WO2022077636A1 - Mocvd反应系统及rebco高温超导带材的制法 - Google Patents

Mocvd反应系统及rebco高温超导带材的制法 Download PDF

Info

Publication number
WO2022077636A1
WO2022077636A1 PCT/CN2020/126419 CN2020126419W WO2022077636A1 WO 2022077636 A1 WO2022077636 A1 WO 2022077636A1 CN 2020126419 W CN2020126419 W CN 2020126419W WO 2022077636 A1 WO2022077636 A1 WO 2022077636A1
Authority
WO
WIPO (PCT)
Prior art keywords
jet
mocvd reaction
mocvd
reaction system
plate
Prior art date
Application number
PCT/CN2020/126419
Other languages
English (en)
French (fr)
Inventor
熊旭明
王延恺
田卡
袁文
迮建军
蔡渊
Original Assignee
东部超导科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东部超导科技(苏州)有限公司 filed Critical 东部超导科技(苏州)有限公司
Publication of WO2022077636A1 publication Critical patent/WO2022077636A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Definitions

  • the present application relates to the field of superconductivity, in particular to a MOCVD reaction system and a method for making REBCO high-temperature superconducting tapes.
  • the second-generation high-temperature superconducting tape has the characteristics of zero resistance.
  • the current-carrying capacity of the superconducting cable made of it is 5 to 10 times that of the current copper cable, and the volume and weight of the superconducting motor made can be reduced to 1/4 of the original. , has broad application prospects and huge market potential.
  • High-temperature superconducting tapes are made by depositing high-temperature superconducting thin films on inexpensive, flexible metal substrates.
  • Metal basebands are generally thousands to hundreds of meters long, tens of microns thick, and 10-20 mm wide.
  • a quasi-single crystal oxide textured layer is formed by ion beam assisted deposition, which provides a quasi-single crystal substrate for epitaxial growth of high-temperature superconducting films, which is called textured metal substrate.
  • a superconducting thin film is then deposited on the textured metal substrate using roll-to-roll MOCVD technology to form a superconducting tape that can replace copper.
  • the current method of preparing superconducting tape by MOCVD process is shown in Figure 1.
  • the superconducting film is deposited in the MOCVD vacuum reaction chamber.
  • the organic source gas is introduced from the top plate of the vacuum chamber and enters a uniform gas distributor, and the uniform gas is obtained through the gas distributor 2.
  • the air flow is then flowed to the heated substrate below for chemical reaction deposition.
  • the method of obtaining a uniform airflow is realized by flow resistance control----a flow equalizing plate 201 with many equalizing holes 201a is arranged in the gas distributor, and the openings at the entrance of the organic source gas are smaller and farther away. At the entrance, the aperture is larger.
  • the heating substrate 1 is maintained at the set deposition temperature, which is about 1000 degrees.
  • the textured metal base tape is closely attached to the heating substrate, and is controlled by the tape transport system to move at a certain speed on the heating substrate.
  • the organic source gas reacts with oxygen on the high-temperature textured substrate surface to form a superconducting film.
  • Superconducting thin films are deposited above 2 microns. In order to achieve the deposition rate required for industrialization, the length of the heating substrate 1 is usually more than one meter.
  • the deposition rate along the length of the heated substrate (that is, the running direction of the metal substrate) has poor uniformity, and the deposition rate is much higher at both ends than in the middle.
  • the superconducting thin film cannot be grown in the region of optimal growth conditions, the process window is very narrow, the product yield is low, and the superconducting critical current Ic is not very high.
  • a boundary layer which is not easy for gas to flow, will be formed on the surface of the deposition substrate.
  • the organic source molecules need to diffuse through the boundary layer and reach the surface of the metal substrate for reaction.
  • the reaction products also need to diffuse through the boundary layer and then be carried away by the gas flow. Therefore, the boundary layer is the main factor restricting the reaction rate. The thicker the boundary layer, the more time-consuming the diffusion, and therefore the slower the film deposition rate.
  • Fig. 1 the gas flow field distribution is drawn, the solid line arrow in the figure represents the flow field distribution of the source gas, and the dashed line represents the boundary layer. It can be seen that in the current high-temperature superconducting 1-meter-long MOCVD reaction chamber, the thickness of the boundary layer along the length of the strip deposition is very uneven. This is because the flow velocity is slow in the middle and the thickness of the boundary layer is thick, and at the exits at both ends, the flow velocity is fast and the boundary layer is thin. This results in a non-uniform deposition rate along the length of the heater plate.
  • VEECO and Aixtron a stable laminar flow field is pursued.
  • a stable laminar flow helps the thin film deposition process to proceed smoothly, because Unstable turbulent flow will destroy the stability of the deposition process, bring about the uncontrollability of the deposition process, and cause defects in the film.
  • Unstable turbulent flow will destroy the stability of the deposition process, bring about the uncontrollability of the deposition process, and cause defects in the film.
  • VEECO of the United States invented the high-speed rotary disk deposition technology, which uses a very high speed to rotate the substrate. Then, the deposition zone in many HTS thin film deposition systems is more than a meter long, and the tape is deposited roll-to-roll, which cannot be rotated.
  • the technical problem to be solved by the present application is: In view of the above problems, a MOCVD reaction system and a method for preparing REBCO high temperature superconducting tapes using MOCVD technology are proposed, so as to improve the uniformity of the deposition rate while increasing the deposition rate.
  • a MOCVD reaction system comprising:
  • the gas distributor includes a jet plate on which a plurality of jet holes are vertically penetrated, and each of the jet holes is directly communicated with the MOCVD reaction chamber.
  • this MOCVD reaction system of the present application also includes the following preferred schemes:
  • the ratio of the length to the diameter of each of the jet holes is greater than 8.
  • the distance between any one of the jet holes and the adjacent jet holes is not less than 1/10 of the distance between the orifice at the lower end of the any one of the jet holes and the upper surface of the heating substrate.
  • the gas distributor also includes a flow-equalizing plate with a plurality of flow-equalizing holes formed therethrough, and the jet plate is arranged below the flow-equalizing plate.
  • the jet plates are arranged horizontally.
  • each jetting hole is 6 mm
  • the aperture is 0.6 mm
  • the distance between the lower surface of the jetting plate and the upper surface of the heating substrate is 70 mm.
  • the plurality of jet holes are evenly arranged on the jet plate.
  • a method for preparing REBCO high-temperature superconducting tapes by using MOCVD technology is carried out with the help of the above-mentioned MOCVD reaction system, and by adjusting the gas pressure of the metal-organic source gas fed into the gas distributor, the gas ejected from the jet holes is made.
  • v is the numerical value of the gas velocity in m/s
  • P is the value of the gas pressure in the MOCVD reaction chamber in Torr
  • L is the numerical value of the distance from the lower surface of the jet plate to the upper surface of the heating plate in cm.
  • a jet plate with many jet holes is set at the bottom of the gas splitter.
  • the source gas comes out of the jet to form a collimated jet beam that can heat the substrate at an ultra-high speed.
  • the effect of the boundary layer formed on the heated substrate surface on the deposition rate is negligible.
  • the flow field in the MOCVD reaction chamber is no longer a laminar flow, but a jet beam jungle formed by a large number of jets, breaking through the boundary layer limitation that would be formed under the usual stable laminar flow, so the deposition rate is no longer limited by
  • the diffusion rate through the boundary layer depends instead on the jet velocity, thereby increasing the deposition rate, while the uniformity along the length of the strip is largely dependent on the jets on the jet plate due to almost no boundary layer effects uniformity of distribution.
  • each jet does generate turbulence at the substrate jet, it is only a small range of turbulence, affecting the deposition area of several millimeters.
  • This is a special flow field (jet jungle) that is microscopically (millimeter-level) unstable, but macroscopically (meter-level) highly controllable and stable. Fortunately, this microscopic instability does not affect the deposition of high-temperature superconducting thin films. The short-term deviation of the deposition conditions from the optimal conditions will not affect the performance of the superconducting thin film, as long as the short-term average conditions are in the optimal conditions.
  • the high-temperature superconducting tape moves at 1 m/s, and the time to pass through this region is less than one second, and the epitaxial growth of high-temperature superconducting films has a good tolerance for short-time fluctuations, so it does not affect the performance of superconducting films. Influence. Tiny defects are helpful for superconducting thin films, because in order to obtain high Ic in high-temperature superconducting films, a large number of pinning centers must be formed in the superconducting film, and nano-scale tiny defects are good pinning centers.
  • the jet hole we use the simplest and lowest-cost jet, which is to machine a slender through hole on the jet plate—the jet hole.
  • the number, diameter and length of the jet holes are designed according to the total flow rate of the organic source gas, the air pressure, and the distance from the jet hole to the heating substrate, so that the source gas comes out of the jet hole to form a collimated, ultra-high-speed jet beam with high The speed reaches the heated substrate, which heats the substrate to form a negligible boundary layer.
  • the uniformity of the deposition rate in the deposition area is fundamentally improved.
