WO2022126362A1 - D-a型有机发光材料及其应用、发光器件、发光基板和发光装置 - Google Patents

D-a型有机发光材料及其应用、发光器件、发光基板和发光装置 Download PDF

Info

Publication number
WO2022126362A1
WO2022126362A1 PCT/CN2020/136433 CN2020136433W WO2022126362A1 WO 2022126362 A1 WO2022126362 A1 WO 2022126362A1 CN 2020136433 W CN2020136433 W CN 2020136433W WO 2022126362 A1 WO2022126362 A1 WO 2022126362A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light
type organic
organic light
aryl
Prior art date
Application number
PCT/CN2020/136433
Other languages
English (en)
French (fr)
Inventor
梁丙炎
王斯琦
张东旭
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080003335.2A priority Critical patent/CN114981989A/zh
Priority to PCT/CN2020/136433 priority patent/WO2022126362A1/zh
Priority to US17/631,371 priority patent/US20230018040A1/en
Publication of WO2022126362A1 publication Critical patent/WO2022126362A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene

Definitions

  • the present disclosure relates to the technical field of lighting and display, and in particular, to a D-A type organic light-emitting material and its application, a light-emitting device, a light-emitting substrate and a light-emitting device.
  • OLED Organic Light Emitting Diode
  • a D-A type organic light-emitting material comprising: a donor moiety and an acceptor moiety; the donor moiety is represented by the following formula (I):
  • L is selected from any one of divalent aryl, divalent heteroaryl, divalent condensed aryl and divalent condensed heteroaryl; where L is selected from divalent aryl and In the case of any one of the divalent heteroaryl groups, the divalent aryl group and the divalent heteroaryl group have one or more substituents, and the substituents are selected from deuterium, tert-butyl, phenyl , any one of cyano group and methylimino group, and at least one substituent is selected from any one of cyano group and methylimino group, and the total number of said cyano group and said methylimino group No more than 2; when L is selected from any one of divalent fused aryl groups and divalent fused heteroaryl groups, the divalent fused aryl group and the divalent fused heteroaryl group have or do not have Substituent, when the divalent condensed aryl group and the divalent conden
  • the L is selected from any one of the following structural formulas:
  • Z 1 to Z 11 are the same or different, and are independently selected from any one of hydrogen, deuterium, tert-butyl, phenyl, cyano and methylimide, and the cyano group and the methylidene
  • the total number of amine groups does not exceed 2;
  • Y 1 to Y 6 are the same or different, and are independently selected from any one of hydrogen, deuterium, tert-butyl, phenyl, cyano and methylimino groups, and Y 1 to Y 3 have at most one cyano group or methylimino group, and Y 4 to Y 6 have at most one cyano group or methylimino group.
  • the acceptor moiety is selected from the following structural formula:
  • R 3 to R 10 are the same or different, and are independently selected from hydrogen, deuterium, halogen, cyano, nitro, amino, alkyl of C 1 to C 40 , alkenyl of C 2 to C 40 , C 2 ⁇ C 40 alkynyl, C 3 ⁇ C 40 cycloalkyl, C 3 ⁇ C 40 heterocycloalkyl, C 6 ⁇ C 60 aryl, C 5 ⁇ C 60 heteroaryl, C 1 ⁇ C 40 alkoxy, C 6 -C 60 aryloxy, C 3 -C 40 alkylsilyl, C 6 -C 60 arylsilyl, C 1 -C 40 alkylboron among C 6 -C 60 aryl boron groups, C 6 -C 60 aryl phosphinoids, C 6 -C 60 mono- or diaryl phosphino groups and C 6 -C 60 arylamine groups Any of ; or, combined with adjacent groups to form a condensed ring
  • the twist angle between the donor moiety and the acceptor moiety is 35 degrees to 80 degrees.
  • the twist angle between the donor moiety and the acceptor moiety is 45 degrees to 60 degrees.
  • the triplet excitons and the singlet excitons have the following relationship:
  • M is an integer greater than or equal to 1
  • N is an integer greater than M
  • the radiation decay time of the D-A type organic light-emitting material is less than 30 ns.
  • the wavelength corresponding to the peak of the emission spectrum peak of the D-A type organic light-emitting material gradually increases.
  • a light-emitting device comprising: a light-emitting layer, the light-emitting layer includes a host material and a guest material, and the guest material is selected from the above-mentioned D-A type organic light-emitting materials.
  • the host material is a combination of two or more selected from anthracene, aromatic amine compounds and derivatives thereof.
  • the mass ratio of the D-A type organic light-emitting material in the light-emitting layer is 0.5%-10%.
  • a light-emitting substrate comprising: a substrate; a plurality of light-emitting devices disposed on the substrate; at least one light-emitting device is the above-mentioned light-emitting device.
  • a light-emitting device comprising the above-mentioned light-emitting substrate.
  • FIG. 1 is a cross-sectional structural view of a light emitting substrate according to some embodiments.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features.
  • a feature defined as “first”, “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C”, and both include the following combinations of A, B, and C: A only, B only, C only, A and B , A and C, B and C, and A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes of the drawings due to, for example, manufacturing techniques and/or tolerances, are contemplated.
  • example embodiments should not be construed as limited to the shapes of the regions shown herein, but to include deviations in shapes due, for example, to manufacturing. For example, an etched area shown as a rectangle will typically have curved features.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • a light emitting device including a light emitting substrate.
  • a circuit for providing electrical signals to the light-emitting substrate to drive the light-emitting substrate to emit light may be called a control circuit, and may include a circuit board and/or IC electrically connected to the light-emitting substrate. (Integrate Circuit, integrated circuit).
  • the light-emitting device may be a lighting device, and in this case, the light-emitting substrate may be a lighting substrate, for example, may be used as a light source to realize a lighting function.
  • the light-emitting substrate may be a backlight module in a liquid crystal display device, a lamp used for internal or external lighting, or various signal lamps, and the like.
  • the light-emitting device may be a display device, and in this case, the light-emitting substrate is a display substrate for realizing the function of displaying an image (ie, a picture).
  • the light emitting device may comprise a display or a product incorporating a display.
  • the display may be a flat panel display (Flat Panel Display, FPD), a microdisplay, and the like.
  • FPD Flat Panel Display
  • the display can be a transparent display or an opaque display according to whether the user can see the scene behind the display.
  • the display can be a flexible display or a normal display (which can be called a rigid display).
  • products incorporating displays may include: computer monitors, televisions, billboards, laser printers with display capabilities, telephones, cell phones, Personal Digital Assistants (PDAs), laptop computers, digital cameras, camcorders Recorders, viewfinders, vehicles, large walls, theater screens or stadium signage, etc.
  • PDAs Personal Digital Assistants
  • laptop computers digital cameras
  • camcorders Recorders viewfinders
  • vehicles large walls, theater screens or stadium signage, etc.
  • the light-emitting substrate 1 may include a substrate 11 and a plurality of light-emitting devices 12 disposed on the substrate 11 .
  • the substrate 11 may be a flexible substrate or a rigid substrate.
  • the material of the substrate 11 may be a PI (polyimide, polyimide) material.
  • the substrate 11 may be glass.
  • the substrate 11 may be a substrate on which a pixel driving circuit has been formed.
  • each light emitting device 12 may include an anode 121 and a cathode 122 , and a hole injection layer (HIL) 123 and a hole transport layer (HIL) disposed between the anode 121 and the cathode 122 Layer, HTL) 124, Emitting Layer (EML) 125, Hole Blocking Layer (HBL) 126, Electron Transport Layer (ETL, ETL) 127 and Electron Inject Layer (EIL) ) 128 and other organic material layers.
  • the hole injection layer 123 is adjacent to the anode 121
  • the electron injection layer 128 is adjacent to the cathode 122 .
  • the material of the hole injection layer 123 can be selected from any one or a combination of two or more of aromatic tertiary amines and phthalocyanines and derivatives thereof, and the material of the hole transport layer 124 can be selected from aromatic amines and any one or a combination of two or more of the carbazole compounds, the material of the hole blocking layer 126 can be selected from any one or a combination of two or more of benzimidazole, triazine and pyrimidine and their derivatives ;
  • the material of the electron transport layer 127 can be selected from benzimidazole, triazine, pyrimidine, pyridine, pyrazine, quinoxaline, quinoline, oxadiazole, diazepine, phosphine oxide, aromatic ketone , lactam, borane compounds and any one or a combination of two or more of their derivatives; the material of the electron injection layer 128 can be selected from nitrogen-containing five-member
  • Materials of the light emitting layer 125 may include host materials and guest materials.
  • the host material can be selected from any one or a combination of two or more of anthracene, aromatic amine compounds and their derivatives
  • the guest material can be selected from D-A type organic light-emitting materials, and the D-A type organic light-emitting materials include a donor (donor) moiety D and acceptor moiety A.
  • the donor moiety D of the D-A type organic light-emitting material in the light-emitting layer 125 of the at least one light-emitting device 12 is represented by the following formula (I):
  • L is selected from any one of divalent aryl, divalent heteroaryl, divalent condensed aryl and divalent condensed heteroaryl, and L is selected from divalent aryl
  • the divalent aryl and the divalent heteroaryl have one or more substituents selected from the group consisting of deuterium, tert-butyl, phenyl, cyano and methyl. Any one of the imino groups, and at least one substituent is selected from any one of a cyano group and a methanimine group, and the total number of the cyano group and the methanimine group is not more than 2.
  • L may be selected from any of the following formulae.
  • Y 1 to Y 6 are the same or different, and are independently selected from any one of hydrogen, deuterium, tert-butyl, phenyl, cyano and methylimino, and Y 1 to Y 3 have at most One cyano group or methylimino group, and at most one cyano group or methylimino group in Y 4 to Y 6 .
  • L is selected from a divalent heteroaryl group
  • L may be selected from any of the following formulae.
  • Y 7 to Y 12 are the same or different, and are independently selected from any one of hydrogen, deuterium, tert-butyl, phenyl, cyano and methylimino, and at most Y 7 to Y 8 have One cyano group or methylimino group, at most one cyano group or methylimino group in Y 9 to Y 10 , X is selected from S, O, NH or N(R).
  • L is selected from any one of a divalent fused aryl group and a divalent fused heteroaryl group
  • the divalent fused aryl group and the divalent fused heteroaryl group have or not
  • the substituent is selected from any one of deuterium, tert-butyl, phenyl, cyano and methylimino, and the total of cyano and methylimino is The number should not exceed 2.
  • the divalent condensed aryl group when L is selected from the divalent condensed aryl group, can be selected from any one of naphthyl, anthracenyl and phenanthrenyl, at this time, the divalent condensed aryl group is selected from naphthyl
  • L can be selected from any one of the following formulae.
  • Z 6 to Z 11 are the same or different, and are independently selected from any one of hydrogen, deuterium, tert-butyl, phenyl, cyano and methylimino, and in Z 6 to Z 11 , cyano and all The total number of said methylimine groups is not more than 2.
  • the divalent condensed heteroaryl group may be selected from any one of quinolyl, indolyl, and benzothiazolyl.
  • L can be selected from any one of the following formulae.
  • Z 1 to Z 5 , and Z 12 to Z 15 are the same or different, and are independently selected from any one of hydrogen, deuterium, tert-butyl, phenyl, cyano and methylimino, and Z 12 to Z 15 are the same or different.
  • the total number of cyano groups and methylimino groups in 1 to Z 5 is not more than 2
  • the total number of cyano groups and methylimino groups in Z 12 to Z 15 is not more than 2
  • X is selected from O, S , NH or N(R).
  • the acceptor moiety A is selected from any one of substituted or unsubstituted fused aromatic rings and fused heteroaromatic rings, the number of heteroatoms in the fused heterocyclic ring is not greater than 2, and the substituents are selected from among R any one;
  • R, R 1 and R 2 are the same or different, and are independently selected from deuterium, halogen, cyano, nitro, amino, C 1 -C 40 alkyl, C 2 -C 40 alkenyl, C 2 -C 40 alkynyl, C 3 -C 40 cycloalkyl, C 3 -C 40 heterocycloalkyl, C 6 -C 60 aryl, C 5 -C 60 heteroaryl, C 1 - C40 alkoxy, C6 - C60 aryloxy, C3 - C40 alkylsilyl, C6 - C60 arylsilyl, C1 - C40 alkane Boron group, C 6 -C 60 ary
  • the acceptor moiety A when the acceptor moiety A is selected from substituted or unsubstituted fused aromatic rings, the acceptor moiety A may be any one selected from naphthalene, anthracene and phenanthrene, and the structural formula is shown below.
  • R 3 to R 11 are the same or different, and are independently selected from hydrogen, deuterium, halogen, cyano, nitro, amino, C 1 -C 40 alkyl, C 2 -C 40 alkenyl, C 2 ⁇ C 40 alkynyl, C 3 ⁇ C 40 cycloalkyl, C 3 ⁇ C 40 heterocycloalkyl, C 6 ⁇ C 60 aryl, C 5 ⁇ C 60 heteroaryl, C 1 ⁇ C 40 alkoxy, C 6 -C 60 aryloxy, C 3 -C 40 alkylsilyl, C 6 -C 60 arylsilyl, C 1 -C 40 alkylboron among C 6 -C 60 aryl boron groups, C 6 -C 60 aryl phosphinoids, C 6 -C 60 mono- or diaryl phosphino groups and C 6 -C 60 arylamine groups Any of ; or, combined with adjacent groups to form a condensed ring
  • the D-A type organic light-emitting material can be represented as any one of the following structures:
  • L can be a divalent condensed heteroaryl group, such as quinoline group
  • the structural formula of the D-A type organic light-emitting material can be expressed as follows:
  • the donor moiety and the acceptor moiety are connected by a dashed line.
