WO2022253177A1 - 一种自支撑复合材料及其制备方法和应用 - Google Patents

一种自支撑复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2022253177A1
WO2022253177A1 PCT/CN2022/095953 CN2022095953W WO2022253177A1 WO 2022253177 A1 WO2022253177 A1 WO 2022253177A1 CN 2022095953 W CN2022095953 W CN 2022095953W WO 2022253177 A1 WO2022253177 A1 WO 2022253177A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
composite material
self
titanium dioxide
ruthenium
Prior art date
Application number
PCT/CN2022/095953
Other languages
English (en)
French (fr)
Inventor
吕瑞涛
周灵犀
黄正宏
康飞宇
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2022253177A1 publication Critical patent/WO2022253177A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the application belongs to the technical field of electrocatalysis, and in particular relates to a self-supporting composite material and its preparation method and application.
  • Hydrogen energy has the advantages of being clean, renewable, and high energy density, and is considered to be one of the most potential energy sources to solve the energy crisis and reduce environmental pollution.
  • industrial hydrogen is mainly prepared from coal, oil, and natural gas, but this method will cause serious environmental pollution and consume a large amount of fossil energy, which is contrary to the original intention of solving energy shortage and environmental pollution problems, so it must be Find clean and efficient ways to realize the industrial production of hydrogen energy.
  • the efficient production of hydrogen can be achieved by electrocatalytic water splitting driven by electricity, which provides us with a proven method to convert electrical energy into chemical energy.
  • Electrocatalytic water splitting is the process of converting water into hydrogen (H 2 ) and oxygen (O 2 ) via the cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER).
  • HER cathodic hydrogen evolution reaction
  • OER anodic oxygen evolution reaction
  • HER cathodic hydrogen evolution reaction
  • OER anodic oxygen evolution reaction
  • electrocatalytic water splitting is mainly carried out in alkaline aqueous solution.
  • OER catalysis in acidic environment has higher ionic conductivity and fewer side reactions, which can meet the requirements of large-scale water electrolysis to a greater extent; however, most of the known non-noble metal OER active catalysts are And under oxidative operating conditions, it is susceptible to severe corrosion and dissolution, and it is difficult to achieve long-term stability of high current density.
  • Noble metal Ru-based catalysts are considered to be the most active OER electrocatalysts in acidic environments.
  • Ru is easily over-oxidized to high-valent Ru n+ (n>4) species (such as RuO 4 ) under strong oxidative conditions, resulting in the dissolution and detachment of the active center. , making the stability of the catalyst low, thus limiting its large-scale application.
  • Ru-based OER catalysts To address the above-mentioned challenges faced by Ru-based OER catalysts, the preparation of small-sized Ru nanoparticles (NPs)-based self-supporting electrodes is the key to break the activity/stability limitation relationship.
  • the development of supported electrocatalysts by depositing Ru NPs on acid-stable conductive non-noble metal substrates can not only reduce the amount of noble metals but also prevent the excessive oxidation and dissolution of Ru through electronic structure optimization and steric confinement, thereby stabilizing the active sites to Improve the stability of Ru-based catalysts.
  • the preparation of most current Ru-based supported catalysts usually includes steps of support synthesis, metal loading, and subsequent high-temperature heat treatment to enhance the crystallinity of active components and the binding force of support-metal nanoparticles.
  • the OER catalytic performance of catalysts synthesized by this traditional method is poor in long-term stability at high current densities.
  • the present application provides a self-supporting composite material and its preparation method and application.
  • the preparation method of the self-supporting composite material provided by the application performs in-situ growth and spontaneous oxidation-reduction reaction in the solvothermal reaction process, and obtains the self-supporting composite material in one step, which has good catalytic performance and good stability.
  • the application provides a method for preparing a self-supporting composite material, comprising the following steps:
  • the self-supporting composite material is obtained by mixing the etched foam titanium, the soluble ruthenium source and the acid solution, and performing a solvothermal reaction.
  • the temperature of the solvothermal reaction is 120-200° C., and the time is 8-20 hours.
  • the acid used for acid etching is a strong acid aqueous solution
  • the strong acid aqueous solution includes hydrochloric acid aqueous solution or sulfuric acid aqueous solution.
  • the temperature of the acid etching is 80-120° C., and the time is 5-30 minutes.
  • the soluble ruthenium source includes ruthenium trichloride, potassium chlororuthenate, ammonium chlororuthenate or carbonyl ruthenium chloride;
  • the acid solution includes aqueous hydrochloric acid, aqueous nitric acid or aqueous perchloric acid.
  • the acid etching further includes: washing the foamed titanium with water, acetone and absolute ethanol in sequence.
  • the present application also provides a self-supporting composite material prepared by the preparation method described in the above technical scheme, including a titanium foam carrier, titanium dioxide nanorods grown on the surface of the titanium foam carrier, and ruthenium nanoparticles loaded on the surface of the titanium dioxide nanorods ;
  • the tips of the titanium dioxide nanorods are pyramid-shaped, and the titanium dioxide nanorods are distributed in an array on the surface of the foamed titanium carrier.
  • the mass ratio of the ruthenium nanoparticles to the titanium dioxide nanorods is 1:9-11.
  • the average particle diameter of the ruthenium nanoparticles is 3.5-4.5nm;
  • the average diameter of the titanium dioxide nanorods is 38-42nm, and the average height is 145-155nm.
  • the present application also provides the application of the self-supporting composite material described in the above technical solution in an electrocatalytic electrode.
  • the application provides a method for preparing a self-supporting composite material, comprising the following steps: acid-etching foamed titanium to obtain etched foamed titanium; mixing the etched foamed titanium, a soluble ruthenium source, and an acid solution for solvent thermal reaction to obtain the self-supporting composite material.
  • the preparation method of the present application is simple and easy to operate, in-situ growth and spontaneous redox reaction are carried out in the solvothermal reaction process, and a self-supporting composite material is obtained in one step.
  • the self-supporting composite material prepared according to the preparation method of the present application has good catalytic performance and good stability.
  • the present application also provides a self-supporting composite material prepared by the preparation method described in the above technical scheme, including a titanium foam carrier, titanium dioxide nanorods grown on the surface of the titanium foam carrier, and ruthenium nanoparticles loaded on the surface of the titanium dioxide nanorods ;
  • the tip of the titanium dioxide nanorods is pyramid-shaped, and the titanium dioxide nanorods are distributed in an array on the surface of the titanium foam carrier.
  • titanium dioxide nanorods have good stability under acidic conditions, and the metal-support interaction (SMSI) between titanium dioxide nanorods and ruthenium nanoparticles can improve the stability of ruthenium nanoparticles.
  • SMSI metal-support interaction
  • the top of the titanium dioxide nanorods is pyramid-shaped, which increases the loading area of the ruthenium nanoparticles, thereby increasing the exposure of the active sites of the ruthenium nanoparticles, thereby improving the catalytic activity of the self-supporting composite material.