  • the uniformity of the deposition area no longer depends on the distribution of the flow field, but on the uniformity of the distribution of the jet holes, and the controllability of the uniformity is greatly enhanced. In this way, it is not necessary to introduce complex structural mechanisms and sacrifice many other properties in order to obtain uniform deposition rates when designing MOCVD equipment. Ideal for meter-scale large-scale MOCVD deposition systems such as HTS tape MOCVD deposition.
  • Figure 1 is a schematic diagram of the structure of a conventional MOCVD reaction system.
  • FIG. 2 is a schematic structural diagram of the MOCVD reaction system in the embodiment of the present application.
  • 1-heating substrate 2-gas distributor, 3-MOCVD reaction chamber, 4-jet beam, 5-metal base tape, 6-tape reel;
  • 201 - equalizing plate 201a - equalizing hole
  • 202 - jetting plate 202a - jetting hole.
  • the MOCVD reaction system also includes: a MOCVD reaction chamber 3, a heating substrate 1 arranged in the MOCVD reaction chamber 3, and a gas distributor 2 located above the heating substrate.
  • the MOCVD reaction system has three vacuum chambers connected in sequence, the MOCVD reaction chamber 3 is in the middle, the two chambers on the left and the right are tape reel chambers, and the textured metal base tape 5 is wound around the tape reel on the left 6, driven by the tape transport system, it enters the MOCVD reaction chamber 3 in the middle, and after the deposition of the superconducting film is completed, it enters the winding reel on the right.
  • the tape is a textured metal base tape of kilometer long, 12 mm wide and 0.06 mm thick, with a travel speed of 1 m/h-0.5 m/h, and a superconducting film of ⁇ 2 microns is obtained on the metal base tape.
  • the organic sources of Y, Gd, Ba, and Cu required for the ReBaCuO superconducting thin film are solid at room temperature and need to be evaporated into organic source gas in the source evaporator, and injected from the gas distributor to the gas distributor 2 through the source gas transmission pipeline Inside.
  • a horizontally arranged flow equalizing plate 201 is arranged inside the gas distributor 2 , and a plurality of equalizing holes 201 a are formed through the equalizing plate 201 . According to the simulation results, each size is designed with different apertures to obtain uniform airflow.
  • the above-mentioned gas distributor 2 also has a jet plate 202 arranged below the flow equalizing plate 201, and a plurality of elongated jet holes 202a are vertically penetrated through the jet plate 202, each of which is The jet holes 202a are all in direct communication with the MOCVD reaction chamber 3—the organic source gas flows from the jet holes 202a.
  • the organic source gas sent into the gas distributor 2 first passes through the equalizing plate 201 to obtain a uniform airflow flowing to the jetting plate 202 .
  • the aforementioned uniform airflow passes through the jet holes 202 a on the jet plate 202 to obtain the jet beam 4 directly injected into the MOCVD reaction chamber 3 .
  • the temperature of the gas distributor 2 including the baffle plate 201 and the jet plate 202 needs to be preferably controlled at 270-280 degrees.
  • the air pressure in the gas distributor 2 is 30-70torr.
  • the total gas flow (including carrier gas) through the jet plate 202 was 9930 seem.
  • the air pressure of the MOCVD reaction chamber 3 under the jet plate 202 is controlled at 2torr through the butterfly valve.
  • the jet holes 202a on the jet plate 202 are simple through holes, but the diameter, hole length, and number of the jet holes are preferably based on the total gas flow, deposition pressure, temperature of the gas distributor, and the distance from the jet plate to the heating substrate to make sure. Generally, the ratio of the length to the diameter of each jet hole 202a is greater than 8. The distance between any one of the jet holes 202a and the adjacent jet holes 202a is preferably not less than 1/10 of the distance between the lower end orifice of the “any one of the jet holes 202a” and the upper surface of the heating substrate 1 .
  • each jet hole 202a is 0.6 mm
  • the length of the jet hole is 6 mm
  • the number of jet holes is 528
  • the distance from the lower surface of the jet plate to the upper surface of the heating substrate is 70 mm.
  • the jet velocity from the jet hole is 846 m/s
  • the divergence angle of the jet beam 4 is about 7-9 degrees.
  • the gas pressure of the metal-organic source gas fed into the gas distributor 2 can be adjusted so that the gas flow rate v>6 ⁇ P 0.5 ⁇ L 2 ejected from the jet hole 202a , more preferably v>7 ⁇ P 0.5 ⁇ L 2 , thereby greatly improving the uniformity of the deposition rate in the MOCVD reaction chamber 3 .
  • the jetting plate 202 is arranged horizontally, and the jetting holes 202a are evenly arranged on the jetting plate 202 to further improve the uniformity of the deposition rate.
  • the length of the heating substrate 1 is 1 meter.
  • the temperature of the heating substrate 1 is controlled at 990 degrees, and the strip passes through the MOCVD reaction chamber 3 at a speed of 0.7 m/s, a superconductivity with a critical current of 320 A can be obtained. tape, corresponding to a critical current density of 4.8 MA/cm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

