WO2006019008A1 - ポリマー修飾ナノ粒子 - Google Patents

ポリマー修飾ナノ粒子 Download PDF

Info

Publication number
WO2006019008A1
WO2006019008A1 PCT/JP2005/014545 JP2005014545W WO2006019008A1 WO 2006019008 A1 WO2006019008 A1 WO 2006019008A1 JP 2005014545 W JP2005014545 W JP 2005014545W WO 2006019008 A1 WO2006019008 A1 WO 2006019008A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
nanoparticles
compound
zinc
modified
Prior art date
Application number
PCT/JP2005/014545
Other languages
English (en)
French (fr)
Inventor
Ryotaro Tsuji
Yoshiharu Yonemushi
Tomokazu Tozawa
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004240307A external-priority patent/JP4766854B2/ja
Priority claimed from JP2004262712A external-priority patent/JP2006076831A/ja
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Publication of WO2006019008A1 publication Critical patent/WO2006019008A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Definitions

  • the present invention relates to polymer-modified nanoparticles. More specifically, the present invention relates to nanoparticles obtained by surface-modifying metal oxide nanoparticles or metal sulfate nanoparticles having a particle size of lOOnm or less with a polymer obtained by reversible addition / desorption chain transfer polymerization. The present invention also relates to a transparent colloid solution containing the polymer-modified nanoparticles.
  • Metal oxide nanoparticles or metal sulfate nanoparticles exhibit properties that are not seen in Balta, such as fluorescence depending on the size due to their quantum effects, so that electronics, optics, optoelectronics Practical use is being studied in a wide range of fields such as neuroscience and medical fields.
  • solar cells, light-emitting diodes, wavelength conversion elements, lasers, optical memories, ultraviolet screening agents, photocatalysts, quantum transistors, diagnostics, microanalysis, flat displays, electoluminescence elements, electromagnetic shielding materials, magnetic recording materials, light include wavelength cut filters and nonlinear optical materials.
  • Non-Patent Document 1 shows a transmission electron microscope (TEM) photograph of zinc oxide particles !, but the particles aggregate together!
  • Non-Patent Document 2 describes the phenomenon that particles aggregate when a colloidal solution of acid-zinc is concentrated! RU
  • Patent Document 1 and Non-Patent Document 3 describe the synthesis of metal oxide nanoparticles surface-modified with low molecular weight compounds such as trioctylphosphine, trioctylphosphine oxide, alkylamine, and hexametaphosphoric acid. Yes.
  • these low molecular weight compounds In the case of such surface modification, there is a problem in stability, and there is a problem that nanoparticles are aggregated in several days to several weeks. In addition, it was difficult to disperse the metal oxide nanoparticles whose surface was modified with a low molecular weight compound in the resin.
  • Non-Patent Document 4 Patent Document 2, and the like.
  • the modification with polybulurpyrrolidone described in Non-Patent Document 4 has a strong bond with nanoparticles!
  • Polyethylene glycol having an SH group at the end described in Patent Document 2 can strongly modify the surface of metal oxide nanoparticles by the action of the SH group, but the synthesis of such a polymer is complicated. It was not economical.
  • Patent Document 4 The most convenient technique for synthesizing a polymer having an SH group at the terminal is a reversible addition-elimination chain transfer polymerization method, which is described in Patent Document 3 and Patent Document 4.
  • Patent Document 4 the surface of metal nanoparticles is modified using a polymer obtained by reversible addition / desorption chain transfer polymerization.
  • this method since applicable nanoparticles are limited to those synthesized by a reduction method, it was impossible to perform surface modification of metal oxide nanoparticles.
  • Patent Document 5 discloses a method of synthesizing cadmium sulfide (CdS) nanoparticles in the presence of low-molecular amine compounds such as dimethylamine and ethylenediamine. Is written. However, the stability due to low molecular amine compounds is insufficient, and it has been impossible to stably store CdS nanoparticles for a long period of time.
  • CdS cadmium sulfide
  • Patent Document 6 describes a method for adding phosphine oxides such as trioctylphosphine oxide (TOPO) after synthesis of selenium-zinc (ZnSe) nanoparticles
  • Patent Document 7 discloses phosphine oxides such as TOP O.
  • TOPO trioctylphosphine oxide
  • TOP O phosphine oxides
  • Methods for producing CdS nanoparticles in the presence of a variety are described. However, these methods required a high temperature of 290 ° C or higher, and there were problems in economic efficiency and safety.
  • Patent Document 8 describes metal chalcogenide nanoparticles coated with silica using 3-mercaptopropyltrimethoxysilane, but it is not practical because the manufacturing method is complicated and the surface properties cannot be adjusted. I helped.
  • Patent Document 9 describes a method of synthesizing metal chalcogenide nanoparticles in the presence of thiol and then amine treatment, but it is cumbersome and the reproducibility of nanoparticle properties is poor. And question There was a title.
  • Non-patent document 5 describes zinc sulfide (ZnS) nanoparticles modified with di-n-hexadecyl dithiophosphate. It can be seen that is aggregated.
  • Patent Document 10 describes an example of modification with an ethylene glycol block copolymer
  • Patent Document 11 modifies nanoparticles modified with a methacryl group-containing ligand as a radical polymerizable monomer.
  • Patent Document 12 Examples of copolymerization with omega-mercapto fatty acid polyalkylene glycol ester are shown in Patent Document 12; Examples of semiconductor nanoparticles modified with dendron thiocyanurate are shown in Patent Document 13, Patent Document 14 Example of semiconductor nanoparticles modified with amino fatty acid polyalkylene glycol ester, Patent Document 15 shows an example of semiconductor nanoparticles modified with phosphonoalkyl polyalkylene glycol ethers, Non-Patent Document 6 shows cetyl- ⁇ -burben An example of polymerizing nanoparticles after modification with dimethyldimethylammonium chloride.
  • Patent Document 1 JP 2003-226521
  • Patent Document 2 WO02 / 018080
  • Patent Document 3 JP 2002-265508
  • Patent Document 4 US2003Z0199653 A1
  • Patent Document 5 Japanese Patent No. 3263102
  • Patent Document 6 JP 2001-262138 A
  • Patent Document 7 JP 2001-354954 A
  • Patent Document 8 Special Table 2001-520937
  • Patent Document 9 Japanese Patent Laid-Open No. 2003-89522
  • Patent Document 10 JP 2002-80903 A
  • Patent Document 11 JP 2002-105325 A
  • Patent Document 12 Japanese Unexamined Patent Application Publication No. 2002-121549
  • Patent Document 13 Japanese Unexamined Patent Application Publication No. 2002-129156
  • Patent Document 14 Japanese Patent Laid-Open No. 2003-64282
  • Patent Document 15 Japanese Unexamined Patent Publication No. 2003-286292
  • Non-Patent Document 1 D. W. Bruemann et al., J. Phys. Chem. 1987, 91, 378 9
  • Non-Patent Document 2 L. Spanhel et al., J. Am. Chem. Soc. 1991, 113, 2826
  • Non-Patent Document 3 M. Shim et al., J. Am. Chem. Soc. 2001, 123, 11651
  • Non-Patent Document 4 L. Guo et al., Chem. Mater. 2000, 12, 2268
  • Non-Patent Document 5 S. Chen et al., Langmuir 1999, 15, 8100
  • Non-Patent Document 6 T. Hirai et al., Phys. Chem. B 2000, 104, 8962
  • Non-patent literature 7 1. Potapova et al., Am. Chem. Soc. 2003, 125, 320
  • Non-patent literature 8 R. He et al., Colloids and Surfaces A: Physicochem. Eng. As pects 2003, 220, 151
  • Non-Patent Document 9 K. Manzoor et al., Solid State Communications 2004, 129, 4 69
  • the problem to be solved by the present invention is to economically provide polymer-modified nanoparticles that stably exist without being aggregated over a long period of time and can be easily dispersed in a resin.
  • Another problem to be solved by the present invention is to provide a colloidal solution of polymer-modified nanoparticles having high transparency and high stability that does not aggregate over a long period of time.
  • the present inventor proposes the following polymer-modified nanoparticles. That is, the polymer-modified nanoparticle of the present invention is a reversible addition using a metal oxide nanoparticle or metal sulfate nanoparticle having a number average particle diameter of lOOnm or less and a thiothiothio compound as a chain transfer agent. It is obtained by surface modification using a polymer obtained by elimination chain transfer polymerization.
  • a preferred embodiment of the present invention is that the polymer force used for the surface modification is reversible addition-elimination chain transfer polymerization using the thiocarbonylthio compound as a chain transfer agent and then terminally SH-treated by a treating agent. is there.
  • the treatment agent is selected from the group consisting of a hydrogen-nitrogen bond-containing compound, a basic compound, and a reducing agent.
  • Preferred embodiments of the present invention include polymer strength (meth) acrylic acid ester, (meth) acrylamides, (meth) acrylic acid, and alkali metal salt of (meth) acrylic acid used for the surface modification.
  • Styrene alkali metal salt of P-styrene sulfonic acid
  • Buylbenzyl trimethylammonium chloride, acrylonitrile, bulupyrrolidone, bulupyridine, acetic acid bulu, chloro chloride, maleic anhydride, maleimide It has a structure obtained by polymerizing monomers.
  • the polymer used for the surface modification has a molecular weight distribution of 1.5 or less.
  • the number average particle diameter of the metal oxide nanoparticles or metal sulfate nanoparticles is 1 Onm or less.
  • the metal oxide nanoparticles may react an organometallic compound and an OH group-containing basic compound in a solvent. Is obtained.
  • the OH group-containing basic compound is LiOH, Na
  • the organometallic compound used in the synthesis of the metal oxide nanoparticles is zinc acetate, zinc acetate dihydrate, zinc acetylacetonate zinc hydrate.
  • the metal oxide nanoparticles may be Zn, Ti, Zr, Cr, Mo, W, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Cu , Ag, Cd, Al, Ga, In, Si, Ge, Sn, Pb, doped with an element selected from the group consisting of lanthanoids and actinoids.
  • the metal in the metal sulfide nanoparticles may be Zn, Ti, Zr, Cr, Mo, W, Mn, Fe, Ru. Consists of one or more elements selected from the group consisting of Co, Rh, Ir, Ni, Pd, Cu, Ag, Cd, Al, Ga, In, Si, Ge, Sn, Pb, lanthanoids and actinoids It is what is done.
  • 90 mol% or more of the metal in the metal sulfide nanoparticles is Zn.
  • the metal sulfide nanoparticles are obtained by reacting an organometallic compound and a sulfur compound in a solvent.
  • the organometallic compound used in the synthesis of the metal sulfide nanoparticles is a zinc carboxylate compound, a zinc dithiocarbamate compound, or a zinc xanthate compound. And one or more compounds selected from the group consisting of: acetylacetonatozinc compound, a carboxylic acid manganese compound, a acetylylacetonatomanganese compound, a carboxylic acid copper compound, and a dithiocarbamate copper compound.
  • the sulfur compound is a group consisting of an alkali metal sulfate, an alkaline earth metal sulfide, an alkali metal hydrosulfide, hydrogen sulfide, and thiourea.
  • an alkali metal sulfate an alkaline earth metal sulfide
  • an alkali metal hydrosulfide an alkali metal hydrosulfide
  • hydrogen sulfide and thiourea.
  • the present invention also includes a transparent colloid solution containing the polymer-modified nanoparticles.
  • the polymer-modified nanoparticles of the present invention are stable in any of an isolated state, a colloid solution state, and a dispersed state in a resin, and are present without being aggregated over a long period of time. Therefore, the electrical properties 'optical properties' and chemical properties persist without loss.
  • the service life is long. Less deterioration. It can be used for a long period of time while maintaining its performance as a wavelength conversion element and quantum dot. When used as a catalyst, turnover is high and performance degradation is small.
  • composition and structure of the polymer to be modified can be selected arbitrarily, the physical properties of the nanoparticle surface, such as hydrophilic 'lipophilic' and amphiphilic properties, can be freely adjusted. It is easy to make. Furthermore, it is economical because it can be manufactured easily and inexpensively.
  • the polymer-modified nanoparticle of the present invention comprises a metal oxide nanoparticle or metal sulfate nanoparticle, and a reversible addition / desorption chain transfer weight using a thiothio compound as a chain transfer agent. It is obtained by surface modification using the polymer obtained by the combination.
  • the thiocarbonyl compound used in the present invention is not particularly limited! Spear
  • a compound having a trithiocarbonate structure is generally highly reactive in reversible addition / elimination chain transfer polymerization.
  • a compound having multiple thiothio structures in one molecule can be strongly modified to bind to the nanoparticle surface at multiple points, and can also be modified to crosslink the nanoparticles. Therefore, it is possible to arrange them precisely while controlling the distance between the nanoparticles.
  • the polymer may be used as it is, but the treatment agent is used in view of high surface modification efficiency. It is preferable to use a terminal SH.
  • the treating agent is not particularly limited, but a compound selected from the group consisting of a hydrogen-nitrogen bond-containing compound, a basic compound, and a reducing agent power is preferred because of its high efficiency of conversion to an SH group.
  • the hydrogen-nitrogen bond-containing compound is not particularly limited, but ammonia, hydrazine, primary amine, secondary amine, amido compound, ammine hydrochloride, hydrogen-nitrogen Examples thereof include a bond-containing polymer and a hindered amine light stabilizer (HALS).
  • HALS hindered amine light stabilizer
  • Examples of the primary amines include methylamine, ethylamine, isopropylamine, n-propylamine, n-butylamine, t-butylamine, 2-ethylhexylamine, 2-aminoethanol, ethylenediamine, diethylenetriamine, 1 1,2-diaminopropane, 1,4-diaminobutane, cyclohexylamine, errin, phenethylamine and the like.
  • Examples of secondary amines include dimethylamine, jetylamine, diisobutylamine, di-2-ethylhexylamine, iminodiacetic acid, bis (hydroxyethyl) amine, di- ⁇ -butylamine, di-butylamine, diphenyl- Examples include lumine, N-methylaline, imidazole, and piperidine.
  • Examples of the amide compound include adipic acid hydrazide, N-isopropylacrylamide, oleic acid amide, thioacetamide, formamide, acetonitrile, phthalimide, and succinimide.
  • Examples of the above amine hydrochloride include: acetamidine hydrochloride, monomethylamine hydrochloride, dimethylamine hydrochloride, Examples thereof include monoethylamine hydrochloride, jetylamine hydrochloride, and guanidine hydrochloride.
  • Examples of the hydrogen-nitrogen bond-containing polymer include polyethyleneimine, polyallylamine, and polybulamine.
  • Examples of the above HALS include Ade force stub LA-77 (Asahi Denka Kogyo Co., Ltd.), Tinuvin 144 (Ciba 'Specialty Chemicals Co., Ltd.), Adeka Stub LA-67 (Asahi Denka Kogyo Co., Ltd.), etc. Can be mentioned.
  • examples of basic compounds are not particularly limited, but include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, sodium methoxide, sodium ethoxy. And magnesium methoxide, sodium carbonate, potassium carbonate and the like.
  • examples of the reducing agent are not particularly limited, but sodium hydride, hydrogenated lithium, calcium hydride, LiAlH, NaBH, LiBEt H (super hydride
  • the above treatment agents may be used alone or in combination! From the viewpoint of reactivity, a hydrogen-nitrogen bond-containing compound and a reducing agent are preferred. In the case of a hydrogen-nitrogen bond-containing compound, a compound having a boiling point of 20 ° C. to 200 ° C. is more preferable because it facilitates purification.
  • the amount of the above-mentioned treatment agent is not particularly limited, but in terms of reactivity and economy, 0.01 to 100 parts by weight of the polymer is preferable to LOO parts by weight, more preferably 0.1 to 50 parts by weight. preferable. Reaction conditions such as temperature, presence / absence of solvent, and mixing conditions are not particularly limited.
  • the composition of the polymer that modifies the surface of the nanoparticles is not particularly limited.
  • the availability, compatibility with various solvents, heat resistance, and stability are not particularly limited.
  • (meth) acrylic acid esters, (meth) acrylamides, (meth) acrylic acid, alkali metal salts of (meth) acrylic acid, styrene, alkalis of P-styrene sulfonic acid A structure obtained by polymerizing one or more monomers selected from the group consisting of metal salt, (Buylbenzyl) trimethylammonium chloride, acrylonitrile, butyl pyrrolidone, butyl pyridine, butyl acetate, butyl chloride, maleic anhydride and maleimide.
  • the main chain structure is not particularly limited, and is arbitrary such as a random copolymer, a block copolymer, a gradient copolymer, or a combination thereof.