  • Fig. 1 is the schematic diagram of the principle of preparing self-supporting composite material
  • Fig. 2 is the SEM picture of the self-supporting composite material that embodiment 1 prepares;
  • Fig. 3 is the TEM figure of different parts of the self-supporting composite material that embodiment 1 prepares, and wherein a is the TEM figure of top pyramid part, and b is the TEM figure of nanorod middle part;
  • Fig. 4 is the XRD spectrogram of the composite material of embodiment 1, comparative example 2 and the foam titanium after washing in embodiment 1, wherein Ru#89-3942 is the standard XRD spectrogram of ruthenium; TiO 2 #21-1276 is titanium dioxide The standard XRD spectrum of Ti#44-1294 is the standard XRD spectrum of titanium;
  • Fig. 5 is the X-ray energy spectrogram of the composite material in embodiment 1 and comparative example 2, wherein (a) and (b) are TiO in comparative example 2 respectively Ti 2p and O 1s, (c) and ( d) Ti 2p and O 1s of Ru/TiO 2 of Example 1, respectively;
  • Fig. 6 is the volt-ampere characteristic curve with embodiment 1, comparative example 1 ⁇ 4 as working electrode;
  • Fig. 7 is the Tafel slope taking embodiment 1, comparative example 1, comparative example 3 and comparative example 4 as working electrode;
  • FIG. 8 is the overpotential-time curve of the chronopotentiometry of the self-supporting composite material prepared in Example 1.
  • the application provides a method for preparing a self-supporting composite material, comprising the following steps:
  • the self-supporting composite material is obtained by mixing the etched foamed titanium, soluble ruthenium source and acid solution for solvothermal reaction.
  • the foamed titanium is acid-etched to obtain etched foamed titanium.
  • the thickness of the titanium foam is preferably 0.5-0.7 mm, more preferably 0.6 mm; the pore diameter is preferably 0.04-0.06 mm, more preferably 0.05 mm.
  • the size of the titanium foam which can be set as required.
  • the water washing can remove the inorganic impurities on the surface of the titanium foam, and the inorganic impurities preferably include oxides, titanates or titanium oxyhydrates.
  • the oxide preferably includes titanium monoxide or titanium trioxide; the titanate preferably includes TiCO 3 or Ti 2 (CO 3 ) 3 ; the titanium oxyhydrate preferably includes titanium hydroxide or Hydrated titanium dioxide.
  • the acetone washing can remove organic impurities on the surface of the titanium foam, and the organic impurities include grease.
  • the anhydrous ethanol washing is beneficial to remove the residual acetone on the surface of the titanium foam, and at the same time, the anhydrous ethanol is easy to volatilize and remove.
  • the pollutants on the surface of the titanium foam can be removed through the above washing, which is beneficial to the subsequent growth of titanium dioxide nanorods.
  • the water for washing is preferably ultrapure water.
  • the time for washing with water, washing with acetone and washing with absolute ethanol is independently preferably 13-17 minutes, more preferably 15-16 minutes.
  • the water washing, acetone washing and dehydrated ethanol washing are preferably independently carried out under ultrasonic conditions, and the present application has no special limitation on the power of the ultrasonic, as long as it can achieve the effect of washing and removing the foam titanium surface pollutants. purpose.
  • the acid used for acid etching is preferably a strong acid aqueous solution
  • the strong acid aqueous solution preferably includes hydrochloric acid aqueous solution or sulfuric acid aqueous solution, more preferably hydrochloric acid aqueous solution.
  • the mass concentration of the strong acid aqueous solution is preferably 3-18%, more preferably 5-10%.
  • the volume ratio of the titanium foam to the strong acid aqueous solution is preferably 1:1-30, more preferably 1:5-10.
  • the present application has no special limitation on the acid etching method, and in the embodiment of the present application, the titanium foam is soaked in a strong acid aqueous solution.
  • the acid etching temperature is preferably 80-120° C., more preferably 90-100° C.; the time is preferably 5-30 minutes, more preferably 15-25 minutes.
  • the acid etching can generate defects on the surface of the titanium foam under the action of strong acid to form titanium ions, which serve as a titanium source for the subsequent growth of titanium dioxide nanorods.
  • strong acid aqueous solution as the hydrochloric acid aqueous solution as an example
  • the chemical reaction occurring in the acid etching process is shown in formula 1:
  • the washing solvent is preferably ultrapure water.
  • the volume of the washing solvent is preferably 50-150ml, more preferably 80-100ml; the washing is preferably performed under ultrasonic conditions, and the power of the ultrasonic is preferably 600-1500W, more preferably 800 ⁇ 1100W; the time is preferably 1 ⁇ 5min, more preferably 3 ⁇ 4min.
  • the strong acid aqueous solution remaining on the surface of the titanium foam can be removed by washing, so that the titanium foam is neutral.
  • the present application mixes the etched foam titanium, a soluble ruthenium source and an acid solution, and then performs a solvothermal reaction to obtain the self-supporting composite material.
  • the mixing preferably includes the following steps:
  • the soluble ruthenium source and the acid solution are first mixed to obtain a ruthenium source solution
  • the etched titanium foam is placed in the ruthenium source solution.
  • the soluble ruthenium source and the acid solution are first mixed to obtain a ruthenium source solution.
  • the soluble ruthenium source preferably includes ruthenium trichloride, potassium chlororuthenate, ammonium chlororuthenate or carbonyl ruthenium chloride, more preferably ruthenium trichloride;
  • the acid solution preferably includes aqueous hydrochloric acid, nitric acid aqueous solution or perchloric acid aqueous solution, more preferably hydrochloric acid aqueous solution.
  • the mass concentration of the acid solution is preferably 2.8-3.2%, more preferably 3%.
  • the molar concentration of ruthenium element in the ruthenium source solution is preferably 5-15 mmol/L, more preferably 8-12 mmol/L.
  • the pH value of the ruthenium source solution is preferably 1.5-6.0, more preferably 2.5-4.0.
  • the present application limits that the pH value of the ruthenium source solution is in the above range, which is beneficial to the growth of titanium dioxide nanorods.
  • the present application has no special limitation on the first mixing, as long as it can be mixed uniformly.
  • the applicant places the etched foam titanium in the ruthenium source solution.
  • the volume ratio of the etching foam titanium and the ruthenium source solution is preferably 1-8:10, more preferably 3-6:10.
  • the temperature of the solvothermal reaction is preferably 120-200°C, more preferably 160-180°C; the time is preferably 8-20h, more preferably 10-16h.
  • trivalent ruthenium ions and trivalent titanium ions undergo redox reactions, and trivalent ruthenium ions are reduced to obtain zero-valent ruthenium; TiO2 nanorods grow in situ on the surface of titanium foam under the conditions.