本申请涉及一种MOCVD反应系统以及采用MOCVD技术制备REBCO高温超导带材的方法,其中MOCVD反应系统包括:MOCVD反应腔,布置于MOCVD反应腔内的加热基板,设于所述加热基板上方的气体分配器;所述气体分配器包括其上竖向贯通开设多个射流孔的射流板,每个所述射流孔与所述MOCVD反应腔直接连通。本申请的技术方案能够在提高沉积速率的同时,改善沉积速率的均匀性。

Description

MOCVD反应系统及REBCO高温超导带材的制法 技术领域
本申请涉及超导领域,具体涉及一种MOCVD反应系统及REBCO高温超导带材的制法。
背景技术
第二代高温超导带材具有零电阻特点,其制成的超导电缆的载流能力是现在铜电缆的5~10倍,制成的超导电机体积重量可缩小为原来的1/4,有着广阔的应用前景和巨大的市场潜力。
高温超导带材,是把高温超导薄膜沉积在便宜、柔性的金属基带上。金属基带一般几千到几百米长,几十微米厚,10-20毫米宽。先在金属基底上,用离子束辅助沉积法,形成一层准单晶的氧化物织构层,为高温超导薄膜提供外延生长的准单晶基底,叫做织构的金属基带。然后用卷对卷的MOCVD技术在织构的金属基带上沉积超导薄膜,形成可以替代铜材的超导带材。
现行的MOCVD工艺制备超导带材的方法见图1,超导薄膜在MOCVD真空反应腔内沉积,有机源气体从真空腔顶板引入,进入到一个气体均匀分配器,通过气体分配器2获得均匀的气流,再流向下方的加热基板进行化学反应沉积。获得均匀气流的方法,通过流阻控制来实现----在气体分配器内配置一块开有许多均流孔201a的均流板201,在有机源气体的入口处的开孔小一点,远离入口处,孔径大一点。加热基板1维持在设定的沉积温度,大约为1000度。织构的金属基带紧贴在加热基板上,并由走带系统控制,在加热基板上以一定的速度移动。有机源气体在高温的织构基带表面和氧气反应,形成超导薄膜。超导薄膜要沉积到2微米以上。为了达到产业化所需要的沉积速率,加热基板1长度通常在一米以上。
在实践中发现,沿着加热基板长度方向(也即金属基带的行走方向)的沉积速率,均匀性很差,沉积速率两头比中间高很多。这造成超导薄膜无法生长在最佳生长条件区域,工艺窗口很窄,产品的良率低,超导临界电流Ic也不是很高。
对此问题,我们认为,MOCVD由于气压很高,在沉积基底表面会形成气体不易流动的边界层。有机源分子需要通过扩散来通过边界层,到达金属基带表面进行反应,反应产物也需要通过扩散来通过边界层,然后被气流带 走,因此边界层是制约反应速率的主要因素。边界层越厚,扩散越耗时,因此薄膜沉积速率越慢。
图1中,画出了气体流场分布,该图中实线箭头表示源气体的流场分布,虚线表示边界层。可见现行的高温超导1米长的MOCVD反应腔中,沿着带材沉积长度方向的边界层厚度,很不均匀。这是因为中间流速慢,边界层厚度厚,在两头的出口,流速快,边界层薄。这就造成了沿着加热板长度方向,不均匀的沉积速率。
在传统MOCVD沉积系统的设计中,比如世界上主流的两大MOCVD公司VEECO和Aixtron的设计中,都是追求稳定的层流流场,平稳的层流有助于薄膜沉积过程平稳地进行,因为不稳定的紊流会破坏沉积过程稳定性,带来沉积过程的不可控性,使得薄膜产生缺陷。为此人们设计了各种各样的极其复杂贵昂的结构和方法,来改善层流带来的边界层不均匀性,以及层流固有的反应物沿程损耗的问题。美国VEECO就发明了高速转盘沉积技术,用极高的转速来旋转基底。然后,很多高温超导薄膜沉积系统中的沉积区长达一米以上,而且带材是卷对卷沉积,无法旋转带材。
本申请由此而来。
发明内容
本申请要解决的技术问题是:针对上述问题,提出一种MOCVD反应系统及采用MOCVD技术制备REBCO高温超导带材的方法,以在提高沉积速率的同时,改善沉积速率的均匀性。
本申请的技术方案是:
一种MOCVD反应系统,包括:
加热基板,
设于所述加热基板上方的气体分配器,以及
位于所述加热基板和所述气体分配器之间的MOCVD反应腔;
所述气体分配器包括其上竖向贯通开设多个射流孔的射流板,每个所述射流孔与所述MOCVD反应腔直接连通。
本申请这种MOCVD反应系统在上述技术方案的基础上,还包括以下优选方案:
每个所述射流孔的长度和孔径的比值大于8。
任一个射流孔与相邻射流孔的孔距,不小于所述任一个射流孔下端孔口 与所述加热基板上表面间距的1/10。
所述气体分配器还包括其上贯通开设多个均流孔的均流板,所述射流板布置于所述均流板的下方。
所述射流板水平布置。
每个所述射流孔的长度为6mm,孔径为0.6mm,所述射流板下表面与所述加热基板上表面的距离为70mm。
所述多个射流孔在所述射流板上均匀排布。
一种采用MOCVD技术制备REBCO高温超导带材的方法,该方法借助上述MOCVD反应系统进行,通过调整送入所述气体分配器内金属有机源气体的气压,使得从所述射流孔喷出的气体流速v>6·P 0.5·L 2;其中:
v是以m/s为单位的气体流速的数值,
P是为以Torr为单位的MOCVD反应腔气压的数值,
L是以cm为单位的射流板下表面到加热板上表面的距离的数值。
v>7·P 0.5·L 2
本申请的有益效果:
1、本申请在气体分流器底部位置设置一块带众多射流孔的射流板,源气体从射流器出来,形成准直,能够以超高速度达到加热基板的准直的射流束,射流束使得在加热基板表面形成的边界层对沉积速率的影响可以忽略不计。这样,MOCVD反应腔内的流场不是再是层流,而是由大量射流器形成的射流束丛林,突破在通常稳定层流情况下会形成的边界层限制,因此沉积速率不再受限于通过边界层的扩散速率,而是取决于射流速度,从而提高了沉积速率,同时由于几乎没有了边界层的影响,沿着带材长度方向的均匀性,基本上取决于射流板上的射流器分布的均匀性。
2、在高温MOCVD中,如果沉积温度很高,比如接近1000度,那么基底的高温引起的热对流不可忽略,强的热对流会进一步阻碍有机源反应气体到达基底表面,进一步降低成绩速率。而本申请的射流技术,由于其气流速度远远高于热对流的气体速度,因此可以很好的压抑强的热对流。
3、在本申请中,虽然每一束射流的确会在基底喷射处产生紊流,不过是很小范围的紊流,影响几个毫米的沉积区域。这是一种微观(毫米级)上不稳定,但是宏观上(米级)高度可控稳定的特殊流场(射流丛林)。幸运的是,这种微观上的不稳定,并不影响搞高温超导薄膜的沉积。沉积条件短 时间的偏离最佳条件,并不会影响超导薄膜的性能,只要短时间的平均条件在最佳条件就可以。高温超导带材以1米/秒的移动,通过这个区域的时间小于一秒,而高温超导薄膜外延生长对短时间的波动有较好的容忍性,因此不会对超导薄膜性能产生影响。微小缺陷对于超导薄膜是一个帮助,因为高温超导薄膜要获得高Ic,就必须在超导薄膜内形成大量钉扎中心,纳米级的微小缺陷是很好的钉扎中心。
4、在本申请中,我们采用最简单、最低成本的射流器,就是在射流板上的加工出细长通孔——射流孔。射流孔的数量,孔径和长度,根据有机源气体的总流量,气压,射流孔到加热基板的距离设计,使得源气体从射流孔出来,形成准直,超高速的射流束,以很高的速度达到加热基板,其加热基板上形成的边界层可以忽略不计。
5、从根本上改善了沉积区的沉积速率的均匀性,沉积区的均匀性不再取决于流场分布,而是取决于射流孔的分布的均匀性,对均匀性的可控性大为增强。这样,在设计MOCVD设备时,不必为了获得均匀沉积速率,而引入复杂的结构机理,牺牲许多其他性能。非常适合像高温超导带材MOCVD沉积这样的米级大型MOCVD沉积系统。
6、由于射流的高速度,源气体在空间停留时间少,有助于减少源气体和氧气在空间的预反应。
7、由于均匀性改善,工艺窗口变大,良率提高。
8、超导薄膜的性能提高,临界电流密度从3MA/cm,提高到4.8MA/cm。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本申请的一些实施例,而非对本申请的限制。
图1是传统MOCVD反应系统的结构原理图。
图2是本申请实施例中MOCVD反应系统的结构原理图。
其中:1-加热基板,2-气体分配器,3-MOCVD反应腔,4-射流束,5-金属基带,6-带盘;
201-均流板,201a-均流孔,202-射流板,202a-射流孔。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例的附图,对本申请实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于所描述的本申请的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。
参照图2所示,与传统MOCVD反应系统相同的是,该MOCVD反应系统也包括:MOCVD反应腔3,布置于MOCVD反应腔3内的加热基板1,位于加热基板上方的气体分配器2。具体地,该MOCVD反应系统具有三个依次相连的真空腔体,中间的是MOCVD反应腔3,左、右的两个腔体是带盘室,织构的金属基带5绕在左边的带盘6上,在带材走带系统的带动下,进入到中间的MOCVD反应腔3,完成超导薄膜的沉积后,进入右边的收卷带盘。带材为千米长,12mm宽,0.06mm厚的织构金属基带,走带速度为1m/h-0.5m/h,在金属基带上获得~2微米的超导薄膜。
ReBaCuO超导薄膜需要的Y、Gd、Ba、Cu有机源,在常温下是固体,需要在源蒸发器里面蒸发成有机源气体,通过源气体传输管道,从气体分配器注入到气体分配器2内。在该气体分配器2内部设有一水平布置的均流板201,均流板201上贯通开设多个均流孔201a。各个大小不一的根据仿真结果,设计成不同的孔径,以获得均匀的气流。
本实施例的关键改进在于,上述的气体分配器2还具有一块布置在均流板201下方的射流板202,该射流板202上竖向贯通开设了多个细长的射流孔202a,每个射流孔202a均与MOCVD反应腔3直接连通——有机源气体从射流孔202a。
实际应用时,送入气体分配器2的有机源气体先通过均流板201而获得流向的射流板202的均匀气流。前述均匀气流穿过射流板202上的射流孔202a得到直接喷入MOCVD反应腔3的射流束4。
为了保持有机源气体不凝聚,也不高温分解,包括阻流板201和射流板202在内的气体分配器2,温度需要最好控制在270-280度。
本实施例中,气体分配器2内的气压为30-70torr。通过射流板202的总气体流量(包括载气)为9930sccm。射流板202下方MOCVD反应腔3的气压,通过蝶阀,控制在2torr。
射流板202上的射流孔202a为简单的通孔,不过射流孔的孔径、孔长、 和数量,最好根据总的气体流量、沉积气压、气体分配器的温度、射流板到加热基板的距离来确定。一般来说,各射流孔202a的长度和孔径的比值大于8。任一个射流孔202a与相邻射流孔202a的孔距,最好不小于该“任一个射流孔202a”下端孔口与加热基板1上表面间距的1/10。
具体在本实施例中,上述各个射流孔202a的直径为0.6mm,射流孔的长度为6mm,射流孔的数量为528个,射流板下表面到加热基板上表面的距离为70mm。在这样的设计下,从射流孔出来的射流速度为846m/s,射流束4的发散角约为7-9度。
如果用“v”代表以m/s为单位的气体流速的数值,用“P”代表以Torr为单位的MOCVD反应腔气压的数值,用“L”代表以cm为单位的射流板下表面到加热板上表面的距离的数值。在该系统的各零部件结构已经定型的情况下,可通过调整送入气体分配器2内金属有机源气体的气压,使得从射流孔202a喷出的气体流速v>6·P 0.5·L 2,更优选地v>7·P 0.5·L 2,从而大幅提升MOCVD反应腔3中沉积速率的均匀性。
本实施例将射流板202水平布置,而且各个射流孔202a在射流板202上均匀排布,以进一步改善沉积速率的均匀性。
本实施例中加热基板1的长度为1米,在加热基板1的温度控制在990度,带材以0.7米/秒的速度通过MOCVD反应腔3的情况下,可获得320A临界电流的超导带材,相当于4.8MA/cm的临界电流密度。
以上仅是本申请的示范性实施方式,而非用于限制本申请的保护范围,本申请的保护范围由所附的权利要求确定。

Claims (9)

  1. 一种MOCVD反应系统,包括:
    MOCVD反应腔(3),
    设于所述MOCVD反应腔内的加热基板(1),以及
    布置于所述加热基板上方的气体分配器(2);
    其特征在于,所述气体分配器(2)包括其上竖向贯通开设多个射流孔(202a)的射流板(202),每个所述射流孔(202a)与所述MOCVD反应腔(3)直接连通。
  2. 根据权利要求1所述的MOCVD反应系统,其特征在于,每个所述射流孔(202a)的长度和孔径的比值大于8。
  3. 根据权利要求1所述的MOCVD反应系统,其特征在于,任一个射流孔(202a)与相邻射流孔(202a)的孔距,不小于所述任一个射流孔(202a)下端孔口与所述加热基板(1)上表面间距的1/10。
  4. 根据权利要求1所述的MOCVD反应系统,其特征在于,所述气体分配器(2)还包括其上贯通开设多个均流孔(201a)的均流板(201),所述射流板(202)布置于所述均流板(201)的下方。
  5. 根据权利要求1所述的MOCVD反应系统,其特征在于,所述射流板(202)水平布置。
  6. 根据权利要求5所述的MOCVD反应系统,其特征在于,每个所述射流孔(202a)的长度为6mm,孔径为0.6mm,所述射流板(202)下表面与所述加热基板(1)上表面的距离为70mm。
  7. 根据权利要求1所述的MOCVD反应系统,其特征在于,所述多个射流孔(202a)在所述射流板(202)上均匀排布。
  8. 一种采用MOCVD技术制备REBCO高温超导带材的方法,其特征在于,该方法借助如权利要求1至7任一所述的MOCVD反应系统进行,通过调整送入所述气体分配器(2)内金属有机源气体的气压,使得从所述射流孔(202a)喷出的气体流速v>6·P 0.5·L 2;其中:
    v是以m/s为单位的气体流速的数值,
    P是为以Torr为单位的MOCVD反应腔气压的数值,
    L是以cm为单位的射流板下表面到加热板上表面的距离的数值。
  9. 根据权利要求8所述的方法,其特征在于,v>7·P 0.5·L 2
PCT/CN2020/126419 2020-10-13 2020-11-04 Mocvd反应系统及rebco高温超导带材的制法 WO2022077636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011091265.9 2020-10-13
CN202011091265.9A CN114351118A (zh) 2020-10-13 2020-10-13 Mocvd反应系统及rebco高温超导带材的制法

Publications (1)

Publication Number Publication Date
WO2022077636A1 true WO2022077636A1 (zh) 2022-04-21

Family

ID=81090170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126419 WO2022077636A1 (zh) 2020-10-13 2020-11-04 Mocvd反应系统及rebco高温超导带材的制法

Country Status (2)

Country Link
CN (1) CN114351118A (zh)
WO (1) WO2022077636A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0863227A1 (en) * 1997-03-04 1998-09-09 Tokyo Electron Limited Method and apparatus for forming laminated thin films or layers
JP2003303819A (ja) * 2002-04-09 2003-10-24 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法
CN102482774A (zh) * 2009-08-24 2012-05-30 艾克斯特朗欧洲公司 用于沉积层的cvd反应器和方法
CN102687242A (zh) * 2010-04-12 2012-09-19 细美事有限公司 气体注入单元和使用该气体注入单元的薄膜气相沉积设备及方法
CN105420684A (zh) * 2015-12-21 2016-03-23 东北大学 一种基于mocvd技术制备rebco超导材料的装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320597A1 (de) * 2003-04-30 2004-12-02 Aixtron Ag Verfahren und Vorrichtung zum Abscheiden von Halbleiterschichten mit zwei Prozessgasen, von denen das eine vorkonditioniert ist
US20050178336A1 (en) * 2003-07-15 2005-08-18 Heng Liu Chemical vapor deposition reactor having multiple inlets
US8227019B2 (en) * 2003-12-15 2012-07-24 Superpower Inc. High-throughput ex-situ method for rare-earth-barium-copper-oxide (REBCO) film growth
JP5031910B2 (ja) * 2010-06-23 2012-09-26 シャープ株式会社 気相成長装置
JP5804936B2 (ja) * 2011-12-27 2015-11-04 古河電気工業株式会社 超電導線の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0863227A1 (en) * 1997-03-04 1998-09-09 Tokyo Electron Limited Method and apparatus for forming laminated thin films or layers
JP2003303819A (ja) * 2002-04-09 2003-10-24 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法
CN102482774A (zh) * 2009-08-24 2012-05-30 艾克斯特朗欧洲公司 用于沉积层的cvd反应器和方法
CN102687242A (zh) * 2010-04-12 2012-09-19 细美事有限公司 气体注入单元和使用该气体注入单元的薄膜气相沉积设备及方法
CN105420684A (zh) * 2015-12-21 2016-03-23 东北大学 一种基于mocvd技术制备rebco超导材料的装置

Also Published As

Publication number Publication date
CN114351118A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2022077637A1 (zh) 喷淋板、配置喷淋板的mocvd反应系统及其使用方法
US11923105B2 (en) Methods and systems for fabricating high quality superconducting tapes
EP1528122A1 (en) Chemical vapor deposition unit
CN102312199B (zh) 一种扫描镀膜装置及扫描镀膜组件
WO2021008057A1 (zh) 金刚石薄膜连续制备使用的hfcvd设备及其镀膜方法
WO2022077636A1 (zh) Mocvd反应系统及rebco高温超导带材的制法
CN105839079A (zh) 真空镀膜装置
CN110106493A (zh) 利用管式pecvd设备制备背面钝化膜的方法
CN114481032A (zh) 制备钙钛矿膜层的设备和方法、太阳能电池及制备方法
JP2019525447A (ja) 均等流板及びプロセスチャンバ等化装置
JPH04233723A (ja) 可変分配率ガス流反応室
CN205874535U (zh) 真空镀膜装置
CN113667965B (zh) 一种制备红外光学材料的化学气相沉积系统及方法
CN206109531U (zh) 一种钙钛矿薄膜的低压化学沉积的设备
WO2021227132A1 (zh) 一种可加热的蜂窝式多通道进气结构
CN107699864B (zh) Mocvd设备进气装置和反应腔的结构及该设备的薄膜生长方法
CN208250415U (zh) 一种薄膜沉积系统
JP5435473B2 (ja) 超電導薄膜の成膜方法
JPH039608B2 (zh)
CN102899638B (zh) 用于光辅助金属有机物化学气相沉积的气体喷淋头装置
Zhang et al. Optimization of MOCVD Hardware Configuration and Process for Growth of High Quality (Gd, Y) BCO Superconducting Tapes Based on CFD Modeling
JPH09115837A (ja) 気相成長方法および気相成長装置
CN116876078A (zh) 一种提高碳化硅外延炉气源均匀性的进气过渡装置
JP6062275B2 (ja) Cvd装置及び超電導薄膜の成膜方法
TWI485276B (zh) 提升硒化物薄膜成長品質之蒸鍍裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957414

Country of ref document: EP

Kind code of ref document: A1