  • specific monomers such as (meth) acrylic acid and vinyl acetate, It may be denatured with Steruy rice cake.
  • the (meth) acrylic acid ester is not particularly limited, but methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, (meth) acrylic T-Butyl acid, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, allylic (meth) acrylate, (meth) acrylic acid- And so on.
  • (Meth) acrylamides are not particularly limited, and (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide and the like can be mentioned.
  • Examples of the alkali metal in the alkali metal salt of (meth) acrylic acid and the alkali metal salt of p-styrene sulfonic acid include lithium, sodium, and lithium.
  • the molecular weight and molecular weight distribution of the polymer that modifies the surface of the metal oxide nanoparticles are not particularly limited, but can be easily controlled by reversible addition / desorption chain transfer polymerization.
  • the number average molecular weight is preferably in the range of 2000 to 50000.
  • the molecular weight distribution is preferably 1.5 or less, more preferably 1.2 or less, from the viewpoint of uniform physical properties of the resulting polymer-modified nanoparticles.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) are values analyzed by gel permeation chromatography (GPC), and the molecular weight distribution is a value calculated as MwZMn.
  • the metal oxide nanoparticles or metal sulfate nanoparticles used in the present invention are not particularly limited as long as the number average particle diameter is not more than lOOnm.
  • the number average particle size can be determined by dynamic light scattering (DLS) analysis or transmission electron microscope (TEM) observation.
  • the number average particle diameter of the above nanoparticles is preferably 20 nm or less, more preferably lOnm or less, in that the quantum effect is remarkably exhibited.
  • the shorter diameter is expressed as the number average particle diameter.
  • the method for synthesizing the metal oxide nanoparticles used in the present invention is not particularly limited, and is a top-down method such as a lithography method, a mechanical pulverization method, decomposition by a laser beam; Trap method, gas deposition method (CVD), 2-photon confocal method, etc. Any bottom-up method can be applied. Of these, the chemical synthesis method is more preferable because the bottom-up method is preferred because the particle size can control the particle shape, and the apparatus is cheaper.
  • Examples of the chemical synthesis method include a coprecipitation method, a reverse micelle method, and a sol-gel method, but the coprecipitation method and the sol-gel method are particularly preferable in terms of simple operation. Of these, the method of reacting an organometallic compound with an OH group-containing basic compound in a solvent is most preferred because of the availability of raw materials and the ease of production.
  • the organometallic compound is not particularly limited !, but, for example, zinc acetate, zinc acetate dihydrate, zinc chloride, acetylethylacetonate zinc hydrate, zinc benzoate, zinc citrate, dibutyldithiocarbamine Zinc compounds such as zinc oxide, zinc jetyl dithiocarbamate, zinc formate, zinc formate dihydrate, zinc laurate, zinc salicylate trihydrate; titanium chloride (III), titanium chloride ( IV), titanium cresylate (IV), titanium oxide ( ⁇ ) acetyl cetate, titanium (IV) ethoxide, titanium (IV) isobutoxide, titanium (IV) methoxide, titanium (IV) n-propoxide, titanium (IV) Titanium compounds such as tetrabutoxide and titanium tetraisopropoxide; cobalt acetate ( ⁇ ) tetrahydrate, acetylylacetonate cobalt ( ⁇ ), cobalt benzoate ( ⁇ ), cobalt chlor
  • zinc acetate, zinc acetate dihydrate, and zinc acetylacetonate are preferred because zinc oxide compounds are preferred because of the large band gap of the resulting metal oxide nanoparticles and high safety.
  • Hydrate, Zinc benzoate, Zinc citrate, Zinc dibutyldithiocarbamate, Zinc diethyldithiocarbamate, Zinc formate, Zinc formate Dihydrate More preferred are zinc laurate, zinc salicylate trihydrate. These may be used alone or in combination.
  • the OH group-containing basic compound is not particularly limited. Examples thereof include alkali metal hydroxides such as LiOH, NaO H, and KOH; Mg (OH), Ca (OH), Ba (OH), and the like.
  • alkali metal hydroxides such as LiOH, NaO H, and KOH; Mg (OH), Ca (OH), Ba (OH), and the like.
  • Examples include droxidide.
  • LiOH, NaOH, and KOH are more preferable because alkali metal hydroxides are preferable in terms of availability and reactivity. These may be used alone or in combination.
  • the solvent is not particularly limited, and any one that can dissolve or disperse the organometallic compound and the OH group-containing compound can be arbitrarily used. It is.
  • solvents examples include water; alcohol solvents such as methanol, ethanol, isopropanol, and n-propanol; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; dimethyl sulfoxide; dimethylformamide; Halogen solvents such as dichloromethane; ether solvents such as jetyl ether and tetrahydrofuran; aromatic solvents such as benzene and toluene; hydrocarbon solvents such as pentane, hexane, octane, 2-ethyl hexane, and cyclohexane And so on.
  • alcohol solvents such as methanol, ethanol, isopropanol, and n-propanol
  • ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone
  • dimethyl sulfoxide dimethylformamide
  • water, alcohol-based solvents, and ketone-based solvents are preferable because the dispersibility of the generated metal oxide is favorable.
  • a solvent in which the polymer dissolves it is preferable to use a solvent in which the polymer dissolves.
  • solvents may be used alone or in combination.
  • solvents that are mixed with each other or solvents that are not mixed with each other may be used, but solvents that are mixed with each other are preferred in terms of efficiency.
  • the reaction conditions for reacting the organometallic compound and the OH group-containing compound are not particularly limited, and any temperature / time 'addition timing and the like can be employed.
  • the temperature is preferably in the range of -20 ° C to 100 ° C, more preferably in the range of 0 ° C to 80 ° C.
  • the reaction method include controlled double jet precipitation, sol-gel method, chemical precipitation, colloidal synthesis, and the like.
  • J. Am. Chem. Coc. 1991, 113, 2826, Chem. Mater. 2000, 12, 2268, and J. P hys. Chem. 1992, 96, 11086 etc. [described here! Noregenore method, Phys. Chem. 1987, 91, 3789 and J. Phys. Chem. B 1998, 102, 7770 etc.
  • the colloid synthesis method is preferred.
  • the metal oxide nanoparticles of the present invention may be doped with one or more metals, which may be a single metal oxide.
  • a doping element Zn, Ti, Zr, Cr, Mo, W, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd
  • An element selected from the group consisting of Cu, Ag, Cd, Al, Ga, In, Si, Ge, Sn, Pb, lanthanoid and actinoid is preferable. These may be used alone or in combination.
  • the method for doping is not particularly limited, but in terms of convenience, J. Am. Chem. Soc. 2002, 124, 15192, Am. Chem. Soc. 2 003, 125, 13205, and J. Am. Chem Soc. 2004, 126, 9387 and the like are preferred.
  • the method for synthesizing the metal sulfate nanoparticles used in the present invention is not particularly limited, and is a top-down method such as a lithography method, a mechanical pulverization method, decomposition by a laser beam; A bottom-up method such as a trap method, gas deposition method (CVD), or 2-photon confocal method is applicable.
  • the chemical synthesis method is more preferable because the bottom-up method is preferable because the particle size can control the particle shape.
  • Examples of the chemical synthesis method include a coprecipitation method and a reverse micelle method, but the coprecipitation method is particularly preferable in terms of simple operation.
  • the method of reacting an organometallic compound and a sulfur compound in a solvent is most preferable from the viewpoint of availability of raw materials, economy, and ease of production.
  • the metal in the metal sulfide nanoparticle is not particularly limited, but Zn, Ti, Zr, Cr, Mo, W, Mn, Zn, Ti, Zr, Cr, Mo, Wn, Mn, Zn, which is preferably an element selected from the group consisting of Fe, Ru, Co, Rh, Ir, Ni, Pd, Cu, Ag, Cd, Al, Ga, In, Si, Ge, Sn, Pb, lanthanoid, and actinoid
  • An element selected from the group consisting of Ti, Mn, Co, Cu, Cd, Ga, In, Si, Ge, Sn, Pb, La, Eu, and Tb is more preferable. These may be used alone or in combination.
  • the ratio of each component is not particularly limited. However, in terms of excellent quantum characteristics, a compound containing 90 mol% or more of one kind of metal as a main component is preferable. Those containing at least% are preferred.
  • the metal element as the main component is not particularly limited, but Zn is particularly preferable from the viewpoint of availability and safety that Zn, Ti, and Cd are preferable in terms of excellent quantum characteristics.
  • the metal element other than the main component is a so-called doping element, and is not particularly limited. However, Mn, Cu, lanthanoid, and actinoid are more preferable in terms of the quantum characteristics that the element selected from the above group is preferable. .
  • the organometallic compound is not particularly limited, and examples thereof include the above-described metal halides, organic acid salts, nitrates, perchlorates, and acetyl cetates. These may contain crystal water.
  • organometallic compounds that can be suitably used in the present invention are not particularly limited! Zinc carboxylic acid zinc compounds, dithiocarbamate zinc compounds, zinc xanthate compounds Zinc compounds, such as zinc compounds, acetylylacetonato zinc compounds; salt titanium (III), salt titanium (IV), titanium cresylate (IV), titanium oxide ( ) Acetylacetonate, titanium (IV) ethoxide, titanium (IV) isobutoxide, titanium (IV) methoxide, titanium (IV) n-propoxide, titanium (IV) tetrabutoxide, titanium tetraisopropoxide, etc.
  • Titanium compound Conoletoacetate ( ⁇ ⁇ ) tetrahydrate, Acetylacetonate cobalt ( ⁇ ), Cobalt benzoate ( ⁇ ), Cobalt chloride ( ⁇ ), Cobalt citrate ( ⁇ ) dihydrate, Cobalt oxalate ( ⁇ ) dihydrate, cobalt stearate ( ⁇ ⁇ ⁇ ⁇ ), cobalt compounds such as cobalt hydroxide; nickel acetate ( ⁇ ) tetrahydrate, acetylylacetonate nickel ( ⁇ ) dihydrate, bis (dibutyldithiocarnomate) nickel (II), Nickel compounds such as nickel chloride (II), nickel formate (II) dihydrate, nickel lactate (II) tetrahydrate, nickel stearate (II), nickel hydroxide (II); copper acetate (II) Hydrate, copper (II) sulfate, copper (II) bromide, copper chloride (II), carboxylic acid copper compounds, dithiocarba
  • Cadmium compounds such as cadmium acetate dihydrate, cadmium bromide tetrahydrate, cadmium carbonate, salt cadmium carbonate, cadmium formate dihydrate, cadmium stearate, cadmium hydroxide hydroxide;
  • Cadmium compounds such as cadmium acetate dihydrate, cadmium bromide tetrahydrate, cadmium carbonate, salt cadmium carbonate, cadmium formate dihydrate, cadmium stearate, cadmium hydroxide hydroxide
  • Manganese carboxylate, acetylylacetonate Or the like can be mentioned manganese compound.
  • a carboxylic acid zinc compound, a dithio-zinc rubamate compound, a zinc xanthate compound, an acetylacetonate zinc compound, a carboxylic acid Manganese compounds, acetylylacetonate manganese compounds Zinc acetate, zinc acetate dihydrate, zinc benzoate, zinc citrate, zinc formate, zinc formate dihydrate , Zinc laurate, zinc salicylate trihydrate; zinc dithiocarbamate, zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc dibutyldithiocarbamate, N-ethyl -N-phenyldithiocarbamate, zinc N-pentamethylenedithiocarbamate, zinc dibenzyldithiocarbamate; zinc xanthate, zinc butylxanthate, zinc isopropylxanthate;
  • the sulfur compound used in the present invention is not particularly limited, and a compound containing a sulfur atom can be used.
  • a compound containing a sulfur atom can be used.
  • alkali metal sulfides, alkaline earth metal sulfates, alkali metal hydroxides, hydrogen sulfide, and sodium sulfate are preferred.
  • Sodium sulfate, sodium sulfate, lithium sulfide, potassium sulfate, hydrogen sulfide, and thiourea are more preferred.
  • the solvent is not particularly limited, and a solvent capable of dissolving or dispersing the organometallic compound and the sulfur compound can be arbitrarily used. is there.
  • solvents examples include water; alcohol solvents such as methanol, ethanol, isopropanol, and n-propanol; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; dimethyl sulfoxide; dimethylformamide; Halogen solvents such as oral form and dichloromethane; ether solvents such as jetyl ether and tetrahydrofuran; aromatic solvents such as benzene and toluene; pentane, hexane, octane, 2-ethyl hexane, and cyclohexane And hydrocarbon solvents such as Of these, the dispersibility of the resulting metal sulfide is good, water, Alcohol solvents, ketone solvents and dimethylformamide are preferred.
  • solvents in which the polymer is dissolved.
  • solvents may be used alone or in combination.
  • solvents that are mixed with each other are preferred, and solvents that are mixed with each other in terms of power efficiency are preferred.
  • reaction conditions for reacting the organometallic compound with the sulfur compound are not particularly limited, and any temperature, time, addition timing, etc. can be employed.
  • the temperature is preferably in the range of -20 ° C to 100 ° C, more preferably in the range of 0 ° C to 80 ° C.
  • the surface of the metal oxide nanoparticles or metal sulfide nanoparticles is modified with a polymer obtained by reversible addition / desorption chain transfer polymerization using a thiothiol compound as a chain transfer agent.
  • the method is not particularly limited.
  • a method of synthesizing nanoparticles in a solvent and adding the polymer to the solution For example, a method of synthesizing nanoparticles in a solvent and adding the polymer to the solution; a method of isolating the nanoparticles and adding the polymer to the solution; isolating the nanoparticles, an extruder, a plastmill, A method of mixing with a polymer in a molten state using a mixer or the like; a method of mixing a solution of nanoparticles with a polymer solution; a method of coexisting the polymer when synthesizing nanoparticles; a nanoparticle when polymerizing a polymer And the like.
  • the method of mixing the nanoparticles and the polymer in a solution is preferable regardless of before and after the reaction because the reaction is simple and the modification efficiency is high. In this case, it is preferable to perform ultrasonic irradiation since the modification efficiency is further increased.
  • the nanoparticles may be modified by temporary modification with a low molecular weight compound or other polymer, and then substitution with the polymer of the present invention.
  • Such temporary modification compounds include low molecular weight amine compounds such as dodecylamine, tridecylamine and laurylamine; low molecular weight thiol compounds such as decanethiol and dodecanethiol; and phosphate esters such as trioctylphosphine oxide.
  • Compound: Power that can include polymers having no SH group such as polybulurpyrrolidone, poly (meth) acrylic acid, polyacrylamide, polyethylene glycol, polyvinyl alcohol, polyamine, etc., but is not limited thereto.
  • the transparent colloid solution of the present invention is obtained by uniformly dispersing the above-described polymer-modified nanoparticles in a solvent.
  • the solvent is not particularly limited, but a good solvent for the polymer used for the surface modification may be used in terms of good dispersibility of the nanoparticles. preferable.
  • the good solvent for the polymer for example, those described in Polymer Handbook, 4th Edition Qohn Wiley & Sons Inc., 1999) can be used.
  • the method for preparing the transparent colloidal solution of the present invention is not particularly limited, and the above-mentioned polymer-modified nanoparticles may be dispersed in a solvent after isolation.
  • the polymer-modified nanoparticles are produced in a solvent and used as they are.
  • As a colloidal solution When preparing the transparent colloidal solution, ultrasonic irradiation, microwave irradiation, or the like may be performed.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer were determined by gel permeation chromatography (GPC) analysis.
  • GPC gel permeation chromatography
  • the monomer reaction rate was determined by gas chromatography (GC) analysis.
  • GC-14B gas chromatograph GC-14B (Shimadzu Corporation) It carried out in.
  • the particle size of the nanoparticles was observed using a transmission electron microscope (TEM) JEM-1200EX (manufactured by JEOL Ltd.) at an acceleration voltage of 80 kV.
  • TEM transmission electron microscope
  • JEM-1200EX manufactured by JEOL Ltd.
  • the number average particle size of the nanoparticles was calculated by measuring more than 100 nanoparticles using a vernier caliper in a TEM photograph.
  • the emission spectrum is 290 or 299 nm excitation light for a solution or film sample using a fluorimeter LS 55 (Perkin Elma) or a spectrofluorometer FP-6500DS (JASCO Corp.) Then, the photoluminescence spectrum was measured in the range of 350 to 700 nm. Ultrasonic irradiation was performed using an ultrasonic homogenizer UH-600 (manufactured by MEST Co., Ltd.). The thiothio compound used as a chain transfer agent was synthesized according to the method described in JP 2000-515181 or Macromolecules 2002, 35, 4123. [0059] (Production Example 1)
  • a 4-roflasco (500 mL) equipped with a reflux condenser with a nitrogen inlet, a magnetic stirrer, and a thermocouple for temperature measurement was added to 2- (2-phenolpropyl) dithiobenzoate (3.22 g), styrene (100. 3 g), toluene (98. lg), and azobisisobutyric-tolyl (0.61 g) were added, the atmosphere was replaced with nitrogen, and the mixture was stirred at 70 ° C for 14 hours. The monomer reaction rate was 42%.
  • the reaction solution was kept at 50 ° C., jetylamine (25 g) was added, and the mixture was stirred for 8 hours.
  • the reaction solution was poured into methanol (500 mL) to precipitate a polymer.
  • the obtained polystyrene was Mw4 300, Mn3700, Mw / Mnl. 16, and it was confirmed by ⁇ -NMR analysis that one end was converted to an SH group.
  • a 200 mL reactor equipped with a reflux condenser with a nitrogen gas inlet, a stirrer, and a thermometer was added to dibenzyltrithiocarbonate (4.46 g), n-butyl acrylate (49.7 g), toluene (5 Og), azobisisopetite. Mouth-tolyl (0.415 g) was added, and the inside of the reactor was deaerated and purged with nitrogen. The mixture was stirred at 90 ° C for 3 hours, sampled, and the formation of PBA (Mw4200, Mn3700, Mw / Mnl. 15) having a trithiocarbonate structure was confirmed by GPC analysis and NMR analysis.
  • n-Ptylamine (20 g) was added to this solution, and the mixture was stirred at room temperature for 1 hour, and then poured into hexane (5 OOmL) and centrifuged to obtain a polymer as a precipitate.
  • GPC analysis and NMR analysis were confirmed to be PBA having terminal SH groups (Mw3000, Mn2700, Mw / Mnl. 11).
  • ZnO nanoparticles were synthesized as follows. [0067] Zinc acetate dihydrate (220 mg) was dissolved in 2-propanol (80 mL), stirred at 50 ° C for 30 minutes, and then 2-propanol was added to make the total volume 920 mL and cooled to 0 ° C. . To this, 0.0 2 M NaOHZ2-propanol solution (80 mL) was added at once, and the mixture was stirred at 65 ° C. for 2 hours. From TEM analysis, it was confirmed that ZnO nanoparticles with a number average particle size of 5. Inm were generated.
  • Zinc acetate dihydrate (11. Og) was dissolved in absolute ethanol (500 mL), and ethanol was slowly distilled off while heating to 80 ° C in a nitrogen atmosphere. When the fraction reached about 300 mL, absolute ethanol (300 mL) was added to the reactor, and LiOH'H 0 (2.9 g) was added.
  • Mn-doped ZnO nanoparticles were synthesized as follows.
  • Zinc acetate dihydrate (2. 15 g) and manganese acetate tetrahydrate (0.05 g) were dissolved in DMSO (100 mL), and tetramethylammonium hydroxide pentahydrate (30.
  • a solution of 8 g) in ethanol (310 mL) was added dropwise with stirring at room temperature. After completion of the dropping, the reaction solution was stirred at 60 ° C for 4 hours, and poured into ethyl acetate (500 mL) to precipitate particles. The obtained particles were dispersed in ethanol (300 mL) and poured into heptane (500 mL) to cause precipitation.
  • the obtained particles were dispersed in ethanol (200 mL), dodecylamine (5 g) was dispersed, stirred at room temperature for 2 hours while irradiating with ultrasonic waves, concentrated with a rotary evaporator, and then dissolved in toluene (lOOmL).
  • TEM analysis confirmed that Mn-doped ZnO nanoparticles with a number average particle size of 6.7 nm were formed.
  • Mn doped with 530nm This was confirmed by the fact that the near emission spectrum was significantly weakened.
  • Poly (acrylic acid ZN, N-dimethylacrylamide) having an SH group at the end obtained in Production Example 1 was added to the 2-propanol solution of ZnO nanoparticles obtained in Production Example 6 (5 mL). Then, the solution was concentrated and concentrated with hexane (10 mL) to precipitate polymer-modified ZnO nanoparticles.
  • the obtained polymer-modified ZnO nanoparticles were dissolved in methanol (lmL) and purified by pouring into hexane (lOmL) for reprecipitation.
  • the obtained polymer-modified ZnO nanoparticles showed a light emission spectrum at 510 nm in methanol, and the TEM observation power was confirmed to contain ZnO nanoparticles. Aggregation of ZnO nanoparticles was not observed in the TEM observation.
  • Poly (acrylic acid ZN, N-dimethylacrylamide) (2 g) having an SH group at the terminal obtained in Production Example 1 is dissolved in an ethanol solution (5 mL) of the ZnO nanoparticles obtained in Production Example 7. Ultrasonic irradiation was performed at room temperature for 1 hour. The obtained colloidal solution of polymer-modified ZnO nanoparticles remained transparent even after standing at room temperature for more than 6 months, and as a result of TEM observation, it was confirmed that the ZnO nanoparticles existed without agglomeration. .
  • polyacrylic acid (Mw2000, Aldrich) (2 g) was dissolved in an ethanol solution of ZnO nanoparticles obtained in Production Example 7 (5 mL), and ultrasonic irradiation was performed at room temperature for 1 hour. 2 mL of the obtained colloidal solution was taken and poured into hexane (10 mL) to precipitate the polymer. The obtained polymer did not show an emission spectrum, and the presence of ZnO nanoparticles could not be confirmed by TEM observation. It was confirmed by TEM observation that ZnO nanoparticles were present in the supernatant from which the polymer was removed. The remaining colloidal solution (3 mL) became turbid when stored for 1 week at room temperature, and TEM observation confirmed that ZnO nanoparticles were agglomerated.
  • the PDMA aqueous solution (1.5 mL) having SH groups at the ends obtained in Production Example 2 is added to the 2-propanol solution (10 mL) of ZnO nanoparticles obtained in Production Example 6 and ultrasonicated at 30 ° C. Light Shooting was carried out for 2 hours. The resulting colloidal solution of polymer-modified ZnO nanoparticles was concentrated and then cast to obtain a transparent film of polymer-modified ZnO nanoparticles. This film was washed with warm water at 80 ° C and observed by TEM. As a result, it was confirmed that ZnO nanoparticles were dispersed without being aggregated.
  • a PDMA aqueous solution (2 mL) having an SH group at the terminal obtained in Production Example 2 was dissolved in methanol (5 mL) and mixed with an ethanol solution (5 mL) of ZnO nanoparticles obtained in Production Example 7. After stirring at 50 ° C. for 4 hours, the resulting colloidal solution of polymer-modified ZnO nanoparticles was concentrated and cast to obtain a transparent film of polymer-modified ZnO nanoparticles. This film was washed with warm water at 80 ° C and observed by TEM. As a result, it was confirmed that ZnO nanoparticles were dispersed without aggregation.
  • PMMA (lg) having an SH group at the end obtained in Production Example 3 was added to a toluene solution (5 mL) of Mn-doped ZnO nanoparticles obtained in Production Example 8, and the mixture was added at 60 ° C for 2 hours. Ultrasonic irradiation was applied. The obtained polymer-modified ZnO nanoparticle colloidal solution was poured into methanol (50 mL) to precipitate polymer-modified ZnO nanoparticles. The presence of dodecylamine was confirmed by GC analysis of the supernatant. This is because the surface of the ZnO nanoparticle was replaced with PMMA having an SH group at the end of the dodecylamine force.
  • PSt (lg) having an SH group at the end obtained in Production Example 4 was added to the toluene solution (5 mL) of Mn doped ZnO nanoparticles obtained in Production Example 8, and the mixture was added at 60 ° C. Ultrasonic irradiation for hours. The resulting solution was poured into methanol (50 mL) to precipitate the polymer. The presence of dodecylamine was confirmed by GC analysis of the supernatant. This is due to the substitution of PSt with SH groups at the dodecylamine force ends that protected the surface of the ZnO nanoparticles. It was also confirmed from the TEM analysis and emission spectrum analysis that the supernatant contained almost no Mn-doped ZnO nanoparticles.
  • the polymer-modified ZnO nanoparticles were washed with methanol and cast using toluene (5 mL) to produce a film. It was confirmed by TEM observation that the Mn-doped ZnO nanoparticles were dispersed without being aggregated.
  • PBA (lg) having an SH group at the terminal obtained in Production Example 5 was dissolved in acetone (5 mL), and added to an ethanol solution (5 mL) of ZnO nanoparticles obtained in Production Example 7.
  • the obtained solution was irradiated with ultrasonic waves at room temperature for 2 hours, concentrated and dried under reduced pressure to obtain ZnO nanoparticles modified with PBA.
  • These transparent colloidal solutions were stable when stored for more than 6 months at room temperature, and no aggregation of ZnO nanoparticles was observed.
  • Zinc acetate dihydrate (lOmg) was added to 2-propanol (80mL) and stirred at 50 ° C for 1 hour with vigorous stirring. 2-Propanol was added to bring the total volume of the solution to 920 mL and cooled to 0 ° C. This solution was divided into four equal parts as a stock solution.
  • PDMA (1.8 g) having an SH group at the end obtained in Production Example 2 was added to one of the stock solutions, and a methanol solution of NaOH (0.02 mol / L) while sonicating at room temperature. (50 mL) was added dropwise over 2 hours. Furthermore, ultrasonic irradiation and stirring were continued for 2 hours at room temperature. As a result of TEM observation, it was confirmed that ZnO nanoparticles with a number average particle diameter of 2.5 nm were present without agglomeration. The transparent colloidal solution of ZnO nanoparticles surface-modified with PDMA obtained in this way was stable even after storage for more than 6 months at room temperature.
  • Example 8 One of the stock solutions of Example 8 includes a commercially available polybulol pyrrolidone (PVP) (Mwl0000, (Rudrich) (1.3 g) was added, and a methanol solution of NaOH (0.02 mol / L) (50 mL) was added dropwise over 2 hours while sonicating at room temperature. Furthermore, ultrasonic irradiation and stirring were continued for 2 hours at room temperature. As a result of TEM observation, it was confirmed that ZnO nanoparticles having a number average particle diameter of 3. lnm existed without being aggregated. However, it was confirmed that the transparent colloidal solution of ZnO nanoparticles surface-protected with PVP thus obtained was turbid when stored for about 3 weeks at room temperature, and the ZnO nanoparticles aggregated. .
  • PVP polybulol pyrrolidone
  • Reflux condenser with nitrogen introduction tube, magnetic stirrer, thermocouple for temperature measurement 4 Roflasco (lOOmL), dimethylformamide (50mL), azobisisobuti-tyl-tolyl (5.3 mg), 1-Fuel Tildithiobenzoate (42 mg) and acrylic acid (20 mL) were added, and the inside of the reactor was deaerated and purged with nitrogen.
  • the reaction solution was stirred for 4 hours at 60 ° C. (conversion rate 21%), cooled to room temperature, NaOH (lOg) was added, and the mixture was stirred at 60 ° C. for 8 hours.
  • the reaction solution was concentrated and poured into toluene (200 mL) to precipitate a polymer.
  • ZnS nanoparticles were synthesized with reference to J. Luminescence 2003, 102-103, 768.
  • Zinc acetate dihydrate (2.5 g; 11.4 mmol) and mercaptoacetic acid (21 g; 22.8 mmol) were dissolved in dimethylformamide (200 mL) and placed in a three-necked flask. Replaced. Adjust the pH of the solution to 8 by adding 2M aqueous sodium hydroxide solution, and do not stir at room temperature. The dropping funnel force is also an aqueous solution (50 mL of sodium sulfate nonahydrate (2.7 g; l l. 2 mmol)). ) was added dropwise over 30 minutes.
  • ZnS Mn nanoparticles were synthesized with reference to Nano Lett. 2001, 1, 429.
  • PAANa (0.5 g) having an SH group at the terminal obtained in Production Example 9 was dissolved in dimethylformamide (5 mL), and ZnS nanoparticles (5 mg) obtained in Production Example 10 were obtained. Stir at room temperature for 5 minutes. The solution was concentrated to 2 mL and poured into hexane (10 mL) to obtain polymer-modified ZnS nanoparticles. The polymer-modified ZnS nanoparticles showed an emission spectrum at 425 nm in methanol. Also, after drying under reduced pressure and leaving in a force atmosphere for 3 months, when dissolved in methanol, the same emission spectrum was shown and no aggregation was observed by TEM observation.
  • PAANa 0.5 g having an SH group at the terminal obtained in Production Example 9 was dissolved in methanol (5 mL) to obtain ZnS: Mn nanoparticles (5 mg) obtained in Production Example 11. Immediately it became a clear solution. Even if this colloid solution is left at room temperature for more than 6 months, the transparency is not lost. As a result of EM observation, it was confirmed that ZnS: Mn nanoparticles existed without agglomeration.
  • the ZnS nanoparticles obtained in Production Example 10 (5 mg) were added to the aqueous PDMA solution (1 mL) having SH groups at the ends obtained in Production Example 2, and ultrasonic irradiation was performed at room temperature for 5 minutes. The resulting solution was cast to obtain a transparent film. When this film was washed with warm water at 80 ° C and observed with TEM, it was confirmed that ZnS nanoparticles were dispersed without being aggregated. This film was confirmed to show an emission spectrum at 413 nm.
  • the ZnS: Mn nanoparticles (5 mg) obtained in Production Example 11 were added to the PDMA aqueous solution (1 mL) having an SH group at the terminal obtained in Production Example 2.
  • a transparent solution was obtained after 5 minutes of ultrasonic irradiation at room temperature. This solution was cast to obtain a transparent film. When this film was washed with hot water at 80 ° C. and observed by TEM, it was confirmed that ZnS: Mn nanoparticles were dispersed without being aggregated. This film was confirmed to show an emission spectrum at 598 nm.
  • PMMA (0.5 g) having an SH group at the end obtained in Production Example 3 was dissolved in black mouth form (2 mL) and mixed with an aqueous solution (2 mL) of ZnS nanoparticles (8 mg) obtained in Production Example 10. did .
  • the UV lamp was irradiated, luminescence was observed only on the water layer side, but when violently shaken for 10 minutes, the luminescence of the water layer disappeared and only the black mouth form layer began to emit light. It is thought that ZnS nanoparticles were extracted from the aqueous layer into the chloroform layer by binding of the SH group at the end of PMMA to the ZnS nanoparticles.
  • a film was prepared by the casting method after separating the black-form layer, and the emission spectrum was measured. The maximum was found at 415 nm. By TEM observation, it was confirmed that ZnS nanoparticles were dispersed in PMMA without aggregation.
  • ZnS nanoparticles (5 mg) obtained in Production Example 10 were dissolved in dimethylformamide (2 mL). When this solution was allowed to stand at room temperature for 3 days, it showed no emission spectrum. This is probably because the nanoparticles were agglomerated.
  • PDMA poly(ethylene glycol) having an SH group at the end obtained in Production Example 2 was dissolved in dimethylformamide (20 mL), and zinc acetate dihydrate (0.25 g) was added. The resulting solution was placed in 3 Roflasco and the atmosphere in the reaction system was replaced with nitrogen. Adjust the pH of the solution to 8 with 2M sodium hydroxide aqueous solution, and stir at room temperature. Add the dropping funnel power (5mL) of sodium sulfate nonahydrate (0.27g) for 15 minutes. It was dripped over. After stirring at room temperature for 10 hours, the reaction solution was concentrated to 5 mL and poured into hexane (25 mL) to precipitate a polymer.
  • the polymer When the polymer was separated by decantation and irradiated with a UV lamp, the polymer emitted light but the supernatant liquid did not.
  • the obtained polymer When the obtained polymer was dissolved in dimethylformamide and the emission spectrum was measured, it showed a maximum at 418 nm. This emission spectrum did not change even when stored for 6 months at room temperature.
  • the number average particle diameter of the ZnS nanoparticles was 4. lnm.
  • Example 17 Comparative Example 15
  • PVP polybulurpyrrolidone
  • Mw approximately 10,000, manufactured by Aldrich, product number 85, 645-2
  • PDMA polybulurpyrrolidone obtained in Production Example 2.
  • the separated polymer emitted light by irradiation with a UV lamp, but the supernatant liquid also emitted light in the same manner, and the strength with which the polymer modified the nanoparticles was weaker than in Example 17.
  • the polymer obtained was dissolved in dimethylformamide and stored at room temperature for 1 month, the emission spectrum disappeared. It is thought that ZnS nanoparticles have aggregated Industrial applicability
  • the polymer-modified nanoparticles of the present invention are phosphors for display, photoelectric conversion elements, light-emitting diodes, wavelength conversion materials, ultraviolet light shielding materials, dye-sensitized solar cells, as materials that stably exhibit quantum effects without aggregation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明の課題は、長期にわたって凝集せずに安定に存在するポリマー修飾ナノ粒子を経済的に提供することである。さらにはこれらポリマー修飾ナノ粒子を含有する透明コロイド溶液を提供することである。数平均粒子径100nm以下の金属酸化物ナノ粒子または金属硫化物ナノ粒子を、チオカルボニルチオ化合物を連鎖移動剤とする可逆的付加脱離連鎖移動重合により得られたポリマーを用いて表面修飾して得られる、ポリマー修飾ナノ粒子により達成できる。                                                                               