  • the solvothermal reaction after the solvothermal reaction, it is preferred to further include: cooling the solvothermal reaction product and then performing solid-liquid separation, washing and drying the separated solid in sequence to obtain the self-supporting composite material.
  • the temperature after the cooling is preferably room temperature, more preferably 20-30°C.
  • the present application has no special limitation on the manner of the temperature reduction, as long as the temperature can be reduced to the required temperature.
  • the washing preferably includes washing with water and washing with absolute ethanol in sequence.
  • the times of washing with water and washing with absolute ethanol are preferably independently 2-4 times, more preferably 3 times.
  • the drying is preferably vacuum drying, the vacuum degree of the vacuum drying is preferably 80-130kPa, more preferably 85-100kPa; the temperature is preferably 50-80°C, more preferably 60-70°C ; Time is preferably 5 ⁇ 7h, more preferably 5.5 ⁇ 6h.
  • FIG. 1 A schematic diagram of the principle of preparing a self-supporting composite material according to the preparation method provided in this application is shown in FIG. 1 .
  • the present application adopts a one-step solvothermal method to reduce the trivalent ruthenium ions to zero-valent ruthenium, and the trivalent titanium ions are oxidized and simultaneously grow into titanium dioxide nanorods on the surface of the foamed titanium.
  • Using the self-supporting composite material as an electrode can produce oxygen by electrocatalytic hydrolysis.
  • the preparation method provided by the application uses titanium foam as the titanium source, and the production cost is low; the self-supporting material of the titanium dioxide nano-array loaded with ruthenium is synthesized in one step through the solvothermal method, and the process is simple.
  • the present application also provides a self-supporting composite material prepared by the preparation method described in the above technical scheme, including a titanium foam carrier, titanium dioxide nanorods grown on the surface of the titanium foam carrier, and ruthenium nanoparticles loaded on the surface of the titanium dioxide nanorods ;
  • the tips of the titanium dioxide nanorods are pyramid-shaped, and the titanium dioxide nanorods are distributed in an array on the surface of the foamed titanium carrier.
  • the self-supporting composite material includes a titanium foam support.
  • the foamed titanium serves as a carrier and also provides a titanium source for the titanium dioxide nanorods.
  • the three-dimensional framework of the foamed titanium has a larger space, which is beneficial to the growth of titanium dioxide nanorods, and is also conducive to ion and electron transport; the greater thickness and hardness of the foamed titanium is conducive to being directly used as a self-supporting electrode.
  • the titanium foam is preferably 0.5-0.7mm, more preferably 0.6mm in thickness; the pore diameter is preferably 0.04-0.06mm, more preferably 0.05mm.
  • the self-supporting composite material includes titanium dioxide nanorods grown on the surface of the titanium foam support.
  • the growth is preferably vertical growth.
  • the average diameter of the titanium dioxide nanorods is preferably 38-42 nm, more preferably 40-41 nm; the average height is preferably 145-155 nm, more preferably 148-150 nm.
  • the tip of the titanium dioxide nanorods is pyramid-shaped, and the titanium dioxide nanorods are distributed in an array on the surface of the titanium foam carrier; the array distribution is preferably an array of nanorods distributed vertically on the surface of the titanium foam carrier.
  • the pyramid-shaped top and array distribution of titanium dioxide nanorods provide a larger area for the loading of ruthenium nanoparticles, which is conducive to the uniform dispersion of ruthenium nanoparticles and the exposure of the active sites of ruthenium nanoparticles, thereby improving the performance of ruthenium nanoparticles. catalytic activity of the particles.
  • the self-supporting composite material further includes ruthenium nanoparticles supported on the surface of the titanium dioxide nanorods.
  • the average particle diameter of the ruthenium nanoparticles is preferably 3.5-4.5 nm, more preferably 3.8-4 nm.
  • the mass ratio of the ruthenium nanoparticles to the titanium dioxide nanorods is preferably 1:9-11, more preferably 1:10. In the present application, the mass ratio of the foamed titanium to titanium dioxide nanorods is preferably 10-30:1, more preferably 15-25:1.
  • the present application improves the catalytic activity and stability of the self-supporting composite material under the joint action of titanium dioxide nanorods and ruthenium nanoparticles.
  • the present application also provides the self-supporting composite material prepared by the preparation method described in the above technical solution or the application of the self-supporting composite material described in the above technical solution in an electrocatalytic electrode.
  • the application preferably includes using the self-supporting composite material as an electrocatalytic electrode for acidic oxygen evolution catalysis or for electrolyzing natural seawater to produce hydrogen.
  • the self-supporting composite material when used as an electrocatalytic electrode, it can perform high-efficiency electrocatalysis under acidic conditions for a long time.
  • the self-supporting composite material was prepared according to the method of Example 1, except that the temperature of the solvothermal reaction was 160°C.
  • the self-supporting composite material was prepared in the manner of Example 1, except that the solvothermal reaction time was 8 h.
  • the self-supporting composite material was prepared in the manner of Example 1, except that the solvothermal reaction time was 16 h.
  • the self-supporting composite material was prepared in the manner of Example 1, except that the molar concentration of ruthenium trichloride in the solvothermal reaction solution was 10 mmol/L.
  • the self-supporting composite material was prepared according to the method of Example 1, except that the prepared self-supporting composite material was annealed at 450° C. for 1 hour to obtain a composite material.
  • a self-supporting composite material was prepared in the manner of Example 1, except that no ruthenium trichloride was added.
  • ruthenium dioxide dispersion 60 ⁇ L of ruthenium dioxide dispersion was dropped onto the surface of a rectangular titanium foam with a thickness of 0.6 mm and a size of 60 mm ⁇ 10 mm at a rate of 5 drops/min, and dried at 60°C for 6 hours to obtain a ruthenium dioxide/titanium foam electrode.
  • the ruthenium dioxide/titanium dioxide electrode was prepared according to the preparation method of Comparative Example 3, except that the ruthenium dioxide dispersion was added dropwise to the surface of the composite material prepared in Comparative Example 2.
  • the self-supporting composite material prepared in Example 1 was inspected by a scanning electron microscope, and an SEM image was obtained, as shown in FIG. 2 .
  • the self-supporting composite material prepared in Example 1 was tested by transmission electron microscopy, and TEM images of different parts were obtained, as shown in Figure 3, wherein a is the TEM image of the top of the nanorod, and b is the TEM image of the middle part of the nanorod. It can be seen from Figures 2 and 3 that the titanium dioxide nanorods in the self-supporting composite material provided by the present application are distributed in an array, and the tops of the titanium dioxide nanorods are pyramid-shaped; the ruthenium nanoparticles are evenly dispersed on the surface of the titanium dioxide nanorods.
