Example 1 According to the method in Example 1, Sn-S-Co-0 was obtained, then dissolved in dodecylamine (DDA) solution, the sand bath was heated to 230 ° C, TOP 3-10 mL was added and kept for 30 min to obtain Sn-S-Co containing Sn-S-Co product, the reaction ends. After the sand bath was naturally cooled to 48°C, an appropriate amount of n-heptane and anhydrous ethanol were added to disperse, and the solid was separated by centrifugation. The solid was washed to give a black product which was vacuum dried in a vacuum oven overnight and used for analytical characterization.
  • DDA dodecylamine
  • the Sn-S-Co composite material is a two-dimensional layered nanostructure, and the diffraction projection color of the Sn-S-Co nanocrystal optimized by the phosphating agent can be seen by transmission electron microscopy. It has a trend towards thinner structures. At the same time, according to the crystal morphology in the TEM image, we can see that the optimized nanocrystals have better dispersion.
  • Electrochemical experiments were carried out on the AUTOLAB-PGSTAT302N electrochemical workstation, using a standard three-electrode test system, the corresponding working electrode was the glassy carbon electrode modified by the sample obtained in this paper, the counter electrode was a platinum sheet, and the reference electrode was mercury/ Mercury silver oxide (Hg/HgO). All potentials herein are relative to Hg/HgO.
  • the electrolyte is a 0.1 mol/L KOH solution. All electrochemical tests were performed at 25°C. In each experiment, all modified electrodes were tested in 0.1 mol/L KOH solution.
  • the preparation method of the sample modified electrode is as follows:
  • sample solution Weigh 5mg Sn-S-Co composite material sample into a centrifuge tube, add 250 microliters of ethanol, 50 microliters of 1% Nafion, ultrasonically disperse, add 700 microliters of deionized water, and ultrasonically disperse.
  • Fig. 3 shows that after controlled phosphating, the OER performance of Sn-S-Co nanosheets is significantly improved, and the present invention
  • the catalytic activity of the obtained composites in OER is better than that of commercial IrO2 catalysts, and has higher catalytic activity after controllable phosphating optimization.
  • Figure 4 shows the electrical double layer capacitance test and active area calculation results of Sn - S - Co nanosheet composites.
  • the electric double layer capacitance test chart the ordinate is the current density, which can be easily distinguished from the ordinate.
  • the product Sn-S-Co-2 can test a larger current density within the unit voltage range.
  • the active area calculated from the electric double layer capacitance diagram shows that the active area of the product Sn-S-Co-2 is the largest, which is 186 mF ⁇ cm -2 . This result is consistent with the linear sweep voltammetry results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

硫化物纳米晶的优化方法及优化的Sn-S-Co纳米晶复合材料,通过对硫化物纳米晶进行可控磷化,能够显著改善硫化物纳米晶的晶体形态,从而能够显著提高材料的OER性能,进而提高其作为催化剂在高效催化燃料电池中的OER应用。经检测其性能优异,并优于目前市售的IrO2,对于可再生能源技术发展具有重要的意义。