  • R 3 to R 11 are the same or different, they are independently selected from hydrogen, deuterium, halogen, cyano, nitro, amino, C 1 -C 40 alkyl, C 2 -C 40 alkenyl, C 2 -C 40 alkynyl, C 3 -C 40 cycloalkyl, C 3 -C 40 heterocycloalkyl, C 6 -C 60 aryl, C 5 -C 60 heteroaryl, C 1 - C40 alkoxy, C6 - C60 aryloxy, C3 - C40 alkylsilyl, C6 - C60 arylsilyl, C1 - C40 alkane Boron group, C 6 -C 60 aryl boron group, C 6 -C 60 aryl phosphino group, C 6 -C 60 mono- or diaryl phosphino group and C 6 -C 60 aryl amine Any one of the groups; or, combined with an adjacent group to form
  • the acceptor part of the above structural formula is not limited to the above fused aromatic rings, but can also include non-benzene aromatic rings, such as seven-membered aromatic rings, or even alicyclic, heterocyclic, etc., alicyclic according to monocyclic or polycyclic , and can include small rings with 3 to 4 carbon atoms, ordinary rings with 5 to 7 carbon atoms, medium rings with 8 to 11 carbon atoms, macrocycles with more than 11 carbon atoms, and Cyclic, spiro, bridged, etc.
  • non-benzene aromatic rings such as seven-membered aromatic rings, or even alicyclic, heterocyclic, etc.
  • alicyclic according to monocyclic or polycyclic and can include small rings with 3 to 4 carbon atoms, ordinary rings with 5 to 7 carbon atoms, medium rings with 8 to 11 carbon atoms, macrocycles with more than 11 carbon atoms, and Cyclic, spiro, bridged, etc.
  • non-benzene-based aromatic ring, alicyclic ring, or heterocyclic ring may be a condensed ring formed by combining at least one of R 3 to R 11 with an adjacent group.
  • the acceptor moiety A is selected from substituted or unsubstituted fused heteroaromatic rings
  • the acceptor moiety A may be selected from acridine, and the structural formula is shown below.
  • R 3 to R 10 are the same or different, and are independently selected from hydrogen, deuterium, halogen, cyano, nitro, amino, alkyl of C 1 to C 40 , alkenyl of C 2 to C 40 , C 2 ⁇ C 40 alkynyl, C 3 ⁇ C 40 cycloalkyl, C 3 ⁇ C 40 heterocycloalkyl, C 6 ⁇ C 60 aryl, C 5 ⁇ C 60 heteroaryl, C 1 ⁇ C 40 alkoxy, C 6 -C 60 aryloxy, C 3 -C 40 alkylsilyl, C 6 -C 60 arylsilyl, C 1 -C 40 alkylboron among C 6 -C 60 aryl boron groups, C 6 -C 60 aryl phosphinoids, C 6 -C 60 mono- or diaryl phosphino groups and C 6 -C 60 arylamine groups Any of ; or, combined with adjacent groups to form a condensed ring
  • the D-A type organic light-emitting material can be represented as the following structure:
  • L can be a divalent condensed heteroaryl group, such as quinoline group
  • the structural formula of the D-A type organic light-emitting material can be expressed as follows:
  • the donor moiety and the acceptor moiety are connected by a dashed line.
  • R 3 to R 10 are the same or different, each independently selected from hydrogen, deuterium, halogen, cyano, nitro, amino, C 1 -C 40 alkyl, C 2 -C 40 alkenyl, C 2 -C 40 alkynyl, C 3 -C 40 cycloalkyl, C 3 -C 40 heterocycloalkyl, C 6 -C 60 aryl, C 5 -C 60 heteroaryl, C 1 - C40 alkoxy, C6 - C60 aryloxy, C3 - C40 alkylsilyl, C6 - C60 arylsilyl, C1 - C40 alkane Boron group, C 6 -C 60 aryl boron group, C 6 -C 60 aryl phosphino group, C 6 -C 60 mono- or diaryl phosphino group and C 6 -C 60 aryl amine Any one of the groups; or, combined with an adjacent group to form
  • the acceptor part of the above structural formula is also not limited to the above condensed heteroaromatic rings, and can also include non-benzene-based aromatic hydrocarbons, alicyclics, heterocycles, etc., wherein, the specific structures of the non-benzene-based aromatic hydrocarbons and alicyclic rings here can refer to the above Relevant descriptions of non-benzene aromatic hydrocarbons and alicyclics.
  • organic molecules in the ground state S0 will be excited to a higher-energy quantum state, called an excited state.
  • the excited state is divided into two types according to the different electron spin modes: when the electron spin directions of the ground state and the excited state are consistent during the transition process (the two electron spin directions are opposite), the spin quantum number is 0, The spin multiplicity is 1, and this excited state is called a singlet (line) state; during the transition process, the electron spins of the ground state and the excited state change (the two electrons spin in the same direction), and the spin quantum The sum of the numbers is 1, the spin multiplicity is 3, and this excited state is called a triplet (line) state. Depending on the absorbed energy, the molecules are excited to different excited states.
  • the molecule When absorbing higher energy, the molecule will be excited to a higher energy excited state. However, the lifetime of the high-energy excited state is very short, and it is easy to return to the lowest excited state S1 or T1 through the form of internal conversion. In other words, photophysical chemical reactions generally occur in the S1 state and the T1 state, which is usually called the Kasha rule. .
  • excited state of the molecule is very unstable and will return to the ground state through various ways of deactivation.
  • the deactivation process of excited states is mainly divided into physical deactivation and chemical deactivation, while chemical deactivation is rare in optoelectronic material systems, while physical deactivation is more common and cannot be avoided.
  • Excited states may be deactivated by intermolecular energy transfer or electron transfer interactions, or by intramolecular radiative transitions or nonradiative transition processes.
  • the luminescent molecule When the luminescent molecule is in an excited state, it can return to the ground state through a radiative transition.
  • the electronic configuration does not change, that is, the transition process does not involve the flip of the electron spin, and the light emitted at this time is called fluorescence, such as the light generated when the S1 state radiation transitions back to the S0 state.
  • fluorescence such as the light generated when the S1 state radiation transitions back to the S0 state.
  • the electron configuration changes before and after the radiation transition that is, the electron spin direction is reversed during the transition
  • we call the light emitted at this time we call the light emitted at this time as phosphorescence, such as the light generated when the T1 state transitions to the S0 state.
  • phosphorescence such as the light generated when the T1 state transitions to the S0 state.
  • the inversion of electron spin is very difficult, so it is difficult to observe phosphorescence in general molecular systems.
  • the non-radiative transition process usually refers to the process in which the molecules in the excited state are not inactivated by radiating light, mainly including the internal conversion process between the same configuration (such as the transition from S2 to S1) and the intersystem channeling between different configurations. Transition process (eg transition between T1 and S1).
  • the intersystem crossing process involves the flipping of electron spins, so this process in general systems is much slower than the internal conversion process. It is generally considered that the intersystem crossing process cannot be compared with the internal conversion process. compete.
  • the excited state transition of an organic molecule can be simply understood as the process of the electron in the molecule transitioning from an occupied orbital to a non-occupied orbital. After the transition, the original orbit of the electron will become an empty orbit, that is, the hole orbit, and the final orbit.
  • the non-occupied orbitals are called electron orbitals.
  • the distribution positions of the hole orbitals and electron orbitals of the molecules before and after the transition are roughly the same, which is called locally excited (LE) ) state, this excited state often appears in the compounds of conjugated macromolecules, such as naphthalene, anthracene, etc.; on the contrary, if the electrons and holes are distributed on different segments of the molecule or different molecules before and after the transition, it is called the charge Transfer excitation (charge-transfer, CT) state, this excited state often occurs in organic molecular compounds connected to the acceptor, such as the molecules of D-A new organic materials.
  • L locally excited
  • CT charge Transfer excitation
  • the LE state exists widely in organic compound molecules. Since the electron-hole distribution positions of the excited state of the molecule are basically the same after the molecule is excited, the excitons formed by the electron-hole pair have a large binding energy at this time, which is called Frenkel excitons. According to the Coulomb interaction formula, the interaction between positive and negative charges is inversely proportional to the square of the radius, so this type of exciton has a large binding energy, and the electron-hole pair is not easy to separate, so it is easy to deactivate the excited state by radiating photons. To the ground state, molecules dominated by the LE state generally have high radiative transition rates and photoluminescence efficiencies.
  • the large exciton binding energy also affects the spin flip of electrons, so it is generally believed that the LE state itself is difficult to undergo intersystem crossing process, which also leads to organic molecules whose excited states are dominated by LE states. A phenomenon in which exciton utilization is generally low.
  • the CT state is a kind of excited state in which electrons and holes are distributed on different segments of the system, and the excitons formed at this time are called charge transfer excitons.
  • This type of excitons has a relatively small exciton binding energy because the electron-hole distance is relatively far. Smaller binding energy makes electrons more free, and the possibility of intersystem crossing is also greater, which ensures the exciton utilization rate of the material.
  • the relatively distant electron-hole distribution leads to the lack of effective orbital coupling during electron transition, and the transition moment is usually small, thus restricting its photoluminescence efficiency.
  • the CT state has a longer lifetime compared to the LE state, and triplet-triplet annihilation (TTA) easily occurs between the CT states of the triplet state. More care is taken to prevent material efficiency roll-off at high current densities.
  • TTA triplet-triplet annihilation
  • intramolecular charge transfer state Intramolecular Charge Transfer, ICTState
  • intermolecular charge transfer state Intramolecular Charge Transfer State
  • CT states often appear in donor-acceptor molecular systems. There are many factors that affect the properties of CT states, such as the ability to give receptors, the distance between receptors and their relative positions.
  • the dipole moment of the CT state is usually larger, which will make it more stable under the influence of the polar field, so it is very sensitive to the polarity of the solvent.
  • the emission of the CT state is red-shifted, and the spectrum broadens and decreases.
  • solvochromic effect known as the CT state.
  • the solvochromic effect is an effective method to judge whether the system contains CT state.
  • the HOMO Highest Occupied Molecular Orbital, the highest occupied molecular orbital
  • LUMO Lowest Molecular Orbital
  • the D-A type organic light-emitting material whose donor moiety is a triphenylamine group, and the D-A modified based on the linking group between the donor moiety and the acceptor moiety in the embodiments of the present disclosure are shown
  • the donor part is a triphenylamine group as a comparative example, and the donor part is a triphenylamine group, the HOMO orbital and the LUMO orbital are localized on the donor part and the acceptor part respectively, the D-A
  • the frontier orbitals of the D-A type organic light-emitting material have almost no overlap, that is, the CT state of the D-A type organic light-emitting material is stronger.
  • the frontier orbital of the D-A type organic light-emitting material can have both overlapping parts and separated parts, which belongs to the hybrid local charge transfer excitation.
  • Hybridized Local and Charge-Transfer HLCT
  • This hybrid excited state is different from the pure LE state and pure CT state.
  • the molecular conjugation is appropriately increased to expand the overlap area of electron holes, that is, an appropriate amount of LE states is introduced. This not only satisfies the high photoluminescence efficiency, but also ensures the exciton utilization rate.
  • the problems of strong CT state, small overlap integral, low fluorescence quantum yield and reddish chromaticity of pure TADF (Thermally activated delayed fluorescence) material are improved.
  • the twist angle between the donor part and the acceptor part of the D-A type organic light-emitting material is 35 degrees to 80 degrees. According to the findings, a twist angle that is too large (e.g., 90°) produces pure CT or pure LE states, and the coupling between LE and CT states is severely suppressed due to the nearly orthogonal orbitals. On the contrary, too small twist angle (eg, 0°) will conjugate the molecules of the whole D-A type organic light-emitting material, resulting in the disappearance of CT transition. Therefore, a suitable twist angle is of great significance to maintain the coupling state between the CT state and the LE state.
  • a twist angle that is too large e.g. 90°
  • too small twist angle eg, 0°
  • the twist angle between the donor part and the acceptor part of the D-A organic light-emitting material is between the pure LE state and the pure CT state, and the intramolecular charge-transfer (CT) excited state and the local excitation (Locally excited state) excited, LE) state hybrid coexistence.
  • the twist angle between the donor part D and the acceptor part A of the D-A type organic light-emitting material is 35 degrees to 80 degrees.
  • M is an integer greater than or equal to 1
  • N is an integer greater than M
  • the D-A type organic light-emitting material can generate reverse intersystem crossing from the "high-level" triplet state to the singlet state, so that the fluorescent material can effectively utilize the triplet excitons, and can significantly reduce the triplet excitons. quenching.
  • the radiation decay time of the D-A type organic light-emitting material is less than 30 ns. That is to say, the photoemission spectrum of the D-A type organic light-emitting material is fluorescence, which can reduce the quenching of triplet excitons.
  • the excited state is simulated by a functional, and it is obtained by calculation that as the polarity of the solvent gradually increases, the wavelength corresponding to the peak of the emission spectrum peak of the D-A type organic light-emitting material gradually increases. This indicates that CT components exist in the excited state of the D-A type organic light-emitting material, which further proves that the D-A type organic light-emitting material has HLCT characteristics.
  • the mass ratio of the D-A type organic light-emitting material in the light-emitting layer is 0.5%-10%.
  • Some embodiments of the present disclosure provide an application of a D-A type organic light-emitting material in an organic electronic device.
  • the organic electronic devices here can be organic light-emitting diodes (OLEDs), organic photovoltaic cells, organic light-emitting cells, organic field effect transistors, organic light-emitting field effect transistors, organic lasers, organic spintronic devices, organic sensors and organic plasmons Emitting diode (Organic Plasmon EmittingDiode) and so on.
  • OLEDs organic light-emitting diodes
  • organic photovoltaic cells organic light-emitting cells
  • organic field effect transistors organic light-emitting field effect transistors
  • organic lasers organic spintronic devices
  • organic sensors and organic plasmons Emitting diode Organic Plasmon EmittingDiode
  • the D-A type organic light-emitting material is used in the light-emitting layer of an OLED device.
  • the D-A type organic light-emitting material can be used as a guest material, doped in a host material, and a light-emitting layer is formed by an evaporation or inkjet printing process.
  • Some embodiments of the present disclosure provide a method for preparing a D-A type organic light-emitting material, wherein, according to different obtained raw materials, the D-A type organic light-emitting material can be prepared through different synthesis routes.
  • the D-A type organic light-emitting material The preparation route is not specifically limited.
  • the first compound (i) is first synthesized, and then the first compound (i) is used as a reaction raw material to synthesize a D-A type organic light-emitting material.
  • L is selected from any one of a divalent aryl group, a divalent heteroaryl group, a divalent condensed aryl group and a divalent condensed heteroaryl group.
  • a 1 is selected from any one of condensed aromatic ring or condensed heteroaromatic ring
  • a 2 is selected from any one of halogen
  • L is selected from any one of divalent aryl and divalent heteroaryl
  • the divalent aryl group and the divalent heteroaryl group have one or more substituents, and the substituents are independently selected from any one of deuterium, tert-butyl, phenyl, cyano and methylimino, and At least one substituent is selected from any one of cyano group and methylimine group, and the total number of cyano group and methylimine group is not more than 2.
  • the condensed aromatic ring or condensed heteroaromatic ring may or may not have a substituent, and when the condensed aromatic ring or condensed heteroaromatic ring has a substituent, the substituent is selected from any one of R.
  • R is selected from deuterium, halogen, cyano, nitro, amino, C 1 -C 40 alkyl, C 2 -C 40 alkenyl, C 2 -C 40 alkynyl, C 3 -C 40 cycloalkane base, C 3 -C 40 heterocycloalkyl, C 6 -C 60 aryl, C 5 -C 60 heteroaryl, C 1 -C 40 alkoxy, C 6 -C 60 aryloxy group, C 3 -C 40 alkylsilyl group, C 6 -C 60 arylsilyl group, C 1 -C 40 alkylboron group, C 6 -C 60 arylboron group, C 6 Any one of ⁇ C 60 aryl
  • a 1 is selected from any one of condensed aromatic ring or condensed heteroaromatic ring
  • L is selected from divalent aryl, divalent heteroaryl, divalent condensed aryl and divalent condensed heteroaryl Either way, it can be seen that A 1 and L can be linked together by a coupling reaction.
  • a 1 selected from phenanthrene and L selected from aryl containing cyano group can be connected together by suzuki coupling, and the reaction equation can be as follows:
  • the first compound (i) is used as a reaction raw material to undergo a substitution reaction with the following structural formula to obtain a D-A type organic light-emitting material.
  • the second compound (ii) is first synthesized, and then the second compound (ii) is used as a reaction raw material to synthesize the D-A type organic light-emitting material.
  • m and n are each independently an integer from 0 to 3
  • R 1 and R 2 are the same or different, and are independently selected from deuterium, halogen, cyano, nitro, amino, C 1 ⁇ C 40 alkyl, C 2 -C 40 alkenyl, C 2 -C 40 alkynyl, C 3 -C 40 cycloalkyl, C 3 -C 40 heterocycloalkyl, C 6 -C 60 aryl, C 5 -C 60 heteroaryl, C 1 -C 40 alkoxy, C 6 -C 60 aryloxy, C 3 -C 40 alkylsilyl, C 6 -C 60 arylsilyl group, C 1 -C 40 alkylboron group, C 6 -C 60 aryl boron group, C 6 -C 60 aryl phosphinoidene group, C 6 -C 60 mono or C 60 Any of a diarylphosphino group and a C 6 -C 40 alky
  • L can be selected from phenylethyl cyanide
  • the fused aromatic ring is selected from phenanthrene as an example
  • A can be selected from any one of halogen and boric acid, in the case of A is selected from halogen, such as Cl, the phenanthrene
  • the structural formula can be as follows.
  • the second compound (ii) can be used as a reaction raw material to synthesize the D-A type organic light-emitting material through suzuki coupling, and the specific equation is shown below.
  • Step 1) 1-1, 1-2, K 2 CO 3 and Pd(PPh 3 ) 4 in a mixed solution of DME (Dimethyl ether, dimethyl ether) and water were refluxed under nitrogen protection for about 12 hours. After cooling to room temperature (about 22°C), the reaction mixture was filtered through a plug of silica gel. The organic layer was separated, washed with water, then dried over Na2SO4 . After evaporation of the solvent, the crude product was purified by column chromatography on silica gel using a mixed solvent of heptane and dichloromethane (volume ratio of heptane to dichloromethane from 9/1 to 7/3) as eluent Elution gave 1-3.
  • DME Dimethyl ether, dimethyl ether
  • Step 2 Add 1-4 into the three-necked flask, pass nitrogen gas, then add a certain amount of tetrahydrofuran, cool to -80°C, slowly drop n-butyllithium ethane solution and stir. A cuprous chloride solution, and a certain amount of palladium acetate, trimethoxytriphenylphosphine, and 1-3 dissolved in tetrahydrofuran were then added and stirred at room temperature, followed by addition of water and chloroform for extraction. The separated organic layer was subjected to drying and column chromatography, and recrystallized to obtain Compound 1.
  • the NMR data of compound 1 are: 13 C-NMR: 145.9(d), 140.9(s), 134.2(s), 133.7(d), 131.9(s), 130.3(s), 129.6(m), 128.5(m ), 126.6(m), 125.7(m), 125.2(m), 122.4(d), 121.0(s), 120.1(s), 119.6(s), 109.8(s).
  • Step 1) 1-1, 2-2, K 2 CO 3 and Pd(PPh 3 ) 4 in a mixed solution of DME (Dimethyl ether, dimethyl ether) and water were refluxed for about 12 hours under nitrogen protection. After cooling to room temperature (about 22°C), the reaction mixture was filtered through a plug of silica gel. The organic layer was separated, washed with water, then dried over Na2SO4 . After evaporation of the solvent, the crude product was purified by column chromatography on silica gel using a mixed solvent of heptane and dichloromethane (volume ratio of heptane to dichloromethane from 9/1 to 7/3) as eluent Elution gave 2-3.
  • DME Dimethyl ether, dimethyl ether
  • Step 2 Add 1-4 into the three-necked flask, pass nitrogen, then add a certain amount of tetrahydrofuran, cool to -80°C, slowly drop n-butyllithium ethane solution and stir. A cuprous chloride solution, and a certain amount of palladium acetate, trimethoxytriphenylphosphine and 2-3 dissolved in tetrahydrofuran were then added and stirred at room temperature, followed by addition of water and chloroform for extraction. The separated organic layer was dried and column chromatographed, and recrystallized to obtain Compound 2.
  • the NMR data of compound 2 are: 13 C-NMR: 145.9(d), 144.0(s), 139.3(s), 133.8(s), 133.1(s), 132.3(s), 131.9(d), 130.3(s ), 129.6(m), 128.3(m), 126.6(m), 125.7(m), 123.9(s), 122.4(d), 119.6(s), 117.8(s), 105.3(s).
  • Step 1) 1-1, 3-2, K 2 CO 3 and Pd(PPh 3 ) 4 in a mixed solution of DME (Dimethyl ether, dimethyl ether) and water were refluxed for about 12 hours under nitrogen protection. After cooling to room temperature (about 22°C), the reaction mixture was filtered through a plug of silica gel. The organic layer was separated, washed with water, then dried over Na2SO4 . After evaporation of the solvent, the crude product was purified by column chromatography on silica gel using a mixed solvent of heptane and dichloromethane (volume ratio of heptane to dichloromethane from 9/1 to 7/3) as eluent Elution gave 3-3.
  • DME Dimethyl ether, dimethyl ether
  • Step 2 Add 1-4 into the three-necked flask, pass nitrogen, then add a certain amount of tetrahydrofuran, cool to -80°C, slowly drop n-butyllithium ethane solution and stir.
  • the cuprous chloride solution, and a certain amount of palladium acetate, trimethoxytriphenylphosphine, and 3-3 dissolved in tetrahydrofuran were then added and stirred at room temperature, followed by addition of water and chloroform for extraction.
  • the separated organic layer was subjected to drying and column chromatography, and recrystallized to obtain Compound 3-5.
  • Step 3 Add 3-6 into the three-necked flask, pass nitrogen gas, then add a certain amount of tetrahydrofuran, cool to -80°C, slowly drop n-butyllithium ethane solution and stir. A cuprous chloride solution, and a certain amount of palladium acetate, trimethoxytriphenylphosphine, and 3-5 dissolved in tetrahydrofuran were then added and stirred at room temperature, followed by addition of water and chloroform for extraction. The separated organic layer was dried and column chromatographed, and recrystallized to obtain Compound 3.
  • the NMR data of compound 3 are: 13 C-NMR: 163.7(s), 145.9(d), 139.5(s), 136.6(s), 133.8(s), 132.3(d), 131.9(s), 130.9(d) ), 130.3(s), 129.6(m), 128.5(m), 126.6(m), 125.7(m), 122.4(d), 121.1(s), 119.6(s).
  • Step 1) In a sealed tube, add 4-1, 4-2, Pd 2 dba 3 and sodium tert-butoxide Na(OC(CH 3 ) 3 ), tri-tert-butylphosphine in toluene, and seal the tube. The mixture was heated at 110°C for 18 hours. After cooling to room temperature, the solvent was removed under reduced pressure, then dichloromethane was added, and the organic layer was washed twice with water and brine. The product was purified to give 4-3.
  • Step 2) 4-3, 4-4, Pd(PPh 3 ) 4 , Na 2 CO 3 aqueous solution, ethanol and toluene were mixed in a flask. The mixture was degassed and the reaction was refluxed under nitrogen at 100°C for 24 hours. After cooling, the solvent was evaporated in vacuo and the product was extracted with dichloromethane ( CH2Cl2 ) . Dry over MgSO4 . The solvent was evaporated and compound 4 was isolated.
  • the NMR data of compound 4 are: 13 C-NMR: 149.6(s), 147.1(s), 145.9(d), 140.5(s), 134.2(s), 133.8(s), 131.9(s), 131.1(s) ), 130.3(s), 129.6(m), 129.1(s), 128.5(d), 127.0(s), 126.6(m), 125.7(m), 122.4(m), 120.2(s), 119.6(s ), 116.7(s).
  • Step 1) 1-1, 1-2, K 2 CO 3 and Pd(PPh 3 ) 4 in a mixed solution of DME (Dimethyl ether, dimethyl ether) and water were refluxed for about 12 hours under nitrogen protection. After cooling to room temperature (about 22°C), the reaction mixture was filtered through a plug of silica gel. The organic layer was separated, washed with water, then dried over Na2SO4 . After evaporation of the solvent, the crude product was purified by column chromatography on silica gel using a mixed solvent of heptane and dichloromethane (volume ratio of heptane to dichloromethane from 9/1 to 7/3) as eluent Elution gave 1-3.
  • DME Dimethyl ether, dimethyl ether
  • Step 2) 5-4 was added into the three-necked flask, and nitrogen was introduced into it, then a certain amount of tetrahydrofuran was added, cooled to -80°C, and n-butyllithium ethane solution was slowly added dropwise and stirred.
  • a cuprous chloride solution, and a certain amount of palladium acetate, trimethoxytriphenylphosphine and 1-3 dissolved in tetrahydrofuran were then added and stirred at room temperature, followed by addition of water and chloroform for extraction. The separated organic layer was dried and column chromatographed, and recrystallized to obtain Compound 5.
  • the NMR data of compound 5 are: 13 C-NMR: 145.9(s), 144.8(s), 140.9(d), 138.2(s), 134.2(s), 133.7(d), 131.9(s), 130.3(s ), 129.6(d), 129.2(d), 128.8(m), 128.3(d), 127.9(m), 126.6(m), 126(s), 125.7(m), 125.2(d), 123.2(d) ), 122.4(d), 121.0(s), 120.1(s), 119.6(s), 109.8(s).
  • the energy level difference between T2 and S1 of the above compounds 1 to 5 is calculated by using B3LYP density functional, and the results of the energy level difference between T2 and S1 are obtained as shown in Table 4 below.
  • the comparative compound is the compound in which the above donor moiety is a triphenylamine group.
  • An application example provides an OLED device
  • the guest material Dopant is selected from one of compounds 1 to 5, respectively, and the obtained devices are recorded as devices 1 to 5 in a one-to-one correspondence, respectively.
  • the device structure provided by the comparative example is the same as the device structure of the above application example, the difference is that the guest material Dopant adopts the structure shown in the following formula, that is, the above-mentioned comparative compound is used.
  • the device provided by the comparative example is designated as device 6.
  • the D-A type is The wave functions of the electrons and holes in the excited state of the organic light-emitting material have spatially separated parts and overlapping parts, which belong to the hybrid localized charge transfer excited state.
  • the molecular conjugation is appropriately increased to expand the overlapping area of electron holes, which can make the exciton binding energy of the D-A type organic light-emitting material relatively small, and it is easy to realize the spin flip of the excited state electrons and improve the triplet state.
  • the exciton utilization efficiency can also improve the problems that the pure TADF material has a strong CT state, a small overlap integral, a low fluorescence quantum yield, and a reddish chromaticity. And through device testing, it is found that these D-A type organic light-emitting materials can improve the luminous efficiency of the device when used in a light-emitting device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种D-A型有机发光材料,包括:给体部分和受体部分;给体部分如下(I)所示:其中,L选自芳基、杂芳基、稠芳基和稠杂芳基中的任一种;在L选自芳基和杂芳基中的任一种的情况下,芳基和杂芳基具有一个或多个取代基,取代基选自氘、叔丁基、苯基、氰基和甲亚胺基中的任一种,且至少一个取代基选自氰基和甲亚胺基中的任一种;在L选自稠芳基和稠杂芳基中的任一种的情况下,稠芳基和稠杂芳基具有或不具有取代基,在稠芳基和稠杂芳基具有取代基的情况下,取代基选自氘、叔丁基、苯基、氰基和甲亚胺基中的任一种;受体部分选自取代或未取代的稠芳环和稠杂环中的任一种。

Description

D-A型有机发光材料及其应用、发光器件、发光基板和发光装置 技术领域
本公开涉及照明和显示技术领域,尤其涉及一种D-A型有机发光材料及其应用、发光器件、发光基板和发光装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)具有自发光、广视角、反应时间快、发光效率高、工作电压低、基板厚度薄、可制作大尺寸与可弯曲式基板及制程简单等特性,被誉为下一代的“明星”显示技术。
发明内容
一方面,提供一种D-A型有机发光材料,包括:给体部分和受体部分;所述给体部分如下式(I)所示:
Figure PCTCN2020136433-appb-000001
其中,在式(I)中,L选自二价芳基、二价杂芳基、二价稠芳基和二价稠杂芳基中的任一种;在L选自二价芳基和二价杂芳基中的任一种的情况下,所述二价芳基和所述二价杂芳基具有一个或多个取代基,所述取代基选自氘、叔丁基、苯基、氰基和甲亚胺基中的任一种,且至少一个取代基选自氰基和甲亚胺基中的任一种,并且所述氰基和所述甲亚胺基的总个数不超过2个;在L选自二价稠芳基和二价稠杂芳基中的任一种的情况下,所述二价稠芳基和所述二价稠杂芳基具有或不具有取代基,在所述二价稠芳基和所述二价稠杂芳基具有取代基的情况下,所述取代基选自氘、叔丁基、苯基、氰基和甲亚胺基中的任一种,且所述氰基和所述甲亚胺基的总个数不超过2个;所述受体部分选自取代或未取代的稠芳环和稠杂环中的任一种,所述稠杂环中的杂原子个数不大于2,且取代基选自R中的任一种;R、R 1和R 2相同或不同,分别独立地选自氘、卤素、氰基、硝基、氨基、C 1~C 40的烷基、C 2~C 40的烯基、C 2~C 40的炔基、C 3~C 40的环烷基、C 3~C 40的杂环烷基、C 6~C 60的芳基、C 5~C 60的杂芳基、C 1~C 40的烷氧基、C 6~C 60的芳氧基、C 3~C 40的烷基甲硅烷基、C 6~C 60的芳基甲硅烷基、C 1~C 40的烷基硼基、C 6~C 60的芳基硼基、C 6~C 60的芳基亚膦基、C 6~C 60的单或二芳基膦基及C 6~C 60的芳基胺基中的任一种; 或者,与相邻的基团结合形成缩合环;m和n分别独立地为0~3中的整数。
在一些实施例中,所述L选自如下结构式中的任一种:
Figure PCTCN2020136433-appb-000002
其中,Z 1~Z 11相同或不同,分别独立地选自氢、氘、叔丁基、苯基、氰基和甲亚胺基中的任一种,且所述氰基和所述甲亚胺基的总个数不超过2个;Y 1~Y 6相同或不同,分别独立地选自氢、氘、叔丁基、苯基、氰基和甲亚胺基中的任一种,且在Y 1~Y 3中至多有一个氰基或甲亚胺基,在Y 4~Y 6中至多有一个氰基或甲亚胺基。
在一些实施例中,所述受体部分选自如下结构式:
Figure PCTCN2020136433-appb-000003
其中,R 3~R 10相同或不同,分别独立地选自氢、氘、卤素、氰基、硝基、氨基、C 1~C 40的烷基、C 2~C 40的烯基、C 2~C 40的炔基、C 3~C 40的环烷基、C 3~C 40的杂环烷基、C 6~C 60的芳基、C 5~C 60的杂芳基、C 1~C 40的烷氧基、C 6~C 60的芳氧基、C 3~C 40的烷基甲硅烷基、C 6~C 60的芳基甲硅烷基、C 1~C 40的烷基硼基、C 6~C 60的芳基硼基、C 6~C 60的芳基亚膦基、C 6~C 60的单或二芳基膦基及C 6~C 60的芳基胺基中的任一种;或者,与相邻的基团结合形成缩合环。
在一些实施例中,所述给体部分和所述受体部分之间的扭曲角度为35度~80度。
在一些实施例中,所述给体部分和所述受体部分之间的扭曲角度为45度~60度。
在一些实施例中,在所述D-A型有机发光材料中,所述三线态激子和单线态激子之间具有如下关系式:
|TN-SM|≤0.2eV;
其中,M为大于或等于1的整数,N为大于M的整数。
在一些实施例中,所述D-A型有机发光材料的辐射衰减时间小于30ns。
在一些实施例中,随着溶剂极性逐渐增大,所述D-A型有机发光材料的发射光谱峰的峰值所对应的波长逐渐增大。
另一方面,提供一种如上所述的D-A型有机发光材料在有机电子器件中的应用。
另一方面,提供一种发光器件,包括:发光层,所述发光层包括主体材料和客体材料,所述客体材料选自如上所述的D-A型有机发光材料。
在一些实施例中,所述主体材料选自蒽、芳胺类化合物及其衍生物中的一种两种以上的组合。
在一些实施例中,所述D-A型有机发光材料在所述发光层中的质量占比为0.5%-10%。
另一方面,提供一种发光基板,包括:衬底;设置于所述衬底上的多个发光器件;至少一个发光器件为如上所述的发光器件。
另一方面,提供一种发光装置,包括如上所述的发光基板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的发光基板的剖视结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结 构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
本公开的一些实施例提供一种发光装置,包括发光基板。当然也可以包括其他部件,例如可以包括用于向发光基板提供电信号,以驱动该发光基板发光的电路,该电路可以称为控制电路,可以包括与发光基板电连接的电路板和/或IC(Integrate Circuit,集成电路)。
在一些实施例中,该发光装置可以为照明装置,此时,发光基板可以为照明基板,如可以用作光源,实现照明功能。例如,发光基板可以是液晶显示装置中的背光模组,用于内部或外部照明的灯,或各种信号灯等。
在另一些实施例中,该发光装置可以为显示装置,此时,该发光基板为显示基板,用于实现显示图像(即画面)功能。发光装置可以包括显示器或包含显示器的产品。其中,显示器可以是平板显示器(Flat Panel Display,FPD),微型显示器等。若按照用户能否看到显示器背面的场景划分,显示器可以是透明显示器或不透明显示器。若按照显示器能否弯折或卷曲,显示器可以是 柔性显示器或普通显示器(可以称为刚性显示器)。示例的,包含显示器的产品可以包括:计算机显示器,电视,广告牌,具有显示功能的激光打印机,电话,手机,个人数字助理(Personal Digital Assistant,PDA),膝上型计算机,数码相机,便携式摄录机,取景器,车辆,大面积墙壁,剧院的屏幕或体育场标牌等。
在一些实施例中,如图1所示,发光基板1可以包括衬底11以及设置于衬底11上的多个发光器件12。其中,该衬底11可以为柔性衬底,或者刚性衬底,在衬底11为柔性衬底的情况下,衬底11的材料可以为PI(polyimide,聚酰亚胺)材料。在衬底11为刚性衬底的情况下,衬底11可以为玻璃。在此,衬底11可以为已经形成有像素驱动电路的衬底。
在一些实施例中,每个发光器件12可以包括阳极121和阴极122,以及设置于阳极121和阴极122之间的空穴注入层(Hole Inject Layer,HIL)123、空穴传输层(Hole Transport Layer,HTL)124、发光层(Emitting Layer,EML)125、空穴阻挡层(Hole Blocking Layer,HBL)126、电子传输层(Electron Transport Layer,ETL)127和电子注入层(Electron Inject Layer,EIL)128等有机材料层。其中,空穴注入层123和阳极121相邻,电子注入层128和阴极122相邻。
当在阳极和阴极上施加电压时,电子和空穴分别经电子注入层128和空穴注入层123注入,相向运动,并在发光层125中复合产生激子,激子退激实现发光。
基于以上发光机理,空穴注入层123的材料可以选自芳香族叔胺和酞菁及其衍生物中的任一种或两种以上的组合,空穴传输层124的材料可以选自芳胺和咔唑类化合物中的任一种或两种以上的组合,空穴阻挡层126的材料可以选自苯并咪唑、三嗪和嘧啶及其衍生物中的任一种或两种以上的组合;电子传输层127的材料可以选自苯并咪唑、三嗪、嘧啶、吡啶、吡嗪、喹喔啉、喹啉、二唑、二氮杂磷杂环戊二烯、氧化膦、芳族酮、内酰胺、硼烷的化合物及其衍生物的任一种或两种以上的组合;电子注入层128的材料可以选自含氮五元环、芴酮、蒽醌二甲烷、联苯醌、噻喃二氧化物、唑、二唑、三唑、咪唑、苝四羧酸、亚芴基甲烷、蒽醌二甲烷和蒽酮及其衍生物中的任一种或两种以上的组合。发光层125的材料可以包括主体材料和客体材料。主体材料可以选自蒽、芳胺类化合物及其衍生物中的任一种或两种以上的组合,客体材料可以选自D-A型有机发光材料,D-A型有机发光材料包括给体(donor)部分D和受体(acceptor)部分A。
在一些实施例中,至少一个发光器件12的发光层125中的D-A型有机发光材料的给体部分D如下式(I)所示:
Figure PCTCN2020136433-appb-000004
其中,在式(I)中,L选自二价芳基、二价杂芳基、二价稠芳基和二价稠杂芳基中的任一种,且在L选自二价芳基和二价杂芳基中的任一种的情况下,二价芳基和二价杂芳基具有一个或多个取代基,取代基选自氘、叔丁基、苯基、氰基和甲亚胺基中的任一种,且至少一个取代基选自氰基和甲亚胺基中的任一种,并且氰基和所述甲亚胺基的总个数不超过2个。
示例的,在L选自二价芳基的情况下,L可以选自如下式中的任一种。
Figure PCTCN2020136433-appb-000005
其中,Y 1~Y 6相同或不同,分别独立地选自氢、氘、叔丁基、苯基、氰基和甲亚胺基中的任一种,且在Y 1~Y 3中至多有一个氰基或甲亚胺基,在Y 4~Y 6中至多有一个氰基或甲亚胺基。
此时,式(I)的结构式可表示成如下所示的任一种。
Figure PCTCN2020136433-appb-000006
在L选自二价杂芳基的情况下,L可以选自如下式中的任一种。
Figure PCTCN2020136433-appb-000007
其中,Y 7~Y 12相同或不同,分别独立地选自氢、氘、叔丁基、苯基、氰基和甲亚胺基中的任一种,且在Y 7~Y 8中至多有一个氰基或甲亚胺基,在Y 9~Y 10中至多有一个氰基或甲亚胺基,X选自S、O、NH或N(R)。
此时,式(I)的结构式可表示成如下所示的任一种。
Figure PCTCN2020136433-appb-000008
在L选自二价稠芳基和二价稠杂芳基中的任一种的情况下,二价稠芳基和二价稠杂芳基具有或不具有取代基,在二价稠芳基和二价稠杂芳基具有取代基的情况下,取代基选自氘、叔丁基、苯基、氰基和甲亚胺基中的任一种,且氰基和甲亚胺基的总个数不超过2个。
其中,在L选自二价稠芳基的情况下,二价稠芳基可以选自萘基、蒽基和菲基中的任一种,此时,以二价稠芳基选自萘基为例,则L可以选自如下式中的任一种。
Figure PCTCN2020136433-appb-000009
Z 6~Z 11相同或不同,分别独立地选自氢、氘、叔丁基、苯基、氰基和甲亚胺基中的任一种,且在Z 6~Z 11中氰基和所述甲亚胺基的总个数不超过2个。
此时,式(I)的结构式可表示成如下所示的任一种。
Figure PCTCN2020136433-appb-000010
在L选自二价稠杂芳基的情况下,二价稠杂芳基可以选自喹啉基、吲哚基、苯并噻唑基中的任一种。此时,以二价稠杂芳基选自喹啉基和异苯并呋 喃基为例,L可以选自如下式中的任一种。
Figure PCTCN2020136433-appb-000011
其中,Z 1~Z 5,以及Z 12~Z 15相同或不同,分别独立地选自氢、氘、叔丁基、苯基、氰基和甲亚胺基中的任一种,且在Z 1~Z 5中氰基和甲亚胺基的总个数不超过2个,在Z 12~Z 15中氰基和甲亚胺基的总个数不超过2个,X选自O、S、NH或N(R)。
此时,式(I)的结构式可表示成如下所示的任一种。
Figure PCTCN2020136433-appb-000012
基于以上结构,受体部分A选自取代或未取代的稠芳环和稠杂芳环中的任一种,稠杂环中的杂原子个数不大于2,且取代基选自R中的任一种;R、R 1和R 2相同或不同,分别独立地选自氘、卤素、氰基、硝基、氨基、C 1~C 40的烷基、C 2~C 40的烯基、C 2~C 40的炔基、C 3~C 40的环烷基、C 3~C 40的杂环烷基、C 6~C 60的芳基、C 5~C 60的杂芳基、C 1~C 40的烷氧基、C 6~C 60的芳氧基、C 3~C 40的烷基甲硅烷基、C 6~C 60的芳基甲硅烷基、C 1~C 40的烷基硼基、C 6~C 60的芳基硼基、C 6~C 60的芳基亚膦基、C 6~C 60的单或二芳基膦基及C 6~C 60的芳基胺基中的任一种;或者,与相邻的基团结合形成缩合环。m和n分别独立地为0~3中的整数。
其中,在受体部分A选自取代或未取代的稠芳环的情况下,受体部分A可以为选自萘、蒽和菲中的任一种,结构式如下所示。
Figure PCTCN2020136433-appb-000013
其中,R 3~R 11相同或不同,分别独立地选自氢、氘、卤素、氰基、硝基、氨基、C 1~C 40的烷基、C 2~C 40的烯基、C 2~C 40的炔基、C 3~C 40的环烷基、C 3~C 40的杂环烷基、C 6~C 60的芳基、C 5~C 60的杂芳基、C 1~C 40的烷氧基、C 6~C 60的芳氧基、C 3~C 40的烷基甲硅烷基、C 6~C 60的芳基甲硅烷基、C 1~C 40的烷基硼基、C 6~C 60的芳基硼基、C 6~C 60的芳基亚膦基、C 6~C 60的单或二芳基膦基及C 6~C 60的芳基胺基中的任一种;或者,与相邻的基团结合形成缩合环
此时,该D-A型有机发光材料可以表示成如下结构中的任一种:
Figure PCTCN2020136433-appb-000014
根据以上L可以为二价稠杂芳基,如喹啉基的情况下,该D-A型有机发光材料的结构式可以表示如下:
Figure PCTCN2020136433-appb-000015
也即,给体部分和受体部分通过虚线相连。
其中,根据以上R 3~R 11相同或不同,分别独立地选自氢、氘、卤素、氰基、硝基、氨基、C 1~C 40的烷基、C 2~C 40的烯基、C 2~C 40的炔基、C 3~C 40的 环烷基、C 3~C 40的杂环烷基、C 6~C 60的芳基、C 5~C 60的杂芳基、C 1~C 40的烷氧基、C 6~C 60的芳氧基、C 3~C 40的烷基甲硅烷基、C 6~C 60的芳基甲硅烷基、C 1~C 40的烷基硼基、C 6~C 60的芳基硼基、C 6~C 60的芳基亚膦基、C 6~C 60的单或二芳基膦基及C 6~C 60的芳基胺基中的任一种;或者,与相邻的基团结合形成缩合环。可以得知,以上结构式受体部分不限于以上稠芳环,还可以包含非苯系芳环,如七元芳环,甚至还可以包含脂环、杂环等,脂环按照单环还是多环,又可以包括碳原子数为3~4个的小环、碳原子数为5~7个的普通环、碳原子数为8~11个的中环、碳原子数大于11个的大环,以及联环、螺环、桥环等。
在此,以上所述的非苯系芳环,脂环、杂环可以为R 3~R 11中的至少一个与相邻的基团结合形成的缩合环。
在受体部分A选自取代或未取代的稠杂芳环的情况下,受体部分A可以选自吖啶,结构式如下所示。
Figure PCTCN2020136433-appb-000016
其中,R 3~R 10相同或不同,分别独立地选自氢、氘、卤素、氰基、硝基、氨基、C 1~C 40的烷基、C 2~C 40的烯基、C 2~C 40的炔基、C 3~C 40的环烷基、C 3~C 40的杂环烷基、C 6~C 60的芳基、C 5~C 60的杂芳基、C 1~C 40的烷氧基、C 6~C 60的芳氧基、C 3~C 40的烷基甲硅烷基、C 6~C 60的芳基甲硅烷基、C 1~C 40的烷基硼基、C 6~C 60的芳基硼基、C 6~C 60的芳基亚膦基、C 6~C 60的单或二芳基膦基及C 6~C 60的芳基胺基中的任一种;或者,与相邻的基团结合形成缩合环。
此时,该D-A型有机发光材料可以表示成如下结构:
Figure PCTCN2020136433-appb-000017
根据以上L可以为二价稠杂芳基,如喹啉基的情况下,该D-A型有机发光材料的结构式可以表示如下:
Figure PCTCN2020136433-appb-000018
也即,给体部分和受体部分通过虚线相连。
其中,根据以上R 3~R 10相同或不同,分别独立地选自氢、氘、卤素、氰基、硝基、氨基、C 1~C 40的烷基、C 2~C 40的烯基、C 2~C 40的炔基、C 3~C 40的环烷基、C 3~C 40的杂环烷基、C 6~C 60的芳基、C 5~C 60的杂芳基、C 1~C 40的烷氧基、C 6~C 60的芳氧基、C 3~C 40的烷基甲硅烷基、C 6~C 60的芳基甲硅烷基、C 1~C 40的烷基硼基、C 6~C 60的芳基硼基、C 6~C 60的芳基亚膦基、C 6~C 60的单或二芳基膦基及C 6~C 60的芳基胺基中的任一种;或者,与相邻的基团结合形成缩合环。可以得知,以上结构式受体部分同样不限于以上稠杂芳环,也可以包含非苯系芳烃、脂环、杂环等,其中,这里的非苯系芳烃和脂环的具体结构可参照以上对非苯系芳烃和脂环的相关描述。
处于基态S0的有机分子在吸收了某种形式的能量之后,就会被激发到更高能的量子态,称之为激发态。激发态根据其电子自旋方式的不同,又分为两种:在跃迁过程中基态和激发态的电子自旋方向保持一致时(两个电子自旋方向相反),自旋量子数为0,自旋多重度为1,此种激发态称为单重(线)态;在跃迁过程中基态和激发态的电子自旋发生了改变(两个电子自旋方向相同),此时自旋量子数之和为1,自旋多重度为3,此种激发态称之为三重(线)态。依据吸收的能量高低,分子被激发到的激发态也不同,吸收较高能量时,分子会被激发到较高能量的激发态。然而高能激发态的寿命很短,很容易通过内转换的形式回到最低的激发态S1或者T1,换言之,光物理化学反应一般都是发生在S1态和T1态,通常被称之为Kasha规则。
相对于基态而言,分子的激发态是十分不稳定的,会通过各种各样的途径失活而回到基态。激发态的失活过程主要分为物理失活和化学失活,而在光电材料体系中化学失活较为少见,而物理性失活则更为普遍并且无法避免。激发态可能通过分子间的能量传递或者电子转移相互作用失活,也会通过分 子内的辐射跃迁或者无辐射跃迁过程失活。
当发光分子处于激发态时,可以通过辐射跃迁的途径返回基态。其中,当辐射跃迁前后,电子组态不发生变化,即跃迁过程中不涉及到电子自旋的翻转,此时发出的光称之为荧光,如S1态辐射跃迁回到S0态时产生的光;而当辐射跃迁前后电子组态发生了变化,即跃迁过程中电子自旋方向发生了翻转,我们称此时发出的光为磷光,如T1态跃迁到S0态时产生的光。通常电子自旋的翻转是非常困难的,因而在一般的分子体系中很难观测到磷光。非辐射跃迁过程通常指处于激发态的分子不通过辐射光的形式失活的过程,主要包括相同组态之间的内转换过程(如S2跃迁到S1)和不同组态之间的系间窜越过程(如T1和S1之间的跃迁)。正如上文中所提到的,系间窜越过程涉及到电子自旋的翻转,所以一般体系中此过程相比于内转换过程要慢的多,通常认为系间窜越过程无法和内转换过程进行竞争。
把有机分子的激发态跃迁简单的理解成分子中电子从占据轨道跃迁到非占据轨道的过程,那么跃迁之后,电子原本所在的轨道将会成为一个空轨道,亦即空穴轨道,最后所在的非占据轨道,我们称之为电子轨道。根据跃迁前后分子的空穴轨道和电子轨道的分布位置,我们将有机分子的激发态分为两种:跃迁前后电子和空穴的分布位置大致相同,称之为局域激发(Locally excited,LE)态,此种激发态常出现于共轭大分子的化合物中,如萘、蒽等;反之,如果跃迁前后电子和空穴分布在分子的不同片段或不同的分子上,则称之为电荷转移激发(charge-transfer,CT)态,此种激发态常出现于给受体相连的有机分子化合物中,如D-A新型有机材料的分子中。
LE态广泛存在于有机化合物分子中,由于分子受激后激发态的电子空穴分布位置基本相同,此时电子空穴对形成的激子束缚能很大,称之为Frenkel激子。根据库伦相互作用公式,正负电荷相互作用与半径的平方成反比,因而这一类激子束缚能大,电子空穴对不容易分开,因此很容易以辐射光子的方式使激发态失活回到基态,因而以LE态为主的分子一般具有高的辐射跃迁速率和光致发光效率。另一方面,较大的激子束缚能同时又影响了电子的自旋翻转,因而普遍认为LE态自身很难发生系间窜越过程,这也导致了激发态以LE态为主的有机分子激子利用率通常较低的现象。
如前文中提到,CT态是一类电子空穴分布在体系不同片段上的激发态,此时形成的激子我们称之为电荷转移激子(charge transfer exciton)。这一类的激子因为电子空穴距离比较远,所以激子束缚能比较小。较小的束缚能使得电子更加自由,发生系间窜越的可能也会更大,保证了材料的激子利用率。 而另一方面,相对较远的电子空穴分布使得电子跃迁时缺乏有效的轨道耦合,跃迁矩通常较小,因而制约了其光致发光效率。同时,由于较弱的束缚能,CT态相比于LE态的寿命更长,三线态的CT态之间很容易发生三线态—三线态湮灭(Triplet-Triplet Annihilation,TTA),器件设计也要更慎重来防止高电流密度下材料效率的滚降。根据电子空穴分布位置的不同,通常分为分子内电荷转移态(Intramolecular Charge Transfer,ICTState)和分子间电荷转移态(Intermolecular Charge Transfer State)。相比于ICT态,分子间的CT态寿命更长,电子和空穴分布更为离域,复合过程更难发生,不适宜用于发光方向。CT态常出现于给受体分子体系中。影响CT态性质的因素有很多,如给受体能力,给受体之间的距离以及相对位置等。CT态的偶极距通常较大,极性场影响下会使其更稳定,因而其对溶剂的极性非常敏感,通常随着溶剂极性的增加,CT态的发射红移、光谱展宽并伴随着辐射强度的降低,被称之为CT态的溶剂化变色效应。溶剂化变色效应是判断体系是否含有CT态的有效方法。
由以上所述的LE态和CT态的特性,可以得知分子体系中辐射跃迁能力与激子利用率是相互制约的关系。因此,通过调控分子中LE态和CT态性质的比例,设计出一类激发态,既含有LE态的性质,又有电荷转移特性,LE态性质保证辐射效率,CT态性质保证激子利用率,那么具有这样的激发态的电致发光材料无疑是最具有潜力的。
在本公开的实施例提供的D-A型有机发光材料中,通过对D-A型有机发光材料的轨道分布进行模拟,可以得到D-A型有机发光材料的HOMO(Highest Occupied Molecular Orbital,最高占据分子轨道)和LUMO(Lowest Unoccupied Molecular Orbital,最低未占分子轨道)分布的模型。如下表1所示,示出了给体部分为三苯胺基团的D-A型有机发光材料,以及基于本公开的实施例的给体部分和受体部分之间的连接基团进行修饰后的D-A型有机发光材料的分子结构与各自所对应的激发态的前线轨道分布。由表1可以得知:将给体部分为三苯胺基团作为对比例,与给体部分为三苯胺基团,HOMO轨道和LUMO轨道分别局域在给体部分和受体部分上,该D-A型有机发光材料的前线轨道几乎没有重叠,也即该D-A型有机发光材料的CT态较强相比,通过选用稠芳环或含有氰基取代基的芳环代替芳环结构,对给体部分和受体部分之间的连接位置进行修饰,构建合适的给受体基团,可以使D-A型有机发光材料的前线轨道既具有重叠的部分又具有分离的部分,属于杂化局域电荷转移激发态(Hybridized Local and Charge-Transfer,HLCT)。这种杂化的激发态与纯 LE态和纯CT态不同,在保证激发态电荷转移性质的基础上,适当增加分子共轭,扩大电子空穴的重叠面积,亦即引入适量的LE态组分,这样既满足了高的光致发光效率,同时又保证了激子利用率。改善了单纯的TADF(Thermally activated delayed fluorescence)材料CT态较强,重叠积分较小,荧光量子产率较低,且色度偏红的问题。
表1
Figure PCTCN2020136433-appb-000019
Figure PCTCN2020136433-appb-000020
在一些实施例中,通过模拟发现,该D-A型有机发光材料的给体部分和受体部分之间的扭曲角度为35度~80度。根据研究发现,扭曲角太大(例如90°)会产生纯CT或纯LE状态,并且由于近乎正交的轨道,严重抑制了LE和CT状态之间的耦合。相反,太小的扭曲角(例如0°)会使整个D-A型有机发光材料的分子共轭,从而导致CT转换消失。因此,合适的扭转角对于维持CT状态和LE状态之间的耦合态具有很重要的意义,从另一方面来说,该D-A型有机发光材料的给体部分和受体部分之间的扭曲角度为35度~80度,也证明了该D-A型有机发光材料的激发态介于纯LE态和纯CT态之间,分子内电荷转移(charge-transfer,CT)激发态和局域激发(Locally excited,LE)态杂化共存。
为了进一步提高D-A型有机发光材料的HLCT的稳定性,可选的,该D-A型有机发光材料的给体部分D和受体部分A之间的扭曲角度为35度~80度。
在一些实施例中,根据对以上激发态失活过程进行模拟分析,可以得出:在D-A型有机发光材料中,三线态激子和单线态激子之间具有如下关系式:
|TN-SM|≤0.2eV;
其中,M为大于或等于1的整数,N为大于M的整数。
也即,该D-A型有机发光材料可以发生“高位”三线态到单线态的反向系间窜越,从而可以实现荧光材料对三线态激子的有效利用,并且可较明显减少三线态激子的淬灭。
在一些实施例中,该D-A型有机发光材料的辐射衰减时间小于30ns。也就是说,该D-A型有机发光材料的光致发射光谱为荧光,可以减少三线态激子的淬灭。
在另一些实施例中,通过泛函模拟激发态,并通过计算得到:随着溶剂极性逐渐增大,D-A型有机发光材料的发射光谱峰的峰值所对应的波长逐渐增大。这表明:该D-A型有机发光材料的激发态中存在CT成分,进一步证明了该D-A型有机发光材料具有HLCT特性。
在一些实施例中,该D-A型有机发光材料在发光层中的质量占比为0.5%-10%。
本公开的一些实施例提供一种D-A型有机发光材料在有机电子器件中的应用。
这里的有机电子器件可以为有机发光二极管(OLED),有机光伏电池,有机发光电池,有机场效应管,有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon EmittingDiode)等。
在一些实施例中,该D-A型有机发光材料用于OLED器件的发光层。此时,该D-A型有机发光材料可以作为客体材料,掺杂在主体材料中,通过蒸镀或喷墨打印工艺形成发光层。
本公开的一些实施例提供一种D-A型有机发光材料的制备方法,其中,根据所获取的原料不同,可以通过不同的合成路线制备D-A型有机发光材料,在此,对该D-A型有机发光材料的制备路线不做具体限定。
在此,在D-A型有机发光材料中的L确定的情况下,可以有两种可能的制备方法。
第一种制备方法,先合成第一化合物(i),再将第一化合物(i)作为反 应原料,合成D-A型有机发光材料。
Figure PCTCN2020136433-appb-000021
其中,在化合物(i)中,L选自二价芳基、二价杂芳基、二价稠芳基和二价稠杂芳基中的任一种。
A 1选自稠芳环或稠杂芳环中的任一种,A 2选自卤素中的任一种,在L选自二价芳基和二价杂芳基中的任一种的情况下,二价芳基和二价杂芳基具有一个或多个取代基,取代基分别独立地选自氘、叔丁基、苯基、氰基和甲亚胺基中的任一种,且至少一个取代基选自氰基和甲亚胺基中的任一种,且氰基和甲亚胺基的总个数不超过2个。
稠芳环或稠杂芳环具有或不具有取代基,在稠芳环或稠杂芳环具有取代基的情况下,取代基选自R中的任一种。R选自氘、卤素、氰基、硝基、氨基、C 1~C 40的烷基、C 2~C 40的烯基、C 2~C 40的炔基、C 3~C 40的环烷基、C 3~C 40的杂环烷基、C 6~C 60的芳基、C 5~C 60的杂芳基、C 1~C 40的烷氧基、C 6~C 60的芳氧基、C 3~C 40的烷基甲硅烷基、C 6~C 60的芳基甲硅烷基、C 1~C 40的烷基硼基、C 6~C 60的芳基硼基、C 6~C 60的芳基亚膦基、C 6~C 60的单或二芳基膦基及C 6~C 60的芳基胺基中的任一种;或者,与相邻的基团结合形成缩合环。
其中,根据以上A 1选自稠芳环或稠杂芳环中的任一种,L选自二价芳基、二价杂芳基、二价稠芳基和二价稠杂芳基中的任一种,可以得知,A 1和L可以通过偶联反应连接在一起。
在此,以A 1选自菲,L选自含有氰基的芳基为例,A 1和L可以通过suzuki偶联连接在一起,反应方程式可以如下所示:
Figure PCTCN2020136433-appb-000022
在生成以上第一化合物(i)之后,将第一化合物(i)作为反应原料,与如下结构式发生取代反应,即可得到D-A型有机发光材料。
Figure PCTCN2020136433-appb-000023
具体方程式如下所示:
Figure PCTCN2020136433-appb-000024
第二种制备方法,先合成第二化合物(ii),再将第二化合物(ii)作为反应原料,合成D-A型有机发光材料。
Figure PCTCN2020136433-appb-000025
在化合物(ii)中,m和n分别独立地为0~3中的整数,R 1和R 2相同或不同,分别独立地选自氘、卤素、氰基、硝基、氨基、C 1~C 40的烷基、C 2~C 40的烯基、C 2~C 40的炔基、C 3~C 40的环烷基、C 3~C 40的杂环烷基、C 6~C 60的芳基、C 5~C 60的杂芳基、C 1~C 40的烷氧基、C 6~C 60的芳氧基、C 3~C 40的烷基甲硅烷基、C 6~C 60的芳基甲硅烷基、C 1~C 40的烷基硼基、C 6~C 60的芳基硼基、C 6~C 60的芳基亚膦基、C 6~C 60的单或二芳基膦基及C 6~C 60的芳基胺基中的任一种;或者,与相邻的基团结合形成缩合环。
其中,根据以上L可以选自苯乙氰,稠芳环选自菲为例,A 3可以选自卤素和硼酸中的任一种,在A 3选自卤素,如Cl的情况下,菲的结构式可以如下所示。
Figure PCTCN2020136433-appb-000026
此时,可以将第二化合物(ii)作为反应原料,通过suzuki偶联合成D-A型有机发光材料,具体方程式如下所示。
Figure PCTCN2020136433-appb-000027
而以上第二化合物(ii)的合成的方程式可以如下所示。
Figure PCTCN2020136433-appb-000028
其中,在以上反应方程式中,示出了L中含有氰基的示例,本领域技术人员能够理解的是,对于不同的取代基,可以根据需要购买获得或者通过合成得到,在L中的取代基不能购买获得的情况下,可以通过设计反应路线进行合成得到。在此,以L中含有甲亚胺基为例,可以采用甲亚胺和芳基氯作为反应原料反应得到,此反应步骤可以发生在以上所有反应完成之后,也可以发生在所有反应开始之前。
为了对本公开的实施例的技术效果进行客观评价,以下,将通过如下合成例、实验例和应用例对本公开所提供的技术方案进行详细地示例性地描述。
合成例1
化合物1的合成:
Figure PCTCN2020136433-appb-000029
步骤1)将1-1、1-2、K 2CO 3和Pd(PPh 3) 4在DME(Dimethyl ether,二甲醚)和水的混合溶液中,在氮气保护下回流约12小时。冷却至室温(约22℃)后,将反应混合物通过硅胶塞过滤。分离有机层,用水洗涤,然后经Na 2SO 4干燥。蒸发溶剂后,将粗产物通过硅胶上的柱色谱法纯化,用庚烷 与二氯甲烷的混合溶剂(庚烷与二氯甲烷的体积比为9/1至7/3)作为洗脱剂进行洗脱,得到1-3。
Figure PCTCN2020136433-appb-000030
步骤2)将1-4加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,和一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦和1-3,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得化合物1。
化合物1的核磁数据为: 13C-NMR:145.9(d),140.9(s),134.2(s),133.7(d),131.9(s),130.3(s),129.6(m),128.5(m),126.6(m),125.7(m),125.2(m),122.4(d),121.0(s),120.1(s),119.6(s),109.8(s)。
合成例2
化合物2的合成:
Figure PCTCN2020136433-appb-000031
步骤1)将1-1、2-2、K 2CO 3和Pd(PPh 3) 4在DME(Dimethyl ether,二甲醚)和水的混合溶液中,在氮气保护下回流约12小时。冷却至室温(约22℃)后,将反应混合物通过硅胶塞过滤。分离有机层,用水洗涤,然后经Na 2SO 4干燥。蒸发溶剂后,将粗产物通过硅胶上的柱色谱法纯化,用庚烷与二氯甲烷的混合溶剂(庚烷与二氯甲烷的体积比为9/1至7/3)作为洗脱剂进行洗脱,得到2-3。
Figure PCTCN2020136433-appb-000032
步骤2)将1-4加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,和一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦和2-3,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得化合物2。
化合物2的核磁数据为: 13C-NMR:145.9(d),144.0(s),139.3(s),133.8(s),133.1(s),132.3(s),131.9(d),130.3(s),129.6(m),128.3(m),126.6(m),125.7(m),123.9(s),122.4(d),119.6(s),117.8(s),105.3(s)。
合成例3
化合物3的合成:
Figure PCTCN2020136433-appb-000033
步骤1)将1-1、3-2、K 2CO 3和Pd(PPh 3) 4在DME(Dimethyl ether,二甲醚)和水的混合溶液中,在氮气保护下回流约12小时。冷却至室温(约22℃)后,将反应混合物通过硅胶塞过滤。分离有机层,用水洗涤,然后经Na 2SO 4干燥。蒸发溶剂后,将粗产物通过硅胶上的柱色谱法纯化,用庚烷与二氯甲烷的混合溶剂(庚烷与二氯甲烷的体积比为9/1至7/3)作为洗脱剂进行洗脱,得到3-3。
Figure PCTCN2020136433-appb-000034
步骤2)将1-4加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,和一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦和3-3,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得化合物3-5。
Figure PCTCN2020136433-appb-000035
步骤3)将3-6加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,和一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦和3-5,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得化合物3。
化合物3的核磁数据为: 13C-NMR:163.7(s),145.9(d),139.5(s),136.6(s),133.8(s),132.3(d),131.9(s),130.9(d),130.3(s),129.6(m),128.5(m),126.6(m),125.7(m),122.4(d),121.1(s),119.6(s)。
合成例4
化合物4的合成:
Figure PCTCN2020136433-appb-000036
步骤1)在密封管中,加入4-1,4-2,Pd 2dba 3和叔丁醇钠Na(OC(CH 3) 3),三叔丁基膦的甲苯溶液,并将管密封。将混合物在110℃下加热18小时。冷却至室温后,在减压下除去溶剂,然后加入二氯甲烷,并将有机层用水和盐水洗涤两次。产物纯化得到4-3。
Figure PCTCN2020136433-appb-000037
步骤2)将4-3,4-4,Pd(PPh 3) 4,Na 2CO 3水溶液,乙醇和甲苯在烧瓶中混合。将混合物脱气,并将反应在氮气下在100℃下回流24小时。冷却后,将溶剂真空蒸发并将产物用二氯甲烷(CH 2Cl 2)萃取。MgSO 4干燥。蒸发溶剂,分离得到化合物4。
化合物4的核磁数据为: 13C-NMR:149.6(s),147.1(s),145.9(d),140.5(s),134.2(s),133.8(s),131.9(s),131.1(s),130.3(s),129.6(m),129.1(s),128.5(d),127.0(s),126.6(m),125.7(m),122.4(m),120.2(s),119.6(s),116.7(s)。
合成例5
化合物5的合成:
Figure PCTCN2020136433-appb-000038
步骤1)将1-1、1-2、K 2CO 3和Pd(PPh 3) 4在DME(Dimethyl ether,二甲醚)和水的混合溶液中,在氮气保护下回流约12小时。冷却至室温(约22℃)后,将反应混合物通过硅胶塞过滤。分离有机层,用水洗涤,然后经Na 2SO 4干燥。蒸发溶剂后,将粗产物通过硅胶上的柱色谱法纯化,用庚烷与二氯甲烷的混合溶剂(庚烷与二氯甲烷的体积比为9/1至7/3)作为洗脱剂进行洗脱,得到1-3。
Figure PCTCN2020136433-appb-000039
步骤2)将5-4加入三口烧瓶中,并通入氮气,随后添加一定量的四氢呋喃,冷却到-80℃,缓慢滴入正丁基锂乙烷溶液并搅拌。随后添加氯化亚铜溶液,和一定量溶于四氢呋喃中的乙酸钯、三甲氧基三苯基膦和1-3,并在室温下进行搅拌,随后加入水和氯仿进行萃取。对分离的有机层进行干燥和管柱层析,并进行再结晶以获得化合物5。