  • Example 4 The composite material in Example 1, Comparative Example 2 and the foamed titanium after washing in Example 1 are detected by XRD, and the XRD spectrum is obtained, as shown in Figure 4, wherein Ru#89-3942 is the standard XRD spectrum of ruthenium ; TiO 2 #21-1276 is the standard XRD spectrum of titanium dioxide; Ti#44-1294 is the standard XRD spectrum of titanium. It can be seen from FIG. 4 that the composite material prepared in Example 1 contains ruthenium and titanium dioxide, and Ru is in a metallic state, and TiO 2 is in a rutile structure.
  • the composite material in embodiment 1 and comparative example 2 is carried out X-ray detection, obtains X-ray energy spectrogram, as shown in Figure 5, wherein (a) and (b) are TiO in comparative example 2 respectively Ti 2p and O 1s, (c) and (d) are the Ti 2p and O 1s of Ru/TiO 2 in Example 1, respectively. It can be clearly observed that the peaks of Ti and O shifted significantly before and after loading Ru, which proves that the metal There is a charge transfer between Ru and the support TiO2 , that is, metal-support interaction (SMSI).
  • SMSI metal-support interaction
  • trivalent titanium ions are hydrolyzed to form titanium(III) oxide or titanium(III) hydroxide nanoarrays
  • trivalent ruthenium ions are combined with titanium(III) oxide or titanium( III) Hydroxide contact
  • trivalent ruthenium ions are immediately reduced to zero-valent ruthenium and supported on the surface of titanium dioxide nanorods generated by oxidation of titanium(III) oxide or titanium(III) hydroxide. Due to this in situ growth and the charge transfer during the spontaneous redox process, there is a strong charge interaction between Ru and the support TiO2 , namely SMSI.
  • the self-supporting composite material provided by the present application is used as an electrode for electrocatalytic electrolysis, and its lowest overpotential is only 174mV at a current density of 10mA cm -2 ; at the same time, the maximum current density that the self-supporting composite material can achieve is greater than 500mA cm -2 and the overpotential at 500mA cm -2 current density is 265mV. It shows that the self-supporting composite material provided by this application has good electrocatalytic OER performance. It can be seen from Fig.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本申请属于电催化技术领域,具体涉及一种自支撑复合材料及其制备方法和应用。本申请提供了一种自支撑复合材料,包括泡沫钛载体、垂直生长于所述泡沫钛载体表面的二氧化钛纳米棒和负载在所述二氧化钛纳米棒表面的钌纳米颗粒;所述二氧化钛纳米棒顶端呈金字塔锥型,所述二氧化钛纳米棒在泡沫钛载体表面呈阵列分布。在本申请中,二氧化钛纳米棒在酸性条件下具有良好的稳定性,同时二氧化钛纳米棒与钌纳米颗粒之间存在金属-载体相互作用(SMSI)能够提高钌纳米颗粒的稳定性。在本申请中,二氧化钛纳米棒顶端为金字塔型,增加了钌纳米颗粒的负载面积,从而提高了钌纳米颗粒活性位点的暴露,进而提高了自支撑复合材料的催化活性。

Description

一种自支撑复合材料及其制备方法和应用
相关申请的交叉引用
本申请要求清华大学于2021年05月31日提交的、发明名称为“一种自支撑复合材料及其制备方法和应用”的、中国专利申请号“202110601364.5”的优先权。
技术领域
本申请属于电催化技术领域,具体涉及一种自支撑复合材料及其制备方法和应用。
背景技术
随着科技的进步和社会工业的发展,能源危机日益严重,人们越来越关注化石燃料的短缺和环境污染的恶化。目前,大气中的污染物绝大部分来源于化石燃料的燃烧,煤炭、石油、天然气等化石能源仍是全球经济和社会工业发展所需的主要能源,然而其为不可再生能源且储量有限,使得开发太阳能、风能、氢能等清洁能源成为科学研究领域迫在眉睫的任务。
氢能具有清洁、可再生、能量密度高等优点,被认为是解决能源危机、减少环境污染最有潜力的能源之一。目前,工业氢气主要以煤炭、石油、天然气为原料制备得到,但这种方法会造成严重的环境污染,并且消耗大量的化石能源,这与解决能源短缺及环境污染问题的初衷相违背,因此必须寻找清洁高效的方法来实现氢能的工业化生产。作为氢能源载体,氢气的高效生产可以通过电能驱动的电催化水分解来实现,这为我们提供了一种行之有效的将电能转化为化学能的方法。电催化水分解是通过阴极析氢反应(HER)和阳极析氧反应(OER)将水转化为氢气(H 2)和氧气(O 2)的过程。其中,OER被认为是速控步骤,其缓慢的反应动力学限制了整体的水分解效率。
现有技术中,电催化水分解主要在碱性水溶液中进行。但是酸性环境中的OER催化具有较高的离子电导率和较少的副反应,能在更大程度上满足大规模水电解的要求;然而,大多数已知的非贵金属OER活性催化剂在酸性环境和氧化性操作条件下,易受到严重的腐蚀和溶出,难以实现大电流密度的长时间稳定性。贵金属Ru基催化剂被认为是在酸性环境中活性最高的OER电催化剂,然而Ru在强氧化条件下容易被过度氧化成高价Ru n+(n>4)物种(例如RuO 4),导致活性中心溶解脱落,使得催化剂的稳定性较低,从而限制了其大规模应用。
为了解决上述Ru基OER催化剂面临的挑战,制备小尺寸Ru纳米粒子(NPs)基自支 撑电极是打破活性/稳定性限制关系的关键。通过在酸稳定的导电非贵金属基体上沉积Ru NPs开发负载型电催化剂,不仅可以减少贵金属的用量,而且可以通过电子结构优化和空间限域防止Ru的过度氧化和溶解,从而稳定活性位点以实现Ru基催化剂稳定性的提升。然而,目前大多数Ru基负载型催化剂的制备通常包括载体合成、金属负载及随后高温热处理等步骤,以增强活性组分的结晶性及载体-金属纳米颗粒的结合力。通过这种传统方法合成的催化剂的OER催化性能在大电流密度下的长时间稳定性较差。
发明内容
有鉴于此,本申请提供一种自支撑复合材料及其制备方法和应用。本申请提供的自支撑复合材料的制备方法,在溶剂热反应过程中进行原位生长和自发氧化还原反应,一步得到自支撑复合材料,具有良好的催化性能同时具有良好的稳定性。
为了解决上述技术问题,本申请提供了一种自支撑复合材料的制备方法,包括以下步骤:
将泡沫钛进行酸刻蚀,得到刻蚀泡沫钛;
将所述刻蚀泡沫钛、可溶性钌源和酸溶液混合后进行溶剂热反应,得到所述自支撑复合材料。
优选的,所述溶剂热反应的温度为120~200℃,时间为8~20h。
优选的,所述酸刻蚀用酸为强酸水溶液,所述强酸水溶液包括盐酸水溶液或硫酸水溶液。
优选的,所述酸刻蚀的温度为80~120℃,时间为5~30min。
优选的,所述可溶性钌源包括三氯化钌、氯钌酸钾、氯钌酸铵或羰基氯化钌;
所述酸溶液包括盐酸水溶液、硝酸水溶液或高氯酸水溶液。
优选的,所述酸刻蚀前还包括:将所述泡沫钛依次进行水洗涤、丙酮洗涤和无水乙醇洗涤。
本申请还提供了上述技术方案所述制备方法制备得到的自支撑复合材料,包括泡沫钛载体、生长于所述泡沫钛载体表面的二氧化钛纳米棒和负载在所述二氧化钛纳米棒表面的钌纳米颗粒;
所述二氧化钛纳米棒顶端呈金字塔锥型,所述二氧化钛纳米棒在泡沫钛载体表面呈阵列分布。
优选的,所述钌纳米颗粒和二氧化钛纳米棒的质量比为1:9~11。
优选的,所述钌纳米颗粒的平均粒径为3.5~4.5nm;
所述二氧化钛纳米棒的平均直径为38~42nm,平均高度为145~155nm。
本申请还提供了上述技术方案所述自支撑复合材料在电催化电极中的应用。
本申请提供了一种自支撑复合材料的制备方法,包括以下步骤:将泡沫钛进行酸刻蚀,得到刻蚀泡沫钛;将所述刻蚀泡沫钛、可溶性钌源和酸溶液混合后进行溶剂热反应,得到所述自支撑复合材料。本申请制备方法简单、易操作,在溶剂热反应过程中进行原位生长和自发氧化还原反应,一步得到自支撑复合材料。按照本申请制备方法制备得到的自支撑复合材料具有良好的催化性能,同时具有良好的稳定性。
本申请还提供了上述技术方案所述制备方法制备得到的自支撑复合材料,包括泡沫钛载体、生长于所述泡沫钛载体表面的二氧化钛纳米棒和负载在所述二氧化钛纳米棒表面的钌纳米颗粒;所述二氧化钛纳米棒顶端呈金字塔锥型,所述二氧化钛纳米棒在泡沫钛载体表面呈阵列分布。在本申请中,二氧化钛纳米棒在酸性条件下具有良好的稳定性,同时二氧化钛纳米棒与钌纳米颗粒之间存在金属-载体相互作用(SMSI)能够提高钌纳米颗粒的稳定性。在本申请中,二氧化钛纳米棒顶端为金字塔型,增加了钌纳米颗粒的负载面积,从而提高了钌纳米颗粒活性位点的暴露,进而提高了自支撑复合材料的催化活性。
附图说明
图1为制备自支撑复合材料的原理示意图;
图2为实施例1制备得到的自支撑复合材料的SEM图;
图3为实施例1制备得到的自支撑复合材料不同部位的TEM图,其中a为顶端金字塔部分的TEM图,b为纳米棒中间部位的TEM图;
图4为实施例1、对比例2的复合材料和实施例1中洗涤后的泡沫钛的XRD谱图,其中Ru#89-3942为钌的标准XRD谱图;TiO 2#21-1276为二氧化钛的标准XRD谱图;Ti#44-1294为钛的标准XRD谱图;
图5为实施例1和对比例2中的复合材料的X射线能谱图,其中(a)和(b)分别为对比例2中的TiO 2的Ti 2p和O 1s,(c)和(d)分别为实施例1的Ru/TiO 2的Ti 2p和O 1s;
图6为以实施例1、对比例1~4为工作电极的伏安特性曲线;
图7为以实施例1、对比例1、对比例3和对比例4为工作电极的塔菲尔斜率;
图8为实施例1制备得到的自支撑复合材料计时电位测试的过电位-时间曲线。
具体实施方式
本申请提供了一种自支撑复合材料的制备方法,包括以下步骤:
将泡沫钛进行酸刻蚀,得到刻蚀泡沫钛;
将所述刻蚀泡沫钛、可溶性钌源和酸溶液混合后进行溶剂热反应,得到所述自支撑复 合材料。
本申请将泡沫钛进行酸刻蚀,得到刻蚀泡沫钛。在本申请中,所述泡沫钛厚度优选为0.5~0.7mm,更优选为0.6mm;孔径优选为0.04~0.06mm,更优选为0.05mm。本申请对所述泡沫钛的尺寸无特殊限定,根据需要设定即可。在本申请中,所述酸刻蚀前优选还包括:将所述泡沫钛依次进行水洗涤、丙酮洗涤和无水乙醇洗涤。在本申请中,所述水洗涤能够除去泡沫钛表面的无机物杂质,所述无机物杂质优选包括氧化物、钛酸盐或钛氧水合物。在本申请中,所述氧化物优选包括一氧化钛或三氧化钛;所述钛酸盐优选包括TiCO 3或Ti 2(CO 3) 3;所述钛氧水合物优选包括钛氢氧化物或水合二氧化钛。在本申请中,所述丙酮洗涤能够除去泡沫钛表面的有机物杂质,所述有机物杂质包括油脂。在本申请中,所述无水乙醇洗涤利于除去泡沫钛表面残留的丙酮,同时无水乙醇易于挥发除去。本申请通过上述洗涤能够除去泡沫钛表面的污染物,利于后续二氧化钛纳米棒的生长。
在本申请中,所述水洗涤用水优选为超纯水。在本申请中,所述水洗涤、丙酮洗涤和无水乙醇洗涤的时间独立的优选为13~17min,更优选为15~16min。在本申请中,所述水洗涤、丙酮洗涤和无水乙醇洗涤优选独立的在超声的条件下进行,本申请对所述超声的功率无特殊限定,只要能够达到洗涤除去泡沫钛表面污染物的目的即可。本申请对水洗涤用水、丙酮洗涤用丙酮或无水乙醇洗涤用无水乙醇的用量无特殊限定,只要能够达到洗涤除去泡沫钛表面污染物的目的即可。
在本申请中,所述酸刻蚀用酸优选为强酸水溶液,所述强酸水溶液优选包括盐酸水溶液或硫酸水溶液,更优选为盐酸水溶液。在本申请中,所述强酸水溶液的质量浓度优选为3~18%,更优选为5~10%。在本申请中,所述泡沫钛和强酸水溶液的体积比优选为1:1~30,更优选为1:5~10。本申请对所述酸刻蚀的方式无特殊限定,本申请实施例中为将泡沫钛浸泡在强酸水溶液中。在本申请中,所述酸刻蚀的温度优选为80~120℃,更优选为90~100℃;时间优选为5~30min,更优选为15~25min。
在本申请中,所述酸刻蚀能够使泡沫钛表面在强酸的作用下产生缺陷,形成钛离子,所述钛离子作为后续生长二氧化钛纳米棒的钛源。以强酸水溶液为盐酸水溶液为例,所述酸刻蚀过程中发生的化学反应如式1所示:
2Ti+6HCl=TiCl 3+3H 2↑         式1。
在本申请中,所述酸刻蚀后优选还包括:将酸刻蚀后的泡沫钛进行洗涤。在本申请中,所述洗涤用溶剂优选为超纯水。在本申请中,所述洗涤用溶剂的体积优选为50~150ml,更优选为80~100ml;所述洗涤优选在超声条件下进行,所述超声的功率优选为600~1500W,更优选为800~1100W;时间优选为1~5min,更优选为3~4min。本申请通过洗涤能够除去残留在泡沫钛表面的强酸水溶液,使泡沫钛呈中性。
得到刻蚀泡沫钛后,本申请将所述刻蚀泡沫钛、可溶性钌源和酸溶液混合后进行溶剂热反应,得到所述自支撑复合材料。在本申请中,所述混合优选包括以下步骤:
将可溶性钌源和酸溶液进行第一混合,得到钌源溶液;
将刻蚀泡沫钛置于钌源溶液中。
本申请将可溶性钌源和酸溶液进行第一混合,得到钌源溶液。在本申请中,所述可溶性钌源优选包括三氯化钌、氯钌酸钾、氯钌酸铵或羰基氯化钌,更优选为三氯化钌;所述酸溶液优选包括盐酸水溶液、硝酸水溶液或高氯酸水溶液,更优选为盐酸水溶液。在本申请中,所述酸溶液的质量浓度优选为2.8~3.2%,更优选为3%。在本申请中,所述钌源溶液中钌元素的摩尔浓度优选为5~15mmol/L,更优选为8~12mmol/L。在本申请中,所述钌源溶液的pH值优选为1.5~6.0,更优选为2.5~4.0。本申请限定钌源溶液的pH值在上述范围利于二氧化钛纳米棒的生长。本申请对所述第一混合无特殊限定,只要能够混合均匀即可。
得到钌源溶液后,本申请将刻蚀泡沫钛置于钌源溶液中。在本申请中,所述刻蚀泡沫钛和钌源溶液的体积比优选为1~8:10,更优选为3~6:10。
在本申请中,所述溶剂热反应的温度优选为120~200℃,更优选为160~180℃;时间优选为8~20h,更优选为10~16h。
在本申请中,所述溶剂热反应过程中三价钌离子和三价钛离子会发生氧化还原反应,三价钌离子被还原得到零价的钌;三价钛离子被氧化同时在溶剂热反应条件下在泡沫钛表面原位生长为二氧化钛纳米棒。
在本申请中,所述溶剂热反应后优选还包括:将溶剂热反应产物降温后进行固液分离,将分离得到的固体依次进行洗涤和干燥,得到所述自支撑复合材料。
在本申请中,所述降温后的温度优选为室温,更优选为20~30℃。本申请对所述降温的方式无特殊限定,只要能够降温至所需温度即可。
本申请对所述固液分离的方式无特殊限定,只要能够实现固液分离即可。
在本申请中,所述洗涤优选包括依次进行的水洗涤和无水乙醇洗涤。所述水洗涤和无水乙醇洗涤的次数优选独立的为2~4次,更优选为3次。
在本申请中,所述干燥优选为真空烘干,所述真空烘干的真空度优选为80~130kPa,更优选为85~100kPa;温度优选为50~80℃,更优选为60~70℃;时间优选为5~7h,更优选为5.5~6h。
按照本申请提供的制备方法制备自支撑复合材料的原理示意图如图1所示。本申请采用一步溶剂热法将三价钌离子还原为零价钌,三价钛离子被氧化同时在泡沫钛表面自生长为二氧化钛纳米棒。将所述自支撑复合材料作为电极能够电催化水解制氧气。
本申请提供的制备方法,以泡沫钛为钛源,生产成本低;通过溶剂热法一步合成负载 钌的二氧化钛纳米阵列的自支撑材料,工艺简单。
本申请还提供了上述技术方案所述制备方法制备得到的自支撑复合材料,包括泡沫钛载体、生长于所述泡沫钛载体表面的二氧化钛纳米棒和负载在所述二氧化钛纳米棒表面的钌纳米颗粒;
所述二氧化钛纳米棒顶端呈金字塔锥型,所述二氧化钛纳米棒在泡沫钛载体表面呈阵列分布。
在本申请中,所述自支撑复合材料包括泡沫钛载体。在本申请中,所述泡沫钛作为载体的同时还为二氧化钛纳米棒提供了钛源。在本申请中,所述泡沫钛的三维骨架具有较大的空间,利于二氧化钛纳米棒的生长,同时利于离子与电子传输;所述泡沫钛具有较大的厚度和硬度利于直接作为自支撑电极。在本申请中,所述泡沫钛优选为0.5~0.7mm,更优选为厚度为0.6mm;孔径优选为0.04~0.06mm,更优选为0.05mm。
在本申请中,所述自支撑复合材料包括生长于所述泡沫钛载体表面的二氧化钛纳米棒。在本申请中,所述生长优选为垂直生长。在本申请中,所述二氧化钛纳米棒的平均直径优选为38~42nm,更优选为40~41nm;平均高度优选为145~155nm,更优选为148~150nm。在本申请中,所述二氧化钛纳米棒的顶端呈金字塔锥型,所述二氧化钛纳米棒在泡沫钛载体表面呈阵列分布;所述阵列分布优选为垂直泡沫钛载体表面分布的纳米棒阵列。在本申请中,二氧化钛纳米棒金字塔型的顶端和阵列分布方式为钌纳米颗粒的负载提供了较大的面积,利于钌纳米颗粒均匀分散从而利于钌纳米颗粒活性位点的暴露,进而提高钌纳米颗粒的催化活性。
在本申请中,所述自支撑复合材料还包括负载在所述二氧化钛纳米棒表面的钌纳米颗粒。在本申请中,所述钌纳米颗粒的平均粒径优选为3.5~4.5nm,更优选为3.8~4nm。
在本申请中,所述钌纳米颗粒和二氧化钛纳米棒的质量比优选为1:9~11,更优选为1:10。在本申请中,所述泡沫钛和二氧化钛纳米棒的质量比优选为10~30:1,更优选为15~25:1。
本申请在二氧化钛纳米棒和钌纳米颗粒的共同作用下提高了自支撑复合材料的的催化活性和稳定性。
本申请还提供了上述技术方案所述制备方法制备得到的自支撑复合材料或上述技术方案所述自支撑复合材料在电催化电极中的应用。在本申请中,所述应用优选包括将所述自支撑复合材料作为电催化电极进行酸性析氧催化或对天然海水进行电解水制氢气。
本申请将所述自支撑复合材料作为电催化电极时能够在酸性条件下长时间进行高效电催化。
为了进一步说明本申请,下面结合实施例对本申请提供的技术方案进行详细地描述, 但不能将它们理解为对本申请保护范围的限定。
实施例1
将厚度为0.6mm的泡沫钛裁剪成60mm×10mm的矩形后,依次利用超纯水、丙酮和无水乙醇分别超声洗涤15min;
将洗涤后的泡沫钛浸泡在30mL质量浓度为18%的盐酸水溶液中,90℃酸刻蚀15min;利用80mL超纯水在功率为1000W的条件下超声洗涤酸刻蚀后的泡沫钛4min至中性,得到刻蚀泡沫钛;
将三氯化钌和质量浓度为3%的盐酸水溶液混合,得到15mmol/L的三氯化钌溶液,三氯化钌溶液的pH值为3.60;