Description

硫化物纳米晶的优化方法和Sn-S-Co纳米晶及其优化产物 技术领域
本发明属于纳米领域,特别是属于纳米材料在可再生能源技术中的应用,更为具体的说是涉及硫化物纳米晶的优化方法和Sn-S-Co纳米晶及其优化产物。
背景技术
在过去的几年中,随着能源危机的加剧,我们迫切的需要新的清洁燃料替代化石燃料。
作为一种生产氢燃料的方式,水分解逐渐引起人们的关注。水氧化又称为析氧反应(OER),作为在电催化水裂解过程中一个重要的半反应,在不同储能和转化系统中发生的电化学反应中起着至关重要的作用,复杂的多步质子耦合电子输运过程,如氢氧键的裂解和氢氧键的形成,导致了OER的慢动力学效应。因此,通过制备有效的电催化剂,降低其过电位来加速OER速率和减少能量输入是必不可少的。
迄今为止,RuO 2和IrO 2等Ru/Ir基材料被认为是最有效、最强大的OER电催化剂。然而贵金属的稀缺性和高成本限制了它们的应用。因此,迫切需要开发一种高效、低成本、高可用性、高耐久性的OER电催化剂来替代贵金属基材料。
文献研究表明,金属硫化物作为最重要的层状非贵金属之一,六方晶系SnS 2由于其丰富,无毒,成本低,稳定性好,已在锂电池,钠离子电池和超级电容器中得到了广泛的研究。
层状非贵金属硫化物及其复合材料由于其高电导率,丰富的活性位点和环境友好性而表现出出色的OER活性。层状金属硫化物电催化剂在OER领域中的存在着无限的潜力。
因此,在可再生能源技术的发展过程中,开发高效、价廉的合金纳米晶,对于OER的电催化剂具有重要意义。
发明内容
本发明所要解决的技术问题之一是对硫化物纳米晶进行优化,提高硫化物纳米晶复合材料作为催化剂用于OER的电催化效率。
本发明所要解决的另一问题是提供一种新的具有高电催化效率的硫化物纳米晶复合材料,并对该材料进行优化,使其具有较高的电催化效率。
为了解决上述技术问题,本发明公开了一种硫化物纳米晶的优化方法,所述硫化物纳米晶为层状纳米晶,所述优化方法是通过对硫化物纳米晶进行可控磷化,具体包括以下步骤:
S1:取干燥的硫化物纳米晶溶解,
S2:将硫化物纳米晶升温至230±5℃,加入磷化剂,保温,得到含有优化后的硫化物纳米晶的溶液。
进一步优选的是,还包括S3:经分散、沉降、分离得到优化后的硫化物纳米晶产物。
更为优选的是,还包括有S4:真空干燥,得到干燥的硫化物纳米晶产物。
作为一种优选的技术方案,在步骤S1中,先对硫化物纳米晶进行低温烘干后,再溶解。
进一步优选的是,所述低温烘干是在50±2℃以下进行烘干。
作为一种优选的技术方案,步骤S2中将硫化物纳米晶在沙浴中升温。
作为优选的技术方案,步骤S2中匀速升温至230±5℃,升温速率为5℃·min -1
进一步优选的是,在步骤S2中保温时间为30分钟。
作为一种优选的技术方案,所述磷化剂为三正辛基膦。
进一步优选的是,所述磷化剂的添加量为3-10mL。更为优选的是,磷化剂的添加量为5mL。
在一个优选的技术方案中,所述步骤S3中沉降采用正庚烷和无水乙醇的混合溶液,正庚烷与无水乙醇的混合摩尔比为3:1。
同时,在本发明中还公开一种新的具有层状结构的硫化物纳米晶复合材料Sn-S-Co,所述Sn-S-Co纳米晶为层状纳米晶体。
同时,本发明还公开了前述Sn-S-Co层状纳米晶的制备方法,包括以下步骤:
A1:将硫脲(CS(NH 2) 2)、SnCl 2·2H 2O、CoCl 2·6H 2O溶于H 2O中;
A2:油浴升温到120℃;
A3:保温反应至有晶膜出现;
A4:取晶膜烘干,得到Sn-S-Co层状纳米晶。
优选的,所述烘干为低温烘干,所述低温烘干是在50±2℃以下进行烘干。
优选的,所述CS(NH 2) 2,SnCl 2·2H 2O,CoCl 2·6H 2O的摩尔比为5:0.75:0.25。
进一步,本发明还公开了一种优化的硫化物纳米晶复合材料Sn-S-Co,所述Sn-S-Co纳米晶为多晶面层状纳米晶体。
同时,本发明还进一步公开了所述的具有片状结构的硫化物纳米晶复合材料Sn-S-Co的制备方法,包括Sn-S-Co层状纳米晶的制备和硫化物纳米晶进行可控磷化两个部分,具体包括以下步骤:
B1:将硫脲(CS(NH 2) 2)、SnCl 2·2H 2O、CoCl 2·6H 2O溶于H 2O中;
B2:油浴升温到120℃;
B3:保温反应至有晶膜出现;
B4:取晶膜烘干,得到Sn-S-Co层状纳米晶;
B5:取干燥的Sn-S-Co纳米晶溶解,
B6:将Sn-S-Co纳米晶升温至230±5℃,加入磷化剂,保温,得到含有优化后的Sn-S-Co纳米晶的溶液。
优选的,所述CS(NH 2) 2,SnCl 2·2H 2O,CoCl 2·6H 2O的摩尔比为5:0.75:0.25。
进一步优选的,所述B4中烘干为低温烘干,进一步优选的,所述低温烘干优选为50±2℃以下进行烘干。
在一个优选的技术方案中,所述B5步骤中,以十二胺(DDA)溶液溶解硫化物纳米晶。
进一步优选的,步骤B6中将硫化物纳米晶在沙浴中升温。
作为优选的技术方案,步骤B6中匀速升温至230±5℃,升温速率为5℃·min -1
进一步优选的是,在步骤B6中保温时间为30分钟。
作为一种优选的技术方案,所述磷化剂为三正辛基膦(TOP)。
进一步优选的是,所述磷化剂的添加量为3-10mL。更为优选的是,磷化剂的添加量为5mL。
进一步优选的,还包括有B7:经分散沉降、离心分离得到产物,真空干燥,得到含有Sn-S-Co纳米片的产物。
进一步优选的是,沉降采用正庚烷和无水乙醇的混合溶液,正庚烷与无水乙醇的混合摩尔比为3:1。
最后,本发明还进一步公开了Sn-S-Co纳米晶在制备燃料电池催化剂中的应用以及优化后的Sn-S-Co纳米晶在制备燃料电池催化剂中的应用。
本发明公开的可控磷化优化方法能够显著改善硫化物纳米晶的晶体形态,从而能够显著提高材料的OER性能,进而提高其作为催化剂在高效催化燃料电池中的OER应用。经检测其性能优异,远优于目前市售的IrO2,对于可再生能源技术发展具有重要的指导意义。
同时本发明中所公开的Sn-S-Co合金纳米晶的合成方法简单,只需要通过简单的固液相溶剂热法就可以合成,结合可控磷化进行优化合成后具有较高的OER应用价值。符合工业化生产的要求,适合于批量生产。
附图说明
图1为本发明合成的Sn-S-Co-1、Sn-S-Co-2、Sn-S-Co-3和Sn-S-Co-4的TEM图;
图2为本发明合成的Sn-S-Co-1、Sn-S-Co-2、Sn-S-Co-3和Sn-S-Co-4的XRD图;
图3为本发明合成的Sn-S-Co复合材料的OER测试的线性扫描伏安图;
图4为本发明合成的Sn-S-Co复合材料的OER测试的双电容测试图;
图5为本发明合成的Sn-S-Co复合材料的OER测试的阻抗图。
具体实施方式
为了更好的理解本发明,下面我们结合具体的实施例对本发明进行进一步的阐述。
实施例1
将硫脲(CS(NH 2) 2),SnCl 2·2H 2O,CoCl 2·6H 2O溶于H 2O中,油浴升温到120℃,至有晶膜出现,放于烘箱中,低于50℃烘干。得到Sn-S-Co-0。
实施例2
按照实施例1中的方法得到Sn-S-Co-0,然后溶于十二胺(DDA)溶液中,沙浴升温至230℃,加入TOP 3~10mL并保温30min得到含Sn-S-Co的产物,反应结束。待沙浴自然冷却至48℃,加入适量正庚烷和无水乙醇分散,离心分离固体。将固体洗涤后得到黑色产物,在真空干燥箱里真空干燥过夜后,用于分析表征。
在本实施例中,分别将不同TOP加入量的产品标记为不同编号。
其中:
当TOP加入量为3mL时,产物标记为Sn-S-Co-1;
当TOP加入量为5mL时,产物标记为Sn-S-Co-2;
当TOP加入量为8mL时,产物标记为Sn-S-Co-3;
当TOP加入量为10mL时,产物标记为Sn-S-Co-4。
将得到的产物采用透射电子显微镜(TEM)和X射线单晶衍射(XRD)测试进 行表征分析,结果如图1、图2所示。
根据图1,我们看到Sn-S-Co复合材料为二维层状纳米结构,通过透射电子显微镜能够看到经过磷化剂优化后的Sn-S-Co纳米晶体衍射投影颜色变浅,说明其具有更薄的结构趋势。同时根据TEM图中的晶体形态,我们能够看到经过优化后的纳米晶体其分散性更优。
同时,根据图2可以看到,随着磷化剂的加入,衍射峰的数量增多,峰宽变窄,峰高增强,从而说明样品表面形成的晶面增加了,我们知道规则的晶体结构有助于反应过程中电子的传输,因此优化后的纳米晶结构晶面增多,整体结构更加规则,具有更好的催化性能。
实施例3
在三电极体系中通过循环伏安法和极化曲线法,测试样品的电化学性质,具体过程如下:
电化学实验在AUTOLAB-PGSTAT302N型电化学工作站上进行,采用标准的三电极测试体系,相应的工作电极为本文所获取的样品修饰的玻碳电极,对电极为铂片,参比电极为汞/氧化汞银(Hg/HgO)。本文中所有的电势均相对于Hg/HgO。电解液为0.1mol/L的KOH溶液。所有电化学测试均在25℃下进行。每次实验时,所有的修饰电极均在0.1mol/L KOH溶液中进行测试。
样品修饰电极的制备方法如下:
(1)样品溶液配制:称取5mg Sn-S-Co复合材料样品于离心管中,加入250微升乙醇,50微升1%Nafion,超声分散,加入700微升去离子水,超声分散。
(2)磨电极:每次实验前,磨前先用湿润的擦镜纸轻轻擦拭玻碳电极,稍后用去离子水冲洗干净。将氧化铝抛光粉加在麂皮上,滴加去离子水,少量润湿,分散。将电极竖立在麂皮上,握住使其在麂皮水平研磨,直至表面光亮(移动方向呈画“O”或“8”字型,使电极表面均匀磨平)。
(3)将磨好的电极冲洗,去除表面颗粒,分别依次用水―乙醇―水超声清洗约30s至氧化铝粉完全清除即可,用水冲净,氮气吹干。然后检测电极,应使扫描氧化还原峰位差△V<80mV,若不符合,重新操作直至电极合格。
(4)滴样:样品(5mg/mL)超声分散后,在干燥电极上滴加10微升样品溶液,放入电化学专用烘箱烘干取出。
OER测试前,先向溶液中通入高纯O 2 30min,以除去溶液中溶解的其它气体,并在实验过程中继续通O 2以保持溶液的O 2氛围。LSV也是在O 2氛围中进行。
Sn-S-Co纳米片复合材料的线性扫描伏安测试图如图3所示,图3表明可控磷化后,Sn-S-Co纳米片的OER性能有较为明显的提升,并且本发明获得的复合材料在OER中的催化活性皆优于商业的IrO 2催化剂,且经过可控磷化优化后具有更高的催化活性。
Sn-S-Co纳米片复合材料的双电层电容测试及活性面积计算结果如图4所示,图4包括了不同扫速下(1mV·s -1至15mV·s -1)各个样品的双电层电容测试图,纵坐标为电流密度,可简单从纵坐标分辨,产物Sn-S-Co-2在单位电压范围内,能够测试到较大的电流密度。由双电层电容图计算所得活性面积显示,产物Sn-S-Co-2的活性面积计算结果最大,为186mF·cm -2。此结果与线性扫描伏安测试结果相符。
Sn-S-Co纳米片复合材料的阻抗测试结果如图5所示,阻抗图谱形成的圆半径越小,表明该样品的阻抗越小,电子运动越快,反应越快。图5表明了Sn-S-Co磷化以后阻抗比未磷化的样品阻抗小,可以确认磷化确实有助于样品对于OER测试中性能的提升。
以上所述是本发明的具体实施方式。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

  1. 硫化物纳米晶的优化方法,所述硫化物纳米晶为层状纳米晶,其特征在于,所述优化方法是通过对硫化物纳米晶进行可控磷化,具体包括以下步骤:
    S1:取干燥的硫化物纳米晶溶解,
    S2:将硫化物纳米晶升温至230±5℃,加入磷化剂,保温,得到含有优化后的硫化物纳米晶的溶液。
  2. 根据权利要求1所述的硫化物纳米晶的优化方法,其特征在于,还包括
    S3,经分散、沉降、分离得到优化后的硫化物纳米晶产物;
    更为优选的是,还包括有S4:真空干燥,得到干燥的硫化物纳米晶产物。
  3. 根据权利要求1所述的硫化物纳米晶的优化方法,其特征在于,在步骤S1中,先对硫化物纳米晶进行低温烘干后,再溶解;
    进一步优选的是,所述低温烘干是在50±2℃以下进行烘干;
    作为一种优选,步骤S2中将硫化物纳米晶在沙浴中升温;
    作为优选的技术方案,步骤S2中匀速升温至230±5℃,升温速率为5℃·min -1
    进一步优选的是,在步骤S2中保温时间为30分钟。
  4. 根据权利要求1所述的硫化物纳米晶的优化方法,其特征在于,所述磷化剂为三正辛基膦;
    进一步优选的是,所述磷化剂的添加量为3-10mL;
    更为优选的是,磷化剂的添加量为5mL。
  5. 根据权利要求2所述的硫化物纳米晶的优化方法,其特征在于,所述步骤S3中沉降采用正庚烷和无水乙醇的混合溶液,正庚烷与无水乙醇的混合摩尔比为3:1。
  6. 一种Sn-S-Co纳米晶,其特征在于:所述Sn-S-Co纳米晶为层状纳米晶体。
  7. 权利要求6所述的Sn-S-Co层状纳米晶的制备方法,其特征在于,包括以下步骤:
    A1:将硫脲(CS(NH 2) 2)、SnCl 2·2H 2O、CoCl 2·6H 2O溶于H 2O中;
    A2:油浴升温到120℃;
    A3:保温反应至有晶膜出现;
    A4:取晶膜烘干,得到Sn-S-Co层状纳米晶;
    优选的,所述烘干为低温烘干,所述低温烘干是在50±2℃以下进行烘干。
  8. 一种Sn-S-Co纳米晶,所述Sn-S-Co纳米晶为多晶面层状纳米晶。
  9. 权利要求8所述的Sn-S-Co层状纳米晶的制备方法,其特征在于,包括以下步骤:
    B1:将硫脲(CS(NH 2) 2)、SnCl 2·2H 2O、CoCl 2·6H 2O溶于H 2O中;
    B2:油浴升温到120℃;
    B3:保温反应至有晶膜出现;
    B4:取晶膜烘干,得到Sn-S-Co层状纳米晶;
    B5:取干燥的Sn-S-Co纳米晶溶解,
    B6:将Sn-S-Co纳米晶升温至230±5℃,加入磷化剂,保温,得到含有优化后的Sn-S-Co纳米晶的溶液;
    优选的,所述CS(NH 2) 2,SnCl 2·2H 2O,CoCl 2·6H 2O的摩尔比为5:0.75:0.25;
    进一步优选的,所述B4中烘干为低温烘干,进一步优选的,所述低温烘干优选为50±2℃以下进行烘干;
    在一个优选的技术方案中,所述B5步骤中,以十二胺(DDA)溶液溶解硫化物纳米晶;
    进一步优选的,步骤B6中将硫化物纳米晶在沙浴中升温;
    作为优选的技术方案,步骤B6中匀速升温至230±5℃,升温速率为5℃·min -1
    进一步优选的是,在步骤B6中保温时间为30分钟;
    作为一种优选的技术方案,所述磷化剂为三正辛基膦(TOP);
    进一步优选的是,所述磷化剂的添加量为3-10mL;
    更为优选的是,磷化剂的添加量为5mL;
    进一步优选的,还包括有B7:经分散沉降、离心分离得到产物,真空干燥,得到含有Sn-S-Co纳米片的产物;
    进一步优选的是,沉降采用正庚烷和无水乙醇的混合溶液,正庚烷与无水乙醇的混合摩尔比为3:1。
  10. 权利要求6或权利要求8中所述的Sn-S-Co纳米晶在制备燃料电池催化剂中的应用。
PCT/CN2020/134205 2020-10-21 2020-12-07 硫化物纳米晶的优化方法和Sn-S-Co纳米晶及其优化产物 WO2022082944A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2022/02231A ZA202202231B (en) 2020-10-21 2022-02-22 Optimization method of sulfide nanocrystals and sn-s-co nanocrystals and optimized products thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011134054.9A CN112279306B (zh) 2020-10-21 2020-10-21 硫化物纳米晶的优化方法和Sn-S-Co纳米晶及其优化产物
CN202011134054.9 2020-10-21

Publications (1)

Publication Number Publication Date
WO2022082944A1 true WO2022082944A1 (zh) 2022-04-28

Family

ID=74424657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134205 WO2022082944A1 (zh) 2020-10-21 2020-12-07 硫化物纳米晶的优化方法和Sn-S-Co纳米晶及其优化产物

Country Status (3)

Country Link
CN (1) CN112279306B (zh)
WO (1) WO2022082944A1 (zh)
ZA (1) ZA202202231B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864968B (zh) * 2022-04-06 2024-04-16 东风汽车集团股份有限公司 一种燃料电池用抗反极催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039850A1 (en) * 2004-04-20 2006-02-23 Samsung Electronics Co., Ltd. Method for manufacturing metal sulfide nanocrystals using thiol compound as sulfur precursor
CN105948139A (zh) * 2016-04-29 2016-09-21 南京师范大学 一种二维CuCo2S4纳米片及其制备方法和作为电催化剂在氧还原和析氧反应中的应用
CN109796044A (zh) * 2019-03-22 2019-05-24 南京晓庄学院 二硫化钼、钴修饰的二硫化钼、负载Pd的纳米片及其合成方法和应用
CN110137514A (zh) * 2019-04-15 2019-08-16 南京晓庄学院 一种Al-Co-Mo纳米晶复合材料及其制备方法和应用
CN111072059A (zh) * 2019-12-31 2020-04-28 杭州电子科技大学 一种长方体形状的CuInS2/ZnS半导体纳米晶的高效制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019008A1 (ja) * 2004-08-20 2006-02-23 Kaneka Corporation ポリマー修飾ナノ粒子
CN201352562Y (zh) * 2008-04-17 2009-11-25 郭君涛 单结铜铟镓硫薄膜太阳能电池
CN103073073B (zh) * 2013-01-30 2015-01-21 吉林大学 一种过渡金属硫化物的合成方法
US10170651B2 (en) * 2014-01-30 2019-01-01 Nanoco Technologies Ltd. Metal-doped cu(In,Ga) (S,Se)2 nanoparticles
CN103887152B (zh) * 2014-04-04 2016-06-08 北京理工大学 一种半导体中异价金属离子掺杂的方法
CN104993016B (zh) * 2015-06-10 2017-01-11 中南大学 一种贵金属纳米晶负载铜锌锡硫薄膜的制备方法
CN105679544B (zh) * 2016-01-11 2018-03-13 上海交通大学 一种染料敏化太阳能电池铜锰锗硫对电极及其制备方法
CN105609746B (zh) * 2016-03-29 2018-05-29 浙江大学 一种同时电化学贮钠和贮锂的复合电极及其制备方法
CN106040263B (zh) * 2016-05-23 2018-08-24 中南大学 一种贵金属纳米晶负载CuSbS2纳米晶的制备方法
CN106517314A (zh) * 2016-12-06 2017-03-22 昆明理工大学 一种铜锌锡硫微粒的制备方法
CN106944117A (zh) * 2017-03-06 2017-07-14 常州大学 硫化钴锡/介孔氮化碳催化剂的制备方法及应用
CN108328647B (zh) * 2018-02-28 2020-04-10 武汉理工大学 一种纤锌矿结构CuInS2纳米晶的制备方法
CN108383149B (zh) * 2018-05-10 2019-10-29 南京晓庄学院 Cu2S纳米晶可控合成方法
CN109004239B (zh) * 2018-08-10 2019-05-14 南京晓庄学院 一种P掺杂的Co3S4纳米片及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039850A1 (en) * 2004-04-20 2006-02-23 Samsung Electronics Co., Ltd. Method for manufacturing metal sulfide nanocrystals using thiol compound as sulfur precursor
CN105948139A (zh) * 2016-04-29 2016-09-21 南京师范大学 一种二维CuCo2S4纳米片及其制备方法和作为电催化剂在氧还原和析氧反应中的应用
CN109796044A (zh) * 2019-03-22 2019-05-24 南京晓庄学院 二硫化钼、钴修饰的二硫化钼、负载Pd的纳米片及其合成方法和应用
CN110137514A (zh) * 2019-04-15 2019-08-16 南京晓庄学院 一种Al-Co-Mo纳米晶复合材料及其制备方法和应用
CN111072059A (zh) * 2019-12-31 2020-04-28 杭州电子科技大学 一种长方体形状的CuInS2/ZnS半导体纳米晶的高效制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DOU SHUMING, JIE XU, HIRBOD MALEKI KHEIMEH SARI, HONG-HUI WU, JUNHUA HU, YAOHUI ZHANG*, LINLIN FAN, DONGBIN XIONG, WEI ZHOU, YANAN: "Large Interlayer Spacing of Few-Layered Cobalt-Tin-Based Sulfide Providing Superior Sodium Storage.", ACS APPLIED MATERIALS & INTERFACES.ACS APPLIED MATERIALS & INTERFACES., vol. 12, no. 37, 16 September 2020 (2020-09-16), pages 41546 - 41556, XP055924231, DOI: 10.1021/acsami.0c11756 *
LIU SULI, CHE CHENJING, JING HAIYAN, ZHAO JUN, MU XUEQIN, ZHANG SUDI, CHEN CHANGYUN, MU SHICHUN: "Phosphorus-triggered synergy of phase transformation and chalcogenide vacancy migration in cobalt sulfide for an efficient oxygen evolution reaction", NANOSCALE, ROYAL SOCIETY OF CHEMISTRY, UNITED KINGDOM, vol. 12, no. 5, 6 February 2020 (2020-02-06), United Kingdom , pages 3129 - 3134, XP055924049, ISSN: 2040-3364, DOI: 10.1039/C9NR09203J *

Also Published As

Publication number Publication date
ZA202202231B (en) 2022-10-26
CN112279306B (zh) 2021-07-06
CN112279306A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
Arunachalam et al. Facile synthesis of electrostatically anchored Nd (OH) 3 nanorods onto graphene nanosheets as a high capacitance electrode material for supercapacitors
CN103112846B (zh) 一种石墨烯-碳纳米管-纳米二氧化锡三维复合材料的制备方法及其产品
CN106914244B (zh) 一种石墨烯基金属化合物纳米阵列材料制备与应用
Yuan et al. Silicon oxide-protected nickel nanoparticles as biomass-derived catalysts for urea electro-oxidation
CN104124071A (zh) 一种二氧化钌基复合纳米材料及其制备方法
WO2022032745A1 (zh) 一种VO2/MXene复合材料及其制备方法与应用
CN103035916A (zh) 一种纳米二氧化锡-石墨烯复合材料的制备方法及其产品
CN113249751B (zh) 一种二维碳化钛支撑的稳定双相二硒化钼复合材料及制备方法和应用
CN110292939B (zh) 一种双碳限域的铱纳米团簇及其制备方法和应用
Dao et al. A facile synthesis of ruthenium/reduced graphene oxide nanocomposite for effective electrochemical applications
Yun et al. Insight into electrocatalytic activity and mechanism of bimetal niobium-based oxides in situ embedded into biomass-derived porous carbon skeleton nanohybrids for photovoltaics and alkaline hydrogen evolution
Zhou et al. Free-standing S, N co-doped graphene/Ni foam as highly efficient and stable electrocatalyst for oxygen evolution reaction
CN104860348A (zh) 一种纳米片构筑的核壳结构二氧化钛及其制备方法与应用
CN110732331A (zh) 一种非晶态铁-镍-磷化合物复合碳电催化材料的制备方法
WO2022253177A1 (zh) 一种自支撑复合材料及其制备方法和应用
WO2022082944A1 (zh) 硫化物纳米晶的优化方法和Sn-S-Co纳米晶及其优化产物
Chen et al. High-performanced flexible solid supercapacitor based on the hierarchical MnCo2O4 micro-flower
Mao et al. One-step hydrothermal preparation of bi-functional NiS2/reduced graphene oxide composite electrode material for dye-sensitized solar cells and supercapacitors
Fauzi et al. NiFe-LDH@ Ni3S2 supported on nickel foam as highly active electrocatalysts for oxygen evolution reaction
Li et al. Self-derivation and reconstruction of silver nanoparticle reinforced cobalt-nickel bimetallic hydroxides through interface engineering for overall water splitting
CN110289178A (zh) 两步法制备氧化镍/四氧化三钴/氮掺杂碳点超薄纳米片电极材料及其应用
Zhang et al. Efficiently catalyzed sea urchin-like mixed phase SmMn2O5/MnO2 for oxygen reduction reaction in zinc-air battery
CN105529194B (zh) 一种MnO2@石墨烯胶囊@MnO2复合材料的制备方法
Li et al. Heterostructure Ni (OH) 2/ZrO2 catalyst can achieve efficient oxygen reduction reaction
CN114560508B (zh) 一种用于超级电容器的复合催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958520

Country of ref document: EP

Kind code of ref document: A1