化合物5的核磁数据为: 13C-NMR:145.9(s),144.8(s),140.9(d),138.2(s),134.2(s),133.7(d),131.9(s),130.3(s),129.6(d),129.2(d),128.8(m),128.3(d),127.9(m),126.6(m),126(s),125.7(m),125.2(d),123.2(d),122.4(d),121.0(s),120.1(s),119.6(s),109.8(s)。
实验例1
对以上合成的化合物1~化合物5的分子结构进行模拟,并对D与A之间的扭曲角度进行计算,可以如下表2所示结论。
表2
Figure PCTCN2020136433-appb-000040
由表2可知,化合物1~5的给体部分和受体部分之间的扭曲角度均大于或等于55度小于或等于61度,与轨道分布所反映的结论一致,进一步证明了化合物1~5中CT态和LE态杂化共存。
实验例2
将以上合成的化合物1~化合物5分别溶解于正己烷、乙醚、四氢呋喃和乙腈中,测试化合物1~化合物5的发射光谱峰所对应的波长如以上表1 所示,由表1可知,随着溶剂极性增大,化合物1~化合物5的发射光谱峰值所对应的波长增大,也即发射光谱峰具有红移趋势,说明化合物1~化合物5中均存在CT的成分,与以上扭曲角度结合,可以得知,化合物1~化合物5均具有HLCT特性。
实验例3
对以上合成的化合物1~化合物5的辐射衰减速度进行模拟计算,可得如下表3所示结果。
表3
Figure PCTCN2020136433-appb-000041
由表3可知,化合物1~化合物5的辐射衰减时间很短,说明发射光谱为荧光。
实验例4
采用B3LYP密度泛函对以上化合物1~化合物5的T2与S1之间的能级差进行计算,得到T2与S1之间的能级差的结果如下表4所示。其中,在表4中,比较化合物为以上给体部分为三苯胺基团的化合物。
表4
化合物 S1-T2的绝对值
化合物1 0.16
化合物2 0.14
化合物3 0.13
化合物4 0.17
化合物5 0.19
比较化合物 0.58
由表4可知,化合物1~化合物5的T2与S1之间的能级差较小,说明本公开提供的D-A型有机发光材料可存在从T2到S1的激子跃迁通道,从而能够充分利用三线态激子,提高激子利用率。
应用例
应用例提供一种OLED器件,该OLED器件的结构为ITO(Indium Tin  Oxides,氧化铟锡)/HIL(HIA:HAT=1:0.03(质量比),厚度20nm)、HTL(HIT,厚度50nm)、辅助发光层(HTA,厚度6nm)、发光层(主体材料Host+5%客体材料Dopant,厚度20nm)、HBL(厚度50nm)、ETL+50%AlQ(Aluminum tris-(8-hydroxyquinoline)(厚度30nm)、EIL(LiF,厚度1nm)和Al阴极(100nm)。
HIA
(N2',N7',10-triphenyl-N2',N7'-bis(9-phenyl-9H-carbazol-3-yl)-10H-spiro[acridine-9,9'-fluorene]-2',7'-diamine,N2',N7',10-三苯基-N2',N7'-双(9-苯基-9H-咔唑-3-基)-10H-螺[[啶-9,9'-芴]-2',7'-二胺)、HAT((3,6,7,10,11-pentakis(aminomethyl)-4b,8a,8b,12a-tetrahydrodipyrazino[2,3-f:2',3'-h]quinoxaline-2-carbonitrile),3,6,7,10,11-五(氨基甲基)-4b,8a,8b,12a-四氢二吡嗪并[2,3-f:2',3'-h]喹喔啉-2-甲腈)、HTA(N-([1,1'-biphenyl]-4-yl)-9,9-dimethyl-N-(4'-(7-phenyl-7H-benzo[c]carbazol-10-yl)-[1,1'-biphenyl]-4-yl)-9H-fluoren-2-amine,N-([1,1'-联苯]-4-基)-9,9-二甲基-N-(4'-(7-苯基-7H-苯并[c]咔唑-10-基)-[1,1'-联苯基]-4-基)-9H-芴-2-胺)、Host、Dopant和ETL的分子结构如下所示。
客体材料Dopant分别选自化合物1~化合物5中的一种,所得到的器件分别一一对应地记为器件1~器件5。
Figure PCTCN2020136433-appb-000042
Figure PCTCN2020136433-appb-000043
对比例
对比例提供的器件结构与以上应用例的器件结构相同,不同的是,客体材料Dopant采用如下式所示结构,也即采用以上所述的对较化合物。对比例提供的器件记为器件6。
Figure PCTCN2020136433-appb-000044
实验例2
向以上器件1~器件6通入相同的电流密度,测试器件1~器件6的驱动电压、寿命和电流效率,得到如下表5所示数据。
表5
样品 Dopant 驱动电压(V) 电流效率(cd/A)
器件1 化合物1 4.88 106%
器件2 化合物2 4.61 109%
器件3 化合物3 4.58 107%
器件4 化合物4 4.62 108%
器件5 化合物5 4.78 105%
器件6 比较化合物 4.81 100%
由表5可知,与比较化合物相比,在通入相同的电流密度的情况下,化合物1~化合物5的驱动电压没有发生明显变化,而电流效率均有不同程度的提高。
综上所述,通过对比较化合物的给体部分和受体部分之间的连接位置进行修饰,构建合适的给受体结构,调节分子间电荷转移激发态和局域态共存,使得该D-A型有机发光材料的激发态的电子和空穴的波函数在空间上存在分离的部分也存在重叠的部分,属于杂化局域电荷转移激发态,该激发态性质能够在保证激发态电荷转移性质的基础上,适当增大分子共轭,扩大电子空穴的重叠面积,这样既能够使该D-A型有机发光材料的激子束缚能相对较小,易于实现激发态电子的自旋翻转,提高三线态激子利用效率,又能够改善单纯的TADF材料CT态较强,重叠积分较小,荧光量子产率较低,且色度偏红的问题。并通过器件测试发现,这些D-A型有机发光材料在用于发光器件时,可以提高器件的发光效率。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种D-A型有机发光材料,包括:
    给体部分;所述给体部分如下式(I)所示:
    Figure PCTCN2020136433-appb-100001
    其中,在式(I)中,L选自二价芳基、二价杂芳基、二价稠芳基和二价稠杂芳基中的任一种;
    在L选自二价芳基和二价杂芳基中的任一种的情况下,所述二价芳基和所述二价杂芳基具有一个或多个取代基,所述取代基选自氘、叔丁基、苯基、氰基和甲亚胺基中的任一种,且至少一个取代基选自氰基和甲亚胺基中的任一种,并且所述氰基和所述甲亚胺基的总个数不超过2个;
    在L选自二价稠芳基和二价稠杂芳基中的任一种的情况下,所述二价稠芳基和所述二价稠杂芳基具有或不具有取代基,在所述二价稠芳基和所述二价稠杂芳基具有取代基的情况下,所述取代基选自氘、叔丁基、苯基、氰基和甲亚胺基中的任一种,且所述氰基和所述甲亚胺基的总个数不超过2个;
    受体部分;所述受体部分选自取代或未取代的稠芳环和稠杂环中的任一种,所述稠杂环中的杂原子个数不大于2,且取代基选自R中的任一种;
    R、R 1和R 2相同或不同,分别独立地选自氘、卤素、氰基、硝基、氨基、C 1~C 40的烷基、C 2~C 40的烯基、C 2~C 40的炔基、C 3~C 40的环烷基、C 3~C 40的杂环烷基、C 6~C 60的芳基、C 5~C 60的杂芳基、C 1~C 40的烷氧基、C 6~C 60的芳氧基、C 3~C 40的烷基甲硅烷基、C 6~C 60的芳基甲硅烷基、C 1~C 40的烷基硼基、C 6~C 60的芳基硼基、C 6~C 60的芳基亚膦基、C 6~C 60的单或二芳基膦基及C 6~C 60的芳基胺基中的任一种;或者,与相邻的基团结合形成缩合环;m和n分别独立地为0~3中的整数。
  2. 根据权利要求1所述的D-A型有机发光材料,其中,
    所述L选自如下结构式中的任一种:
    Figure PCTCN2020136433-appb-100002
    其中,Z 1~Z 11相同或不同,分别独立地选自氢、氘、叔丁基、苯基、氰基 和甲亚胺基中的任一种,且所述氰基和所述甲亚胺基的总个数不超过2个;Y 1~Y 6相同或不同,分别独立地选自氢、氘、叔丁基、苯基、氰基和甲亚胺基中的任一种,且在Y 1~Y 3中至多有一个氰基或甲亚胺基,在Y 4~Y 6中至多有一个氰基或甲亚胺基。
  3. 根据权利要求1或2所述的D-A型有机发光材料,其中,
    所述受体部分选自如下结构式:
    Figure PCTCN2020136433-appb-100003
    其中,R 3~R 10相同或不同,分别独立地选自氢、氘、卤素、氰基、硝基、氨基、C 1~C 40的烷基、C 2~C 40的烯基、C 2~C 40的炔基、C 3~C 40的环烷基、C 3~C 40的杂环烷基、C 6~C 60的芳基、C 5~C 60的杂芳基、C 1~C 40的烷氧基、C 6~C 60的芳氧基、C 3~C 40的烷基甲硅烷基、C 6~C 60的芳基甲硅烷基、C 1~C 40的烷基硼基、C 6~C 60的芳基硼基、C 6~C 60的芳基亚膦基、C 6~C 60的单或二芳基膦基及C 6~C 60的芳基胺基中的任一种;或者,与相邻的基团结合形成缩合环。
  4. 根据权利要求1~3任一项所述的D-A型有机发光材料,其中,
    所述给体部分和所述受体部分之间的扭曲角度为35度~80度。
  5. 根据权利要求4所述的D-A型有机发光材料,其中,
    所述给体部分和所述受体部分之间的扭曲角度为45度~60度。
  6. 根据权利要求1~5任一项所述的D-A型有机发光材料,其中,
    在所述D-A型有机发光材料中,所述三线态激子和单线态激子之间具有如下关系式:
    |TN-SM|≤0.2eV;
    其中,M为大于或等于1的整数,N为大于M的整数。
  7. 根据权利要求1~6任一项所述的D-A型有机发光材料,其中,
    所述D-A型有机发光材料的辐射衰减时间小于30ns。
  8. 根据权利要求1~7任一项所述的D-A型有机发光材料,其中,
    随着溶剂极性逐渐增大,所述D-A型有机发光材料的发射光谱的峰值所对应的波长逐渐增大。
  9. 如权利要求1~8任一项所述的D-A型有机发光材料在有机电子器件中的应用。
  10. 一种发光器件,包括:
    发光层,所述发光层包括主体材料和客体材料,所述客体材料选自如权利要求1~8任一项所述的D-A型有机发光材料。
  11. 根据权利要求10所述的发光器件,其中,
    所述主体材料选自蒽、芳胺类化合物及其衍生物中的一种两种以上的组合。
  12. 根据权利要求10或11所述的发光器件,其中,
    所述D-A型有机发光材料在所述发光层中的质量占比为0.5%~10%。
  13. 一种发光基板,包括:
    衬底;
    设置于所述衬底上的多个发光器件;
    至少一个发光器件为如权利要求10~12任一项所述的发光器件。
  14. 一种发光装置,包括如权利要求13所述的发光基板。
PCT/CN2020/136433 2020-12-15 2020-12-15 D-a型有机发光材料及其应用、发光器件、发光基板和发光装置 WO2022126362A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080003335.2A CN114981989A (zh) 2020-12-15 2020-12-15 D-a型有机发光材料及其应用、发光器件、发光基板和发光装置
PCT/CN2020/136433 WO2022126362A1 (zh) 2020-12-15 2020-12-15 D-a型有机发光材料及其应用、发光器件、发光基板和发光装置
US17/631,371 US20230018040A1 (en) 2020-12-15 2020-12-15 D-a type organic light-emitting material and application thereof, light-emitting device, light-emitting substrate and light-emitting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/136433 WO2022126362A1 (zh) 2020-12-15 2020-12-15 D-a型有机发光材料及其应用、发光器件、发光基板和发光装置

Publications (1)

Publication Number Publication Date
WO2022126362A1 true WO2022126362A1 (zh) 2022-06-23

Family

ID=82059824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136433 WO2022126362A1 (zh) 2020-12-15 2020-12-15 D-a型有机发光材料及其应用、发光器件、发光基板和发光装置

Country Status (3)

Country Link
US (1) US20230018040A1 (zh)
CN (1) CN114981989A (zh)
WO (1) WO2022126362A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055196A1 (zh) * 2022-09-14 2024-03-21 苏州大学 一种a-d-a型有机化合物及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677221B2 (ja) * 2004-11-26 2011-04-27 キヤノン株式会社 有機発光素子
CN106893581A (zh) * 2017-02-23 2017-06-27 南京高光半导体材料有限公司 有机电致发光化合物、有机电致发光器件及其应用
CN110627659A (zh) * 2019-09-26 2019-12-31 吉林奥来德光电材料股份有限公司 有机发光化合物及其制备方法和器件
WO2020138871A1 (en) * 2018-12-28 2020-07-02 LG Display Co.,Ltd. Organic light emitting diode and organic light emitting device including the same
WO2020153745A1 (ko) * 2019-01-25 2020-07-30 엘티소재주식회사 화합물, 유기 광전자 소자 및 표시 장치
CN111662190A (zh) * 2019-03-08 2020-09-15 江苏三月光电科技有限公司 一种含芘或氮杂芘的有机化合物及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677221B2 (ja) * 2004-11-26 2011-04-27 キヤノン株式会社 有機発光素子
CN106893581A (zh) * 2017-02-23 2017-06-27 南京高光半导体材料有限公司 有机电致发光化合物、有机电致发光器件及其应用
WO2020138871A1 (en) * 2018-12-28 2020-07-02 LG Display Co.,Ltd. Organic light emitting diode and organic light emitting device including the same
WO2020153745A1 (ko) * 2019-01-25 2020-07-30 엘티소재주식회사 화합물, 유기 광전자 소자 및 표시 장치
CN111662190A (zh) * 2019-03-08 2020-09-15 江苏三月光电科技有限公司 一种含芘或氮杂芘的有机化合物及其应用
CN110627659A (zh) * 2019-09-26 2019-12-31 吉林奥来德光电材料股份有限公司 有机发光化合物及其制备方法和器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055196A1 (zh) * 2022-09-14 2024-03-21 苏州大学 一种a-d-a型有机化合物及其制备方法

Also Published As

Publication number Publication date
US20230018040A1 (en) 2023-01-19
CN114981989A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
KR101739612B1 (ko) 플루오란텐 화합물 및 이를 포함하는 유기 전자 소자
Jou et al. Highly efficient ultra-deep blue organic light-emitting diodes with a wet-and dry-process feasible cyanofluorene acetylene based emitter
CN110872316A (zh) 一种新型化合物及其应用及采用该化合物的有机电致发光器件
JP2017203026A (ja) 多環化合物及びこれを含む有機電界発光素子
JPWO2018186462A1 (ja) 蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子
JP2016189468A (ja) 発光材料として電界発光化合物を使用する電界発光素子
JP6673203B2 (ja) 有機エレクトロルミネッセンス素子
JP2013537556A (ja) 新規有機電界発光化合物およびこれを使用する有機電界発光素子
KR20150136033A (ko) 함질소 헤테로환 화합물 및 이를 이용한 유기 전자 소자
TW201139612A (en) Phosphorescent emitters
JP2013045923A (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6651712B2 (ja) 有機エレクトロルミネッセンス素子、その製造方法、表示装置、照明装置、有機エレクトロルミネッセンス素子材料及び新規化合物
JP5872930B2 (ja) 有機電界発光素子及び電荷輸送材料
KR20140015240A (ko) 유기 전계 발광 소자
Kim et al. Orange phosphorescent organic light-emitting diodes using new spiro [benzoanthracene-fluorene]-type host materials
Keruckas et al. Methoxy-and tert-butyl-substituted meta-bis (N-carbazolyl) phenylenes as hosts for organic light-emitting diodes
CN114746416A (zh) 杂环化合物、包括其的有机发光元件、有机发光元件的有机层的组成物以及有机发光元件制造方法
WO2015050140A1 (ja) 化合物、これを用いた有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子並びに電子機器
Guo et al. Phenanthrene-based deep-blue fluorophores with balanced carrier transport ability for high-performance OLEDs with a CIE y< 0.04
JP5355171B2 (ja) 有機電界発光素子
WO2022126362A1 (zh) D-a型有机发光材料及其应用、发光器件、发光基板和发光装置
Di et al. Photoelectric properties of host materials based on diphenyl sulfone as acceptor and the performances in green phosphorescent OLEDs
KR20240017808A (ko) 화합물, 발광 재료 및 발광 소자
KR20230012400A (ko) 유기 전계발광 물질 및 디바이스
CN113725377A (zh) 发光器件、发光基板及发光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 26/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20965380

Country of ref document: EP

Kind code of ref document: A1