将所述刻蚀泡沫钛置于10mL三氯化钌溶液中,在200℃下进行溶剂热反应20h,降温至25℃进行固液分离,将固液分离得到的固体依次进行超纯水洗涤3次和无水乙醇洗涤3次,将洗涤后的固体在真空度为85kPa,温度为60℃的条件下干燥6h,得到自支撑复合材料。
实施例2
按照实施例1的方式制备自支撑复合材料,不同之处在于,溶剂热反应的温度为160℃。
实施例3
按照实施例1的方式制备自支撑复合材料,不同之处在于,溶剂热反应的时间为8h。
实施例4
按照实施例1的方式制备自支撑复合材料,不同之处在于,溶剂热反应的时间为16h。
实施例5
按照实施例1的方式制备自支撑复合材料,不同之处在于,溶剂热反应液中三氯化钌的摩尔浓度为10mmol/L。
对比例1
按照实施例1的方式制备自支撑复合材料,不同之处在于,将制备得到的自支撑复合材料在450℃条件下退火处理1h,得到复合材料。
对比例2
按照实施例1的方式制备自支撑复合材料,不同之处在于,不添加三氯化钌。
对比例3
将280μL乙醇,20μL萘酚,70μL去离子水和50mg粒径为<1μm RuO 2混合,得到二氧化钌分散液;
将60μL二氧化钌分散液按照5滴/min的滴加速率滴加到厚度为0.6mm尺寸为60mm×10mm的矩形泡沫钛表面,60℃干燥6h,得到二氧化钌/泡沫钛电极。
对比例4
按照对比例3制备方法制备得到二氧化钌/二氧化钛电极,不同之处在于将二氧化钌分散液滴加至对比例2制备得到的复合材料表面。
将实施例1制备得到的自支撑复合材料进行扫描电镜检测,得到SEM图,如图2所示。将实施例1制备得到的自支撑复合材料进行透射电镜检测,得到不同部位的TEM图,如图3所示,其中a为纳米棒顶端的TEM图,b为纳米棒中间部位的TEM图。由图2和图3可知,本申请提供的自支撑复合材料中二氧化钛纳米棒呈阵列分布,且二氧化钛纳米棒的顶端为金字塔型;钌纳米颗粒均匀分散在二氧化钛纳米棒的表面。
将实施例1、对比例2中的复合材料和实施例1中洗涤后的泡沫钛进行XRD检测,得到XRD谱图,如图4所示,其中Ru#89-3942为钌的标准XRD谱图;TiO 2#21-1276为二氧化钛的标准XRD谱图;Ti#44-1294为钛的标准XRD谱图。由图4可知,实施例1制备得到的复合材料中包含钌和二氧化钛,并且Ru是金属态,TiO 2为金红石型结构。
将实施例1和对比例2中的复合材料进行X射线检测,得到X射线能谱图,如图5所示,其中(a)和(b)分别为对比例2中的TiO 2的Ti 2p及O 1s,(c)和(d)分别为实施例1的Ru/TiO 2的Ti 2p及O 1s,可以明显观察到Ti和O的峰在负载Ru前后发生了明显偏移,证明了金属Ru与载体TiO 2之间存在电荷转移即金属-载体相互作用(SMSI)。在溶剂热反应过程中,三价钛离子水解形成钛(III)氧化物或钛(III)氢氧化物纳米阵列后,三价钌离子与具有强还原能力的钛(III)氧化物或钛(III)氢氧化物接触,三价钌离子立即被还原为零价钌并负载在由钛(III)氧化物或钛(III)氢氧化物氧化生成的二氧化钛纳米棒表面。由于这种原位生长及自发氧化还原过程中的电荷转移使得Ru与载体TiO 2之间存在强烈的电荷相互作用即SMSI。
以0.5mol/L的硫酸水溶液为电解液,采用典型的三电极配置(以铂丝为对电极,以饱和甘汞电极为参比电极,以实施例1、对比例1~4的复合材料为工作电极)的工作站进行电化学测量;在10mv/s的扫描速率下得到伏安特性曲线如图6所示。根据图6中的伏安特性曲线计算得到各条伏安特性曲线的塔菲尔斜率,其结果如图7所示。由图6可知,以本申请提供的自支撑复合材料作为电极进行电催化电解,其在10mA cm -2的电流密度下最低过电位仅为174mV;同时自支撑复合材料能达到的最大电流密度大于500mA cm -2且在500mA cm -2电流密度下的过电位为265mV。说明本申请提供的自支撑复合材料具有良好的电催化OER性能。由图7可知,以本申请提供的自支撑复合材料作为电极的塔菲尔斜率仅为48.8mV dec -1,说明本申请提供的自支撑复合材料具有优越的动力学性能且具有较高的电催化反应速率。
以0.5mol/L的硫酸水溶液为电解液,采用典型的三电极配置(以铂丝为对电极,以饱 和甘汞电极为参比电极,以实施例1的复合材料为工作电极)的工作站进行电化学测量,其中复合材料的测试面积为0.5cm -2。选用“计时-电位”法,设置电流值为50mA,则电流密度为100mA cm -2,进行50h的计时电位测试,得到过电位-时间曲线如图8所示。由图8可知在大电流密度下持续电解50h过电位仅衰减30mV,证明了本申请提供的自支撑复合材料具有优异的电催化活性和稳定性。
尽管上述实施例对本申请做出了详尽的描述,但它仅仅是本申请一部分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本申请保护范围。

Claims (10)

  1. 一种自支撑复合材料的制备方法,包括以下步骤:
    将泡沫钛进行酸刻蚀,得到刻蚀泡沫钛;
    将所述刻蚀泡沫钛、可溶性钌源和酸溶液混合后进行溶剂热反应,得到所述自支撑复合材料。
  2. 根据权利要求1所述制备方法,其特征在于,所述溶剂热反应的温度为120~200℃,时间为8~20h。
  3. 根据权利要求1所述制备方法,其特征在于,所述酸刻蚀用酸为强酸水溶液,所述强酸水溶液包括盐酸水溶液或硫酸水溶液。
  4. 根据权利要求1或3所述制备方法,其特征在于,所述酸刻蚀的温度为80~120℃,时间为5~30min。
  5. 根据权利要求1所述制备方法,其特征在于,所述可溶性钌源包括三氯化钌、氯钌酸钾、氯钌酸铵或羰基氯化钌;
    所述酸溶液包括盐酸水溶液、硝酸水溶液或高氯酸水溶液。
  6. 根据权利要求1所述制备方法,其特征在于,所述酸刻蚀前还包括:将所述泡沫钛依次进行水洗涤、丙酮洗涤和无水乙醇洗涤。
  7. 权利要求1~6任一项所述制备方法制备得到的自支撑复合材料,包括泡沫钛载体、生长于所述泡沫钛载体表面的二氧化钛纳米棒和负载在所述二氧化钛纳米棒表面的钌纳米颗粒;
    所述二氧化钛纳米棒顶端呈金字塔锥型,所述二氧化钛纳米棒在泡沫钛载体表面呈阵列分布。
  8. 根据权利要求7所述自支撑复合材料,其特征在于,所述钌纳米颗粒和二氧化钛纳米棒的质量比为1:9~11。
  9. 根据权利要求7或8所述自支撑复合材料,其特征在于,所述钌纳米颗粒的平均粒径为3.5~4.5nm;
    所述二氧化钛纳米棒的平均直径为38~42nm,平均高度为145~155nm。
  10. 权利要求7~9任一项所述自支撑复合材料在电催化电极中的应用。
PCT/CN2022/095953 2021-05-31 2022-05-30 一种自支撑复合材料及其制备方法和应用 WO2022253177A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110601364.5 2021-05-31
CN202110601364.5A CN113275006B (zh) 2021-05-31 2021-05-31 一种自支撑复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022253177A1 true WO2022253177A1 (zh) 2022-12-08

Family

ID=77282686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095953 WO2022253177A1 (zh) 2021-05-31 2022-05-30 一种自支撑复合材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113275006B (zh)
WO (1) WO2022253177A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113275006B (zh) * 2021-05-31 2022-04-15 清华大学 一种自支撑复合材料及其制备方法和应用
CN114592209B (zh) * 2022-04-06 2024-01-26 清华大学 催化剂及其可规模化制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102895963A (zh) * 2012-09-14 2013-01-30 浙江大学 一种在钛丝网表面负载二氧化钛纳米棒阵列的方法
CN107159192A (zh) * 2017-06-12 2017-09-15 青岛科技大学 一种贵金属/TiO2混晶纳米棒组装的多级结构及其制备方法
US20200030774A1 (en) * 2017-06-02 2020-01-30 University Of Connecticut Low-Temperature Diesel Oxidation Catalysts Using TiO2 Nanowire Arrays Integrated on a Monolithic Substrate
CN111744471A (zh) * 2020-08-04 2020-10-09 郑州大学 一种制备自支撑二氧化钛负载贵金属催化剂的方法
CN112473638A (zh) * 2020-11-27 2021-03-12 辽宁大学 钌掺杂超薄TiO2纳米片光催化剂及其在光催化水分解制氢中的应用
CN113275006A (zh) * 2021-05-31 2021-08-20 清华大学 一种自支撑复合材料及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102895963A (zh) * 2012-09-14 2013-01-30 浙江大学 一种在钛丝网表面负载二氧化钛纳米棒阵列的方法
US20200030774A1 (en) * 2017-06-02 2020-01-30 University Of Connecticut Low-Temperature Diesel Oxidation Catalysts Using TiO2 Nanowire Arrays Integrated on a Monolithic Substrate
CN107159192A (zh) * 2017-06-12 2017-09-15 青岛科技大学 一种贵金属/TiO2混晶纳米棒组装的多级结构及其制备方法
CN111744471A (zh) * 2020-08-04 2020-10-09 郑州大学 一种制备自支撑二氧化钛负载贵金属催化剂的方法
CN112473638A (zh) * 2020-11-27 2021-03-12 辽宁大学 钌掺杂超薄TiO2纳米片光催化剂及其在光催化水分解制氢中的应用
CN113275006A (zh) * 2021-05-31 2021-08-20 清华大学 一种自支撑复合材料及其制备方法和应用
CN113275006B (zh) * 2021-05-31 2022-04-15 清华大学 一种自支撑复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN113275006B (zh) 2022-04-15
CN113275006A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
WO2022253177A1 (zh) 一种自支撑复合材料及其制备方法和应用
CN109811364B (zh) 一种钌/氧化亚铜电催化材料及其制备方法
CN110639534B (zh) 一种析氧电催化材料及其制备方法和应用
CN112458495B (zh) 一种钌基过渡金属氧化物固溶体的电催化剂及其制备方法和应用
CN111266110B (zh) 一种以过渡金属掺杂氧化钛为载体的水电解制氢用阳极催化剂及其制备方法
CN111663152B (zh) 一种泡沫镍负载无定型磷掺杂钼酸镍双功能电催化电极的制备方法及应用
CN113136597B (zh) 一种铜锡复合材料及其制备方法和应用
CN113437314A (zh) 氮掺杂碳负载低含量钌和Co2P纳米粒子的三功能电催化剂及其制备方法和应用
CN114959791A (zh) 一种Mg掺杂的NiFe基(氧)氢氧化物的制备方法及其析氧电催化应用
CN114561655A (zh) 一种稀土铈掺杂硫化镍/硫化铁异质结材料的制备方法和应用
CN115491699A (zh) 一种纳米铜基催化剂及其制备方法以及在二氧化碳和一氧化碳电催化还原中的应用
CN110065932B (zh) 一种锂插入式硒类化合物、其制备方法及应用
CN110055555B (zh) 析氧反应催化剂及其制备方法和应用
CN113355687A (zh) 一种锡基双金属碳化物@碳纳米链核壳结构及其制备方法和应用
CN111841553A (zh) 泡沫镍基Nano-K2Fe4O7催化剂、制备方法及其在高效电催化水解方面的应用
CN115110108B (zh) 一种多孔镍钼合金电催化材料及其制备方法与应用
CN114016070B (zh) 一种以坡莫合金为基材制备水氧化电极的方法
CN114592209B (zh) 催化剂及其可规模化制备方法和应用
CN115094475B (zh) 具有高性能析氧催化活性的电极材料及其制备方法
CN115652357B (zh) 一种硫掺杂的钌酸钇及其制备方法和析氧反应电极
CN114808012B (zh) 一种磷化物/二元金属氮化物纳米多孔异质结电催化剂及其制备方法和应用
CN118026300A (zh) 一种用于pem电解槽阳极的铑钌二元金属氧化物的制备方法
CN116377468A (zh) 一种可再生金属氢氧化物自支撑催化电极及其应用
Islam et al. 3d block transition metal-based catalysts for electrochemical water splitting
CN115233254A (zh) 核壳结构的TiO2/NiCoAl-LDH纳米棒阵列复合电极及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE