WO2022082646A1 - 发光器件、发光基板和发光装置 - Google Patents

发光器件、发光基板和发光装置 Download PDF

Info

Publication number
WO2022082646A1
WO2022082646A1 PCT/CN2020/122959 CN2020122959W WO2022082646A1 WO 2022082646 A1 WO2022082646 A1 WO 2022082646A1 CN 2020122959 W CN2020122959 W CN 2020122959W WO 2022082646 A1 WO2022082646 A1 WO 2022082646A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
formula
substituent
emitting device
energy level
Prior art date
Application number
PCT/CN2020/122959
Other languages
English (en)
French (fr)
Inventor
梁丙炎
高荣荣
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2020/122959 priority Critical patent/WO2022082646A1/zh
Priority to US17/615,498 priority patent/US20220315540A1/en
Priority to CN202080002429.8A priority patent/CN114981994A/zh
Publication of WO2022082646A1 publication Critical patent/WO2022082646A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/10Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D241/12Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers

Definitions

  • the present disclosure relates to the technical field of lighting and display, and in particular, to a light-emitting device, a light-emitting substrate and a light-emitting device.
  • OLED Organic Light Emitting Diode
  • a light-emitting device comprising: a first electrode and a second electrode arranged in layers; a light-emitting layer located between the first electrode and the second electrode; and a light-emitting layer located between the first electrode and the light-emitting layer An electron transport layer between layers; a hole blocking layer between the light-emitting layer and the electron transport layer; wherein, the material of the hole blocking layer includes: the following formula (1)a and formula (1) One or more of the compounds containing coronene or cyclododecane shown in b:
  • m is an integer from 0 to 2
  • n is an integer from 0 to 5
  • i is an integer from 0 to 3
  • at least one of m, n and i is not 0.
  • at least one of m and i is not 0.
  • Z 1 to Z 11 are the same or different, and are independently selected from any one of H and substituent R, respectively.
  • Substituent R, Substituent R 1 and Substituent R 2 are the same or different, each independently selected from deuterium, halogen, cyano, nitro, amino, C 1 -C 40 alkyl, C 2 -C 40 alkene alkynyl, C 2 -C 40 alkynyl, C 3 -C 40 cycloalkyl, C 3 -C 40 heterocycloalkyl, C 6 -C 60 aryl, C 5 -C 60 heteroaryl , C 1 -C 40 alkoxy, C 6 -C 60 aryloxy, C 3 -C 40 alkylsilyl, C 6 -C 60 arylsilyl, C 1 -C 40 alkylboron group, C 6 -C 60 aryl boron group, C 6 -C 60 aryl phosphino group, C 6 -C 60 mono- or diaryl phosphino group and C 6 -C 60 aryl phosphin
  • R 3 is selected from any one of substituted or unsubstituted heterocyclic groups and fused heterocyclic groups.
  • i is not 0, and R 3 is selected from any of the following formulae (3)a, (3)b, (3)c, (3)d, and (3)e.
  • X 1 to X 3 are respectively C(Y) or N, and at least two of them are N; wherein, one of Y and Y 1 to Y 3 is the same as formula (1)a or formula (1)
  • the dotted lines in b are combined, and the rest are the same or different, and are independently selected from any one of hydrogen and substituent R.
  • one of Y 4 to Y 11 is combined with the dotted line in formula (1)a or (1)b, and the rest are the same or different, and are independently selected from hydrogen and substituent R. either.
  • one of Y 12 to Y 16 is combined with the dotted line in formula (1)a or (1)b, and the rest are the same or different, and are independently selected from hydrogen and substituent R. either.
  • one of Y 17 to Y 20 is combined with the dotted line in formula (1)a or (1)b, and the rest are the same or different, and are independently selected from hydrogen and substituent R. either.
  • one of Y 21 to Y 26 is combined with the dotted line in formula (1)a or (1)b, and the rest are the same or different, and are independently selected from hydrogen and substituent R. either.
  • R 4 and R 5 are the same or different, and are independently selected from deuterium, halogen, cyano, nitro, C 1 -C 40 alkyl, C 2 -C 40 alkenyl, C 2 -C 40 alkynyl, C 3 -C 40 cycloalkyl, C 3 -C 40 heterocycloalkyl, C 6 -C 60 aryl, C 5 -C 60 heteroaryl, C 1 ⁇ C 40 alkoxy, C 6 ⁇ C 60 aryloxy, C 3 ⁇ C 40 alkylsilyl, C 6 ⁇ C 60 arylsilyl, C 1 ⁇ C 40 alkyl Boron group, C 6 -C 60 aryl boron group, C 6 -C 60 aryl phosphino group, C 6 -C 60 mono- or diaryl phosphino group and C 6 -C 60 arylamine group Any of; or, combined with adjacent groups to form a condensed ring.
  • k is an integer from 0 to 2
  • Ar is selected from any one of C 1 -C 10 alkyl, C 3 -C 10 cycloalkyl and C 6 -C 30 aryl
  • L is selected from mono Any of bond, substituted or unsubstituted divalent aryl, substituted or unsubstituted divalent heteroaryl.
  • each substituent R 2 is the same or different.
  • the material of the hole blocking layer is selected from one or more of the structures shown in the following formula:
  • the HOMO energy level of the coronene or cyclododecane-containing compound is less than -5.6 eV.
  • the HOMO energy level and the LUMO energy level of the compound containing coronene or cyclododecane satisfy:
  • the lowest triplet energy of the coronene or cyclododecane-containing compound is greater than 3.1 eV.
  • the difference between the lowest singlet energy and the lowest triplet energy of the coronene or cyclododecane-containing compound is greater than 0.51 eV.
  • the coronene- or cyclododecane-containing compound has a glass transition temperature of 136°C-153°C.
  • the energy level difference between the HOMO energy level of the light emitting layer and the HOMO energy level of the hole blocking layer is greater than 0.2 eV.
  • the absolute value of the energy level difference between the LUMO energy level of the light-emitting layer and the LUMO energy level of the hole blocking layer is less than 0.3 eV.
  • the absolute value of the energy level difference between the LUMO energy level of the hole blocking layer and the LUMO energy level of the electron transport layer is less than 0.3 eV.
  • the absolute value of the energy level difference between the HOMO energy level of the hole blocking layer and the HOMO energy level of the electron transport layer is greater than 0.2 eV.
  • the material of the electron transport layer includes one or more of the coronene- or cyclododecane-containing compounds represented by formula (1)a and (1)b.
  • the difference between the energy of the lowest triplet excited state of the hole blocking layer and the energy of the lowest triplet excited state of the light emitting layer is greater than 0.2 eV, and the energy of the lowest triplet excited state of the hole blocking layer is greater than 0.2 eV.
  • the difference between the energy and the energy of the lowest triplet excited state of the light-emitting layer is greater than 0.2 eV.
  • the material of the light-emitting layer includes a host material and a guest material
  • the host material is selected from compounds comprising anthracene, benzanthracene, triphenylene and/or pyrene and derivatives thereof, as well as these compounds and Any of atropisomers of derivatives thereof
  • the guest material is selected from compounds of the arylamine type.
  • a light-emitting substrate including the light-emitting device as described above.
  • a light-emitting device including the above-mentioned light-emitting substrate.
  • FIG. 1 is a cross-sectional structural diagram of a light emitting device according to some embodiments.
  • FIG. 2 is a cross-sectional structural diagram of a light emitting device according to further embodiments.
  • FIG. 3 is a cross-sectional structural view of a light emitting substrate according to some embodiments.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C”, and both include the following combinations of A, B, and C: A only, B only, C only, A and B , A and C, B and C, and A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes of the drawings due to, for example, manufacturing techniques and/or tolerances, are contemplated.
  • example embodiments should not be construed as limited to the shapes of the regions shown herein, but to include deviations in shapes due, for example, to manufacturing. For example, an etched area shown as a rectangle will typically have curved features.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • the light emitting device 13 includes a first electrode (cathode) 131 and a second electrode (anode) 132 arranged in layers, located between the first electrode 131 and the second electrode 131 .
  • the material of the hole blocking layer 135 includes: one or more of the compounds containing coronene or cyclododecane represented by the following formulas (1)a and (1)b:
  • m is an integer from 0 to 2
  • n is an integer from 0 to 5
  • i is an integer from 0 to 3
  • at least one of m, n and i is not 0.
  • at least one of m and i is not 0.
  • m is an integer from 0 to 2, indicating that there may be 0 to 2 substituents R 1 on the benzene ring, and when the number of substituents R 1 is 2, the two substituents R 1 are respectively located on different carbon atoms of the benzene ring .
  • the benzene ring is not substituted by the substituent R 1 , at this time, in the formula (1)a, except for the carbon bonded to the cyclododecane, the substituent R 2 and the substituent R 3 In addition, the remaining carbons on the benzene ring are all bonded with hydrogen; in formula (1)b, except for the carbon bonded with coronene and the substituent R 3 , the remaining carbons on the benzene ring are bonded with hydrogen.
  • i is an integer from 0 to 3, indicating that there may be 0 to 3 substituents R 3 on the benzene ring, and when there are multiple (more than one) substituents R 3 , the multiple substituents R 3 are respectively located in on different carbon atoms of the benzene ring.
  • n is an integer from 0 to 5, indicating that cyclododecane may have 0 to 5 substituents R 2 , and when there are multiple (more than one) substituent R 2 , the number of substituents R 2 is more than one.
  • the substituents R 2 are respectively located on different carbon atoms of cyclododecane.
  • the m substituents R 1 and the i substituents R 3 are respectively associated with the corresponding number of Except for carbon bonding, the remaining carbons are all bonded to hydrogen.
  • Z 1 to Z 11 are the same or different, and are independently selected from any one of H and substituent R, respectively.
  • Substituent R, substituent R 1 and substituent R 2 are the same or different, and are independently selected from deuterium, halogen, cyano, nitro, amino, C 1 -C 40 alkyl, C 2 -C 40 alkene alkynyl, C 2 -C 40 alkynyl, C 3 -C 40 cycloalkyl, C 3 -C 40 heterocycloalkyl, C 6 -C 60 aryl, C 5 -C 60 heteroaryl , C 1 -C 40 alkoxy, C 6 -C 60 aryloxy, C 3 -C 40 alkylsilyl, C 6 -C 60 arylsilyl, C 1 -C 40 alkylboron group, C 6 -C 60 aryl boron group, C 6 -C 60 aryl phosphino group, C 6 -C 60 mono
  • the substituent R, the substituent R 1 and the substituent R 2 are respectively combined with the adjacent groups to form a condensed ring, which means that the substituent R, the substituent R 1 and the substituent R 2 can be connected with the adjacent groups. into a ring.
  • Z 9 in Z 1 to Z 11 as O Z 9 can form a condensed ring with an adjacent group, or O can form a condensed ring with an adjacent carbon to obtain the following formula (1)b-1 structure shown.
  • R 3 is selected from any one of substituted or unsubstituted heterocyclic groups and fused heterocyclic groups.
  • the heterocyclic group can be a five-membered heterocyclic group or a six-membered heterocyclic ring
  • the five-membered heterocyclic group can be a pyrrolyl group, a thiazolyl group, an imidazolyl group, a pyrazolyl group, a furanyl group, etc.
  • a six-membered heterocyclic group can be a For pyridyl, pyrimidinyl, pyrazinyl, triazinyl, pyranyl and the like.
  • the fused heterocyclic group can be indolyl, purinyl, quinolinyl, benzothiazolyl, carbazolyl, pteridyl, acridine and the like. These heterocyclic groups have good electron-withdrawing properties, and can improve the light-emitting performance of light-emitting devices when they are used as hole-blocking materials.
  • i is not 0, and R 3 is selected from any of the following formulae (3)a, (3)b, (3)c, (3)d, and (3)e.
  • X 1 to X 3 are respectively C(Y) or N, and at least two of them are N; wherein, one of Y and Y 1 to Y 3 is the same as formula (1)a or formula (1)
  • the dotted lines in b are combined, and the rest are the same or different, and are independently selected from any one of hydrogen and substituent R; in formula (3)b, one of Y 4 to Y 11 is the same as the formula ( 1)
  • the dotted line combination in a or (1)b, the rest are the same or different, and are independently selected from any one of hydrogen and substituent R; in formula (3)c, one of Y 12 to Y 16 One is combined with the dotted line in formula (1)a or (1)b, and the rest are the same or different, and are independently selected from any one of hydrogen and substituent R; in formula (3)d, Y 17 ⁇ Y One of 20 is combined with the dotted line in formula (1)a or (1)b, and the rest are the same or different, and are independently selected from any one of hydrogen and substituent R; in formula (3)e, One
  • formula (3)a X 1 to X 3 are respectively C(Y) or N, and at least two of them are N, it can be known that formula (3) a can be triazine (X 1 to X ) 3 are both N) groups or pyridazine (two of X 1 to X 3 are N) groups.
  • Formula (3)d is a pyrazinyl group.
  • Both formula (3)c and formula (3)e are fused heteroaryl groups. All are groups with strong electron-withdrawing ability, so that the hole blocking layer 135 has good charge transport performance.
  • formula (3)c as an example, according to one of Y 12 to Y 16 combined with the dotted line in formula (1) a or formula (1) b, the rest are the same or different, and are independently selected from hydrogen and substituent R
  • the formula (1)a can be represented by the following formula (1)a-1
  • the formula (1)b can be represented by the following formula (1)b-2.
  • one of Y 12 and Y 13 is selected from combining with adjacent groups to form condensation
  • the substituent R can be a substituent that can condense with an adjacent group to form a ring
  • the substituent R can be valeric acid (CH 3 CH 2 CH 2 CH 2 COOH (C 5 ) . H 10 O 2 ))
  • the adjacent group can be CY 13
  • Y 13 can be H
  • the condensed ring of C at the connecting position of substituent R and Y 13 can be expressed as the following formula (1)a-2 and formula (1)
  • the light-emitting device provided by the embodiments of the present disclosure, by introducing larger groups such as coronene and cyclododecane into the bipolar compound having electron-withdrawing groups and electron-donating groups, hole blocking can be achieved.
  • the material has a high glass transition temperature, so that the hole blocking material has good film-forming properties and excellent thermal stability.
  • the substituent R into the basic molecular framework, the HOMO (Highest Occupied Molecular Orbital, the highest occupied molecular orbital) and LUMO (Lowest Unoccupied Molecular Orbital, the lowest unoccupied molecular orbital) energy levels of the hole blocking material can be adjusted.
  • the hole blocking material has good electron transport performance and hole blocking performance.
  • the substituent R is an aryl group or a heteroaryl group, the molecular weight of the molecule can also be increased, thereby further increasing the glass transition temperature of the hole blocking material.
  • the hole blocking material provided by the embodiments of the present disclosure is used as the hole blocking layer 135 in an OLED (Organic Light-Emitting Diode, organic light emitting diode) device
  • the driving voltage of the OLED device can be reduced, greatly reducing the driving voltage of the OLED device.
  • R 4 and R 5 are the same or different, and are independently selected from deuterium, halogen, cyano, nitro, C 1 -C 40 alkyl, C 2 -C 40 alkenyl, C 2 -C 40 alkynyl, C 3 -C 40 cycloalkyl, C 3 -C 40 heterocycloalkyl, C 6 -C 60 aryl, C 5 -C 60 heteroaryl, C 1 ⁇ C 40 alkoxy, C 6 ⁇ C 60 aryloxy, C 3 ⁇ C 40 alkylsilyl, C 6 ⁇ C 60 arylsilyl, C 1 ⁇ C 40 alkyl Boron group, C 6 -C 60 aryl boron group, C 6 -C 60 aryl phosphino group, C 6 -C 60 mono- or diaryl phosphino group and C 6 -C 60 arylamine group Any of them, or, combined with adjacent groups to form a condensed ring; wherein
  • formula (1)a can be expressed as the following formula (1)a -3 shows the structure.
  • both m and n are not 0.
  • the substituent R 2 and the substituent R 1 may be the same or different.
  • the substituent R 1 is selected from the structure represented by the formula (2)
  • the substituent R 2 is selected from the structure represented by the formula (2) or is different from the structure represented by the formula (2), such as benzene, alkyl, etc. .
  • formula (1)a-3 can be expressed as follows:
  • k is an integer from 0 to 2, which means that on the benzene ring, the number of substituents Ar can be 0 to 2.
  • k is 0, there is no substituent Ar on the benzene ring, and the carbon atoms on the benzene ring Both are hydrogen bonded.
  • k is 2
  • n can be greater than or equal to 1, it can be known that when n is greater than 1, each substituent R 2 can be the same or different. At this time, depending on whether the substituent R 2 and the substituent R 1 are the same, there are many different cases.
  • the substituent R 2 is different from the substituent R 1.
  • the substituent R 1 is selected from
  • each substituent R 2 is different from the substituent R 1
  • each substituent R 2 is the same or different, and is independently selected from the group represented by the formula (2). structure, such as benzene, alkyl, etc.
  • a part of the plurality of substituent groups R 2 is the same as the substituent group R 1 , and the remaining part is different from the substituent group R 1 .
  • the substituent R 1 is selected from the structure shown in formula (2) as an example, among the two substituent groups R 2 , one of the substituent R 2 is the same as the substituent R 1 , and the other substituent R 2 is selected from structures other than those represented by formula (2), such as benzene, alkyl and the like.
  • each substituent R 2 is the same as the substituent R 1 , and n is still 2, the substituent R 1 is selected from the structure shown in formula (2) as an example, and the two substituent R 2 are selected from The structure shown in formula (2).
  • the material of the hole blocking layer 135 is selected from one or more of the structures shown in the following formula:
  • the HOMO level of the coronene or cyclododecane-containing compound is less than -5.6 eV.
  • the compound When the compound is used as the hole blocking layer 135 in an OLED device, it has good hole blocking ability and can solve the ineffective current flow (no light emission) caused by the unbalanced hole and electron transport in the related art, which is not conducive to The problem of improving luminous efficiency.
  • the HOMO energy level and the LUMO energy level of the coronene- or cyclododecane-containing compound satisfy:
  • the compound has a large forbidden band width, which can confine electrons and holes in the light-emitting layer, which facilitates the recombination of holes and electrons in the light-emitting layer, thereby increasing the light-emitting area.
  • the lowest singlet energy of the coronene or cyclododecane-containing compound is greater than 3.1 eV, and the difference between the lowest triplet energy and the lowest triplet energy of the coronene or cyclododecane-containing compound is greater than 0.51 eV.
  • the compound has good exciton blocking ability, can confine singlet excitons and triplet excitons in the light-emitting layer, and improve the light-emitting efficiency.
  • the coronene or cyclododecane-containing compound has a glass transition temperature of 136°C to 153°C.
  • Compounds containing coronene or cyclododecane have higher glass transition temperatures, which can improve film-forming properties and thermal stability.
  • the energy level difference between the HOMO energy level of the light emitting layer 133 and the HOMO energy level of the hole blocking layer 135 is greater than 0.2 eV.
  • a light-emitting material whose energy level difference between the HOMO energy level and the HOMO energy level of the compound containing coronene or cyclododecane can be selected is greater than 0.2 eV.
  • the hole blocking layer 135 has good hole blocking ability, which can confine holes in the light emitting layer 133 and prevent the holes from combining with electrons in the electron transport layer 134, which is not conducive to the problem of improving the luminous efficiency.
  • the energy level difference between the LUMO energy level of the light emitting layer 133 and the LUMO energy level of the hole blocking layer 135 is less than 0.3 eV.
  • a light-emitting material whose energy level difference between the LUMO energy level and the LUMO energy level of the compound containing coronene or cyclododecane is less than 0.3 eV can be selected.
  • the hole blocking The layer 135 has good electron transport properties, which is favorable for the recombination of holes and electrons in the light-emitting layer.
  • the energy level difference between the LUMO energy level of the hole blocking layer 135 and the LUMO energy level of the electron transport layer 134 is less than 0.3 eV.
  • an electron transport material whose absolute value of the energy level difference between the LUMO energy level and the LUMO energy level of the compound containing coronene or cyclododecane is less than 0.3 eV can be selected.
  • the empty The hole blocking layer 135 has good electron transport performance, which is beneficial to improve the electron transport rate, and can also solve the problem of unbalanced hole and electron transport in the related art.
  • the absolute value of the energy level difference between the HOMO energy level of the hole blocking layer 135 and the HOMO energy level of the electron transport layer 134 is greater than 0.2 eV.
  • an electron transport material whose absolute value of the energy level difference between the HOMO level and the HOMO level of the compound containing coronene or cyclododecane can be selected is greater than 0.2 eV.
  • the layer 134 also has good hole-blocking properties, which can effectively confine holes at the interface between the hole-blocking layer 135 and the light-emitting layer 133 to prevent the holes from combining with electrons in the electron transport layer 134, which is detrimental to the luminous efficiency. the issue of improvement.
  • the material of the electron transport layer 134 includes one or more of the compounds represented by formula (1)a and (1)b containing coronene or cyclododecane.
  • the material of the electron transport layer 134 and the material of the hole blocking layer 135 may be the same or different.
  • the difference between the energy of the lowest singlet excited state of the hole blocking layer 135 and the energy of the lowest singlet excited state of the light emitting layer 133 is greater than 0.2 eV, and the energy of the lowest triplet excited state of the hole blocking layer 135 The energy difference from the lowest triplet excited state of the light-emitting layer 133 is greater than 0.2 eV.
  • the hole blocking layer 135 has good exciton blocking ability, and can confine the excitons in the light emitting layer 133 , thereby helping to improve the light emitting efficiency.
  • the material of the light-emitting layer 133 includes a host material and a guest material
  • the host material is selected from compounds of anthracene, benzanthracene, triphenylene and/or pyrene and derivatives thereof, and derivatives of these compounds and derivatives thereof.
  • the guest material is selected from the compounds of the arylamine type, preferably aromatic anthraceneamines, aromatic anthracene diamines, aromatic pyrene amines, aromatic pyrene diamines, aromatic chicory amines or aromatic chicory diamine. Not limited to the examples, including any known subject and object materials.
  • the material of the electron transport layer 134 can be selected from benzimidazole derivatives, triazine derivatives, pyrimidine derivatives, pyridine derivatives, pyrazine derivatives, quinoxaline derivatives, quinoline derivatives , any of oxadiazole derivatives, aromatic ketones, lactams, boranes, diazaphospholan derivatives and phosphine oxide derivatives.
  • the light-emitting device 13 further includes an electron injection layer (Hole Inject Layer, HIL) 137 disposed between the first electrode 131 and the electron transport layer 134, and an electron injection layer (HIL) 137 disposed between the second electrode A hole injection layer (HIL) 138 between 132 and the hole transport layer 136.
  • HIL electron injection layer
  • HIL hole injection layer
  • the material of the electron injection layer 137 can be selected from nitrogen-containing five-membered ring derivatives and fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, azole, diazole, triazole, imidazole, perylenetetracarboxylic acid, Fluorenylenemethane, anthraquinodimethane, anthrone, etc. and their derivatives, but not limited thereto.
  • the material of the hole injection layer 138 may be selected from aromatic tertiary amine derivatives and phthalocyanine derivatives.
  • the light-emitting device 13 further includes an electron blocking layer (EBL) 139 disposed between the light-emitting layer 133 and the hole transport layer 136 .
  • the material of the electron blocking layer 139 can be selected from any one of aromatic amine derivatives, benzidine-type triphenylamine, styrylamine-type triphenylamine, and diamine-type triphenylamine.
  • the light-emitting substrate 1 may include a substrate 11 , a pixel defining layer 12 disposed on the substrate 11 , and a plurality of light-emitting devices 13 .
  • the pixel defining layer 12 has a plurality of openings Q, and the plurality of light emitting devices 13 can be arranged in a one-to-one correspondence with the plurality of openings Q.
  • the plurality of light emitting devices 13 here may be all or part of the light emitting devices 13 included in the light emitting substrate 1 ; the plurality of openings Q may be all or part of the openings on the pixel defining layer 12 .
  • At least one light-emitting device 13 among the plurality of light-emitting devices 13 is a light-emitting device containing a compound of coronene or cyclododecane.
  • the light-emitting substrate 1 may be a lighting substrate or a display substrate.
  • each light-emitting device 13 is a light-emitting device containing a compound of coronene or cyclododecane.
  • the electron transport layer 134 and the hole transport layer 136 are covered by the whole layer, and the light emitting layer 133 and the hole blocking layer 135 can be respectively arranged on In different openings Q, at this time, the light emitting layer 133 and the hole blocking layer 135 can be formed by vapor deposition using a fine mask as a mask.
  • the light-emitting substrate 1 provided by the embodiment of the present disclosure has the same beneficial technical effects as the light-emitting device provided by the embodiment of the present disclosure, and details are not described herein again.
  • Some embodiments of the present disclosure provide a light-emitting device including the above-mentioned light-emitting substrate.
  • a light-emitting device including the above-mentioned light-emitting substrate.
  • other components may also be included.
  • it may include a circuit for providing electrical signals to the light-emitting substrate to drive the light-emitting substrate to emit light.
  • the circuit may be called a control circuit, and may include a circuit board and/or IC electrically connected to the light-emitting substrate. (Integrate Circuit, integrated circuit).
  • the light-emitting device may be a lighting device, and in this case, the light-emitting substrate may be a lighting substrate, for example, may be used as a light source to realize a lighting function.
  • the light-emitting substrate may be a backlight module in a liquid crystal display device, a lamp used for internal or external lighting, or various signal lamps, and the like.
  • the light-emitting device may be a display device, and in this case, the light-emitting substrate is a display substrate for realizing the function of displaying an image (ie, a picture).
  • the light emitting device may comprise a display or a product incorporating a display.
  • the display may be a flat panel display (Flat Panel Display, FPD), a microdisplay, and the like.
  • FPD Flat Panel Display
  • the display can be a transparent display or an opaque display according to whether the user can see the scene behind the display.
  • the display can be a flexible display or a normal display (which can be called a rigid display).
  • products incorporating displays may include: computer monitors, televisions, billboards, laser printers with display capabilities, telephones, cell phones, Personal Digital Assistants (PDAs), laptop computers, digital cameras, camcorders Recorders, viewfinders, vehicles, large walls, theater screens or stadium signage, etc.
  • PDAs Personal Digital Assistants
  • laptop computers digital cameras
  • camcorders Recorders viewfinders
  • vehicles large walls, theater screens or stadium signage, etc.
  • the light-emitting device provided by the embodiment of the present disclosure has the same beneficial technical effects as the light-emitting device provided by the embodiment of the present disclosure, and details are not described herein again.
  • Step 1) 1-1, 1-2, K 2 CO 3 and Pd(PPh 3 ) 4 in a mixed solution of DME (Dimethyl ether, dimethyl ether) and water were refluxed for about 12 hours under nitrogen protection. After cooling to room temperature (about 22°C), the reaction mixture was filtered through a plug of silica gel. The organic layer was separated, washed with water, then dried over Na2SO4 . After evaporation of the solvent, the crude product was purified by column chromatography on silica gel using a mixed solvent of heptane and dichloromethane (volume ratio of heptane to dichloromethane from 9/1 to 7/3) as eluent Elution gave 1-3.
  • DME Dimethyl ether, dimethyl ether
  • Step 2 Add 1-4 into the three-necked flask, pass nitrogen, then add a certain amount of tetrahydrofuran, cool to -80°C, slowly drop n-butyllithium ethane solution and stir. A cuprous chloride solution, and a certain amount of palladium acetate, trimethoxytriphenylphosphine (L 2 ) and 1-3 dissolved in tetrahydrofuran were then added and stirred at room temperature, followed by addition of water and chloroform for extraction. The separated organic layer was dried and column chromatographed, and recrystallized to obtain products 1-5.
  • Step 3 Add 1-5 into the three-necked flask, pass nitrogen gas, then add a certain amount of tetrahydrofuran, cool to -80°C, slowly drop n-butyllithium ethane solution and stir. A cuprous chloride solution was then added, along with certain amounts of palladium acetate, trimethoxytriphenylphosphine (L 2 ) and 1-6 dissolved in tetrahydrofuran, and stirred at room temperature, followed by addition of water and chloroform for extraction. The separated organic layer was subjected to drying and column chromatography, and recrystallized to obtain Compound 1.
  • the NMR data of compound 1 are: 13 C-NMR: 174(s), 173.5(d), 152.3(d), 148.8(s), 144.6(s), 142.1(s), 139.1(d), 135.2(m ), 134.5(s), 131.3(d), 129.2(m), 127.5(m), 125.9(m), 122.4(d), 119.8(d), 45.9(s), 41.7(s), 33.6(m ), 30.8(m), 29.5(d), 28.5(d), 26.3(d).
  • Step 1) and step 2) are basically the same as the synthetic compound 1-5 in step 1) and step 2) in Synthesis Example 1, and the relevant chemical equations are shown in Step 1) and Step 2) in Synthesis Example, the difference is,
  • 35% potassium hydride was added to anhydrous tetrahydrofuran (THF) followed by fluorenone.
  • methyl iodide was added and the reaction was allowed to proceed at reflux temperature for 72 hours.
  • water was added, followed by dilute hydrochloric acid.
  • the resulting mixture was extracted with chloroform, and the resulting extract was dried over anhydrous magnesium sulfate.
  • the solvent was removed under reduced pressure and the solid material formed was isolated by filtration and washed with methanol.
  • the material obtained above was suspended in purified water, and ferric chloride monohydrate was added to the obtained suspension.
  • An aqueous solution obtained from chlorine and purified water (1:100) was added dropwise at room temperature over 1 hour, and the reaction was allowed to proceed at room temperature for 12 hours.
  • the formed crystals were separated by filtration, washed with water and methanol, and dissolved in chloroform, the resulting solution was washed with an aqueous sodium hydrogencarbonate solution and water, and dried over anhydrous magnesium sulfate, and the solvent was removed by distillation. Distilled. After adding hexane to the resulting mixture, 2-2 was formed by filtration.
  • Benzene was added to the three-necked flask, and nitrogen was introduced into the flask, followed by adding a certain amount of tetrahydrofuran, cooling to -80° C., slowly dropping n-butyllithium ethane solution and stirring.
  • a cuprous chloride solution, and a certain amount of palladium acetate, trimethoxytriphenylphosphine (L 2 ) and 2-2 dissolved in tetrahydrofuran were then added and stirred at room temperature, followed by addition of water and chloroform for extraction.
  • the separated organic layer was dried and column chromatographed, and recrystallized to obtain product 2-3.
  • the NMR data of compound 2 are: 13 C-NMR: 171.5(m), 154(s), 152.7(s), 150.9(s), 142.6(m), 137.4(m), 136.2(s), 134.9(d ), 132.8(s), 131(d), 130.5(m), 129.9(m), 128.2(s), 127.6(m), 126.4(s), 125.5(d), 123.1(s), 121.1(d) ), 50.1(s), 44.5(s), 38.2(d), 28.8(m), 27.8(m), 27(d), 25.9(d).
  • Step 1) is basically the same as step 1 in Synthesis Example 1, and will not be repeated here.
  • Step 2) 3-1 was added to the three-necked flask, and nitrogen was introduced into it, followed by adding a certain amount of tetrahydrofuran, cooling to -80°C, slowly dropping n-butyllithium ethane solution and stirring.
  • the cuprous chloride solution, and a certain amount of palladium acetate, trimethoxytriphenylphosphine (L 2 ) and 1-3 obtained in step 1) in tetrahydrofuran were then added and stirred at room temperature, followed by the addition of Extraction with water and chloroform.
  • the separated organic layer was dried and column chromatographed, and recrystallized to obtain product 3-2.
  • Step 3) 3-2 was added to the three-necked flask, and nitrogen was introduced into it, then a certain amount of tetrahydrofuran was added, cooled to -80° C., and the n-butyllithium ethane solution was slowly added dropwise and stirred.
  • the cuprous chloride solution was then added, along with a certain amount of palladium acetate, trimethoxytriphenylphosphine (L 2 ) and 3-3 (CAS: 174753-91-4) in tetrahydrofuran, and stirring was carried out at room temperature , followed by addition of water and chloroform for extraction.
  • the separated organic layer was dried and column chromatographed, and recrystallized to obtain Compound 3.
  • the NMR data of compound 3 are: 13 C-NMR: 172.2(d), 170.7(s), 147.8(d), 141(d), 139.9(d), 137.0(m), 134.7(d), 131.1(d) ), 130.5(m), 128.9(d), 127.5(m), 126.7(m), 123.2(d), 124.7(s), 121.6(s), 45.8(s), 39.3(s), 37.1(d) , 30.9(d), 24.7(m), 21.8(d).
  • Step 1) Mix 4-1, benzene, HBr and CH 3 COOH in an aqueous solution and reflux under nitrogen protection for about 12 hours. After cooling to room temperature (about 22°C), the reaction mixture was filtered through a plug of silica gel. The organic layer was separated, washed with water, then dried over Na2SO4 . After evaporation of the solvent, the crude product was purified by column chromatography on silica gel using a mixed solvent of heptane and dichloromethane (volume ratio of heptane to dichloromethane from 9/1 to 7/3) as eluent Elution gave 4-2.
  • Step 2) is basically the same as step 1) in Synthesis Example 1, and will not be repeated here, but 1-3 are obtained.
  • Step 3) 4-2 was added to the three-necked flask, and nitrogen was introduced into it, then a certain amount of tetrahydrofuran was added, cooled to -80° C., and n-butyllithium ethane solution was slowly added dropwise and stirred.
  • a cuprous chloride solution, and a certain amount of palladium acetate, trimethoxytriphenylphosphine (L 2 ) and 1-3 dissolved in tetrahydrofuran were then added and stirred at room temperature, followed by addition of water and chloroform for extraction. The separated organic layer was dried and column chromatographed, and recrystallized to obtain product 4-3.
  • Step 4) 4-3 was added into the three-necked flask, and nitrogen was introduced into it, then a certain amount of tetrahydrofuran was added, cooled to -80° C., and the n-butyllithium ethane solution was slowly added dropwise and stirred. A cuprous chloride solution was then added, along with a certain amount of palladium acetate, trimethoxytriphenylphosphine (L 2 ) and 3-3 dissolved in tetrahydrofuran, and stirred at room temperature, followed by addition of water and chloroform for extraction. The separated organic layer was dried and column chromatographed, and recrystallized to obtain Compound 4.
  • the NMR data of compound 4 are: 13 C-NMR: 172.2(d), 170.7(s), 147.8(d), 141.0(d), 139.9(d), 137.0(m), 134.7(d), 131.1(d) ), 130.5(m), 129.2(m), 128.9(d), 127.5(m), 126.7(m), 124.7(s), 123.2(d), 121.6(s), 45.8(s), 39.3(s ), 37.1(d), 30.9(d), 24.4(m), 21.8(d).
  • Step 1) A solution of 5-1, 5-2 , K2CO3 and Pd( PPh3 )4 in DME and water (water bath) was refluxed under nitrogen for about 12 hours. After cooling to room temperature (about 22°C), the reaction mixture was filtered through a plug of silica gel. The organic layer was separated, washed with water, then dried over Na2SO4 . After evaporation of the solvent, the crude product was purified by column chromatography on silica gel using a mixed solvent of heptane and dichloromethane (volume ratio of heptane to dichloromethane from 9/1 to 7/3) as eluent Elution gave 5-3.
  • Step 2) 5-4 was added into the three-necked flask, and nitrogen was introduced into it, then a certain amount of tetrahydrofuran was added, cooled to -80°C, and n-butyllithium ethane solution was slowly added dropwise and stirred. A cuprous chloride solution was then added, along with a certain amount of palladium acetate, trimethoxytriphenylphosphine (L 2 ) and 5-5 dissolved in tetrahydrofuran, and stirred at room temperature, followed by water and chloroform for extraction. The separated organic layer was dried and column chromatographed, and recrystallized to obtain products 5-6.
  • Step 3 Add 5-8 into the three-necked flask, pass nitrogen gas, then add a certain amount of tetrahydrofuran, cool to -80°C, slowly drop n-butyllithium ethane solution and stir. A cuprous chloride solution, and a certain amount of palladium acetate, trimethoxytriphenylphosphine (L 2 ) and 5-7 dissolved in tetrahydrofuran were then added and stirred at room temperature, followed by water and chloroform for extraction. The separated organic layer was dried and column chromatographed, and recrystallized to obtain Compound 5.
  • the NMR data of compound 5 are: 13 C-NMR: 171.7(m), 145(s), 144.2(s), 143.6(s), 142.2(m), 141.3(d), 140.5(d), 139.4(d) ), 135.4(d), 134.7(d), 132.5(s), 131.1(m), 130.5(m), 129(m), 128.4(d), 127.6(m), 126.7(m), 126(m) ), 125(m), 124.6(m), 119.6(m), 118.8(m), 34.7(s).
  • Step 1) is basically the same as step 1) in Synthesis Example 5, and will not be repeated here, but 5-3 is obtained.
  • Step 2) is basically the same as step 2 in Synthesis Example 5, and will not be repeated here, but 5-7 are obtained.
  • Step 3) 6-1 was added to the three-necked flask, and nitrogen was introduced into it, then a certain amount of tetrahydrofuran was added, cooled to -80°C, and n-butyllithium ethane solution was slowly added dropwise and stirred.
  • a cuprous chloride solution, and a certain amount of palladium acetate, trimethoxytriphenylphosphine (L 2 ) and 5-7 dissolved in tetrahydrofuran were then added and stirred at room temperature, followed by water and chloroform for extraction. The separated organic layer was dried and column chromatographed, and recrystallized to obtain Compound 6.
  • the NMR data of compound 6 are: 13 C-NMR: 172.2(d), 170.7(s), 147.7(d), 142.4(d), 141.1(s), 193.9(s), 137.5(d), 137(d) ), 134.7(d), 134.1(m), 33.5(s), 131.9(m), 131.1(d), 130.5(s), 129.2(m), 128.1(s), 127.5(m), 126.9(m) ), 128.9(d), 127.6(d), 126.5(d), 124(s), 121.7(m), 120.0(s), 63.2(s).
  • Step 1) is basically the same as step 1) in Synthesis Example 5, and will not be repeated here, but 5-3 is obtained.
  • Step 2) 5-4 was added into the three-necked flask, and nitrogen was introduced into it, then a certain amount of tetrahydrofuran was added, cooled to -80°C, and n-butyllithium ethane solution was slowly added dropwise and stirred. A cuprous chloride solution was then added, along with a certain amount of palladium acetate, trimethoxytriphenylphosphine (L 2 ) and 5-5 dissolved in tetrahydrofuran, and stirred at room temperature, followed by water and chloroform for extraction. The separated organic layer was dried and column chromatographed, and recrystallized to obtain product 7-1.
  • Step 3) Add 7-3 into the three-necked flask, pass nitrogen gas, then add a certain amount of tetrahydrofuran, cool to -80°C, slowly drop n-butyllithium ethane solution and stir. A cuprous chloride solution, and a certain amount of palladium acetate, trimethoxytriphenylphosphine (L 2 ) and 7-2 dissolved in tetrahydrofuran were then added and stirred at room temperature, followed by addition of water and chloroform for extraction. The separated organic layer was dried and column chromatographed, and recrystallized to obtain Compound 7.
  • the nuclear magnetic data of compound 7 are: 13 C-NMR: 172.2(d), 170.7(s), 147.8(s), 141.0(m), 142(d), 137.5(m), 134.7(m), 133.5(m) , 131.6(s), 131.1(d), 129.2(m), 127.6(m), 126.9(m), 126.2(s), 125.1(d), 124.7(m), 124(s), 123.2(d) , 121.7(m), 120.0(d), 118.4(s), 42.9(s), 31.2(d).
  • Step 1) is basically the same as step 1) in Synthesis Example 5, and will not be repeated here, but 5-3 is obtained.
  • Step 2) 8-1 was added to the three-necked flask, and nitrogen was introduced into it, then a certain amount of tetrahydrofuran was added, cooled to -80°C, and n-butyllithium ethane solution was slowly added dropwise and stirred.
  • a cuprous chloride solution, and a certain amount of palladium acetate, trimethoxytriphenylphosphine (L 2 ) and 5-3 dissolved in tetrahydrofuran were then added and stirred at room temperature, followed by addition of water and chloroform for extraction. The separated organic layer was dried and column chromatographed, and recrystallized to obtain product 8-2.
  • Step 3) 8-3 was added to the three-necked flask, and nitrogen was introduced into it, then a certain amount of tetrahydrofuran was added, cooled to -80° C., and the n-butyllithium ethane solution was slowly added dropwise and stirred.
  • a cuprous chloride solution, and a certain amount of palladium acetate, trimethoxytriphenylphosphine (L 2 ) and 8-2 dissolved in tetrahydrofuran were then added and stirred at room temperature, followed by addition of water and chloroform for extraction. The separated organic layer was dried and column chromatographed, and recrystallized to obtain Compound 8.
  • the NMR data of compound 8 are: 13 C-NMR: 172.2(d), 170.7(s), 148.3(s), 147.8(s), 143.2(s), 142.0(s), 141.0(d), 139.9(s) , 137.5(d), 136.0(d), 134.1(m), 133.5(s), 131.6(s), 131.1(d), 130.5(m), 129.2(m), 128.9(m), 127.5(m) , 126.5(m), 125.5(d), 124.7(m), 123.2(s), 122.0(s), 121.6(d), 120(d), 45.8(s), 35.1(s), 31.7(m) , 30.9(d).
  • the hole blocking material can have a higher glass transition temperature, so that the hole blocking material can have a high glass transition temperature. excellent film-forming properties and excellent thermal stability.
  • the HOMO Highest Occupied Molecular Orbital, the highest occupied molecular orbital
  • LUMO Low Unoccupied Molecular Orbital
  • LUMO Low Unoccupied Molecular Orbital
  • the lowest unoccupied molecular orbital energy level is adjusted to match the HOMO energy level and LUMO energy level of the adjacent layer, which improves the hole blocking effect and enables the hole blocking material to have a larger band gap, which can convert electrons and LUMOs.
  • the holes are confined in the light-emitting layer, which facilitates the recombination of holes and electrons in the light-emitting layer, so that the light-emitting area can be increased.
  • the hole blocking material has higher minimum singlet state energy and minimum triplet state energy, so that the hole blocking material has good exciton blocking ability.
  • the hole blocking layer is used, the singlet excitons and triplet excitons can be confined in the light-emitting layer, thereby improving the light-emitting efficiency of the device.
  • An application example provides an OLED device
  • the structure of the OLED device is ITO (Indium Tin Oxides, indium tin oxide)/HIL (HIA, thickness 20nm), HTL (HAT, thickness 20nm), auxiliary light-emitting layer (HTA, thickness 6nm) , light-emitting layer (host material Host+5% guest material Dopant, thickness 20nm), HBL (thickness 50nm), ETL+50% AlQ 3 (Aluminum tris-(8-hydroxyquinoline), tris (8-hydroxyquinoline) aluminum) (thickness 30 nm), EIL (LiF, thickness 1 nm) and Al cathode (100 nm).
  • ITO Indium Tin Oxides, indium tin oxide
  • HTL HTL
  • HTA auxiliary light-emitting layer
  • light-emitting layer host material Host+5% guest material Dopant, thickness 20nm
  • HBL thickness 50nm
  • the device structure provided in the comparative example is the same as the device structure of the above application example, the difference is that the HBL adopts the structure shown in the following formula (HBL1).
  • the device provided by the comparative example is designated as device 9.
  • the hole blocking material can have a higher glass transition temperature, so that the hole blocking material has a higher glass transition temperature.
  • the hole blocking material has good film-forming properties and excellent thermal stability.
  • the substituent R into the basic molecular framework, the HOMO (Highest Occupied Molecular Orbital, the highest occupied molecular orbital) and LUMO (Lowest Unoccupied Molecular Orbital, the lowest unoccupied molecular orbital) energy levels of the hole blocking material can be obtained.
  • the adjustment is made so that the hole blocking material has good electron transport properties and hole blocking properties.
  • the hole blocking material is applied in a light-emitting device as a hole blocking material and/or an electron transport material, the light emission can be prolonged while maintaining a lower driving voltage and higher current efficiency. device lifetime.

Abstract

一种发光器件,包括:空穴阻挡层,包括如下式(1)a和式(1)b所示的化合物中的一种或多种。Z1~Z11选自H或R。R、R1和R2分别选自氘、卤素、氰基、硝基、氨基、C1~C40的烷基、C2~C40的烯基、C2~C40的炔基、C3~C40的环烷基、C3-C40的杂环烷基、C6~C60的芳基、C5-C60的杂芳基、C1~C40的烷氧基、C6~C60的芳氧基、C3-C40的烷基甲硅烷基、C6~C60的芳基甲硅烷基、C1~C40的烷基硼基、C6~C60的芳基硼基、C6~C60的芳基亚膦基、C6~C60的单或二芳基膦基及C6~C60的芳基胺基。R3选自杂环基和稠杂环基。

Description

发光器件、发光基板和发光装置 技术领域
本公开涉及照明和显示技术领域,尤其涉及一种发光器件、发光基板和发光装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)具有自发光、广视角、反应时间快、发光效率高、工作电压低、基板厚度薄、可制作大尺寸与可弯曲式基板及制程简单等特性,被誉为下一代的“明星”显示技术。
发明内容
一方面,提供一种发光器件,包括:层叠设置的第一电极和第二电极;位于所述第一电极和所述第二电极之间的发光层;位于所述第一电极和所述发光层之间的电子传输层;位于所述发光层和所述电子传输层之间的空穴阻挡层;其中,所述空穴阻挡层的材料包括:如下式(1)a和式(1)b所示的含晕苯或环十二烷的化合物中的一种或多种:
Figure PCTCN2020122959-appb-000001
其中,m为0~2中的整数,n为0~5中的整数,i为0~3中的整数,且在式(1)a中,m、n和i中至少其中之一不为0,在式(1)b中,m和i中至 少其中之一不为0。
Z 1~Z 11相同或不同,分别独立地选自H和取代基R中的任一种。
取代基R、取代基R 1和取代基R 2相同或不同,分别独立的选自氘、卤素、氰基、硝基、氨基、C 1~C 40的烷基、C 2~C 40的烯基、C 2~C 40的炔基、C 3~C 40的环烷基、C 3-C 40的杂环烷基、C 6~C 60的芳基、C 5-C 60的杂芳基、C 1~C 40的烷氧基、C 6~C 60的芳氧基、C 3~C 40的烷基甲硅烷基、C 6~C 60的芳基甲硅烷基、C 1~C 40的烷基硼基、C 6~C 60的芳基硼基、C 6~C 60的芳基亚膦基、C 6~C 60的单或二芳基膦基及C 6~C 60的芳基胺基中的任一种;或者,与相邻的基团结合形成缩合环。
R 3选自取代或未取代的杂环基和稠杂环基中的任一种。
在一些实施例中,i不为0,且R 3选自如下式(3)a、(3)b、(3)c、(3)d和(3)e中的任一种。
Figure PCTCN2020122959-appb-000002
Figure PCTCN2020122959-appb-000003
在式(3)a中,X 1~X 3分别为C(Y)或N,且至少两个为N;其中,Y、Y 1~Y 3中其中之一与式(1)a或式(1)b中的虚线结合,其余相同或不同,分别独立地选自氢和取代基R中的任一种。
在式(3)b中,Y 4~Y 11中其中之一与式(1)a或(1)b中的虚线结合,其余相同或不同,分别独立地选自氢和取代基R中的任一种。
在式(3)c中,Y 12~Y 16中其中之一与式(1)a或(1)b中的虚线结合,其余相同或不同,分别独立地选自氢和取代基R中的任一种。
在式(3)d中,Y 17~Y 20中其中之一与式(1)a或(1)b中的虚线结合,其余相同或不同,分别独立地选自氢和取代基R中的任一种。
在式(3)e中,Y 21~Y 26中其中之一与式(1)a或(1)b中的虚线结合,其余相同或不同,分别独立地选自氢和取代基R中的任一种。
在一些实施例中,在式(1)a中,m和n中至少m不为0,且取代基R 1选自如下式(2)所示结构。
Figure PCTCN2020122959-appb-000004
在式(2)中,R 4和R 5相同或不同,分别独立地选自氘、卤素、氰基、硝基、C 1~C 40的烷基、C 2~C 40的烯基、C 2~C 40的炔基、C 3~C 40的环烷基、C 3-C 40的杂环烷基、C 6~C 60的芳基、C 5-C 60的杂芳基、C 1~C 40的烷氧基、C 6~C 60的芳氧基、C 3~C 40的烷基甲硅烷基、C 6~C 60的芳基甲硅烷基、C 1~C 40的烷基硼基、C 6~C 60的芳基硼基、C 6~C 60的芳基亚膦基、C 6~C 60的单或二芳基膦基及C 6~C 60的芳基胺基中的任一种;或者,与相邻的基团结合形成缩合环。
其中,k为0~2的整数,Ar选自C 1~C 10的烷基、C 3~C 10的环烷基和C 6~C 30的芳基中的任一种;L选自单键、取代或未取代的二价芳基、取代或未取代的二价杂芳基中的任一种。
在一些实施例中,在式(1)a中,在m和n均不为0的情况下,取代基R 2和取代基R 1相同或不同。
在一些实施例中,在n大于1的情况下,每个取代基R 2相同或不同。
在一些实施例中,所述空穴阻挡层的材料选自如下式所示结构中的一种或多种:
Figure PCTCN2020122959-appb-000005
Figure PCTCN2020122959-appb-000006
在一些实施例中,所述含晕苯或环十二烷的化合物的HOMO能级小于-5.6eV。
在一些实施例中,所述含晕苯或环十二烷的化合物的HOMO能级和LUMO能级之间满足:
|E HOMO-E LUMO|≥3.2eV。
在一些实施例中,所述含晕苯或环十二烷的化合物的最低三重态能量大于3.1eV。
在一些实施例中,所述含晕苯或环十二烷的化合物的最低单重态能量和最低三重态能量之差大于0.51eV。
在一些实施例中,所述含晕苯或环十二烷的化合物的玻璃化转变温度为136℃-153℃。
在一些实施例中,所述发光层的HOMO能级与所述空穴阻挡层的HOMO能级的能级差大于0.2eV。
在一些实施例中,所述发光层的LUMO能级与所述空穴阻挡层的LUMO能级的能级差的绝对值小于0.3eV。
在一些实施例中,所述空穴阻挡层的LUMO能级与所述电子传输层的LUMO能级的能级差的绝对值小于0.3eV。
在一些实施例中,所述空穴阻挡层的HOMO能级与所述电子传输层的HOMO能级的能级差的绝对值大于0.2eV。
在一些实施例中,所述电子传输层的材料包括如式(1)a和式(1)b所示的含晕苯或环十二烷的化合物中的一种或多种。
在一些实施例中,所述空穴阻挡层的最低三重激发态的能量与所述发光层的最低三重激发态的能量之差大于0.2eV,以及所述空穴阻挡层的最低三重激发态的能量与所述发光层的最低三重激发态的能量之差大于0.2eV。
在一些实施例中,所述发光层的材料包括主体材料和客体材料,所述主体材料选自包含蒽、苯并蒽、苯并菲和/或芘的化合物及其衍生物,以及这些化合物及其衍生物的阻转异构体中的任一种,所述客体材料选自芳基胺类型 的化合物。
另一方面,提供一种发光基板,包括如上所述的发光器件。
又一方面,提供一种发光装置,包括如上所述的发光基板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的发光器件的剖视结构图;
图2为根据又一些实施例的发光器件的剖视结构图;
图3为根据一些实施例的发光基板的剖视结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
本公开的一些实施例提供了一种发光器件,如图1所示,发光器件13包括层叠设置的第一电极(阴极)131和第二电极(阳极)132,位于第一电极131和第二电极132之间的发光层(Emitting Layer,EML)133,位于第一电极131和发光层133之间的电子传输层(Electron Transport Layer,ETL)134,位于发光层133和电子传输层134之间的空穴阻挡层(Hole Blocking Layer,HBL)135,以及位于第二电极132和发光层133之间的空穴传输层(Hole Transport Layer,HTL)136。其中,空穴阻挡层135的材料包括:如下式(1)a和式(1)b所示的含晕苯或环十二烷的化合物中的一种或多种:
Figure PCTCN2020122959-appb-000007
Figure PCTCN2020122959-appb-000008
其中,m为0~2中的整数,n为0~5中的整数,i为0~3中的整数,且在式(1)a中,m、n和i中至少其中之一不为0,在式(1)b中,m和i中至少其中之一不为0。
m为0~2中的整数,表示苯环上可以有0~2个取代基R 1,且当取代基R 1为2个时,2个取代基R 1分别位于苯环的不同碳原子上。在m为0的情况下,苯环未被取代基R 1取代,此时,在式(1)a中,除了与环十二烷、取代基R 2和取代基R 3键合的碳之外,苯环上的其余碳均与氢键合;在式(1)b中,除了与晕苯、取代基R 3键合的碳之外,苯环上的其余碳均与氢键合。同理,i为0~3中的整数,表示苯环上可以有0~3个取代基R 3,且当取代基R 3为多个(大于一个)时,多个取代基R 3分别位于苯环的不同碳原子上。在i为0情况下,苯环未被取代基R 3取代,此时,在式(1)a中,除了与环十二烷、取代基R 2和取代基R 1键合的碳之外,苯环上的其余碳均与氢键合;在式(1)b中,除了与晕苯和取代基R 1键合的碳之外,苯环上的其余碳均与氢键合。
在式(1)a中,n为0~5中的整数,表示环十二烷上可以有0~5个取代基R 2,且当取代基R 2为多个(大于一个)时,多个取代基R 2分别位于环十二烷的不同碳原子上。在n为0的情况下,环十二烷上未被取代基R 2取代,此时,在环十二烷上,除m个取代基R 1和i个取代基R 3分别与对应数量的碳键合之外,其余碳均与氢键合。
Z 1~Z 11相同或不同,分别独立地选自H和取代基R中的任一种。取代基R、取代基R 1和取代基R 2相同或不同,分别独立地选自氘、卤素、氰基、硝基、氨基、C 1~C 40的烷基、C 2~C 40的烯基、C 2~C 40的炔基、C 3~C 40的环烷基、C 3-C 40的杂环烷基、C 6~C 60的芳基、C 5-C 60的杂芳基、C 1~C 40的烷氧基、C 6~C 60的芳氧基、C 3~C 40的烷基甲硅烷基、C 6~C 60的芳基甲硅烷基、C 1~C 40的烷基硼基、C 6~C 60的芳基硼基、C 6~C 60的芳基亚膦基、C 6~C 60的单或 二芳基膦基及C 6~C 60的芳基胺基中的任一种;或者,与相邻的基团结合形成缩合环。
其中,取代基R、取代基R 1和取代基R 2分别与相邻的基团结合形成缩合环,是指取代基R、取代基R 1和取代基R 2能够与相邻的基团连接成环。这里,以Z 1~Z 11中的Z 9为O为例,Z 9与相邻的基团结合成缩合环,可以为O与相邻的碳形成缩合环,得到如下式(1)b-1所示结构。
Figure PCTCN2020122959-appb-000009
R 3选自取代或未取代的杂环基和稠杂环基中的任一种。
其中,杂环基可以为五元杂环基或六元杂环,五元杂环基如可以为吡咯基、噻唑基、咪唑基、吡唑基、呋喃基等,六元杂环基如可以为吡啶基、嘧啶基、吡嗪基、三嗪基、吡喃基等。稠杂环基可以为吲哚基、嘌呤基、喹啉基、苯并噻唑基、咔唑基、蝶啶基、吖啶基等。这些杂环基团具有良好的吸电子特性,在将其用于空穴阻挡材料时,能够提高发光器件的发光性能。
在一些实施例中,i不为0,且R 3选自如下式(3)a、(3)b、(3)c、(3)d和(3)e中的任一种。
Figure PCTCN2020122959-appb-000010
Figure PCTCN2020122959-appb-000011
在式(3)a中,X 1~X 3分别为C(Y)或N,且至少两个为N;其中,Y、 Y 1~Y 3中其中之一与式(1)a或式(1)b中的虚线结合,其余相同或不同,分别独立地选自氢和取代基R中的任一种;在式(3)b中,Y 4~Y 11中其中之一与式(1)a或(1)b中的虚线结合,其余相同或不同,分别独立地选自氢和取代基R中的任一种;在式(3)c中,Y 12~Y 16中其中之一与式(1)a或(1)b中的虚线结合,其余相同或不同,分别独立地选自氢和取代基R中的任一种;在式(3)d中,Y 17~Y 20中其中之一与式(1)a或(1)b中的虚线结合,其余相同或不同,分别独立地选自氢和取代基R中的任一种;在式(3)e中,Y 21~Y 26中其中之一与式(1)a或(1)b中的虚线结合,其余相同或不同,分别独立地选自氢和取代基R中的任一种。
其中,根据在式(3)a中,X 1~X 3分别为C(Y)或N,且至少两个为N,可以得知,式(3)a可以为三嗪(X 1~X 3均为N)基或哒嗪(X 1~X 3中其中两个为N)基。式(3)d为吡嗪基。式(3)c和式(3)e均为稠杂芳基。均为吸电子能力较强的基团,从而使得空穴阻挡层135具有良好的电荷传输性能。
以式(3)c为例,根据Y 12~Y 16中其中一个与式(1)a或式(1)b中的虚线结合,其余相同或不同,分别独立地选自氢和取代基R中的任一种,可以得知式(1)a可以如下式(1)a-1所示,式(1)b可以如下式(1)b-2所示。
Figure PCTCN2020122959-appb-000012
其中,在以上式(1)a-1和式(1)b-2的结构基础上,在Y 12和Y 13中的其中之一,如Y 12选自与相邻的基团结合形成缩合环的取代基R的情况下,该取代基R可以为能够与相邻的基团缩合成环的取代基,如取代基R可以为戊酸(CH 3CH 2CH 2CH 2COOH(C 5H 10O 2)),与其相邻的基团可以为C-Y 13,Y 13可以为H,取代基R与Y 13连接位置的C缩合成环可以表示为如下式(1)a-2和式(1)b-3所示结构。
Figure PCTCN2020122959-appb-000013
在本公开的实施例提供的发光器件中,通过在具有吸电子基团和给电子基团的双极性化合物中引入晕苯、环十二烷等较大的基团,能够使空穴阻挡材料具有较高的玻璃化转变温度,从而使得空穴阻挡材料具有良好的成膜特性,以及优异的热稳定性。同时,通过在基本的分子骨架中引入取代基R,能够对空穴阻挡材料的HOMO(Highest Occupied Molecular Orbital,最高占据分子轨道)和LUMO(Lowest Unoccupied Molecular Orbital,最低未占分子轨道)能级进行调节,使得该空穴阻挡材料具有良好的电子传输性能和空穴阻挡性能。尤其是在取代基R为芳基或杂芳基的情况下,还能够增大分子的分子量,从而进一步增大空穴阻挡材料的玻璃化转变温度。
如此,在将本公开的实施例提供的空穴阻挡材料用作OLED(Organic Light-Emitting Diode,有机发光二极管)器件中的空穴阻挡层135的情况下,能够降低OLED器件的驱动电压,大大提高OLED器件的发光性能和寿命。
在一些实施例中,在式(1)a中,m和n中至少m不为0,且取代基R 1选自如下式(2)所示结构。
Figure PCTCN2020122959-appb-000014
在式(2)中,R 4和R 5相同或不同,分别独立地选自氘、卤素、氰基、硝基、C 1~C 40的烷基、C 2~C 40的烯基、C 2~C 40的炔基、C 3~C 40的环烷基、C 3-C 40的杂环烷基、C 6~C 60的芳基、C 5-C 60的杂芳基、C 1~C 40的烷氧基、C 6~C 60的芳氧基、C 3~C 40的烷基甲硅烷基、C 6~C 60的芳基甲硅烷基、C 1~C 40的烷基硼基、C 6~C 60的芳基硼基、C 6~C 60的芳基亚膦基、C 6~C 60的单或二芳基膦基及C 6~C 60的芳基胺基中的任一种,或者,与相邻的基团结合形成缩合环;其中,k为0~2中的整数,Ar选自C 1~C 10的烷基、C 3~C 10的环烷基和C 6~C 30的芳基中的任一种;L选自单键、取代或未取代的二价芳基、取代或未取代的二价杂芳基中的任一种。
其中,m和n中至少m不为0,具有以下几种情况,第一种情况,m为1或2,n为0,此时,式(1)a可以表示为如下式(1)a-3所示结构。第二种情况,m和n均不为0。此时,取代基R 2和取代基R 1可以相同或不同。如在取代基R 1选自式(2)所示结构的情况下,取代基R 2选自式(2)所示结构或者不同于式(2)所示的结构,如苯、烷基等。
Figure PCTCN2020122959-appb-000015
这里,需要说明的是,在L为单键的情况下,式(1)a-3可表示如下:
Figure PCTCN2020122959-appb-000016
k为0~2中的整数,是指在苯环上,取代基Ar的个数可以为0~2个,在k为0的情况下,苯环上没有取代基Ar,苯环上的碳均与氢键合。在k为2的情况下,苯环上有两个取代基Ar,且两个取代基Ar分别位于苯环的不同碳原子上。
其中,根据在m和n均不为0的情况下,n可以大于或等于1,可以得知,在n大于1的情况下,每个取代基R 2可以相同或不同。此时,根据取代基R 2与取代基R 1是否相同,又具有多种不同的情况,第一种情况,取代基R 2与取代基R 1不同,此时,在取代基R 1选自式(2)所示结构的情况下,每个取代基R 2与取代基R 1均不相同,而每个取代基R 2相同或不同,分别独立地选自不同于式(2)所示的结构,如苯、烷基等。第二种情况,多个取代基R 2中其中一部分与取代基R 1相同,其余一部分与取代基R 1不同。此时,以n为2,取代基R 1选自式(2)所示结构为例,2个取代基R 2中,其中一个取代基R 2与取代基R 1相同,另一个取代基R 2选自不同于式(2)所示的结构,如苯、烷基等。第三种情况,每个取代基R 2均与取代基R 1相同,仍然以n为2,取代基R 1选自式(2)所示结构为例,2个取代基R 2均选自式(2)所示结构。
在一些实施例中,空穴阻挡层135的材料选自如下式所示结构中的一种或多种:
Figure PCTCN2020122959-appb-000017
Figure PCTCN2020122959-appb-000018
在一些实施例中,含晕苯或环十二烷的化合物的HOMO能级小于-5.6eV。 在将该化合物应用于OLED器件中作为空穴阻挡层135时,具有良好的空穴阻挡能力,能够解决相关技术中空穴和电子传输不平衡所带来的电流无效流动(不发光),不利于发光效率提高的问题。
在一些实施例中,含晕苯或环十二烷的化合物的HOMO能级和LUMO能级之间满足:
|E HOMO-E LUMO|≥3.2eV。
在本实施例中,该化合物具有较大的禁带宽度,能够将电子和空穴限制在发光层中,便于空穴和电子在发光层中复合,从而能够增大发光区域。
在一些实施例中,含晕苯或环十二烷的化合物的最低单重态能量大于3.1eV,含晕苯或环十二烷的化合物的最低三重态能量与最低三重态能量之差大于0.51eV。该化合物具有良好的激子阻挡能力,能够将单线态激子和三线态激子限制在发光层中,提高发光效率。
在一些实施例中,含晕苯或环十二烷的化合物的玻璃化转变温度为136℃-153℃。含晕苯或环十二烷的化合物具有较高的玻璃化转变温度,能够提高成膜性能和热稳定性。
在一些实施例中,发光层133的HOMO能级与空穴阻挡层135的HOMO能级的能级差大于0.2eV。
在本实施例中,可以选择HOMO能级与该含晕苯或环十二烷的化合物的HOMO能级的能级差大于0.2eV的发光材料,在制作成发光器件13之后,该空穴阻挡层135具有良好的空穴阻挡能力,能够将空穴限制在发光层133内,防止空穴与电子传输层134中的电子结合,从而不利于发光效率的提高的问题。
在一些实施例中,发光层133的LUMO能级与空穴阻挡层135的LUMO能级的能级差小于0.3eV。
在本实施例中,可以选则LUMO能级与该含晕苯或环十二烷的化合物的LUMO能级的能级差小于0.3eV的发光材料,在制作成发光器件13之后,该空穴阻挡层135具有良好的电子传输性能,有利于空穴和电子在发光层复合。
在一些实施例中,空穴阻挡层135的LUMO能级与电子传输层134的LUMO能级的能级差小于0.3eV。
在本实施例中,可以选择LUMO能级与含晕苯或环十二烷的化合物的LUMO能级的能级差的绝对值小于0.3eV的电子传输材料,在制作成发光器件13之后,该空穴阻挡层135具有良好的电子传输性能,有利于提高电子的传输速率,还能够解决相关技术中空穴和电子传输不平衡的问题。
在一些实施例中,空穴阻挡层135的HOMO能级与电子传输层134的HOMO能级的能级差的绝对值大于0.2eV。
在本实施例中,可以选择HOMO能级与含晕苯或环十二烷的化合物的HOMO能级的能级差的绝对值大于0.2eV的电子传输材料,在制作成发光器件之后,该电子传输层134也具有良好的空穴阻挡性能,能够有效将空穴限制在空穴阻挡层135和发光层133的交界位置处,防止空穴与电子传输层134中的电子结合,从而不利于发光效率的提高的问题。
在另一些实施例中,电子传输层134的材料包括式(1)a和式(1)b所示的含晕苯或环十二烷的化合物中的一种或多种。在此情况下,电子传输层134的材料和空穴阻挡层135的材料可以相同或不同。
在一些实施例中,空穴阻挡层135的最低单重激发态的能量与发光层133的最低单重激发态的能量之差大于0.2eV,以及空穴阻挡层135的最低三重激发态的能量与发光层133的最低三重激发态的能量之差大于0.2eV。
在本实施例中,该空穴阻挡层135具有良好的激子阻挡能力,能够将激子限制在发光层133中,从而有利于提高发光效率。
在一些实施例中,发光层133的材料包括主体材料和客体材料,主体材料选自蒽、苯并蒽、苯并菲和/或芘的化合物及其衍生物,以及这些化合物及其衍生物的阻转异构体中的任一种,客体材料选自芳基胺类型的化合物,优选为芳族蒽胺、芳族蒽二胺、芳族芘胺、芳族芘二胺、芳族苣胺或芳族苣二胺。不仅限与所举例,包括任何公知的主体、客体材料。
在一些实施例中,该电子传输层134的材料可以选自苯并咪唑衍生物、三嗪衍生物、嘧啶衍生物、吡啶衍生物、吡嗪衍生物、喹喔啉衍生物、喹啉衍生物、二唑衍生物、芳族酮、内酰胺、硼烷、二氮杂磷杂环戊二烯衍生物和氧化膦衍生物中的任一种。
在一些实施例中,如图2所示,该发光器件13还包括设置于第一电极131和电子传输层134之间的电子注入层(Hole Inject Layer,HIL)137,以及设置于第二电极132和空穴传输层136之间的空穴注入层(Hole Inject Layer,HIL)138。
电子注入层137的材料可以选自含氮五元环衍生物以及芴酮、蒽醌二甲烷、联苯醌、噻喃二氧化物、唑、二唑、三唑、咪唑、苝四羧酸、亚芴基甲烷、蒽醌二甲烷、蒽酮等和它们的衍生物,但不限定于此。空穴注入层138的材料可以选自芳香族叔胺衍生物和酞菁衍生物。
在一些实施例中,如图2所示,该发光器件13还包括设置于发光层133 和空穴传输层136之间的电子阻挡层(Electron Blocking Layer,EBL)139。该电子阻挡层139的材料可以选自芳胺衍生物、联苯胺型三苯胺、苯乙烯胺型三苯胺和二胺型三苯胺中的任一种。
本公开的一些实施例提供了一种发光基板,如图3所示,发光基板1可以包括衬底11、设置于衬底11上的像素界定层12和多个发光器件13。其中,该像素界定层12具有多个开口Q,多个发光器件13可以与多个开口Q一一对应设置。这里的多个发光器件13可以是发光基板1包含的全部或部分发光器件13;多个开口Q可以是像素界定层12上的全部或部分开口。多个发光器件13中至少一个发光器件13为包含有晕苯或环十二烷的化合物的发光器件。
根据发光基板1中多个发光器件13的发光颜色可以相同或不同,该发光基板1可以为照明基板或者显示基板。
在多个发光器件13的发光颜色相同的情况下,空穴阻挡层139、电子传输层134、空穴传输层136甚至发光层133均可以整层覆盖。此时,每个发光器件13均为包含有晕苯或环十二烷的化合物的发光器件。
在多个发光器件13的发光颜色不同的情况下,电子传输层134、空穴传输层136均整层覆盖,发光层133和空穴阻挡层135根据发光器件13的发光颜色不同,可以分别设置在不同的开口Q中,此时,发光层133和空穴阻挡层135可以采用精细化掩膜板作为掩膜蒸镀形成。
本公开的实施例提供的发光基板1具有与本公开的实施例提供的发光器件相同的有益技术效果,在此不再赘述。
本公开的一些实施例提供一种发光装置,包括上述所述的发光基板。当然也可以包括其他部件,例如可以包括用于向发光基板提供电信号,以驱动该发光基板发光的电路,该电路可以称为控制电路,可以包括与发光基板电连接的电路板和/或IC(Integrate Circuit,集成电路)。
在一些实施例中,该发光装置可以为照明装置,此时,发光基板可以为照明基板,如可以用作光源,实现照明功能。例如,发光基板可以是液晶显示装置中的背光模组,用于内部或外部照明的灯,或各种信号灯等。
在另一些实施例中,该发光装置可以为显示装置,此时,该发光基板为显示基板,用于实现显示图像(即画面)功能。发光装置可以包括显示器或包含显示器的产品。其中,显示器可以是平板显示器(Flat Panel Display,FPD),微型显示器等。若按照用户能否看到显示器背面的场景划分,显示器可以是透明显示器或不透明显示器。若按照显示器能否弯折或卷曲,显示器可以是 柔性显示器或普通显示器(可以称为刚性显示器)。示例的,包含显示器的产品可以包括:计算机显示器,电视,广告牌,具有显示功能的激光打印机,电话,手机,个人数字助理(Personal Digital Assistant,PDA),膝上型计算机,数码相机,便携式摄录机,取景器,车辆,大面积墙壁,剧院的屏幕或体育场标牌等。
本公开的实施例提供的发光装置具有与本公开的实施例提供的发光器件相同的有益技术效果,在此不再赘述。
基于此,为了对本公开的实施例的技术效果进行客观评价,以下,将通过如下合成例、实验例、应用例和对比例对本公开所提供的技术方案进行详细地示例性地描述。
合成例1
化合物1的合成:
Figure PCTCN2020122959-appb-000019
步骤1)将1-1、1-2、K 2CO 3和Pd(PPh 3) 4在DME(Dimethyl ether,二甲醚)和水的混合溶液中,在氮气保护下回流约12小时。冷却至室温(约22℃)后,将反应混合物通过硅胶塞过滤。分离有机层,用水洗涤,然后经Na 2SO 4干燥。蒸发溶剂后,将粗产物通过硅胶上的柱色谱法纯化,用庚烷与二氯甲烷的混合溶剂(庚烷与二氯甲烷的体积比为9/1至7/3)作为洗脱剂进行洗脱,得到1-3。
Figure PCTCN2020122959-appb-000020
步骤2)将1-4加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶 液,和一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦(L 2)和1-3,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得产物1-5。
Figure PCTCN2020122959-appb-000021
步骤3)将1-5加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,以及一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦(L 2)和1-6,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得化合物1。
化合物1的核磁数据为: 13C-NMR:174(s),173.5(d),152.3(d),148.8(s),144.6(s),142.1(s),139.1(d),135.2(m),134.5(s),131.3(d),129.2(m),127.5(m),125.9(m),122.4(d),119.8(d),45.9(s),41.7(s),33.6(m),30.8(m),29.5(d),28.5(d),26.3(d)。
合成例2
化合物2的合成:
Figure PCTCN2020122959-appb-000022
步骤1)和步骤2)与合成例1中的步骤1)和步骤2)中合成化合物1-5基本相同,相关化学方程式参见合成例中步骤1)和步骤2)所示,不同的是,在合成1-5之后,在氩气气氛下,将35%氢化钾添加到无水四氢呋喃(THF)中,然后添加芴酮。之后,加入碘甲烷,并使反应在回流温度下进行72小时。向获得的反应混合物中,添加水,然后添加稀盐酸。将所得混合物用氯仿萃取处理,并将所得萃取物用无水硫酸镁干燥。减压除去溶剂,并通过过滤分离形成的固体物质,并用甲醇洗涤。将上述获得的物质悬浮于纯净水中,并将一水合氯化铁加入到所得悬浮液中。在室温下经1小时滴加由氯和纯净水(1:100)得到的水溶液,并使反应在室温下进行12小时。过滤分离形成的晶体后,用水和甲醇洗涤,并溶解在氯仿中,将所得溶液用碳酸氢钠水溶液和水洗涤,并用无水硫酸镁干燥,并通过蒸馏除去溶剂。蒸馏。向得到的混合物中加入己烷后,通过过滤分离形成2-2。将苯加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,和一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦(L 2)和2-2,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得产物2-3。
将2-3加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,和一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦(L 2)和1-5,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得化合物2。
化合物2的核磁数据为: 13C-NMR:171.5(m),154(s),152.7(s),150.9(s),142.6(m),137.4(m),136.2(s),134.9(d),132.8(s),131(d),130.5(m),129.9(m),128.2(s),127.6(m),126.4(s),125.5(d),123.1(s),121.1(d),50.1(s),44.5(s),38.2(d),28.8(m),27.8(m),27(d),25.9(d)。
合成例3
化合物3的合成:
步骤1)与合成例1中的步骤1基本相同,在此不再赘述。
Figure PCTCN2020122959-appb-000023
步骤2)将3-1加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,和一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦(L 2)和步骤1)所得到的1-3,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得产物3-2。
Figure PCTCN2020122959-appb-000024
步骤3)将3-2加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,以及一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦(L 2)和3-3(CAS:174753-91-4),并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得化合物3。
化合物3的核磁数据为: 13C-NMR:172.2(d),170.7(s),147.8(d),141(d),139.9(d),137.0(m),134.7(d),131.1(d),130.5(m),128.9(d),127.5(m),126.7(m),123.2(d),124.7(s)121.6(s),45.8(s),39.3(s),37.1(d),30.9(d),24.7(m),21.8(d)。
合成例4
化合物4的合成:
Figure PCTCN2020122959-appb-000025
步骤1)将4-1、苯、HBr和CH 3COOH混合在水溶液中,在氮气保护下回流约12小时。冷却至室温(约22℃)后,将反应混合物通过硅胶塞过滤。分离有机层,用水洗涤,然后经Na 2SO 4干燥。蒸发溶剂后,将粗产物通过硅胶上的柱色谱法纯化,用庚烷与二氯甲烷的混合溶剂(庚烷与二氯甲烷的体积比为9/1至7/3)作为洗脱剂进行洗脱,得到4-2。
步骤2)与合成例1中步骤1)基本相同,在此不再赘述,得到1-3。
Figure PCTCN2020122959-appb-000026
步骤3)将4-2加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,和一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦(L 2)和1-3,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得产物4-3。
Figure PCTCN2020122959-appb-000027
步骤4)将4-3加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,以及一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦(L 2)和3-3,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得化合物4。
化合物4的核磁数据为: 13C-NMR:172.2(d),170.7(s),147.8(d),141.0(d),139.9(d),137.0(m),134.7(d),131.1(d),130.5(m),129.2(m),128.9(d),127.5(m),126.7(m),124.7(s),123.2(d),121.6(s),45.8(s),39.3(s),37.1(d),30.9(d),24.4(m),21.8(d)。
合成例5
化合物5的合成:
Figure PCTCN2020122959-appb-000028
步骤1)将5-1、5-2、K 2CO 3和Pd(PPh 3) 4在DME和水中的溶液(水浴)在氮气下回流约12小时。冷却至室温(约22℃)后,将反应混合物通过硅胶塞过滤。分离有机层,用水洗涤,然后经Na 2SO 4干燥。蒸发溶剂后,将粗产物通过硅胶上的柱色谱法纯化,用庚烷与二氯甲烷的混合溶剂(庚烷与二氯甲烷的体积比为9/1至7/3)作为洗脱剂进行洗脱,得到5-3。
Figure PCTCN2020122959-appb-000029
步骤2)将5-4加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,以及一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦(L 2)和5-5,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得产物5-6。将5-6加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,和一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦(L 2)和5-3,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得产物5-7。
Figure PCTCN2020122959-appb-000030
步骤3)将5-8加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,和一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦(L 2)和5-7,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得化合物5。
化合物5的核磁数据为: 13C-NMR:171.7(m),145(s),144.2(s),143.6(s),142.2(m),141.3(d),140.5(d),139.4(d),135.4(d),134.7(d),132.5(s),131.1(m),130.5(m),129(m),128.4(d),127.6(m),126.7(m),126(m),125(m),124.6(m),119.6(m),118.8(m),34.7(s)。
合成例6
化合物6的合成:
步骤1)与合成例5中的步骤1)基本相同,在此不再赘述,得到5-3。
步骤2)与合成例5中步骤2基本相同,在此不再赘述,得到5-7。
Figure PCTCN2020122959-appb-000031
步骤3)将6-1加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,和一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦(L 2)和5-7,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得化合物6。
化合物6的核磁数据为: 13C-NMR:172.2(d),170.7(s),147.7(d),142.4(d), 141.1(s),193.9(s),137.5(d),137(d),134.7(d),134.1(m),33.5(s),131.9(m),131.1(d),130.5(s),129.2(m),128.1(s),127.5(m),126.9(m),128.9(d),127.6(d),126.5(d),124(s),121.7(m),120.0(s),63.2(s)。
合成例7
化合物7的合成:
步骤1)与合成例5中的步骤1)基本相同,在此不再赘述,得到5-3。
Figure PCTCN2020122959-appb-000032
步骤2)将5-4加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,以及一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦(L 2)和5-5,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得产物7-1。将7-1加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,和一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦(L 2)和5-3,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得产物7-2。
Figure PCTCN2020122959-appb-000033
步骤3)将7-3加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,和一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦(L 2)和7-2,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得化合物7。
化合物7核磁数据为: 13C-NMR:172.2(d),170.7(s),147.8(s),141.0(m),142(d),137.5(m),134.7(m),133.5(m),131.6(s),131.1(d),129.2(m),127.6(m),126.9(m),126.2(s),125.1(d),124.7(m),124(s),123.2(d),121.7(m),120.0(d),118.4(s),42.9(s),31.2(d)。
合成例8
化合物8的合成:
步骤1)与合成例5中的步骤1)基本相同,在此不再赘述,得到5-3。
Figure PCTCN2020122959-appb-000034
步骤2)将8-1加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,和一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦(L 2)和5-3,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得产物8-2。
Figure PCTCN2020122959-appb-000035
步骤3)将8-3加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,和一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦(L 2)和8-2,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得化合物8。
化合物8核磁数据为: 13C-NMR:172.2(d),170.7(s),148.3(s),147.8(s),143.2(s),142.0(s),141.0(d),139.9(s),137.5(d),136.0(d),134.1(m),133.5(s),131.6(s),131.1(d),130.5(m),129.2(m),128.9(m),127.5(m),126.5(m),125.5(d),124.7(m),123.2(s),122.0(s),121.6(d),120(d),45.8(s),35.1(s),31.7(m),30.9(d)。
实验例1
对以上合成所得到的化合物1~化合物8的HOMO能级、LUMO能级以及单线态激子能量、三线态激子能量和玻璃态转变温度进行测试,并通过计算,得到如下表1所示数据。
表1
化合物 HOMO E HOMO-E LUMO S1 ΔEst Tg/℃
1 -5.8 3.6 3.42 0.51 136
2 -5.9 3.7 3.59 0.60 142
3 -6.0 3.5 3.52 0.68 140
4 -5.9 3.5 3.43 0.65 143
5 -5.7 3.5 3.13 0.52 146
6 -5.8 3.4 3.11 0.55 144
7 -5.6 3.2 3.11 0.56 151
8 -5.6 3.2 3.14 0.53 153
由表1可知,通过在具有EDG和EWG的空穴阻挡材料中引入晕苯或环 十二烷,能够使空穴阻挡材料具有较高的玻璃化转变温度,从而能够使空穴阻挡材料具有良好的成膜特性,以及优异的热稳定性。另外,通过在基本的分子骨架中引入取代基R,并对取代基R进行调节,能够将该空穴阻挡材料的HOMO(Highest Occupied Molecular Orbital,最高占据分子轨道)和LUMO(Lowest Unoccupied Molecular Orbital,最低未占分子轨道)能级调节至与相邻层的HOMO能级和LUMO能级相匹配,提高空穴阻挡效果,并能够使空穴阻挡材料具有较大的禁带宽度,能够将电子和空穴限制在发光层中,便于空穴和电子在发光层中复合,从而能够增大发光区域。除此之外,通过测试发现该或空穴阻挡材料具有较高的最低单重态能量和最低三重态能量,从而使得该空穴阻挡材料具有良好的激子阻挡能力,在将其用于空穴阻挡层时,能够将单线态激子和三线态激子限制在发光层中,提高器件发光效率。
应用例
应用例提供一种OLED器件,该OLED器件的结构为ITO(Indium Tin Oxides,氧化铟锡)/HIL(HIA,厚度20nm)、HTL(HAT,厚度20nm)、辅助发光层(HTA,厚度6nm)、发光层(主体材料Host+5%客体材料Dopant,厚度20nm)、HBL(厚度50nm)、ETL+50%AlQ 3(Aluminum tris-(8-hydroxyquinoline),三(8-羟基喹啉)铝)(厚度30nm)、EIL(LiF,厚度1nm)和Al阴极(100nm)。
HIA
(N 2',N 7',10-triphenyl-N 2',N 7'-bis(9-phenyl-9H-carbazol-3-yl)-10H-spiro[acridine-9,9'-fluorene]-2',7'-diamine,N 2',N 7',10-三苯基-N 2',N 7'-双(9-苯基-9H-咔唑-3-基)-10H-螺[[啶-9,9'-芴]-2',7'-二胺)、HAT((3,6,7,10,11-pentakis(aminomethyl)-4b,8a,8b,12a-tetrahydrodipyrazino[2,3-f:2',3'-h]quinoxaline-2-carbonitrile),3,6,7,10,11-五(氨基甲基)-4b,8a,8b,12a-四氢二吡嗪并[2,3-f:2',3'-h]喹喔啉-2-甲腈)、HTA(N-([1,1'-biphenyl]-4-yl)-9,9-dimethyl-N-(4'-(7-phenyl-7H-benzo[c]carbazol-10-yl)-[1,1'-biphenyl]-4-yl)-9H-fluoren-2-amine,N-([1,1'-联苯]-4-基)-9,9-二甲基-N-(4'-(7-苯基-7H-苯并[c]咔唑-10-基)-[1,1'-联苯基]-4-基)-9H-芴-2-胺)、Host、Dopant和ETL的分子结构如下所示。HBL分别选自如上合成例提供的化合物1~化合物8中的一种,所得到的器件分别一一对应地记为器件1~器件8。
Figure PCTCN2020122959-appb-000036
对比例
对比例提供的器件结构与以上应用例的器件结构相同,不同的是,HBL采用如下式(HBL1)所示结构。对比例提供的器件记为器件9。
Figure PCTCN2020122959-appb-000037
实验例2
向以上器件1~器件9通入相同的电流密度,测试器件1~器件9的驱动电压、寿命和电流效率,得到如下表2所示数据。
表2
样品 HBL 驱动电压(V) 寿命(T90/h) 电流效率(cd/A)
器件1 化合物1 4.88 235 4.02
器件2 化合物2 4.61 210 4.11
器件3 化合物3 4.32 203 3.98
器件4 化合物4 4.50 190 4.09
器件5 化合物5 4.95 126 3.97
器件6 化合物6 4.88 156 3.88
器件7 化合物7 4.67 179 4.01
器件8 化合物8 4.49 115 3.80
器件9 HBL1 4.81 70 3.78
由表2可知,与空穴阻挡材料中仅包含EDG和EWG相比,通过在空穴阻挡材料中引入晕苯或环十二烷,能够降低驱动电压,增大电流效率,延长器件寿命。
综上所述,通过在具有EDG和EWG的空穴阻挡材料中引入晕苯或环十二烷等较大的基团,能够使空穴阻挡材料具有较高的玻璃化转变温度,从而使得该空穴阻挡材料具有良好的成膜特性,以及优异的热稳定性。同时,通过在基本的分子骨架中引入取代基R,能够对该空穴阻挡材料的HOMO(Highest Occupied Molecular Orbital,最高占据分子轨道)和LUMO(Lowest Unoccupied Molecular Orbital,最低未占分子轨道)能级进行调节,使得该空穴阻挡材料具有良好的电子传输性能和空穴阻挡性能。同时,在将该空穴阻挡材料应用于发光器件中,作为空穴阻挡材料和/或电子传输材料的情况下,能够在保持较低的驱动电压和较高的电流效率的情况下,延长发光器件的寿命。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种发光器件,包括:
    层叠设置的第一电极和第二电极;
    位于所述第一电极和所述第二电极之间的发光层;
    位于所述第一电极和所述发光层之间的电子传输层;
    位于所述发光层和所述电子传输层之间的空穴阻挡层;
    其中,所述空穴阻挡层的材料包括:如下式(1)a和式(1)b所示的含晕苯或环十二烷的化合物中的一种或多种:
    Figure PCTCN2020122959-appb-100001
    其中,m为0~2中的整数,n为0~5中的整数,i为0~3中的整数,且在式(1)a中,m、n和i中至少其中之一不为0,在式(1)b中,m和i中至少其中之一不为0;
    Z 1~Z 11相同或不同,分别独立地选自H和取代基R中的任一种;
    取代基R、取代基R 1和取代基R 2相同或不同,分别独立的选自氘、卤素、氰基、硝基、氨基、C 1~C 40的烷基、C 2~C 40的烯基、C 2~C 40的炔基、C 3~C 40的环烷基、C 3-C 40的杂环烷基、C 6~C 60的芳基、C 5-C 60的杂芳基、C 1~C 40的烷氧基、C 6~C 60的芳氧基、C 3~C 40的烷基甲硅烷基、C 6~C 60的芳基甲硅烷基、C 1~C 40的烷基硼基、C 6~C 60的芳基硼基、C 6~C 60的芳基亚膦基、C 6~C 60的单或二芳基膦基及C 6~C 60的芳基胺基中的任一种;或者,与相邻的基团结合形成缩合环;
    R 3选自取代或未取代的杂环基和稠杂环基中的任一种。
  2. 根据权利要求1所述的发光器件,其中,
    i不为0,且R 3选自如下式(3)a、(3)b、(3)c、(3)d和(3)e中的任一种;
    Figure PCTCN2020122959-appb-100002
    Figure PCTCN2020122959-appb-100003
    在式(3)a中,X 1~X 3分别为C(Y)或N,且至少两个为N;其中,Y、Y 1~Y 3中其中之一与式(1)a或式(1)b中的虚线结合,其余相同或不同,分别独立地选自氢和取代基R中的任一种;
    在式(3)b中,Y 4~Y 11中其中之一与式(1)a或(1)b中的虚线结合,其余相同或不同,分别独立地选自氢和取代基R中的任一种;
    在式(3)c中,Y 12~Y 16中其中之一与式(1)a或(1)b中的虚线结合,其余相同或不同,分别独立地选自氢和取代基R中的任一种;
    在式(3)d中,Y 17~Y 20中其中之一与式(1)a或(1)b中的虚线结合,其余相同或不同,分别独立地选自氢和取代基R中的任一种;
    在式(3)e中,Y 21~Y 26中其中之一与式(1)a或(1)b中的虚线结合,其余相同或不同,分别独立地选自氢和取代基R中的任一种。
  3. 根据权利要求1或2所述的发光器件,其中,
    在式(1)a中,m和n中至少m不为0,且取代基R 1选自如下式(2)所示结构;
    Figure PCTCN2020122959-appb-100004
    在式(2)中,R 4和R 5相同或不同,分别独立地选自氘、卤素、氰基、硝基、C 1~C 40的烷基、C 2~C 40的烯基、C 2~C 40的炔基、C 3~C 40的环烷基、C 3-C 40的杂环烷基、C 6~C 60的芳基、C 5-C 60的杂芳基、C 1~C 40的烷氧基、C 6~C 60的芳氧基、C 3~C 40的烷基甲硅烷基、C 6~C 60的芳基甲硅烷基、C 1~C 40 的烷基硼基、C 6~C 60的芳基硼基、C 6~C 60的芳基亚膦基、C 6~C 60的单或二芳基膦基及C 6~C 60的芳基胺基中的任一种;或者,与相邻的基团结合形成缩合环;
    其中,k为0~2的整数,Ar选自C 1~C 10的烷基、C 3~C 10的环烷基和C 6~C 30的芳基中的任一种;L选自单键、取代或未取代的二价芳基、取代或未取代的二价杂芳基中的任一种。
  4. 根据权利要求1~3任一项所述的发光器件,其中,
    在m和n均不为0的情况下,取代基R 2和取代基R 1相同或不同。
  5. 根据权利要求4所述的发光器件,其中,
    在n大于1的情况下,每个取代基R 2相同或不同。
  6. 根据权利要求1~5任一项所述的发光器件,其中,
    所述空穴阻挡层的材料包括如下式所示结构中的一种或多种:
    Figure PCTCN2020122959-appb-100005
  7. 根据权利要求1~6任一项所述的发光器件,其中,
    所述含晕苯或环十二烷的化合物的HOMO能级小于-5.6eV。
  8. 根据权利要求1~7任一项所述的发光器件,其中,
    所述含晕苯或环十二烷的化合物的HOMO能级和LUMO能级之间满足:
    |E HOMO-E LUMO|≥3.2eV。
  9. 根据权利要求1~8任一项所述的发光器件,其中,
    所述含晕苯或环十二烷的化合物的最低三重态能量大于3.1eV。
  10. 根据权利要求1~9任一项所述的发光器件,其中,
    所述含晕苯或环十二烷的化合物的最低单重态能量和最低三重态能量之差大于0.51eV。
  11. 根据权利要求1~10任一项所述的发光器件,其中,
    所述含晕苯或环十二烷的化合物的玻璃化转变温度为136℃-153℃。
  12. 根据权利要求1~11任一项所述的发光器件,其中,
    所述发光层的HOMO能级与所述空穴阻挡层的HOMO能级的能级差大于0.2eV。
  13. 根据权利要求1~12任一项所述的发光器件,其中,
    所述发光层的LUMO能级与所述空穴阻挡层的LUMO能级的能级差的绝对值小于0.3eV。
  14. 根据权利要求1~13任一项所述的发光器件,其中,
    所述空穴阻挡层的LUMO能级与所述电子传输层的LUMO能级的能级差的绝对值小于0.3eV。
  15. 根据权利要求1~14任一项所述的发光器件,其中,
    所述空穴阻挡层的HOMO能级与所述电子传输层的HOMO能级的能级差的绝对值大于0.2eV。
  16. 根据权利要求1~15任一项所述的发光器件,其中,
    所述电子传输层的材料包括如式(1)a和式(1)b所示的含晕苯或环十二烷的化合物中的一种或多种。
  17. 根据权利要求1~16任一项所述的发光器件,其中,
    所述空穴阻挡层的最低三重激发态的能量与所述发光层的最低三重激发态的能量之差大于0.2eV,以及所述空穴阻挡层的最低三重激发态的能量与所述发光层的最低三重激发态的能量之差大于0.2eV。
  18. 根据权利要求1~17任一项所述的发光器件,其中,
    所述发光层的材料包括主体材料和客体材料,所述主体材料选自包含蒽、苯并蒽、苯并菲和/或芘的化合物及其衍生物,以及这些化合物及其衍生物的阻转异构体中的任一种,所述客体材料选自芳基胺类型的化合物。
  19. 一种发光基板,包括如权利要求1~18任一项所述的发光器件。
  20. 一种发光装置,包括如权利要求19所述的发光基板。
PCT/CN2020/122959 2020-10-22 2020-10-22 发光器件、发光基板和发光装置 WO2022082646A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/122959 WO2022082646A1 (zh) 2020-10-22 2020-10-22 发光器件、发光基板和发光装置
US17/615,498 US20220315540A1 (en) 2020-10-22 2020-10-22 Light-emitting device, light-emitting substrate and light-emitting apparatus
CN202080002429.8A CN114981994A (zh) 2020-10-22 2020-10-22 发光器件、发光基板和发光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/122959 WO2022082646A1 (zh) 2020-10-22 2020-10-22 发光器件、发光基板和发光装置

Publications (1)

Publication Number Publication Date
WO2022082646A1 true WO2022082646A1 (zh) 2022-04-28

Family

ID=81291438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122959 WO2022082646A1 (zh) 2020-10-22 2020-10-22 发光器件、发光基板和发光装置

Country Status (3)

Country Link
US (1) US20220315540A1 (zh)
CN (1) CN114981994A (zh)
WO (1) WO2022082646A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312663A1 (en) * 2009-10-19 2011-04-20 Novaled AG Organic electronic device comprising an organic semiconducting material
EP3038181A1 (en) * 2014-12-22 2016-06-29 Solvay SA Organic electronic devices comprising acridine derivatives in an emissive layer free of heavy atom compounds
CN106632085A (zh) * 2016-12-23 2017-05-10 长春海谱润斯科技有限公司 一种含氮杂环衍生物及使用该含氮杂环衍生物的有机发光器件
CN110635053A (zh) * 2018-06-21 2019-12-31 上海和辉光电有限公司 p型掺杂材料、包含其的空穴注入材料、空穴注入层和OLED显示面板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312663A1 (en) * 2009-10-19 2011-04-20 Novaled AG Organic electronic device comprising an organic semiconducting material
EP3038181A1 (en) * 2014-12-22 2016-06-29 Solvay SA Organic electronic devices comprising acridine derivatives in an emissive layer free of heavy atom compounds
CN106632085A (zh) * 2016-12-23 2017-05-10 长春海谱润斯科技有限公司 一种含氮杂环衍生物及使用该含氮杂环衍生物的有机发光器件
CN110635053A (zh) * 2018-06-21 2019-12-31 上海和辉光电有限公司 p型掺杂材料、包含其的空穴注入材料、空穴注入层和OLED显示面板

Also Published As

Publication number Publication date
US20220315540A1 (en) 2022-10-06
CN114981994A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
JP6334744B2 (ja) Pholedのためのアザ−ジベンゾチオフェン又はアザ−ジベンゾフラン核をもつ新物質
EP2541635B1 (en) Organic electroluminescent element
EP3059773B1 (en) Indenotriphenylene-based amine derivative for organic electroluminescent device
JP2020083896A (ja) 多環芳香族誘導体化合物及びこれを用いた有機発光素子
EP2521197B1 (en) Organic electroluminescent element
KR20180078177A (ko) 유기 화합물 및 이를 포함하는 유기전계발광소자
CN106146532A (zh) 有机电致发光材料和装置
JP2013537556A (ja) 新規有機電界発光化合物およびこれを使用する有機電界発光素子
JP2017503773A (ja) 新規の有機電界発光化合物及びそれを含む有機電界発光デバイス
KR102191023B1 (ko) 유기발광 화합물 및 이를 포함하는 유기전계발광소자
CN112020778A (zh) 有机电致发光元件和电子设备
TWI662040B (zh) 多雜芳族化合物及使用其的有機電激發光元件
KR20170003469A (ko) 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR20170003471A (ko) 유기발광 화합물 및 이를 포함하는 유기전계발광소자
WO2015050140A1 (ja) 化合物、これを用いた有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子並びに電子機器
TW201823247A (zh) 有機化合物及使用該有機化合物之有機電致發光裝置
EP2963032A1 (en) Novel naphthotriazole derivative and organic electroluminescence element
WO2022082646A1 (zh) 发光器件、发光基板和发光装置
WO2022126362A1 (zh) D-a型有机发光材料及其应用、发光器件、发光基板和发光装置
JP2018100264A (ja) 化合物およびそれを用いた有機電子デバイス
TW201720801A (zh) 有機材料及使用其的有機電激發光元件
JP6539821B2 (ja) 化合物およびこれを用いた有機電子デバイス
JP2018058823A (ja) 化合物およびこれを用いた有機電子デバイス
EP4265612A1 (en) Heterocyclic compound, organic light-emitting device comprising same, manufacturing method therefor, and composition for organic material layer
KR20220069345A (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958228

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/01/2024)