Description

明 細 書
ポリマー修飾ナノ粒子
技術分野
[0001] 本発明はポリマー修飾ナノ粒子に関する。より詳しくは、粒子径 lOOnm以下の金属 酸ィ匕物ナノ粒子または金属硫ィ匕物ナノ粒子を、可逆的付加脱離連鎖移動重合により 得られたポリマーで表面修飾したナノ粒子に関する。また本発明は、該ポリマー修飾 ナノ粒子を含有する透明コロイド溶液に関する。
背景技術
[0002] 金属酸ィ匕物ナノ粒子または金属硫ィ匕物ナノ粒子は、その量子効果によりサイズに 応じた蛍光を発するなどバルタでは見られな 、特性を示すことから、エレクトロニクス 、ォプテイクス、オプトエレクトロニクス、ノィォサイエンス、医療分野など広い領域に おいて実用化検討が行われている。具体的には太陽電池、発光ダイオード、波長変 換素子、レーザー、光メモリ、紫外線遮蔽剤、光触媒、量子トランジスタ、診断、微量 分析、平面ディスプレイ、エレクト口ルミネッセンス素子、電磁波遮蔽材料、磁気記録 材料、光波長カットフィルター、非線形光学材料などである。
[0003] ところがこれらナノ粒子は表面活性が高いため非常に不安定であり、合成後しばら くすると凝集してしまい、使用時にはナノサイズに依存する量子効果が失われてしま うという問題があった。また合成時に進行する凝集のために粒子径が不均一となり、 得られる物性が均一とならない問題があった。さらに凝集した粒子は光を散乱するた めに透明性が失われると!ヽぅ問題があった。例えば非特許文献 1には酸化亜鉛粒子 の透過型電子顕微鏡 (TEM)写真が掲載されて!、るが、粒子同士が凝集して!/、る様 子が見て取れる。非特許文献 2には、酸ィ匕亜鉛のコロイド溶液を濃縮した際に粒子 同士が凝集する現象にっ 、て記載されて!、る。
[0004] このような金属酸ィ匕物ナノ粒子の凝集を防止する目的で種々の技術が提案されて いる。例えばトリオクチルホスフィン、トリオクチルホスフィンオキサイド、アルキルアミン 、へキサメタリン酸などの低分子化合物で表面修飾された金属酸ィヒ物ナノ粒子の合 成が、特許文献 1や非特許文献 3に記載されている。しかしこれらの低分子化合物に よる表面修飾の場合、安定性に問題があり数日から数週間程度でナノ粒子が凝集し てしまうという問題があった。また低分子化合物で表面修飾した金属酸ィ匕物ナノ粒子 は、榭脂中に分散させることが困難であった。一方、高分子化合物で金属酸化物ナ ノ粒子の表面を修飾する技術が、非特許文献 4や特許文献 2などに記載されて ヽる。 しかし非特許文献 4に記載されて ヽるポリビュルピロリドンによる修飾は、ナノ粒子と の結合が強固でな!ヽため安定性に問題があった。特許文献 2に記載されて ヽる末端 に SH基を有するポリエチレングリコールは、 SH基の作用により金属酸ィ匕物ナノ粒子 表面を強固に修飾することができるが、このようなポリマーの合成は煩雑であり、経済 的でなかった。
[0005] 末端に SH基を有するポリマーの合成法として最も簡便と考えられる技術が、可逆 的付加脱離連鎖移動重合法であり、特許文献 3や特許文献 4に記載されている。特 に特許文献 4では可逆的付加脱離連鎖移動重合により得られたポリマーを用いて金 属ナノ粒子の表面修飾を行って 、る。しかし該方法では適用できるナノ粒子が還元 法により合成されるものに限られるため、金属酸ィ匕物ナノ粒子の表面修飾を実施する ことができな力 た。
[0006] 一方金属硫化物ナノ粒子を安定化させる従来技術として、特許文献 5にジメチルァ ミンやエチレンジァミンなどの低分子アミンィ匕合物の存在下に硫ィ匕カドミウム(CdS) ナノ粒子を合成する方法が記載されて ヽる。しかし低分子アミン化合物による安定ィ匕 は不十分であり、 CdSナノ粒子を長期間安定に保存することは不可能であった。特 許文献 6には、セレンィ匕亜鉛 (ZnSe)ナノ粒子合成後にトリオクチルホスフィンォキシ ド (TOPO)などのホスフィンォキシド類を添加する方法力 また特許文献 7には TOP Oなどのホスフィンォキシド類存在下に CdSナノ粒子を製造する方法がそれぞれ記 載されている。し力しこれらの方法では 290°C以上の高温が必要であり、経済性や安 全性に問題があった。特許文献 8には 3-メルカプトプロピルトリメトキシシランを用い てシリカ被覆した金属カルコゲナイドナノ粒子にっ 、て記載されて 、るが、製造方法 が煩雑である上表面物性を調整できないため実用的ではな力つた。特許文献 9には チオール存在下に金属カルコゲンィ匕物ナノ粒子を合成し、次 ヽでァミン処理する方 法が記載されて 、るが、操作が煩雑である上ナノ粒子物性の再現性が悪 、と 、う問 題があった。非特許文献 5にはジ -n-へキサデシルジチォホスフェートで修飾した硫 化亜鉛 (ZnS)ナノ粒子が記載されて ヽるが、透過型電子顕微鏡 (TEM)観察にお!ヽ て粒子同士が凝集している様子がわかる。
ポリマーを用いたナノ粒子の修飾技術については、特許文献 10にエチレングリコ ール系ブロック共重合体による修飾例、特許文献 11にメタクリル基含有配位子で修 飾したナノ粒子をラジカル重合性モノマーと共重合させる例、特許文献 12に ω -メル カプト脂肪酸ポリアルキレングリコールエステルで修飾した半導体ナノ粒子の例、特 許文献 13にチオシァヌル酸デンドロンで修飾した半導体ナノ粒子の例、特許文献 1 4にァミノ脂肪酸ポリアルキレングリコールエステルで修飾した半導体ナノ粒子の例、 特許文献 15にホスホノアルキルポリアルキレングリコールエーテル類で修飾した半導 体ナノ粒子の例、非特許文献 6にセチル -ρ-ビュルべンジルジメチルアンモ-ゥムク 口ライドでナノ粒子を修飾後重合させる例、非特許文献 7にポリアクリルアミド系ィオノ マーでナノ粒子を修飾する例、非特許文献 8と非特許文献 9にポリビニルピロリドンで 金属硫化物ナノ粒子を修飾する例がそれぞれ記載されて ヽる。しかしこれらの技術 はいずれも、ポリマーの合成が煩雑であったり、ポリマーで修飾する際の操作が煩雑 であったり、ポリマーが高価であったりするために実用的でないという問題があった。 またこれらポリマーを用いても金属硫ィ匕物ナノ粒子表面への配位力が不十分である ため、長期保存が困難であった。さらにこれら従来技術においては使用可能なポリマ 一の構造が限られるため、多種類の榭脂中へ分散させることができず汎用性に問題 かあつた。
特許文献 1 :特開 2003-226521
特許文献 2: WO02/018080
特許文献 3 :特開 2002- 265508
特許文献 4:US2003Z0199653 A1
特許文献 5 :特許 3263102号公報
特許文献 6 :特開 2001 -262138号公報
特許文献 7:特開 2001 - 354954号公報
特許文献 8:特表 2001 - 520937号広報 特許文献 9 :特開 2003-89522号公報
特許文献 10:特開 2002-80903号公報
特許文献 11 :特開 2002- 105325号公報
特許文献 12 :特開 2002- 121549号公報
特許文献 13 :特開 2002- 129156号公報
特許文献 14:特開 2003-64282号公報
特許文献 15 :特開 2003-286292号公報
非特許文献 1 : D. W. Bahnemann et al. , J. Phys. Chem. 1987, 91, 378 9
非特許文献 2 :L. Spanhel et al. , J. Am. Chem. Soc. 1991, 113, 2826 非特許文献 3 : M. Shim et al. , J. Am. Chem. Soc. 2001, 123, 11651 非特許文献 4: L. Guo et al. , Chem. Mater. 2000, 12, 2268
非特許文献 5 : S. Chenら、 Langmuir 1999, 15, 8100
非特許文献 6 :T. Hiraiら、 Phys. Chem. B 2000, 104, 8962
非特許文献 7 : 1. Potapovaら、 Am. Chem. Soc. 2003, 125, 320 非特許文献 8 : R. Heら、 Colloids and Surfaces A: Physicochem. Eng. As pects 2003, 220, 151
非特許文献 9 :K. Manzoorら、 Solid State Communications 2004, 129, 4 69
発明の開示
発明が解決しょうとする課題
[0008] 本発明が解決しょうとする課題は、長期にわたって凝集せず安定に存在し、溶液中 ゃ榭脂中に容易に分散可能なポリマー修飾ナノ粒子を経済的に提供することである 。本発明が解決しょうとする別の課題は、長期にわたって凝集せず安定に存在し、か つ透明度の高 ヽ、ポリマー修飾ナノ粒子のコロイド溶液を提供することである。
課題を解決するための手段
[0009] 上記課題を解決するための手段として、本発明者は以下のポリマー修飾ナノ粒子 を提案する。 [0010] すなわち本発明のポリマー修飾ナノ粒子は、数平均粒子径 lOOnm以下の金属酸 化物ナノ粒子または金属硫ィ匕物ナノ粒子を、チォカルボ二ルチオィ匕合物を連鎖移動 剤とする可逆的付加脱離連鎖移動重合により得られたポリマーを用いて表面修飾す ることにより得られるものである。
[0011] 本発明の好適な実施態様としては、上記表面修飾に用いるポリマー力 チォカル ボニルチオ化合物を連鎖移動剤とする可逆的付加脱離連鎖移動重合の後、処理剤 により末端 SH化されたものである。
[0012] 本発明の好適な実施態様としては、上記処理剤が水素-窒素結合含有化合物、塩 基性化合物、還元剤カゝらなる群より選ばれるものである。
[0013] 本発明の好適な実施態様としては、上記表面修飾に用いるポリマー力 (メタ)ァク リル酸エステル、 (メタ)アクリルアミド類、 (メタ)アクリル酸、 (メタ)アクリル酸のアルカリ 金属塩、スチレン、 P-スチレンスルホン酸のアルカリ金属塩、 (ビュルベンジル)トリメ チルアンモ -ゥムクロライド、アクリロニトリル、ビュルピロリドン、ビュルピリジン、酢酸 ビュル、塩化ビュル、無水マレイン酸、マレイミドカ なる群より選ばれる 1種以上のモ ノマーを重合させて得られる構造を有するものである。
[0014] 本発明の好適な実施態様としては、上記表面修飾に用いるポリマーの分子量分布 が 1. 5以下である。
[0015] 本発明の好適な実施態様としては、上記金属酸ィ匕物ナノ粒子または金属硫ィ匕物ナ ノ粒子の数平均粒子径が 1 Onm以下である。
[0016] 金属酸ィ匕物ナノ粒子に関して本発明の好適な実施態様としては、上記金属酸ィ匕物 ナノ粒子が、有機金属化合物と OH基含有塩基性化合物とを溶媒中で反応させるこ とにより得られたものである。
[0017] 本発明の好適な実施態様としては、上記 OH基含有塩基性化合物が、 LiOH、 Na
OH、 KOHからなる群より選ばれる化合物である。
[0018] 本発明の好適な実施態様としては、金属酸ィ匕物ナノ粒子を合成する際の上記有機 金属化合物が、酢酸亜鉛、酢酸亜鉛二水和物、ァセチルァセトナト亜鉛水和物、安 息香酸亜鉛、クェン酸亜鉛、ジブチルジチォカルバミン酸亜鉛、ジェチルジチォカル ノミン酸亜鉛、ギ酸亜鉛、ギ酸亜鉛二水和物、ラウリン酸亜鉛、サリチル酸亜鉛三水 和物からなる群より選ばれる化合物である。
[0019] 本発明の好適な実施態様としては、上記金属酸化物ナノ粒子が、 Zn、 Ti、 Zr、 Cr 、 Mo、 W、 Mn、 Fe、 Ru、 Co、 Rh、 Ir、 Ni、 Pd、 Cu、 Ag、 Cd、 Al、 Ga、 In、 Si、 Ge 、 Sn、 Pb、ランタノイド、ァクチノイドからなる群より選ばれる元素によりドーピングされ ているものである。
[0020] また金属硫ィ匕物ナノ粒子に関して本発明の好適な実施態様としては、上記金属硫 化物ナノ粒子中の金属が、 Zn、 Ti、 Zr、 Cr、 Mo、 W、 Mn、 Fe、 Ru、 Co、 Rh、 Ir、 N i、 Pd、 Cu、 Ag、 Cd、 Al、 Ga、 In、 Si、 Ge、 Sn、 Pb、ランタノイド、ァクチノイド力らな る群より選ばれる 1種以上の元素で構成されるものである。
[0021] 本発明の好適な実施態様は、上記金属硫化物ナノ粒子中の金属の 90モル%以上 が Znである。
[0022] 本発明の好適な実施態様は、上記金属硫ィ匕物ナノ粒子が有機金属化合物と硫黄 化合物とを溶媒中で反応させることにより得られたものである。
[0023] 本発明の好適な実施態様は、金属硫化物ナノ粒子を合成する際の上記有機金属 化合物が、カルボン酸亜鉛ィ匕合物、ジチォ力ルバミン酸亜鉛ィ匕合物、キサントゲン酸 亜鉛化合物、ァセチルァセトナト亜鉛化合物、カルボン酸マンガン化合物、ァセチル ァセトナトマンガンィ匕合物、カルボン酸銅化合物、ジチォ力ルバミン酸銅化合物から なる群より選ばれる 1種以上の化合物である。
[0024] 本発明の好適な実施態様は、上記硫黄化合物が、アルカリ金属の硫ィ匕物、アル力 リ土類金属の硫化物、アルカリ金属の水硫化物、硫化水素、チォ尿素からなる群より 選ばれる 1種以上の化合物である。
[0025] また本発明は、上記ポリマー修飾ナノ粒子を含有する透明コロイド溶液を包含する 発明の効果
[0026] 本発明のポリマー修飾ナノ粒子は、単離状態 ·コロイド溶液状態 ·榭脂中分散状態 のいずれにおいても安定であり、長期間にわたって凝集することなく存在する。した がって電気的特性'光学的特性'化学的特性が失われることなく持続する。すなわち ディスプレイや発光ダイオードなどの発光デバイスとして用いた場合には寿命が長く 、劣化が少ない。波長変換素子、量子ドットとしても性能保持したまま長期間使用可 能である。触媒として用いる場合にはターンオーバーが高く性能劣化が少ない。また 修飾するポリマーの組成 ·構造を任意に選択できるため、親水性 '親油性'両親媒性 などナノ粒子表面の物性を自在に調整可能であり、種々の溶媒ゃ榭脂に分散相溶 ィ匕させることが容易である。さらに簡便にかつ安価に製造可能であるため、経済的で ある。
発明を実施するための最良の形態
[0027] 本発明のポリマー修飾ナノ粒子は、金属酸ィ匕物ナノ粒子または金属硫ィ匕物ナノ粒 子を、チォカルボ二ルチオィ匕合物を連鎖移動剤とする可逆的付加脱離連鎖移動重 合により得られたポリマーを用いて表面修飾することにより得られる。
[0028] 上記チォカルボ二ルチオ化合物を連鎖移動剤とする可逆的付加脱離連鎖移動重 合に関しては特に限定はなぐ例えば" HANDBOOK OF RADICAL POLY MERIZATION", K. Matyjaszewski and T. P. Davis Ed. , Wiley, 2002, 661ページに記載の方法、あるいは同書記載の参考文献記載の方法を適用可能で ある。ただし反応性の点で 70°C以上の温度で反応させることが好ましぐ 80°C以上 力 り好ましい。重合の形式は塊状重合、溶液重合、乳化重合、懸濁重合など限定 されな 、が、重合後の後処理が容易である点で塊状重合または溶液重合が好ま 、
[0029] 本発明にお 、て使用するチォカルボ二ルチオィ匕合物としては特に限定されな!ヽが
、入手性、反応性の点で以下の化合物が好ましい;
[0030] [化 1]
Figure imgf000009_0001
2 hcscH h
S S Me [0031] (式中、 Meはメチル基、 Etはェチル基、 Phはフエ-ル基、 Acはァセチル基を表し、 r は 1以上の整数である)。これらのチォカルボ-ルチオ化合物のうちより好ましいもの としてはトリチォカーボネート構造を有する化合物、あるいは 1分子中に複数のチォ カルボ二ルチオ構造を有する化合物を挙げることができる。トリチォカーボネート構造 を有する化合物は一般に可逆的付加脱離連鎖移動重合の反応性が高い。 1分子中 に複数のチォカルボ二ルチオ構造を有する化合物は、ナノ粒子表面に複数点で結 合するため強固に表面修飾することができ、またナノ粒子同士を架橋するように修飾 することも可能であるため、ナノ粒子間の距離を制御しながら緻密に配列させることが 可能となる。
[0032] 上記可逆的付加脱離連鎖移動重合により得られたポリマーを用いてナノ粒子の表 面を修飾する際、ポリマーをそのまま用いても良いが、表面修飾の効率が高い点で 処理剤を用いて末端 SH化しておくことが好ましい。処理剤としては特に限定されな いが、 SH基に変換する効率が高い点で、水素-窒素結合含有化合物、塩基性化合 物、還元剤力もなる群より選ばれる化合物が好ま 、。
[0033] 上記処理剤のうち、水素-窒素結合含有ィ匕合物としては特に限定されないが、アン モユア、ヒドラジン、 1級ァミン、 2級ァミン、アミドィ匕合物、ァミン塩酸塩、水素-窒素結 合含有高分子、ヒンダードアミン系光安定剤 (HALS)などを挙げることができる。上 記 1級ァミンの例としては、メチルァミン、ェチルァミン、イソプロピルァミン、 n-プロピ ルァミン、 n-ブチルァミン、 t-ブチルァミン、 2-ェチルへキシルァミン、 2-アミノエタノ ール、エチレンジァミン、ジエチレントリァミン、 1, 2-ジァミノプロパン、 1, 4-ジァミノ ブタン、シクロへキシルァミン、ァ-リン、フエネチルァミンなどを挙げることができる。 上記 2級ァミンの例としては、ジメチルァミン、ジェチルァミン、ジイソブチルァミン、ジ -2-ェチルへキシルァミン、イミノジ酢酸、ビス(ヒドロキシェチル)ァミン、ジ -η-ブチル ァミン、ジ- -ブチルァミン、ジフエ-ルァミン、 N-メチルァ-リン、イミダゾール、ピペリ ジンなどを挙げることができる。上記アミド化合物の例としては、アジピン酸ヒドラジド、 N-イソプロピルアクリルアミド、ォレイン酸アミド、チオアセトアミド、ホルムアミド、ァセ トァ-リド、フタルイミド、コハク酸イミドなどを挙げることができる。上記アミン塩酸塩の 例としては、ァセトアミジン塩酸塩、モノメチルァミン塩酸塩、ジメチルァミン塩酸塩、 モノェチルァミン塩酸塩、ジェチルァミン塩酸塩、塩酸グァ-ジンなどを挙げることが できる。上記水素-窒素結合含有高分子の例としては、ポリエチレンィミン、ポリアリル ァミン、ポリビュルァミンなどを挙げることができる。上記 HALSの例としては、アデ力 スタブ LA- 77 (旭電化工業 (株)製)、チヌビン 144 (チバ 'スペシャルティ ·ケミカルズ 社製)、アデカスタブ LA- 67 (旭電化工業 (株)製)などを挙げることができる。
[0034] 上記処理剤のうち塩基性ィ匕合物の例としては特に限定されないが、水酸化ナトリウ ム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、 ナトリウムメトキシド、ナトリウムエトキシド、マグネシウムメトキシド、炭酸ナトリウム、炭 酸カリウムなどを挙げることができる。
[0035] 上記処理剤のうち還元剤の例としては特に限定されないが、水素化ナトリウム、水 素ィ匕リチウム、水素化カルシウム、 LiAlH、 NaBH、 LiBEt H (スーパーハイドライド
4 4 3
)、水素などを挙げることができる。
[0036] 上記処理剤は単独で用いてもよぐ組み合わせて用いてもよ!、。反応性の点で水 素-窒素結合含有化合物、および還元剤が好ましい。水素-窒素結合含有化合物の 場合は、精製が簡便となる点で沸点 20°C〜200°Cの化合物がより好ましい。上記処 理剤の使用量は特に限定されないが、反応性と経済性の点で、ポリマー 100重量部 に対して 0. 01〜: LOO重量部が好ましぐ 0. 1〜50重量部がより好ましい。温度や溶 媒の有無、混合条件などの反応条件は特に限定されな 、。
[0037] 本発明にお 、てナノ粒子の表面を修飾するポリマーの組成にっ 、ては特に限定さ れないが、入手性、各種溶媒ゃ榭脂への相容性、耐熱性、安定性、人体や環境へ の安全性の点で、(メタ)アクリル酸エステル、(メタ)アクリルアミド類、(メタ)アクリル酸 、(メタ)アクリル酸のアルカリ金属塩、スチレン、 P-スチレンスルホン酸のアルカリ金属 塩、(ビュルベンジル)トリメチルアンモ -ゥムクロライド、アクリロニトリル、ビュルピロリ ドン、ビュルピリジン、酢酸ビュル、塩化ビュル、無水マレイン酸、マレイミドからなる 群より選ばれる 1種以上のモノマーを重合させて得られる構造を有するポリマーが好 ましい。複数のモノマーを重合させる場合、主鎖構造は特に限定されず、ランダム共 重合体、ブロック共重合体、傾斜共重合体、あるいはこれらの組み合わせなど任意で ある。また (メタ)アクリル酸や酢酸ビニルなど特定のモノマーを重合後にケンィ匕ゃェ ステルイ匕などにより変性してもよ 、。
[0038] 上記モノマーのうち(メタ)アクリル酸エステルとしては特に限定されな 、が、(メタ)ァ クリル酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル酸 n-ブチル、(メタ)アクリル酸 t-ブチル、(メタ)アクリル酸 2-ェチルへキシル、(メタ)アクリル酸 2-ヒドロキシェチル、 (メタ)アクリル酸 2-メトキシェチル、(メタ)アクリル酸ァリル、(メタ)アクリル酸フ -ル などを挙げることができる。(メタ)アクリルアミド類としては特に限定されないが、(メタ) アクリルアミド、 N-イソプロピル (メタ)アクリルアミド、 N, N-ジメチル (メタ)アクリルアミ ドなどを挙げることができる。(メタ)アクリル酸のアルカリ金属塩および p—スチレンス ルホン酸のアルカリ金属塩におけるアルカリ金属としては、リチウム、ナトリウム、力リウ ムを挙げることができる。
[0039] 本発明にお 、て金属酸化物ナノ粒子の表面を修飾するポリマーの分子量や分子 量分布については特に限定されないが、可逆的付加脱離連鎖移動重合による制御 が容易である点で、数平均分子量は 2000〜50000の範囲にあることが好ましい。ま た得られるポリマー修飾ナノ粒子の物性が均一となる点で、分子量分布は 1. 5以下 であることが好ましぐ 1. 2以下であることがより好ましい。ここで数平均分子量 (Mn) と重量平均分子量 (Mw)はゲル浸透クロマトグラフィー(GPC)により分析される値で あり、分子量分布は MwZMnとして計算される値である。
[0040] 本発明にお 、て使用する金属酸ィ匕物ナノ粒子または金属硫ィ匕物ナノ粒子につ!、 ては特に限定されず、数平均粒子径 lOOnm以下のものであればよい。数平均粒子 径につ ヽては、動的光散乱 (DLS)分析あるいは透過型電子顕微鏡 (TEM)観察よ り求めることができる。量子効果が顕著に現れる点で、上記ナノ粒子の数平均粒子径 が 20nm以下であることが好ましぐ lOnm以下であることがより好ましい。なお本発明 においては、ナノ粒子が柱状や棒状である場合には、短い方の径を数平均粒子径と して表すこととする。
[0041] 以下に金属酸ィ匕物ナノ粒子、金属硫ィ匕物ナノ粒子それぞれについて説明する。
[0042] 本発明において使用する金属酸ィ匕物ナノ粒子の合成方法としては特に限定されず 、リソグラフィ一法、機械的粉砕法、レーザー光線による分解などのトップダウン法;ィ匕 学合成法、レーザートラップ法、ガス蒸着法 (CVD)、 2-フオトン'コンフォーカル法な どのボトムアップ法などが適用可能である。これらのうち粒子径ゃ粒子形状を制御で きる点でボトムアップ法が好ましぐ装置が安価である点でィ匕学合成法がより好ま 、
。化学合成法としては共沈殿法、逆ミセル法、ゾルゲル法など挙げられるが、操作が 簡便である点で共沈殿法、ゾルゲル法が特に好ましい。なかでも原料の入手性'経 済性および製造の容易さから、有機金属化合物と OH基含有塩基性化合物とを溶媒 中で反応させる方法が最も好まし 、。
上記有機金属化合物としては特に限定されな!、が、例えば酢酸亜鉛、酢酸亜鉛二 水和物、塩化亜鉛、ァセチルァセトナト亜鉛水和物、安息香酸亜鉛、クェン酸亜鉛、 ジブチルジチォカルバミン酸亜鉛、ジェチルジチォカルバミン酸亜鉛、ギ酸亜鉛、ギ 酸亜鉛二水和物、ラウリン酸亜鉛、サリチル酸亜鉛三水和物などの亜鉛ィ匕合物;塩 化チタン(III)、塩化チタン(IV)、クレシル酸チタン(IV)、酸化チタン(Π)ァセチルァ セトナート、チタン (IV)エトキシド、チタン (IV)イソブトキシド、チタン(IV)メトキシド、 チタン (IV) n-プロポキシド、チタン (IV)テトラブトキシド、チタンテトライソプロボキシド などのチタン化合物;酢酸コバルト(Π)四水和物、ァセチルァセトナトコバルト(Π)、 安息香酸コバルト(Π)、塩化コバルト(Π)、クェン酸コバルト(Π)二水和物、シユウ酸 コバルト(Π)二水和物、ステアリン酸コバルト(Π)、水酸化コバルトなどのコバルト化合 物;酢酸ニッケル(Π)四水和物、ァセチルァセトナトニッケル(Π)二水和物、ビス(ジ ブチルジチォ力ルバミン酸)ニッケル (II)、塩化ニッケル (II)、ギ酸ニッケル (II)二水 和物、乳酸ニッケル(Π)四水和物、ステアリン酸ニッケル(Π)、水酸化ニッケル(Π)な どのニッケル化合物;酢酸銅 (II)一水和物、臭化銅 (II)、塩化銅 (II)、クェン酸銅 (II
) 2. 5水和物、ギ酸銅 (II)四水和物、ダルコン酸銅 (II)、ォレイン酸銅 (II)、フタル酸 銅 (Π)、硫酸銅 (II)、銅 (Π)イソプロポキシド、銅 (Π)メトキサイドなどの銅化合物;酢 酸カドミウム二水和物、臭化カドミウム四水和物、炭酸カドミウム、塩ィ匕カドミウム、ギ 酸カドミウム二水和物、ステアリン酸カドミウム、水酸ィ匕カドミウムなどのカドミウム化合 物などを挙げることができる。これらのうち、得られる金属酸ィ匕物ナノ粒子のバンドギ ヤップが大きぐ安全性が高い点で亜鉛ィヒ合物が好ましぐ酢酸亜鉛、酢酸亜鉛二水 和物、ァセチルァセトナト亜鉛水和物、安息香酸亜鉛、クェン酸亜鉛、ジブチルジチ ォカルバミン酸亜鉛、ジェチルジチォカルバミン酸亜鉛、ギ酸亜鉛、ギ酸亜鉛二水和 物、ラウリン酸亜鉛、サリチル酸亜鉛三水和物がより好ましい。これらは単独で用いて もよぐ複数を組み合わせて用いてもよい。
[0044] 上記 OH基含有塩基性化合物としては特に限定されな ヽが、例えば LiOH、 NaO H、 KOHなどのアルカリ金属水酸化物; Mg (OH)、Ca (OH) 、 Ba (OH)などのァ
2 2 2 ノレカリ土類金属水酸化物; NH OH、N (Me) OH、N (Et) OHなどのアンモ-ゥムヒ
4 4 4
ドロキシドなどを挙げることができる。これらのうち入手性および反応性の点で、アル カリ金属水酸化物が好ましぐ LiOH、 NaOH、 KOHがより好ましい。これらは単独で 用いてもよぐ複数を組み合わせて用いてもよい。
[0045] 有機金属化合物と OH基含有化合物とを溶媒中で反応させる際、溶媒は特に限定 されず、有機金属化合物と OH基含有化合物を溶解または分散させることのできるも のを任意に使用可能である。このような溶媒としては例えば、水;メタノール、エタノー ル、イソプロパノール、 n-プロパノールなどのアルコール系溶媒;アセトン、メチルェ チルケトン、メチルイソブチルケトンなどのケトン系溶媒;ジメチルスルホキシド;ジメチ ルホルムアミド;クロ口ホルム、ジクロロメタンなどのハロゲン系溶媒;ジェチルエーテ ル、テトラヒドロフランなどのエーテル系溶媒;ベンゼン、トルエンなどの芳香族系溶媒 ;ペンタン、へキサン、オクタン、 2-ェチルへキサン、シクロへキサンなどの炭化水素 系溶媒などを挙げることができる。これらのうち生成する金属酸ィ匕物の分散性が良好 である点で、水、アルコール系溶媒、ケトン系溶媒が好ましい。また上記ポリマーで金 属酸ィ匕物を修飾する段階では、ポリマーが溶解する溶媒を使用することが好まし 、。 これら溶媒は単独で用いてもよぐ複数を組み合わせて用いてもよい。複数を組み合 わせる場合には互いに混ざり合う溶媒でもよぐ混ざり合わない溶媒でもよいが、効率 の点で互いに混ざり合う溶媒が好ま 、。
[0046] 有機金属化合物と OH基含有化合物とを反応させる際の反応条件は特に限定され ず、任意の温度 ·時間'添加タイミングなどを採用可能である。反応制御の点で温度 は— 20°C〜100°Cの範囲が好ましぐ 0°C〜80°Cの範囲がより好ましい。反応の方 法としては、制御ダブルジェット沈殿法、ゾルゲル法、化学沈殿法、コロイド合成法な どが挙げられ、特に限定されないが、粒径の揃ったナノ粒子が得られる点で J. Am. Chem. Coc. 1991, 113, 2826、 Chem. Mater. 2000, 12, 2268、および J. P hys. Chem. 1992, 96, 11086など【こ記載されて!ヽる ノレゲノレ法や、 Phys. Ch em. 1987, 91, 3789および J. Phys. Chem. B 1998, 102, 7770などに記載さ れて 、るコロイド合成法が好まし 、。
[0047] 本発明の金属酸ィ匕物ナノ粒子は、単一の金属酸ィ匕物でもよぐ 1種以上の金属によ りドーピングされていてもよい。ドーピング元素としては特に限定されないが、電気的 および光学的量子効果が顕著な点で、 Zn、 Ti、 Zr、 Cr、 Mo、 W、 Mn、 Fe、 Ru、 Co 、 Rh、 Ir、 Ni、 Pd、 Cu、 Ag、 Cd、 Al、 Ga、 In、 Si、 Ge、 Sn、 Pb、ランタノイド、ァクチ ノイドからなる群より選ばれる元素が好ましい。これらは単独で用いてもよぐ複数を組 み合わせて用いてもよい。ドーピングするための方法としては特に限定されないが、 簡便性の点で J. Am. Chem. Soc. 2002, 124, 15192、 Am. Chem. Soc. 2 003, 125, 13205、および J. Am. Chem. Soc. 2004, 126, 9387などに記載さ れて 、る合成法が好ま 、。
[0048] 本発明において使用する金属硫ィ匕物ナノ粒子の合成方法としては特に限定されず 、リソグラフィ一法、機械的粉砕法、レーザー光線による分解などのトップダウン法;ィ匕 学合成法、レーザートラップ法、ガス蒸着法 (CVD)、 2-フオトン'コンフォーカル法な どのボトムアップ法などが適用可能である。これらのうち粒子径ゃ粒子形状を制御で きる点でボトムアップ法が好ましぐ装置が安価である点でィ匕学合成法がより好ま 、 。化学合成法としては共沈殿法、逆ミセル法など挙げられるが、操作が簡便である点 で共沈殿法が特に好ましい。なかでも原料の入手性'経済性および製造の容易さか ら、有機金属化合物と硫黄化合物とを溶媒中で反応させる方法が最も好ましい。
[0049] 金属硫ィ匕物ナノ粒子中の金属としては特に限定されないが、発光特性や波長変換 特性などの量子的特性に優れる点で、 Zn、 Ti、 Zr、 Cr、 Mo、 W、 Mn、 Fe、 Ru、 Co 、 Rh、 Ir、 Ni、 Pd、 Cu、 Ag、 Cd、 Al、 Ga、 In、 Si、 Ge、 Sn、 Pb、ランタノイド、ァクチ ノイドからなる群より選ばれる元素が好ましぐ Zn、 Ti、 Mn、 Co、 Cu、 Cd、 Ga、 In、 S i、 Ge、 Sn、 Pb、 La、 Eu、 Tbからなる群より選ばれる元素がより好ましい。これらは単 独で用いてもよぐ複数を組み合わせて用いてもよい。複数を組み合わせて用いる場 合には、それぞれの成分比については特に限定されないが、量子的特性に優れる 点で、 1種類の金属を主成分として 90モル%以上含有するものが好ましぐ 95モル %以上含有するものが好ましい。主成分としての金属元素は特に限定されないが、 量子的特性に優れる点で Zn、 Ti、 Cdが好ましぐ入手性と安全性の点で Znが特に 好ましい。主成分以外の金属元素は、いわゆるドーピング元素と呼ばれるものであり 、特に限定されないが、上記記載の群より選ばれる元素が好ましぐ量子的特性の点 で Mn、 Cu、ランタノイド、ァクチノイドがより好ましい。
[0050] 上記有機金属化合物としては特に限定されないが、例えば上記記載の金属のハロ ゲン化物、有機酸塩、硝酸塩、過塩素酸塩、ァセチルァセトナートなどを挙げること ができる。これらは結晶水を含んでいてもよい。
[0051] 本発明にお ヽて好適に使用し得る有機金属化合物の例としては特に限定されな!ヽ 力 カルボン酸亜鉛ィ匕合物、ジチォ力ルバミン酸亜鉛ィ匕合物、キサントゲン酸亜鉛ィ匕 合物、ァセチルァセトナト亜鉛ィ匕合物などの亜鉛ィ匕合物;塩ィ匕チタン (III)、塩ィ匕チタ ン(IV)、クレシル酸チタン(IV)、酸化チタン(Π)ァセチルァセトナート、チタン(IV)ェ トキシド、チタン(IV)イソブトキシド、チタン(IV)メトキシド、チタン(IV) n-プロポキシド 、チタン (IV)テトラブトキシド、チタンテトライソプロボキシドなどのチタンィ匕合物;酢酸 コノ レト(Π)四水和物、ァセチルァセトナトコバルト(Π)、安息香酸コバルト(Π)、塩化 コバルト(Π)、クェン酸コバルト(Π)二水和物、シユウ酸コバルト(Π)二水和物、ステア リン酸コバルト(Π)、水酸化コバルトなどのコバルト化合物;酢酸ニッケル(Π)四水和 物、ァセチルァセトナトニッケル(Π)二水和物、ビス(ジブチルジチォカルノ ミン酸)二 ッケル (II)、塩化ニッケル (II)、ギ酸ニッケル (II)二水和物、乳酸ニッケル (II)四水和 物、ステアリン酸ニッケル (II)、水酸化ニッケル (II)などのニッケル化合物;酢酸銅 (II )一水和物、硫酸銅 (II)、臭化銅 (II)、塩化銅 (II)、カルボン酸銅化合物、ジチォ力 ルバミン酸銅化合物、銅 (Π)イソプロポキシド、銅 (Π)メトキサイドなどの銅化合物;酢 酸カドミウム二水和物、臭化カドミウム四水和物、炭酸カドミウム、塩ィ匕カドミウム、ギ 酸カドミウム二水和物、ステアリン酸カドミウム、水酸ィ匕カドミウムなどのカドミウム化合 物;カルボン酸マンガン化合物、ァセチルァセトナトマンガン化合物などを挙げること ができる。これらのうち入手性、反応性、安全性、量子的特性の点で、カルボン酸亜 鉛化合物、ジチォ力ルバミン酸亜鉛ィ匕合物、キサントゲン酸亜鉛ィ匕合物、ァセチルァ セトナト亜鉛化合物、カルボン酸マンガン化合物、ァセチルァセトナトマンガン化合物 、カルボン酸銅化合物、ジチォ力ルバミン酸銅化合物がより好ましぐカルボン酸亜 鉛化合物として酢酸亜鉛、酢酸亜鉛二水和物、安息香酸亜鉛、クェン酸亜鉛、ギ酸 亜鉛、ギ酸亜鉛二水和物、ラウリン酸亜鉛、サリチル酸亜鉛三水和物;ジチォ力ルバ ミン酸亜鉛ィ匕合物としてジメチルジチォカルバミン酸亜鉛、ジェチルジチォカルバミ ン酸亜鉛、ジブチルジチォカルバミン酸亜鉛、 N-ェチル -N-フエ-ルジチォカルバミ ン酸亜鉛、 N-ペンタメチレンジチォ力ルバミン酸亜鉛、ジベンジルジチォカルバミン 酸亜鉛;キサントゲン酸亜鉛ィ匕合物としてブチルキサントゲン酸亜鉛、イソプロピルキ サントゲン酸亜鉛;ァセチルァセトナト亜鉛ィ匕合物としてァセチルァセトナト亜鉛水和 物;カルボン酸マンガン化合物として酢酸マンガン(Π)四水和物、ギ酸マンガン(II) 二水和物;ァセチルァセトナトマンガン化合物としてマンガン (ΠΙ)ァセチルァセトナ ート;カルボン酸銅化合物として酢酸銅(Π)—水和物、クェン酸銅(11) 2. 5水和物、 ギ酸銅 (II)四水和物、ダルコン酸銅 (II)、ォレイン酸銅 (II)、フタル酸銅 (II);ジチォ 力ルバミン酸銅化合物としてジメチルジチォカルバミン酸銅がさらに好まし ヽ。これら は単独で用いてもよぐ複数を組み合わせて用いてもょ ヽ。
[0052] 本発明において使用する上記硫黄ィ匕合物としては特に限定されず、硫黄原子を含 有する化合物を用いることができる。なかでも反応性と入手性の点で、アルカリ金属 の硫化物、アルカリ土類金属の硫ィ匕物、アルカリ金属の水硫ィ匕物、硫化水素、チォ 尿素が好ましぐ硫ィ匕ナトリウム、水硫ィ匕ナトリウム、硫化リチウム、硫ィ匕カリウム、硫ィ匕 水素、チォ尿素がより好ましぐ硫ィ匕ナトリウムが特に好ましい。
[0053] 有機金属化合物と硫黄化合物とを溶媒中で反応させる際、溶媒は特に限定されず 、有機金属化合物と硫黄ィ匕合物を溶解または分散させることのできるものを任意に使 用可能である。このような溶媒としては例えば、水;メタノール、エタノール、イソプロパ ノール、 n-プロパノールなどのアルコール系溶媒;アセトン、メチルェチルケトン、メチ ルイソブチルケトンなどのケトン系溶媒;ジメチルスルホキシド;ジメチルホルムアミド; クロ口ホルム、ジクロロメタンなどのハロゲン系溶媒;ジェチルエーテル、テトラヒドロフ ランなどのエーテル系溶媒;ベンゼン、トルエンなどの芳香族系溶媒;ペンタン、へキ サン、オクタン、 2-ェチルへキサン、シクロへキサンなどの炭化水素系溶媒などを挙 げることができる。これらのうち生成する金属硫ィ匕物の分散性が良好である点で、水、 アルコール系溶媒、ケトン系溶媒、ジメチルホルムアミドが好ましい。また上記ポリマ 一で金属酸ィ匕物を修飾する段階では、ポリマーが溶解する溶媒を使用することが好 ましい。これら溶媒は単独で用いてもよぐ複数を組み合わせて用いてもよい。複数を 組み合わせる場合には互いに混ざり合う溶媒でもよぐ混ざり合わな 、溶媒でもよ 、 力 効率の点で互いに混ざり合う溶媒が好まし 、。
[0054] 有機金属化合物と硫黄化合物とを反応させる際の反応条件は特に限定されず、任 意の温度 ·時間 ·添加タイミングなどを採用可能である。反応制御の点で温度は― 20 °C〜100°Cの範囲が好ましぐ 0°C〜80°Cの範囲がより好ましい。
[0055] 上記金属酸化物ナノ粒子または金属硫化物ナノ粒子を、チォカルボ-ルチオィ匕合 物を連鎖移動剤とする可逆的付加脱離連鎖移動重合により得られたポリマーを用い て表面修飾する際、その方法は特に限定されない。例えばナノ粒子を溶媒中で合成 し、その溶液中に上記ポリマーを添加する方法;ナノ粒子を単離し、上記ポリマーの 溶液中に添加する方法;ナノ粒子を単離し、押出機、プラストミル、バンバリ一ミキサ 一などを用いて溶融状態のポリマーと混合する方法;ナノ粒子の溶液とポリマー溶液 とを混合する方法;ナノ粒子を合成する際に上記ポリマーを共存させる方法;ポリマー を重合する際にナノ粒子を共存させる方法などを挙げることができる。これらのうち反 応が簡便で修飾効率が高い点で、反応の前後に関わらず溶液中でナノ粒子とポリマ 一を混合する方法が好ましい。この際、超音波照射を行うとさらに修飾効率が高くな るので好ましい。また、ナノ粒子をー且低分子化合物や他のポリマーで仮修飾し、次 いで本発明のポリマーで置換して修飾してもよい。このような仮修飾用の化合物とし ては、ドデシルァミン、トリデシルァミン、ラウリルァミンなどの低分子アミンィ匕合物;デ カンチオール、ドデカンチオールなどの低分子チオール化合物;トリオクチルホスフィ ンォキシドなどのリン酸エステル系化合物;ポリビュルピロリドン、ポリ(メタ)アクリル酸 、ポリアクリルアミド、ポリエチレングリコール、ポリビニルアルコール、ポリアミンなどの SH基を有しないポリマーなどを挙げることができる力 これらに限定されない。
[0056] 本発明の透明コロイド溶液は、上記記載のポリマー修飾ナノ粒子を溶媒中に均一 分散して得られるものである。ここで溶媒としては特に限定されないが、ナノ粒子の分 散性が良好である点で、表面修飾に用いたポリマーに対する良溶媒を用いることが 好ましい。ポリマーに対する良溶媒としては、例えば Polymer Handbook, 4th E dition Qohn Wiley & Sons Inc. , 1999)などに記載されているものを使用可 能である。本発明の透明コロイド溶液を調製する方法としては特に限定されず、上記 ポリマー修飾ナノ粒子を単離後に溶媒中へ分散させてもよぐ最初力 溶媒中でポリ マー修飾ナノ粒子を製造してそのままコロイド溶液としてもょ ヽ。透明コロイド溶液を 調整する際、超音波照射、マイクロ波照射などを実施してもよい。
実施例
[0057] 以下に本発明の実施例を示すが、これらに限定されるものではない。
[0058] 本発明にお!/、てポリマーの重量平均分子量(Mw)と数平均分子量(Mn)は、ゲル パーミエーシヨンクロマトグラフィー(GPC)分析により求めた。疎水性ポリマーは Wat ers社製システムを使用し、カラムは Shodex K— 806と K— 805 (昭和電工 (株)製) を連結して用い、クロ口ホルムを溶出液とし、ポリスチレン標準で解析した。親水性ポ リマーに対しては Shodex LF— 804 (昭和電工 (株)製)カラムを使用し、 LiBrを 10 mM含有するジメチルホルムアミドを溶出液とし、ポリエチレングリコール標準で解析 した。ポリマーを重合する際、モノマーの反応率はガスクロマトグラフィー(GC)分析 により決定した。 GC分析は、サンプリング液を酢酸ェチルやエタノールなどの適当な 溶媒に溶解し、キヤビラリ一力ラム DB- 17 F&W SCIENTIFIC INC.製)を使用 し、ガスクロマトグラフ GC- 14B ( (株)島津製作所製)で実施した。ナノ粒子の粒径は 、透過型電子顕微鏡 (TEM)JEM - 1200EX (日本電子 (株)製)を使用し、加速電圧 80kVで観察した。コロイド溶液試料の場合はコロジオン膜を貼り付けたメッシュ上に 乾燥固定して観察した。ナノ粒子の数平均粒子径は、 TEM写真において 100個以 上のナノ粒子をノギスを用いて計測して計算した。発光スペクトルは、蛍光光度計 LS 55 (パーキンエルマ一社製)または分光蛍光光度計 FP— 6500DS (日本分光 (株) 製)を用いて溶液またはフィルム試料に対して 290または 299nmの励起光を使用し 、 350〜700nmの範囲でフォトルミネッセンススペクトルを測定した。超音波照射は 超音波ホモジナイザー UH- 600 ( (株)ェムエステ一製)を使用して実施した。連鎖移 動剤として使用したチォカルボ-ルチオ化合物は、特表 2000 - 515181あるいは M acromolecules 2002, 35, 4123【こ記載の方法【こ従って合成した。 [0059] (製造例 1)
末端に SH基を有するポリ(アクリル酸 ZN, N-ジメチルアクリルアミド)の合成 窒素導入管付き還流冷却管、磁気攪拌子、温度測定用熱電対を装着した 4ロフラ スコ(lOOmL)に、 N, N-ジメチルホルムアミド(50mL)、ァゾビスイソブチ口-トリル( 5. 3mg)、 1 -フエ-ルェチルジチォベンゾエート(42mg)、アクリル酸(20mL)を入 れ、反応器内を脱気 ·窒素置換した。反応溶液を攪拌しながら 60°Cで 4時間攪拌 (転 化率 21%)後、室温まで冷却し、ジメチルァミン(10mL)を添加して 8時間攪拌した。 反応溶液を濃縮後トルエン(200mL)に注いでポリマーを析出させた。得られたポリ マーの GPCおよび NMR分析より、 Mwl7200、 Mnl4300、 Mw/Mnl. 20の、 末端に SH基を有するポリ(アクリル酸 ZN, N-ジメチルアクリルアミド)であることを確 認した。アクリル酸力もアクリルアミドへの変換収率は 15%であった。
[0060] (製造例 2)
末端に SH基を有するポリ(N, N-ジメチルアクリルアミド)(PDMA)の合成 窒素導入管付き還流冷却管、磁気攪拌子、温度測定用熱電対を装着した 4ロフラ スコ(lOOmL)に、 N, N-ジメチル -S-チォベンゾィルチオプロピオンアミド(232mg) 、 DMA (30. Og)、 N, N-ジメチルホルムアミド(lOg)、水(20g)、 4, 4, -ァゾビス(4 -シァノ吉草酸)(69mg)を入れ、反応器内を脱気 ·窒素置換した。 80°Cで 3時間攪 拌し、室温まで冷却した。モノマー反応率は 44%であり、 GPC分析の結果 Mwl680 0、 Mnl4200、 Mw/Mnl. 18であった。
[0061] この溶液に 2-エタノールァミン(5g)を添カロして 70°Cで 3時間攪拌し、末端に SH基 を有する PDMAの水溶液を得た。
[0062] (製造例 3)
末端に SH基を有するポリメタクリル酸メチル (PMMA)の合成
窒素導入管付き還流冷却管、磁気攪拌子、温度測定用熱電対を装着した 4ロフラ スコ(300mL)に、 2- (2-フエ-ルプロピル)ジチォベンゾエート(0. 170g)、 MMA( 50. Og)、トルエン(lOOg)、ァゾビスイソブチ口-トリル(0. 021g)を入れ、窒素置換 し、 90°Cで 2時間加熱した。モノマー反応率は 30%であった。 70°Cまで冷却し、 n- プチルァミン (0. 0935g)を添加し、 70°Cで 10時間攪拌した。反応溶液をメタノール (400mL)に注いで片末端に SH基を有する PMMA(7. 4g)を析出させた。 GPC分 祈の結果、 Mw31600、 Mn26200、 Mw/Mnl. 20であった。
[0063] (製造例 4)
末端に SH基を有するポリスチレン (PSt)の合成
窒素導入管付き還流冷却管、磁気攪拌子、温度測定用熱電対を装着した 4ロフラ スコ(500mL)に、 2- (2-フエ-ルプロピル)ジチォベンゾエート(3. 22g)、スチレン( 100. 3g)、トルエン(98. lg)、ァゾビスイソブチ口-トリル(0. 61g)を入れ、窒素置 換し、 70°Cで 14時間攪拌した。モノマー反応率は 42%であった。反応溶液を 50°C に保ち、ジェチルァミン(25g)を加えて 8時間攪拌した。室温まで冷却後、反応溶液 をメタノール(500mL)に注いでポリマーを析出させた。得られたポリスチレンは Mw4 300、 Mn3700、 Mw/Mnl. 16であり、 ^-NMR分析より片末端が SH基に変換 されていることを確認した。
[0064] (製造例 5)
末端に SH基を有するポリアクリル酸 n-ブチル (PBA)の合成
窒素ガス導入管付き還流冷却管、攪拌機、温度計を備えた 200mL反応器に、ジ ベンジルトリチォカーボネート(4. 46g)、アクリル酸 n-ブチル(49. 7g)、トルエン(5 Og)、ァゾビスイソプチ口-トリル (0. 415g)を入れ、反応器内を脱気'窒素置換した 。 90°Cで 3時間攪拌し、サンプリングして GPC分析と NMR分析によりトリチォカーボ ネート構造を有する PBA(Mw4200、 Mn3700、 Mw/Mnl. 15)の生成を確認し た。
[0065] この溶液に n-プチルァミン(20g)を添加し、室温で 1時間攪拌した後、へキサン(5 OOmL)に注いで遠心分離することによりポリマーを沈殿として得た。 GPC分析と NM R分析【こより、末端【こ SH基を有する PBA(Mw3000、 Mn2700、 Mw/Mnl. 11) であることを確認した。
[0066] (製造例 6)
ZnOナノ粒子の合成
J. Phys. Chem. B 1998, 102, 7770の方法を参考に、以下の通り ZnOナノ粒 子を合成した。 [0067] 酢酸亜鉛二水和物(220mg)を 2-プロパノール(80mL)に溶解し、 50°Cで 30分間 攪拌した後 2-プロパノールをカ卩えて全量を 920mLとし、 0°Cに冷却した。ここに 0. 0 2M NaOHZ2-プロパノール溶液(80mL)を一度に加え、 65°Cで 2時間攪拌した 。 TEM分析より、数平均粒子径 5. Inmの ZnOナノ粒子が生成していることを確認し た。
[0068] (製造例 7)
ZnOナノ粒子の合成
J. Phys. Chem. 1992, 96, 11086の方法を参考に、以下の通り ZnOナノ粒子を 合成した。
[0069] 酢酸亜鉛二水和物(11. Og)を無水エタノール(500mL)に溶解し、窒素雰囲気で 80°Cに加熱しながらエタノールをゆっくり留去した。留分が約 300mLに達した時点 で反応器内に無水エタノール(300mL)を追加し、 LiOH'H 0 (2. 9g)を添加した。
2
室温で超音波照射を 2時間実施し、 0. 1 mのグラスフィルターでろ過して不溶物を 除去した。 TEM分析より、数平均粒子径 8. 5nmの ZnOナノ粒子が生成していること を確認した。
[0070] (製造例 8)
Mnドープ ZnOナノ粒子の合成
J. Am. Chem. Soc. 2004, 126, 9387の方法を参考に、以下の通り Mnドープ ZnOナノ粒子を合成した。
[0071] 酢酸亜鉛二水和物(2. 15g)と酢酸マンガン四水和物(0. 05g)を DMSO (100m L)に溶解し、ここにテトラメチルアンモ-ゥムヒドロキシド五水和物(30. 8g)をエタノ ール (310mL)に溶解させた溶液を、室温で攪拌しながら滴下した。滴下終了後反 応溶液を 60°Cで 4時間攪拌し、酢酸ェチル(500mL)に注いで粒子を沈殿させた。 得られた粒子をエタノール(300mL)に分散させ、ヘプタン(500mL)に注いで沈殿 させた。得られた粒子をエタノール(200mL)に分散させ、ドデシルァミン(5g)をカロえ て超音波照射しながら室温で 2時間攪拌し、ロータリーエバポレーターで濃縮した後 トルエン(lOOmL)に溶解させた。 TEM分析より数平均粒子径 6. 7nmの Mnドープ ZnOナノ粒子が生成していることを確認した。 Mnドープされていることは、 530nm付 近の発光スペクトルが著しく弱くなつていることから確認した。
[0072] (実施例 1)
製造例 1で得られた末端に SH基を有するポリ(アクリル酸 ZN, N-ジメチルアクリル アミド) (0. 5g)を、製造例 6で得られた ZnOナノ粒子の 2-プロパノール溶液(5mL) に溶解させ、室温で超音波照射を 1時間行った後、溶液を濃縮してへキサン(10mL )をカ卩えてポリマー修飾 ZnOナノ粒子を沈殿させた。得られたポリマー修飾 ZnOナノ 粒子をメタノール(lmL)に溶解させ、へキサン(lOmL)に注いで再沈殿させることに より精製した。得られたポリマー修飾 ZnOナノ粒子はメタノール中 510nmに発光スぺ タトルを示し、また TEM観察力も ZnOナノ粒子を含有することを確認した。 TEM観 察において ZnOナノ粒子の凝集は観察されな力つた。
[0073] (実施例 2)
製造例 1で得られた末端に SH基を有するポリ(アクリル酸 ZN, N-ジメチルアクリル アミド)(2g)を、製造例 7で得られた ZnOナノ粒子のエタノール溶液(5mL)に溶解さ せ、室温で超音波照射を 1時間実施した。得られたポリマー修飾 ZnOナノ粒子のコロ イド溶液は室温で 6ヶ月以上放置しても透明のままであり、 TEM観察の結果 ZnOナ ノ粒子が凝集せずに存在して 、ることを確認した。
[0074] (比較例 1)
市販のポリアクリル酸(Mw2000、アルドリッチ)(2g)を、製造例 7で得られた ZnO ナノ粒子のエタノール溶液(5mL)に溶解させ、室温で超音波照射を 1時間実施した 。得られたコロイド溶液のうち 2mLをとり、へキサン(10mL)に注いでポリマーを沈殿 させた。得られたポリマーは発光スペクトルを示さず、 TEM観察からも ZnOナノ粒子 の存在を確認できなカゝつた。ポリマーを取り除いた上澄みには ZnOナノ粒子が存在 することを TEM観察により確認したが、凝集していた。残りのコロイド溶液(3mL)は 室温で 1週間保存すると濁りが生じ、 TEM観察の結果 ZnOナノ粒子が凝集している ことを確認した。
[0075] (実施例 3)
製造例 2で得られた末端に SH基を有する PDMA水溶液(1. 5mL)を、製造例 6で 得られた ZnOナノ粒子の 2-プロパノール溶液(10mL)に添加し、 30°Cで超音波照 射を 2時間実施した。得られたポリマー修飾 ZnOナノ粒子のコロイド溶液を濃縮後、 キャストすることによりポリマー修飾 ZnOナノ粒子の透明フィルムを得た。このフィルム を 80°Cの温水で洗浄し、 TEM観察を行ったところ ZnOナノ粒子が凝集せずに分散 していることを確認できた。
[0076] (実施例 4)
製造例 2で得られた末端に SH基を有する PDMA水溶液 (2mL)をメタノール (5m L)に溶解させ、製造例 7で得られた ZnOナノ粒子のエタノール溶液(5mL)と混合し た。 50°Cで 4時間攪拌後、得られたポリマー修飾 ZnOナノ粒子のコロイド溶液を濃縮 し、キャストすることによりポリマー修飾 ZnOナノ粒子の透明フィルムを得た。このフィ ルムを 80°Cの温水で洗浄し、 TEM観察を行ったところ ZnOナノ粒子が凝集せずに 分散して ヽることを確認できた。
[0077] (実施例 5)
製造例 3で得られた末端に SH基を有する PMMA(lg)を、製造例 8で得られた M nドープ ZnOナノ粒子のトルエン溶液(5mL)に添カ卩し、 60°Cで 2時間超音波照射し た。得られたポリマー修飾 ZnOナノ粒子のコロイド溶液をメタノール(50mL)に注ぎ、 ポリマー修飾 ZnOナノ粒子を沈殿させた。上澄み液の GC分析よりドデシルァミンが 存在することを確認した。これは ZnOナノ粒子の表面を保護して ヽたドデシルァミン 力 末端に SH基を有する PMMAと置換されたためである。また TEM分析および発 光スぺクトル分析より上澄みには Mnドープ ZnOナノ粒子がほとんど含まれな ヽことを 確認した。ポリマー修飾 ZnOナノ粒子をメタノールで洗浄後、トルエン(5mL)を用い てキャストしてフィルムを作製した。 TEM観察により Mnドープ ZnOナノ粒子が凝集 せずに分散して存在することを確認した。
[0078] (比較例 2)
市販の PMMA (Mwl 5000、アルドリッチ)(lg)を、製造例 8で得られた Mnドープ ZnOナノ粒子のトルエン溶液(5mL)に添カ卩し、 60°Cで 2時間超音波照射した。得ら れた溶液をメタノール(50mL)に注いでポリマーを沈殿させた。上澄み液の GC分析 にお ヽてはドデシルァミンは観測されな力つた力 TEM分析の結果多くの凝集した Mnドープ ZnOナノ粒子が確認された。ポリマーをメタノールで洗浄後、トルエン(5m L)を用いてキャストしてフィルムを作製した。 TEM観察によりポリマー中に含まれる Mnドープ ZnOナノ粒子の数が極端に少ないことを確認した。さらにポリマー中の Mn ドープ ZnOナノ粒子は凝集して ヽた。
[0079] (実施例 6)
製造例 4で得られた末端に SH基を有する PSt (lg)を、製造例 8で得られた Mnド ープ ZnOナノ粒子のトルエン溶液(5mL)に添カ卩し、 60°Cで 2時間超音波照射した。 得られた溶液をメタノール(50mL)に注いでポリマーを沈殿させた。上澄み液の GC 分析よりドデシルァミンが存在することを確認した。これは ZnOナノ粒子の表面を保 護していたドデシルァミン力 末端に SH基を有する PStと置換されたためである。ま た TEM分析および発光スペクトル分析より上澄みには Mnドープ ZnOナノ粒子がほ とんど含まれな 、ことを確認した。ポリマー修飾 ZnOナノ粒子をメタノールで洗浄後、 トルエン(5mL)を用いてキャストしてフィルムを作製した。 TEM観察により Mnドープ ZnOナノ粒子が凝集せずに分散して存在することを確認した。
[0080] (比較例 3)
市販の PSt (Mw4000、アルドリッチ)(lg)を、製造例 8で得られた Mnドープ ZnO ナノ粒子のトルエン溶液(5mL)に添加し、 60°Cで 2時間超音波照射した。得られた 溶液をメタノール(50mL)に注いでポリマーを沈殿させた。上澄み液の GC分析にお Vヽてはドデシルァミンは観測されな力つた力 TEM分析の結果多くの凝集した Mnド ープ ZnOナノ粒子が確認された。ポリマーをメタノールで洗浄後、トルエン(5mL)を 用いてキャストしてフィルムを作製した。 TEM観察によりポリマー中に含まれる Mnド ープ ZnOナノ粒子の数が極端に少ないことを確認した。さらにポリマー中の Mnドー プ ZnOナノ粒子は凝集して ヽた。
[0081] (実施例 7)
製造例 5で得られた末端に SH基を有する PBA(lg)をアセトン (5mL)に溶解させ 、製造例 7で得られた ZnOナノ粒子のエタノール溶液(5mL)に添加した。得られた 溶液を室温で 2時間超音波照射し、濃縮 ·減圧乾燥して PBAで修飾した ZnOナノ粒 子を得た。このポリマー修飾ナノ粒子を 0. lgずつ、トルエン、アセトン、テトラヒドロフ ラン、クロ口ホルム、エタノール、各 3mLにそれぞれ溶解させて透明コロイド溶液を調 整した。これら透明コロイド溶液は室温で 6ヶ月以上保存しても安定であり、 ZnOナノ 粒子の凝集は認められなかった。
[0082] (比較例 4)
製造例 6で得られた ZnOナノ粒子の 2-プロパノール溶液 (3mL)を室温で保存した ところ、 5日間で濁りが生じ、 TEM観察の結果 ZnOナノ粒子が凝集していることが確 f*i¾ れ 。
[0083] (比較例 5)
製造例 7で得られた MnOナノ粒子のエタノール溶液 (3mL)を室温で保存したとこ ろ、 1週間で濁りが生じ、 TEM観察の結果 ZnOナノ粒子が凝集していることが確認さ れた。
[0084] (比較例 6)
製造例 8で得られた Mnドープ ZnOナノ粒子のトルエン溶液(3mL)を室温で保存 したところ、 15日間で濁りが生じ、 TEM観察の結果 Mnドープ ZnOナノ粒子が凝集 していることが確認された。
[0085] (実施例 8)
Chem. Mater. 2000, 12, 2268の方法を参考【こ、末端【こ SH基を有する PDM Aで表面修飾された ZnOナノ粒子を合成した。
[0086] 酢酸亜鉛二水和物(l lOmg)を 2-プロパノール(80mL)に添カ卩し、激しく攪拌しな 力 Sら 50°Cで 1時間攪拌した。 2-プロパノールを追加して溶液の全量を 920mLとし、 0 °Cに冷却した。この溶液をストック溶液として 4つに等分した。
[0087] ストック溶液の一つに製造例 2で得られた末端に SH基を有する PDMA(1. 8g)を 添加し、室温で超音波照射しながら NaOHのメタノール溶液 (0. 02mol/L) (50m L)を 2時間かけて滴下した。さらに室温で超音波照射と攪拌を 2時間続けた。 TEM 観察の結果、数平均粒子径 2. 5nmの ZnOナノ粒子が凝集せずに存在していること を確認した。こうして得られた PDMAで表面修飾された ZnOナノ粒子の透明コロイド 溶液は、室温で 6ヶ月以上保存しても安定であり、凝集は認められな力つた。
[0088] (比較例 7)
実施例 8のストック溶液の一つに、巿販ポリビュルピロリドン(PVP) (Mwl0000、ァ ルドリッチ)(1. 3g)を添カ卩し、室温で超音波照射しながら NaOHのメタノール溶液 (0 . 02mol/L) (50mL)を 2時間かけて滴下した。さらに室温で超音波照射と攪拌を 2 時間続けた。 TEM観察の結果、数平均粒子径 3. lnmの ZnOナノ粒子が凝集せず に存在して 、ることを確認した。しかしこうして得られた PVPで表面保護された ZnO ナノ粒子の透明コロイド溶液は、安定性が低ぐ室温で 3週間程度保存すると濁りが 生じ、 ZnOナノ粒子が凝集して ヽることが確認された。
[0089] (製造例 9)
末端に SH基を有するポリ(アクリル酸ナトリウム) (PAANa)の合成
窒素導入管付き還流冷却管、磁気攪拌子、温度測定用熱電対を装着した 4ロフラ スコ(lOOmL)に、ジメチルホルムアミド(50mL)、ァゾビスイソブチ口-トリル(5. 3m g)、 1 -フエ-ルェチルジチォベンゾエート(42mg)、アクリル酸(20mL)を入れ、反 応器内を脱気 ·窒素置換した。反応溶液を攪拌しながら 60°Cで 4時間攪拌 (転化率 2 1%)後、室温まで冷却し、 NaOH (lOg)を添加して 60°Cで 8時間攪拌した。反応溶 液を濃縮後トルエン(200mL)に注いでポリマーを析出させた。得られたポリマーの GPCおよび NMR分析より、 Mwl7200、 Mnl4300、 Mw/Mnl. 20の、末端に S H基を有する PAANaであることを確認した。滴定により求めたアクリル酸のケンィ匕度 は 94%であった。
[0090] (製造例 10)
メルカプト酢酸で修飾した ZnSナノ粒子の合成
J. Luminescence 2003, 102- 103, 768を参考に、 ZnSナノ粒子を合成した。
[0091] ジメチルホルムアミド(200mL)に酢酸亜鉛二水和物(2. 5g; 11. 4mmol)とメルカ ブト酢酸(21g ; 22. 8mmol)を溶解させ、 3口フラスコに入れて反応系内を窒素置換 した。 2M水酸ィ匕ナトリウム水溶液を加えて溶液の pHを 8に調節し、室温で攪拌しな 力 滴下漏斗力も硫ィ匕ナトリウム九水和物(2. 7g ; l l. 2mmol)の水溶液(50mL)を 30分かけて滴下した。室温で 10時間攪拌後、反応液をアセトン (600mL)に注いで 沈殿を析出させ、遠心分離により単離した。得られた ZnSナノ粒子の数平均粒子径 が 4. Onmであることを TEM観察により確認した。この ZnSナノ粒子のメタノール分散 液は 410nmに発光スペクトルを示した。 [0092] (製造例 11)
Mnドープ ZnS (ZnS: Mn)ナノ粒子の合成
Nano Lett. 2001, 1, 429を参考に、 ZnS : Mnナノ粒子を合成した。
[0093] ポリリン酸(10. 2g)を純水(60mL)に溶解させ、室温で攪拌しながら酢酸亜鉛二 水和物の 1M水溶液(10mL)と酢酸マンガン四水和物の 0. 1M水溶液(10mL)を 添カ卩した。次に硫ィ匕ナトリウム九水和物の 0. 85M水溶液(20mL)を加えた。生成し た沈殿を遠心分離により単離し、純水とエタノールで洗浄することにより、 ZnS : Mnナ ノ粒子を得た。得られた ZnS : Mnナノ粒子の数平均粒子径が 5. Onmであることを T EM観察により確認した。この ZnS : Mnナノ粒子の水分散液は 590nmに発光スぺク トルを示した。
[0094] (実施例 9)
製造例 9で得られた末端に SH基を有する PAANa (0. 5g)を、ジメチルホルムアミ ド(5mL)に溶解させ、製造例 10で得られた ZnSナノ粒子(5mg)をカ卩え、室温で 5分 間攪拌した。溶液を 2mLまで濃縮してへキサン(10mL)に注ぐことにより、ポリマー 修飾 ZnSナノ粒子を得た。このポリマー修飾 ZnSナノ粒子はメタノール中 425nmに 発光スペクトルを示した。また減圧乾燥させて力 大気中で 3ヶ月間放置後、メタノー ルに溶解させたところ同じ発光スペクトルを示し、 TEM観察からも凝集が認められな かった。
[0095] (比較例 8)
OT( PAANa (Mw ¾5100,アルドリッチ製、製品番号 44, 701 -3) (0. 5g)をジ メチルホルムアミド(5mL)に溶解させ、製造例 10で得られた ZnSナノ粒子(5mg)を 加え、室温で 5分間攪拌した。溶液を 2mLまで濃縮してへキサン(10mL)に注ぐこと により、ポリマーを析出させた。このポリマーはメタノール中で発光スペクトルを示さず 、 TEM観察の結果 ZnSナノ粒子が凝集して 、ることを確認した。
[0096] (実施例 10)
製造例 9で得られた末端に SH基を有する PAANa (0. 5g)をメタノール(5mL)に 溶解させ、製造例 11で得られた ZnS : Mnナノ粒子(5mg)をカ卩えた。ただちに透明 溶液となった。このコロイド溶液を室温で 6ヶ月以上放置しても透明性は失われず、 T EM観察の結果 ZnS: Mnナノ粒子が凝集せずに存在して 、ることを確認した。
[0097] (比較例 9)
OT( PAANa (Mw ¾5100,アルドリッチ製、製品番号 44, 701 -3) (0. 5g)をメ タノール(5mL)に溶解させ、製造例 11で得られた ZnS : Mnナノ粒子 (5mg)をカ卩えた 。室温 5分間攪拌すると透明溶液となったが、室温で 1ヶ月後には濁りが生じ、 TEM 観察の結果 ZnS: Mnナノ粒子が凝集して 、ることを確認した。
[0098] (実施例 11)
製造例 2で得られた末端に SH基を有する PDMA水溶液(lmL)に、製造例 10で 得られた ZnSナノ粒子(5mg)を加え、室温で超音波照射を 5分間行った。得られた 溶液をキャストして透明フィルムを得た。このフィルムを 80°Cの温水で洗浄し、 TEM 観察を行ったところ ZnSナノ粒子が凝集せずに分散して 、ることを確認できた。この フィルムは 413nmに発光スペクトルを示すことを確認した。
[0099] (実施例 12)
製造例 2で得られた末端に SH基を有する PDMA水溶液(lmL)に、製造例 11で 得られた ZnS: Mnナノ粒子(5mg)を加えた。室温で超音波照射を 5分間行うと透明 溶液となった。この溶液をキャストして透明フィルムを得た。このフィルムを 80°Cの温 水で洗浄し、 TEM観察を行ったところ ZnS: Mnナノ粒子が凝集せずに分散して 、る ことを確認できた。このフィルムは 598nmに発光スペクトルを示すことを確認した。
[0100] (実施例 13)
製造例 3で得られた末端に SH基を有する PMMA (0. 5g)をクロ口ホルム(2mL) に溶解させ、製造例 10で得られた ZnSナノ粒子(8mg)の水溶液 (2mL)と混合した 。 UVランプを照射すると最初は水層側のみに発光が見られたが、 10分間激しく振と うしたところ水層の発光が消失し、クロ口ホルム層のみが発光するようになった。 PM MA末端の SH基が ZnSナノ粒子に結合することにより、 ZnSナノ粒子が水層からクロ 口ホルム層に抽出されたものと考えられる。クロ口ホルム層を分離してキャスト法により フィルムを作製し、発光スペクトルを測定したところ 415nmに極大を示した。 TEM観 察により ZnSナノ粒子が凝集せずに PMMA中に分散して 、ることを確認した。
[0101] (比較例 10) 市販の PMMA(Mw約 15000、アルドリッチ製、製品番号 20, 033-6) (0. 5g)を クロ口ホルム (2mL)に溶解させ、製造例 10で得られた ZnSナノ粒子(8mg)の水溶液 (2mL)と混合した。 1時間激しく振とうしても ZnSナノ粒子はクロ口ホルム層に抽出さ れず、クロ口ホルム層は発光スペクトルを示さなかった。念のためにクロ口ホルム層を 分離してキャスト法によりフィルムを作製した力 発光スペクトルは得られな力つた。
[0102] (実施例 14)
製造例 3で得られた末端に SH基を有する PMMA (0. 5g)をクロ口ホルム(2mL) に溶解させ、製造例 11で得られた ZnS : Mnナノ粒子(5mg)を添加した。超音波照 射を 5分間行うことにより ZnS : Mnナノ粒子は溶解し、透明溶液を与えた。この溶液を 室温で 6ヶ月保存した後でも 600nmに発光スペクトルを示し、 TEM観察によりナノ粒 子が凝集せずに分散して 、ることを確認した。
(比較例 11)
市販の PMMA(Mw約 15000、アルドリッチ製、製品番号 20, 033-6) (0. 5g)を クロ口ホルム (2mL)に溶解させ、製造例 11で得られた ZnS: Mnナノ粒子(5mg)を 添加した。超音波照射を 30分間行った力 ¾nS : Mnナノ粒子は分散せず、発光スぺ タトルは測定できな力つた。
[0103] (実施例 15)
製造例 5で得られた末端に SH基を有する PBA (0. 5g)をジメチルホルムアミド(2 mL)に溶解し、製造例 10で得られた ZnSナノ粒子(5mg)を添加して室温で 5分間 攪拌した。溶媒を留去して減圧乾燥し、得られたポリマーにトルエン(2mL)を加えて 溶解させた。この溶液は 415nmに発光スペクトルを示し、 TEM観察により ZnSナノ 粒子が凝集せずに分散して ヽることを確認した。
[0104] (比較例 12)
市販の PBA(Mn約 20000、アルドリッチ製、製品番号 18, 141 -2) (0. 5g)をジメ チルホルムアミド(2mL)に溶解し、製造例 10で得られた ZnSナノ粒子(5mg)を添カロ して室温で 5分間攪拌した。溶媒を留去して減圧乾燥し、得られたポリマーにトルェ ン(2mL)をカ卩えて溶解させた。この溶液は発光スペクトルを示さなかった。 ZnSナノ 粒子が分散できて 、な 、と考えられる。 [0105] (実施例 16)
製造例 5で得られた末端に SH基を有する PBA (0. 5g)をジメチルホルムアミド(2 mL)に溶解し、製造例 11で得られた ZnS: Mnナノ粒子(5mg)を添カ卩して室温で 10 分間攪拌した。得られた溶液を室温で 6ヶ月放置したが発光スペクトル(595nm)に 変ィ匕はなぐ透明のままであった。
[0106] (比較例 13)
市販の PBA(Mn約 20000、アルドリッチ製、製品番号 18, 141 -2) (0. 5g)をジメチ ルホルムアミド(2mL)に溶解し、製造例 11で得られた ZnS: Mnナノ粒子(5mg)を添 カロして室温で 10分間攪拌した。得られた溶液は 5日後には濁りが生じた。遠心分離 により沈殿を除去し、上澄み液の発光スペクトルを測定したが発光は認められなかつ た。ナノ粒子が凝集して沈殿してしまったためと考えられる。
[0107] (比較例 14)
製造例 10で得られた ZnSナノ粒子(5mg)をジメチルホルムアミド(2mL)に溶解さ せた。この溶液を室温で 3日間放置したところ、発光スペクトルを示さなくなった。ナノ 粒子が凝集してしまったためと考えられる。
[0108] (実施例 17)
製造例 2で得られた末端に SH基を有する PDMA (5g)をジメチルホルムアミド(20 mL)に溶解させ、酢酸亜鉛二水和物(0. 25g)を加えた。得られた溶液を 3ロフラス コに入れて反応系内を窒素置換した。 2M水酸ィ匕ナトリウム水溶液をカ卩えて溶液の p Hを 8に調節し、室温で攪拌しながら滴下漏斗力も硫ィ匕ナトリウム九水和物 (0. 27g) の水溶液(5mL)を 15分間かけて滴下した。室温で 10時間攪拌後、反応液を 5mL まで濃縮し、へキサン(25mL)に注いでポリマーを析出させた。デカンテーシヨンによ りポリマーを分離し、 UVランプを照射したところポリマーは発光したが上澄み液は発 光しなかった。得られたポリマーをジメチルホルムアミドに溶解させて発光スペクトル を測定したところ、 418nmに極大を示した。この発光スペクトルは室温で 6ヶ月間保 存しても変化が認められなカゝつた。 TEM観察の結果、 ZnSナノ粒子の数平均粒子 径は 4. lnmであった。
[0109] (比較例 15) 実施例 17にお 、て、製造例 2で得られた PDMAの代わりに市販のポリビュルピロリ ドン(PVP) (Mw約 10000、アルドリッチ製、製品番号 85, 645-2)を用いて同様の 実験を実施した。分離したポリマーは UVランプ照射により発光したが、上澄み液も同 様に発光しており、ポリマーがナノ粒子を修飾する強さは実施例 17の場合よりも弱か つた。また得られたポリマーをジメチルホルムアミドに溶解させ、室温で 1ヶ月間保存 すると発光スペクトルを示さなくなった。 ZnSナノ粒子が凝集してしまったと考えられる 産業上の利用可能性
本発明のポリマー修飾ナノ粒子は、凝集することなく安定的に量子効果を発現する 材料として、ディスプレイ用蛍光体、光電変換素子、発光ダイオード、波長変換材料 、紫外線遮蔽材料、色素増感太陽電池、蛍光塗料、蛍光フィルム、発光塗料、発光 フィルム、診断薬、微量成分検出試薬、分析用試薬、ドラッグデリバリーシステム、量 子トランジスタ、量子ドットレーザー、ディスプレイ用発光体、ノ《リスター、触媒などとし て有用である。

Claims

請求の範囲
[1] 数平均粒子径 lOOnm以下の金属酸ィ匕物ナノ粒子または金属硫ィ匕物ナノ粒子を、 チォカルボ二ルチオ化合物を連鎖移動剤とする可逆的付加脱離連鎖移動重合によ り得られたポリマーを用いて表面修飾することにより得られる、ポリマー修飾ナノ粒子
[2] 表面修飾に用いるポリマー力 チォカルボ-ルチオィ匕合物を連鎖移動剤とする可 逆的付加脱離連鎖移動重合の後、処理剤により末端 SH化されたものである、請求 項 1に記載のポリマー修飾ナノ粒子。
[3] 処理剤が水素-窒素結合含有化合物、塩基性化合物、還元剤からなる群より選ば れる化合物である、請求項 2に記載のポリマー修飾ナノ粒子。
[4] 表面修飾に用いるポリマー力 (メタ)アクリル酸エステル、(メタ)アクリルアミド類、( メタ)アクリル酸、(メタ)アクリル酸のアルカリ金属塩、スチレン、 p-スチレンスルホン酸 のアルカリ金属塩、(ビュルベンジル)トリメチルアンモ -ゥムクロライド、アタリ口-トリ ル、ビュルピロリドン、ビュルピリジン、酢酸ビュル、塩化ビュル、無水マレイン酸、マ レイミドカ なる群より選ばれる 1種以上のモノマーを重合させて得られる構造を有す る、請求項 1から 3のいずれかに記載のポリマー修飾ナノ粒子。
[5] 表面修飾に用いるポリマーの分子量分布が 1. 5以下である、請求項 1から 4のいず れかに記載のポリマー修飾ナノ粒子。
[6] 金属酸ィ匕物ナノ粒子または金属硫ィ匕物ナノ粒子の数平均粒子径が lOnm以下で ある、請求項 1から 5のいずれかに記載のポリマー修飾ナノ粒子。
[7] 金属酸化物ナノ粒子が、有機金属化合物と OH基含有塩基性化合物とを溶媒中で 反応させることにより得られたものである、請求項 1から 6のいずれかに記載のポリマ 一修飾ナノ粒子。
[8] OH基含有塩基性化合物が、 LiOH、 NaOH、 KOHカゝらなる群より選ばれる化合 物である、請求項 7に記載のポリマー修飾ナノ粒子。
[9] 有機金属化合物が、酢酸亜鉛、酢酸亜鉛二水和物、ァセチルァセトナト亜鉛水和 物、安息香酸亜鉛、クェン酸亜鉛、ジブチルジチォカルバミン酸亜鉛、ジェチルジチ ォカルバミン酸亜鉛、ギ酸亜鉛、ギ酸亜鉛二水和物、ラウリン酸亜鉛、サリチル酸亜 鉛三水和物からなる群より選ばれる化合物である、請求項 7または 8のいずれかに記 載のポリマー修飾ナノ粒子。
[10] 金属酸化物ナノ粒子が、 Zn、 Ti、 Zr、 Cr、 Mo、 W、 Mn、 Fe、 Ru、 Co、 Rh、 Ir、 Ni
、 Pd、 Cu、 Ag、 Cd、 Al、 Ga、 In、 Siゝ Ge、 Sn、 Pb、ランタノイド、ァクチノイド力らな る群より選ばれる元素によりドーピングされているものである、請求項 1から 9のいずれ かに記載のポリマー修飾ナノ粒子。
[11] 金属硫化物ナノ粒子中の金属が、 Zn、 Ti、 Zr、 Cr、 Mo、 W、 Mn、 Fe、 Ru、 Co、 R h、 Ir、 Ni, Pd、 Cu、 Ag、 Cd、 Al、 Ga、 In, Siゝ Ge、 Sn、 Pb、ランタノイド、ァクチノィ ドカ なる群より選ばれる 1種以上の元素で構成される、請求項 1から 6のいずれかに 記載のポリマー修飾ナノ粒子。
[12] 金属硫化物ナノ粒子中の金属の 90モル%以上が Znである、請求項 1から 6、およ び 11の 、ずれかに記載のポリマー修飾ナノ粒子。
[13] 金属硫化物ナノ粒子が、有機金属化合物と硫黄化合物とを溶媒中で反応させるこ とにより得られたものである、請求項 1から 6、および 11から 12のいずれかに記載の ポリマー修飾ナノ粒子。
[14] 有機金属化合物が、カルボン酸亜鉛ィ匕合物、ジチォ力ルバミン酸亜鉛ィ匕合物、キ サントゲン酸亜鉛ィ匕合物、ァセチルァセトナト亜鉛ィ匕合物、カルボン酸マンガンィ匕合 物、ァセチルァセトナトマンガン化合物、カルボン酸銅化合物、ジチォ力ルバミン酸 銅化合物からなる群より選ばれる 1種以上の化合物である、請求項 13に記載のポリ マー修飾ナノ粒子。
[15] 硫黄化合物が、アルカリ金属の硫ィ匕物、アルカリ土類金属の硫ィ匕物、アルカリ金属 の水硫化物、硫化水素、チォ尿素力もなる群より選ばれる 1種以上の化合物である、 請求項 13または 14に記載のポリマー修飾ナノ粒子。
[16] 請求項 1から 15のいずれかに記載のポリマー修飾ナノ粒子を含有する透明コロイド 溶液。
PCT/JP2005/014545 2004-08-20 2005-08-09 ポリマー修飾ナノ粒子 WO2006019008A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-240307 2004-08-20
JP2004240307A JP4766854B2 (ja) 2004-08-20 2004-08-20 ポリマー修飾ナノ粒子
JP2004-262712 2004-09-09
JP2004262712A JP2006076831A (ja) 2004-09-09 2004-09-09 ポリマー修飾金属硫化物ナノ粒子

Publications (1)

Publication Number Publication Date
WO2006019008A1 true WO2006019008A1 (ja) 2006-02-23

Family

ID=35907397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014545 WO2006019008A1 (ja) 2004-08-20 2005-08-09 ポリマー修飾ナノ粒子

Country Status (1)

Country Link
WO (1) WO2006019008A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1807457A1 (en) * 2004-11-03 2007-07-18 LG Chem, Ltd. Vinyl chloride resin composition and method for preparation thereof
WO2009074554A1 (fr) * 2007-12-13 2009-06-18 Renault S.A.S. Procédé de préparation d'un matériau polymère transparent comprenant un polycarbonate thermoplastique et des nanoparticules minérales modifiées en surface
EP2131870A1 (en) * 2007-04-12 2009-12-16 Industry-Academic Cooperation Foundation, Yonsei University Magnetic resonance imaging contrast agents comprising zinc-containing magnetic metal oxide nanoparticles
WO2011033040A2 (en) 2009-09-16 2011-03-24 Centrum Für Angewandte Nanotechnologie (Can) Gmbh Antibacterial particles and their synthesis
CN112279306A (zh) * 2020-10-21 2021-01-29 南京晓庄学院 硫化物纳米晶的优化方法和Sn-S-Co纳米晶及其优化产物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218276A (ja) * 1993-01-27 1994-08-09 Mitsui Toatsu Chem Inc 安定化された金属酸化物超微粒子とその製造方法
JP2001200050A (ja) * 2000-01-17 2001-07-24 Japan Science & Technology Corp ポリエチレングリコール化金属、金属酸化物または半導体超微粒子
JP2002265508A (ja) * 2001-03-07 2002-09-18 Kanegafuchi Chem Ind Co Ltd 末端にメルカプト基を有する重合体の製造方法
WO2004000916A2 (en) * 2002-02-04 2003-12-31 Nanophase Technologies Corporation Stable dispersions of nanoparticles in aqueous media

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218276A (ja) * 1993-01-27 1994-08-09 Mitsui Toatsu Chem Inc 安定化された金属酸化物超微粒子とその製造方法
JP2001200050A (ja) * 2000-01-17 2001-07-24 Japan Science & Technology Corp ポリエチレングリコール化金属、金属酸化物または半導体超微粒子
JP2002265508A (ja) * 2001-03-07 2002-09-18 Kanegafuchi Chem Ind Co Ltd 末端にメルカプト基を有する重合体の製造方法
WO2004000916A2 (en) * 2002-02-04 2003-12-31 Nanophase Technologies Corporation Stable dispersions of nanoparticles in aqueous media

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1807457A1 (en) * 2004-11-03 2007-07-18 LG Chem, Ltd. Vinyl chloride resin composition and method for preparation thereof
EP1807457A4 (en) * 2004-11-03 2009-03-25 Lg Chemical Ltd VINYL CHLORIDE RESIN COMPOSITION AND METHOD FOR PREPARING THE SAME
EP2131870A1 (en) * 2007-04-12 2009-12-16 Industry-Academic Cooperation Foundation, Yonsei University Magnetic resonance imaging contrast agents comprising zinc-containing magnetic metal oxide nanoparticles
EP2131870A4 (en) * 2007-04-12 2011-08-03 Univ Yonsei Iacf CONTRASTING AGENTS FOR MAGNETIC RESONANCE IMAGING WITH ZINC-CONTAINING MAGNETIC METAL OXIDE NANOPARTICLES
US9375495B2 (en) 2007-04-12 2016-06-28 Industry-Academic Cooperation Foundation, Yonsei University Magnetic resonance imaging contrast agents comprising zinc-containing magnetic metal oxide nanoparticles
WO2009074554A1 (fr) * 2007-12-13 2009-06-18 Renault S.A.S. Procédé de préparation d'un matériau polymère transparent comprenant un polycarbonate thermoplastique et des nanoparticules minérales modifiées en surface
FR2925059A1 (fr) * 2007-12-13 2009-06-19 Armines Ass Loi De 1901 Procede de preparation d'un materiau polymere transparent comprenant un polycarbonate thermoplastique et des nanoparticules minerales modifiees en surface.
US9163125B2 (en) 2007-12-13 2015-10-20 Armines Method of preparing a transparent polymer material comprising a thermoplastic polycarbonate and surface-modified mineral nanoparticles
WO2011033040A2 (en) 2009-09-16 2011-03-24 Centrum Für Angewandte Nanotechnologie (Can) Gmbh Antibacterial particles and their synthesis
GB2473813A (en) * 2009-09-16 2011-03-30 Ct Fuer Angewandte Nanotechnologie Antibacterial zinc oxide (ZnO) nanoparticles doped with copper or magnesium
CN112279306A (zh) * 2020-10-21 2021-01-29 南京晓庄学院 硫化物纳米晶的优化方法和Sn-S-Co纳米晶及其优化产物
CN112279306B (zh) * 2020-10-21 2021-07-06 南京晓庄学院 硫化物纳米晶的优化方法和Sn-S-Co纳米晶及其优化产物

Similar Documents

Publication Publication Date Title
Wang et al. Synthesis and applications of ZnO/polymer nanohybrids
Gedanken Doping nanoparticles into polymers and ceramics using ultrasound radiation
US7531149B2 (en) Synthetic control of metal oxide nanocrystal sizes and shapes
US8088839B2 (en) Method of producing hybrid polymer-inorganic materials
Koczkur et al. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis
JPWO2006006349A1 (ja) ポリマー修飾ナノ粒子の製造方法
Cozzoli et al. Colloidal synthesis of organic-capped ZnO nanocrystals via a sequential reduction− oxidation reaction
Li et al. A facile construction of Au nanoparticles stabilized by thermo-responsive polymer-tethered carbon dots for enhanced catalytic performance
WO2006019008A1 (ja) ポリマー修飾ナノ粒子
Kalidindi et al. Synthesis of Cu@ ZnO core− shell nanocomposite through digestive ripening of Cu and Zn nanoparticles
KR101423563B1 (ko) 금속 및 금속 산화물 나노입자 및 나노 플레이트의 제조방법
US10464136B2 (en) Preparation method of copper nano-structures
Moudir et al. Preparation of silver powder used for solar cell paste by reduction process
EP1650264A1 (en) Resin composition containing ultrafine particles
Brewster et al. Role of aliphatic ligands and solvent composition in the solvothermal synthesis of iron oxide nanocrystals
WO2006038420A1 (ja) ポリマー修飾金属カルコゲン化物ナノ粒子の製造方法
CN102858684A (zh) 批量生产具有均匀尺寸的银纳米粒子的方法
WO2006098756A2 (en) Synthetic control of metal oxide nanocrystal sizes and shapes
Kostiv et al. Silica-coated upconversion lanthanide nanoparticles: The effect of crystal design on morphology, structure and optical properties
JP4766854B2 (ja) ポリマー修飾ナノ粒子
JP2006076831A (ja) ポリマー修飾金属硫化物ナノ粒子
WO2015195650A1 (en) Direct transformation of bulk materials to nanoparticles
Zhong et al. Assembly of Au colloids into linear and spherical aggregates and effect of ultrasound irradiation on structure
Wang et al. Preparation and characterization of the ZnS nanospheres with narrow size distribution
Buenviaje Jr et al. One-pot Synthesis of Redispersible Polymer-stabilized ZnO Nanocomposites.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase