CN109796044A - 二硫化钼、钴修饰的二硫化钼、负载Pd的纳米片及其合成方法和应用 - Google Patents

二硫化钼、钴修饰的二硫化钼、负载Pd的纳米片及其合成方法和应用 Download PDF

Info

Publication number
CN109796044A
CN109796044A CN201910223132.3A CN201910223132A CN109796044A CN 109796044 A CN109796044 A CN 109796044A CN 201910223132 A CN201910223132 A CN 201910223132A CN 109796044 A CN109796044 A CN 109796044A
Authority
CN
China
Prior art keywords
molybdenum disulfide
cobalt
mos
sheet
modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910223132.3A
Other languages
English (en)
Other versions
CN109796044B (zh
Inventor
陈昌云
刘苏莉
张皖佳
张苏迪
穆雪琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Xiaozhuang University
Original Assignee
Nanjing Xiaozhuang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Xiaozhuang University filed Critical Nanjing Xiaozhuang University
Priority to CN201910223132.3A priority Critical patent/CN109796044B/zh
Publication of CN109796044A publication Critical patent/CN109796044A/zh
Application granted granted Critical
Publication of CN109796044B publication Critical patent/CN109796044B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明属于材料合成领域,具体涉及纳米材料研究合成领域,更为具体的说是涉及二硫化钼、钴修饰的二硫化钼、负载Pd的纳米片及其合成方法和应用。本发明公开的MoS2、Co‑MoS2及Co‑MoS2负载Pd纳米片均为超薄二维片状结构,具有优异的HER性能,能够高效催化燃料电池中的HER。通过对合成方法的改进,提供了一种可控的合成方法,并通过该方法制备得到相应的二硫化钼,进一步合成钴修饰的二硫化钼,并且进一步合成负载Pd的钴修饰的二硫化钼纳米片,该纳米片具有优异的HER性能,能够高效催化燃料电池中的HER。

Description

二硫化钼、钴修饰的二硫化钼、负载Pd的纳米片及其合成方法 和应用
技术领域
本发明属于材料合成领域,具体涉及纳米材料研究合成领域,更为具体的说是涉及二硫化钼、钴修饰的二硫化钼、负载Pd的纳米片及其合成方法和应用。
背景技术
随着世界能源需要和环境问题的日益增加,寻找清洁能源迫在眉睫。近年来,氢燃料电池的开发利用,进一步拓宽了能源领域的研究范围。而在设计氢燃料电池的过程中,提高析氢反应(HER)的反应效率(降低HER过电位)成为商业化应用的关键。
近年来,研究者从实验(Norskv团队)和理论上(Jaramillo团队)发现层状MoS2的Mo边缘具有最佳的H吸附能(ΔGH=0.06eV)且在二维片边缘存在较多S的悬挂建,因此具有较优异的HER性能。
二硫化钼是一种典型的过渡金属化合物,目前现有技术中二硫化钼主要是以类石墨烯六方密堆积层状结构存在,钼/硫层交替存在,形成类似“三明治”的夹层结构。但是,目前这种结构下的二硫化钼存在比表面积低、形貌不可控等问题,同时由于其结构中活性位点数量较低,因此限制了其的开发和进一步应用。由于硫化物催化剂的性能与其形貌结构有着密切联系,而形貌结构是与其制备方法密切关联的。不同的制备方法获得的形貌结构是不同的,所以对于本领域的技术人员来说,如何通过对制备工艺的改进,实现对二硫化钼形貌和结构的可调控合成,并进一步通过这种可控的方式提高二硫化钼的比表面积和催化活性位点,这是硫化物,特别是二硫化钼纳米材料目前研究的热点问题之一。
文献研究表明,Pt-基金属催化剂具有最小HER电位,最高的反应效率,然而Pt价值昂贵,限制了催化剂的广泛应用,因此开发低成本,高性能及高稳定性电催化剂是目前氢燃料电池亟待解决的问题。
发明内容
本发明所要解决的技术问题是,通过对合成方法的改进,从而提供一种具有更优结构的二硫化钼化合物,从而为钴修饰,以及后期负载Pd后,提供更好的基础结构,从而能够替代Pt这种昂贵的材料,成为一种可期的新型高效的析氢反应催化剂。
为了解决上述技术问题,本发明公开了一种二硫化钼纳米片,该纳米片为超薄二维纳米片。
这里所说的超薄二维纳米片是指一类新兴的纳米材料,其具有片状结构,水平尺寸超过100nm或几个微米甚至更大,但是厚度只有单个或几个原子厚(典型厚度小于5nm)。
在本发明中,所述的二硫化钼纳米片的片层厚度小于5nm。是一种超薄二维纳米片。
该超薄的二硫化钼纳米片的合成方法为:将钼源、硫源与二次蒸馏水、丙酸溶液混合,搅拌至混合均匀后,逐步升温至180℃,并在这一温度下反应得到含有MoS2的纳米晶。
优选的,在180℃的条件下反应4小时。
进一步优选的,所述的钼源为钼酸钠(Na2MoO4.2H2O)。
优选的,所述的硫源为硫脲(CS(NH2)2)。
在一个优选的技术方案中,各组分的添加比例为Na2MoO4.2H2O 0.5mmol,CS(NH2)23mmol,二次蒸馏水16mL,丙酸8mL。
进一步优选的,所述搅拌为磁力搅拌,所述搅拌时间为10分钟。
在获得超薄二维纳米片二硫化钼的基础上,本发明进一步公开钴修饰的二硫化钼,钴修饰的二硫化钼具有超薄二维片状结构。这里所说的超薄二维纳米片是指一类新兴的纳米材料,其具有片状结构,水平尺寸超过100nm或几个微米甚至更大,但是厚度只有单个或几个原子厚(典型厚度小于5nm)。
在本发明中,所述的钴修饰的二硫化钼纳米片的片层厚度小于5nm。
同时,在本发明中还进一步公开了所述钴修饰的二硫化钼纳米片的合成方法为:室温(15-35℃)下将超薄二硫化钼纳米片与钴源混合,搅拌均匀后,逐步升温至180℃,并在这一温度下反应得到含有Co-MoS2纳米片的产物,经分散沉降、离心分离得到Co-MoS2纳米片。
优选的,所述钴源为硝酸钴(Co(NO3).6H2O)。
在一个优选的技术方案中,硝酸钴(Co(NO3).6H2O)的添加量为0.5mmol,超薄二硫化钼纳米片的添加量为0.5mmol。
更为优选的是,在180℃条件下反应4小时。
进一步优选的,所述搅拌为磁力搅拌,所述搅拌时间为30分钟。
更为优选的是,反应后先采用无水乙醇和二次蒸馏水体积比1:1混合液分散沉降,然后再用无水乙醇和正庚烷体积比1:1混合液分散沉降。
进一步优选的是,分散沉降、离心分离重复4-5次。
同时,还需说明的是,优选的,还包括有真空干燥步骤:将离心分离得到Co-MoS2纳米片进一步真空干燥。
同时,在本发明中进一步在钴修饰的二硫化钼基础上,进一步公开负载有Pd的钴修饰的二硫化钼,该负载有Pd的钴修饰的二硫化钼为超薄二维片状结构。这里所说的超薄二维纳米片是指一类新兴的纳米材料,其具有片状结构,水平尺寸超过100nm或几个微米甚至更大,但是厚度只有单个或几个原子厚(典型厚度小于5nm)。
在本发明中,所述的负载有Pd的钴修饰的二硫化钼纳米片的片层厚度小于5nm。
进一步的,本发明还公开了负载有Pd的钴修饰的二硫化钼纳米片的合成方法为:将钴修饰的二硫化钼(Co-MoS2)纳米片与二次蒸馏水混合,超声处理后,加入钯源,逐步升温至60℃,并在这一温度下反应得到含有Co-MoS2负载Pd纳米片,经分散沉降、离心分离得到含Co-MoS2负载Pd超薄二维纳米片的产物。
优选的,所述的钯源为硝酸钯(Pd(NO3)2.2H2O)。
在一个优选的技术方案中,各组分的添加比例为,钴修饰的二硫化钼(Co-MoS2)纳米片0.2mmol,二次蒸馏水30mL,Pd(NO3)2.2H2O 0.1mmol。
进一步优选的,所述超声处理1小时。
更为优选的是,反应后采用无水乙醇分散沉降。
进一步,优选的是,分散沉降、离心分离重复4-5次。
同时,还需说明的是,优选的,还包括有真空干燥步骤。
最后,本发明还公开了上述二硫化钼超薄纳米片、钴修饰的二硫化钼超薄纳米片、负载Pd的钴修饰的二硫化钼超薄纳米片在制备燃料电池催化剂中的应用。
本发明通过对合成方法的改进,提供了一种可控的合成方法,并通过该方法制备得到相应的二硫化钼,进一步合成钴修饰的二硫化钼,并且进一步合成负载Pd的钴修饰的二硫化钼纳米片,该纳米片具有优异的HER性能,能够高效催化燃料电池中的HER。并且,值得说明的是,在本发明公开的制备方法中,反应条件温和,处理工艺简单,符合批量化工业化生产的要求。对于可再生能源技术发展具有重要的指导意义。
附图说明
图1为本发明中MoS2的TEM图。
图2为本发明中Co-MoS2纳米片的TEM图。
图3为本发明中负载Pd原子后的TEM图。
图4为本发明中Co-MoS2纳米片的mapping图。
图5为本发明中负载Pd原子后的mapping图。
图6为本发明中MoS2的XPS图。
图7为本发明中Co-MoS2纳米片的XPS图。
图8为本发明中负载Pd原子后的XPS图。
图9为本发明中MoS2、Co-MoS2纳米片、负载Pd原子后的HER性能测试图。
具体实施方式
为了更好的理解本发明,下面我们结合具体的实施例对本发明进行进一步的阐述。
首先要说明的是,除了特别说明,否则以下实施例中所用的试剂和材料均为市售产品。
实施例1
室温下,称量0.1210g(0.5mmol)Na2MoO4.2H2O,0.2284g(3mmol)CS(NH2)2粉末,并将全部原料一起加入到干燥的容量为50mL的反应釜中,再用移液枪分别量取16mL二次蒸馏水,8mL丙酸加入到反应釜中,磁子磁力搅拌10min,得到溶液,将反应釜拧紧转移至烘箱中,逐步升温至180℃,保温4h至反应结束。待反应釜自然冷却至室温,加入在室温下称量好的0.1455g(0.5mmol)Co(NO3).6H2O,磁子磁力搅拌30min,得到溶液,将反应釜拧紧转移至烘箱中,逐步升温至180℃,保温4h至反应结束。待反应釜自然冷却至室温,加入正庚烷和无水乙醇分散,离心分离固体,将固体洗涤后得到黑色产物,在真空干燥箱里真空干燥过夜后,用于下一步合成。
室温下,称量0.0374g上述反应中获得的Co-MoS2纳米片加入到干燥的容量为250mL的三颈圆底烧瓶中,再用移液枪量取30mL二次蒸馏水加入到三颈圆底烧瓶中,超声1h至完全溶解,得到溶液,之后,将在室温下称量好的0.0266g(0.1mmol)Pd(NO3)2.2H2O加入到三颈圆底烧瓶中,将三颈圆底烧瓶转移至油浴中,逐步升温至60℃下保温12h,至反应结束。待三颈圆底烧瓶自然冷却至室温,加入适量无水乙醇分散,离心分离固体。将固体洗涤后得到黑色产物,在真空干燥箱里真空干燥过夜后,用于分析表征。
本实施例所制得的所制得超薄二维纳米片采用透射电子显微镜(TEM)来分析其形貌和微结构,用X射线光电子能谱(XPS)来表征其组份和结构等。结果如图1至图8所示,图1至图3中TEM图显示了合成的MoS2为超薄二维片状结构,在此基础上对于MoS2进行金属元素的掺杂,并没有影响它的结构,Co-MoS2的TEM图如图2所示,Pd的掺杂对于复合纳米材料的形貌也没有很大的影响,图4至图5的元素mapping和图6至图8的XPS数据进一步表明最终得到Pd负载的Co-MoS2超薄的二维片。
实施例2
MoS2、Co-MoS2、Co-MoS2负载Pd的电化学实验在辰华CHI660E型电化学工作站上进行,采用标准的三电极测试体系,相应的工作电极为本实施例所获取的样品修饰的玻碳电极,对电极为石墨棒电极,参比电极为银/氯化银(Ag/AgCl)(0.1989V vs RHE)。本实施例所有的电势均相对于RHE。所有电化学测试均在25℃条件下进行。每次实验时,所有的修饰电极均在N2饱和的0.5mol/L H2SO4溶液中进行测试。电化学实验前,取10μL的催化剂分散溶液(2mg/mL)滴在玻碳电极上,烘干,再滴加5μL 1%的萘酚溶液覆盖在催化剂表面,烘干备用。检测结果如图9所示,MoS2纳米晶在掺杂金属元素Co之后,HER性能所提高,负载Pd之后,HER性能进一步的提高,并表现出了接近Pt/C的优异HER性能。
以上所述是本发明的具体实施方式。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

1.一种二硫化钼纳米片,其特征在于:该纳米片为超薄二维纳米片。
2.根据权利要求1所述的二硫化钼纳米片,其特征在于:所述的二硫化钼纳米片的片层厚度小于5nm。
3.权利要求1或2所述的二硫化钼纳米片的合成方法,其特征在于,该方法为:将钼源、硫源与二次蒸馏水、丙酸溶液混合,搅拌至混合均匀后,逐步升温至180℃,并在这一温度下反应得到含有MoS2的纳米晶;
其中:
优选的,在180℃的条件下反应4小时;
进一步优选的,所述的钼源为钼酸钠(Na2MoO4·2H2O);
优选的,所述的硫源为硫脲(CS(NH2)2);
在一个优选的技术方案中,各组分的添加比例为Na2MoO4·2H2O0.5mmol,CS(NH2)23mmol,二次蒸馏水16mL,丙酸8mL;
进一步优选的,所述搅拌为磁力搅拌,所述搅拌时间为10分钟。
4.一种以权利要求1或2公开的二硫化钼为基础制备的钴修饰的二硫化钼,其特征在于:钴修饰的二硫化钼具有超薄二维片状结构。
5.根据权利要求4所述的钴修饰的二硫化钼纳米片,其特征在于:该钴修饰的二硫化钼纳米片的片层厚度小于5nm。
6.权利要求4或5所述的钴修饰的二硫化钼纳米片的合成方法,其特征在于,该方法为:室温(15-35℃)下将超薄二硫化钼纳米片与钴源混合,搅拌均匀后,逐步升温至180℃,并在这一温度下反应得到含有Co-MoS2纳米片的产物,经分散沉降、离心分离得到Co-MoS2纳米片;
其中,
优选的,所述钴源为硝酸钴(Co(NO3)·6H2O);
在一个优选的技术方案中,硝酸钴(Co(NO3)·6H2O)的添加量为0.5mmol,超薄二硫化钼纳米片的添加量为0.5mmol;
更为优选的是,在180℃条件下反应4小时;
进一步优选的,所述搅拌为磁力搅拌,所述搅拌时间为30分钟;
更为优选的是,反应后先采用无水乙醇和二次蒸馏水体积比1:1混合液分散沉降,然后再用无水乙醇和正庚烷体积比1:1混合液分散沉降;
进一步优选的是,分散沉降、离心分离重复4-5次;
同时,还需说明的是,优选的,还包括有真空干燥步骤:将离心分离得到Co-MoS2纳米片进一步真空干燥。
7.负载有Pd的钴修饰的二硫化钼,其特征在于:该负载有Pd的钴修饰的二硫化钼为超薄二维片状结构。
8.根据权利要求7所述的所述的负载有Pd的钴修饰的二硫化钼纳米片在于:该负载有Pd的钴修饰的二硫化钼纳米片的片层厚度小于5nm。
9.根据权利要求7或8所述的负载有Pd的钴修饰的二硫化钼纳米片的合成方法,其特征在于,该方法为:将钴修饰的二硫化钼(Co-MoS2)纳米片与二次蒸馏水混合,超声处理后,加入钯源,逐步升温至60℃,并在这一温度下反应得到含有Co-MoS2负载Pd纳米片,经分散沉降、离心分离得到含Co-MoS2负载Pd超薄二维纳米片的产物;
其中,
优选的,所述的钯源为硝酸钯(Pd(NO3)2·2H2O);
在一个优选的技术方案中,各组分的添加比例为,钴修饰的二硫化钼(Co-MoS2)纳米片0.2mmol,二次蒸馏水30mL,Pd(NO3)2·2H2O0.1mmol;
进一步优选的,所述超声处理1小时;
更为优选的是,反应后采用无水乙醇分散沉降;
进一步,优选的是,分散沉降、离心分离重复4-5次;
同时,还需说明的是,优选的,还包括有真空干燥步骤。
10.权利要求1或2所述的二硫化钼超薄纳米片、或者权利要求4或5所述的钴修饰的二硫化钼超薄纳米片、或者权利要求7或8所述的负载Pd的钴修饰的二硫化钼超薄纳米片在制备燃料电池催化剂中的应用。
CN201910223132.3A 2019-03-22 2019-03-22 二硫化钼、钴修饰的二硫化钼、负载Pd的纳米片及其合成方法和应用 Active CN109796044B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910223132.3A CN109796044B (zh) 2019-03-22 2019-03-22 二硫化钼、钴修饰的二硫化钼、负载Pd的纳米片及其合成方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910223132.3A CN109796044B (zh) 2019-03-22 2019-03-22 二硫化钼、钴修饰的二硫化钼、负载Pd的纳米片及其合成方法和应用

Publications (2)

Publication Number Publication Date
CN109796044A true CN109796044A (zh) 2019-05-24
CN109796044B CN109796044B (zh) 2021-07-06

Family

ID=66564056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910223132.3A Active CN109796044B (zh) 2019-03-22 2019-03-22 二硫化钼、钴修饰的二硫化钼、负载Pd的纳米片及其合成方法和应用

Country Status (1)

Country Link
CN (1) CN109796044B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146455A (zh) * 2020-01-20 2020-05-12 福州大学 一种花瓣状微球二硫化钼复合碳材料负载Pd金属催化剂及其制备方法
CN112939081A (zh) * 2019-12-11 2021-06-11 中国科学院大连化学物理研究所 一种蛋黄-蛋壳结构的钴掺杂二硫化钼的制备方法
KR20210127527A (ko) 2020-04-14 2021-10-22 고려대학교 세종산학협력단 수전해 촉매용 전이금속 포함 몰리브덴 설파이드 나노 시트 및 이의 제조방법
WO2022082944A1 (zh) * 2020-10-21 2022-04-28 南京晓庄学院 硫化物纳米晶的优化方法和Sn-S-Co纳米晶及其优化产物
WO2023174768A1 (fr) 2022-03-18 2023-09-21 IFP Energies Nouvelles Matériau catalytique à base d'un élément du groupe vib et d'un élément du groupe ivb pour la production d'hydrogène par électrolyse de l'eau

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105664976A (zh) * 2016-01-13 2016-06-15 三峡大学 一种负载型二维层状硫化钼复合材料及其制备方法和应用
CN106381481A (zh) * 2016-09-18 2017-02-08 河南师范大学 一种金属掺杂二硫化钼薄膜的制备方法
CN106611837A (zh) * 2015-10-27 2017-05-03 上海交通大学 一种钴插层硫化钼二次电池材料及其制备方法和应用
CN107459060A (zh) * 2017-08-25 2017-12-12 徐州医科大学 一种二硫化钼量子点由下而上一步水热制备方法
CN107512735A (zh) * 2017-09-05 2017-12-26 安阳工学院 一种二硫化钼纳米片及其制备方法
CN108002374A (zh) * 2017-12-14 2018-05-08 合肥工业大学 一种超薄二维层状材料纳米片及其制备方法
CN108715462A (zh) * 2018-08-31 2018-10-30 清华大学 水/溶剂热合成多种形貌的二硫化钼颗粒的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106611837A (zh) * 2015-10-27 2017-05-03 上海交通大学 一种钴插层硫化钼二次电池材料及其制备方法和应用
CN105664976A (zh) * 2016-01-13 2016-06-15 三峡大学 一种负载型二维层状硫化钼复合材料及其制备方法和应用
CN106381481A (zh) * 2016-09-18 2017-02-08 河南师范大学 一种金属掺杂二硫化钼薄膜的制备方法
CN107459060A (zh) * 2017-08-25 2017-12-12 徐州医科大学 一种二硫化钼量子点由下而上一步水热制备方法
CN107512735A (zh) * 2017-09-05 2017-12-26 安阳工学院 一种二硫化钼纳米片及其制备方法
CN108002374A (zh) * 2017-12-14 2018-05-08 合肥工业大学 一种超薄二维层状材料纳米片及其制备方法
CN108715462A (zh) * 2018-08-31 2018-10-30 清华大学 水/溶剂热合成多种形貌的二硫化钼颗粒的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HYEON HO SHIN ET AL.: "Pd-nanodot decorated MoS2 nanosheets as a highly efficient photocatalyst for the visible light induced suzuki miyaura coupling reaction", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
SHANSHAN TONG ET AL.: "Multi-functional nanohybrid of ultrathin molybdenum disulfide nanosheets decorated with cerium oxide nanoparticles for preferential uptake of lead ions", 《CHEMICAL ENGINEERING JOURNAL》 *
ZHAOYAN LUO ET AL.: "Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution", 《NATURE COMMUNICAITON》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112939081A (zh) * 2019-12-11 2021-06-11 中国科学院大连化学物理研究所 一种蛋黄-蛋壳结构的钴掺杂二硫化钼的制备方法
CN112939081B (zh) * 2019-12-11 2023-03-31 中国科学院大连化学物理研究所 一种蛋黄-蛋壳结构的钴掺杂二硫化钼的制备方法
CN111146455A (zh) * 2020-01-20 2020-05-12 福州大学 一种花瓣状微球二硫化钼复合碳材料负载Pd金属催化剂及其制备方法
CN111146455B (zh) * 2020-01-20 2022-05-13 福州大学 一种花瓣状微球二硫化钼复合碳材料负载Pd金属催化剂及其制备方法
KR20210127527A (ko) 2020-04-14 2021-10-22 고려대학교 세종산학협력단 수전해 촉매용 전이금속 포함 몰리브덴 설파이드 나노 시트 및 이의 제조방법
WO2022082944A1 (zh) * 2020-10-21 2022-04-28 南京晓庄学院 硫化物纳米晶的优化方法和Sn-S-Co纳米晶及其优化产物
WO2023174768A1 (fr) 2022-03-18 2023-09-21 IFP Energies Nouvelles Matériau catalytique à base d'un élément du groupe vib et d'un élément du groupe ivb pour la production d'hydrogène par électrolyse de l'eau
FR3133544A1 (fr) 2022-03-18 2023-09-22 IFP Energies Nouvelles Matériau catalytique à base d’un élément du groupe VIB et d’un élément du groupe IVB pour la production d’hydrogène par électrolyse de l’eau

Also Published As

Publication number Publication date
CN109796044B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN109796044A (zh) 二硫化钼、钴修饰的二硫化钼、负载Pd的纳米片及其合成方法和应用
CN111384409B (zh) 一种氮掺杂的石墨炔铆定的过渡金属单原子催化剂及其制备方法和应用
CN106881138B (zh) 一种氮磷共掺杂多孔生物质碳催化剂的制备方法
Wang et al. Electrochemical capacitance performance of hybrid supercapacitors based on Ni (OH) 2∕ carbon nanotube composites and activated carbon
CN109065897B (zh) 磷掺杂孔状碳包覆四氧化三钴氧还原催化剂及其制备方法和应用
CN103007945B (zh) 负载型铜镍合金纳米颗粒催化剂及其制法和在甲烷二氧化碳重整制合成气中的应用
CN107180972B (zh) 一种调节碳-氮基单原子铁催化剂中的氮含量的方法
CN106960948A (zh) 一种MoSx/碳黑纳米复合材料、其制备方法及其应用
CN110721713A (zh) 一种Mo2C催化材料及其制备方法与应用
Nie et al. Investigation of the AuPdPt-WC/C electrocatalyst for hydrogen evolution reaction
CN110335757A (zh) 一种铜锡硫Cu2SnS3/碳量子点复合材料及其制备方法和在超级电容器中的应用
Yao et al. Pt/C catalysts with narrow size distribution prepared by colloidal-precipitation method for methanol electrooxidation
CN108889317A (zh) Co0.1Ni0.75Se/rGO复合材料的制备方法及其应用
CN111584891A (zh) 一种原子级铁活性位点催化剂及其制备方法与应用
Wang et al. Hierarchically Grown Ni–Mo–S Modified 2D CeO2 for High-Efficiency Photocatalytic Hydrogen Evolution
Wei et al. Mn-doped Ni (OH) 2 nanostructures as an efficient electrocatalyst for methanol oxidation in basic solution
Xu et al. Recent advances in active sites identification and new M− N− C catalysts development towards ORR
Liu et al. Construction S-Scheme of 2D Nanosheets/1D Nanorod Heterojunction with Compact Interface Contact by Electrostatic Self-Assembly for Efficient Photocatalytic Hydrogen Evolution
CN108842165B (zh) 溶剂热法制备硫掺杂的NiFe(CN)5NO电解水析氧催化剂及其应用
CN108134103B (zh) 一种石墨烯负载二硫化钴氧还原催化剂的制备方法及其应用
CN114899435B (zh) 制备金属单原子锚定二元异质结构催化剂的方法
CN107195469B (zh) 一种石墨烯包裹Ag/AgVO3纳米带复合物的制备方法
Qi et al. Zinc-Deficiency Induced gC 3 N 4 Nanosheets: Photocatalytic Nitrogen Fixation Study and Carrier Dynamics
CN108963220A (zh) 一种天然植物质油改性mof结构的多元氧化物的制备与应用
CN111450852B (zh) 镍钴双金属氢氧化物/硫铟铜/氧化钨纳米复合材料的合成方法及应用于水解制氢

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant