WO2022075197A1 - 容器に収容された溶鋼上に添加するフラックス - Google Patents

容器に収容された溶鋼上に添加するフラックス Download PDF

Info

Publication number
WO2022075197A1
WO2022075197A1 PCT/JP2021/036279 JP2021036279W WO2022075197A1 WO 2022075197 A1 WO2022075197 A1 WO 2022075197A1 JP 2021036279 W JP2021036279 W JP 2021036279W WO 2022075197 A1 WO2022075197 A1 WO 2022075197A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux
molten steel
mass
component
concentration
Prior art date
Application number
PCT/JP2021/036279
Other languages
English (en)
French (fr)
Inventor
晃史 原田
章敏 松井
由枝 中井
裕計 近藤
純哉 伊藤
Original Assignee
Jfeスチール株式会社
品川リフラクトリーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, 品川リフラクトリーズ株式会社 filed Critical Jfeスチール株式会社
Priority to CN202180067183.7A priority Critical patent/CN116323039A/zh
Priority to JP2022509565A priority patent/JP7219854B2/ja
Publication of WO2022075197A1 publication Critical patent/WO2022075197A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D43/00Mechanical cleaning, e.g. skimming of molten metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a flux added to molten steel contained in a container such as a tundish used for continuous steel casting.
  • inclusions Non-metal inclusions in steel (hereinafter referred to as "inclusions”) cause surface defects and deterioration of characteristics in the final product, and for example, alumina-based inclusions adhere to the inner wall of the immersion nozzle. It causes nozzle clogging and hinders operation.
  • the cleanliness required for steel materials has become stricter, and the cleanliness of steel has been improved by the improvement of secondary refining method technology and the development of electromagnetic flow stirring in continuous casting molds. ..
  • the molten steel may be contaminated by the tundish that plays the role of dispensing to the mold for continuous casting, and the prevention is high cleanliness. It is important in the manufacture of steel.
  • the addition of flux to the molten steel in the tundish has not only the heat insulating effect of the molten steel but also the function of blocking the atmosphere from the molten steel and absorbing inclusions, which is one of the measures against molten steel contamination in the tundish. .. Further, in order to fully exhibit these functions, it is necessary to quickly cover the surface of the molten steel with the added flux and to minimize the period during which the surface of the molten steel is exposed to the outside air. Therefore, it is also desired that the flux has good spreadability when added to the molten steel surface.
  • the flux exists as slag on the molten steel after being added, but when it is caught in the molten steel, it becomes a coarse inclusion and can be a factor of deteriorating the quality and characteristics in the steel material, so that it is difficult to be caught by the molten steel flow. There is a need.
  • Patent Document 1 states that a low melting point heat insulating material having a melting temperature of 1500 ° C. or less is placed on the surface of the molten steel in a tundish for continuous casting to keep the heat on the lower layer side.
  • a high melting point heat insulating material having a melting temperature of more than 1580 ° C. is added as an upper layer side heat insulating material, and the surface of the molten steel is covered with a two-layer structure.
  • the composition of the lower layer side heat insulating material is CaO.
  • / Al 2 O 3 mass ratio is 1.1 to 2.0, MgO content is 10% by mass or more and less than 30% by mass, SiO 2 content is 5% by mass or less, and the heat retention on the upper layer side.
  • a method for continuous casting of steel is described in which the composition of the material is such that the CaCO 3 content is 60% by mass or more.
  • Patent Document 1 discloses a continuous casting method of steel in which heat insulating materials having different melting points are added in two layers, but the MgO concentration in the flux used in the lower layer is as high as 10 to 30% by mass, and the flux. Since the melting point becomes high depending on the composition, a steel grade cast at a relatively low temperature such as high carbon steel may cause poor slag, and the effect of the tundish flux that should be originally developed may not be obtained. In particular, there was a problem in the spreadability of the flux for the upper layer.
  • the flux for the upper layer added on the molten steel spreads after the flux for the lower layer is melted, and therefore, the time until the flux for the upper layer covers the molten steel surface is not shortened to a satisfactory level.
  • CaCO 3 contained in the upper layer flux is thermally decomposed to generate CO 2 gas when added to the molten steel, but this CO 2 gas only escapes from the upper layer flux and is used for the lower layer. It did not affect the spread of the flux.
  • Patent Document 2 defines the slag viscosity of the added flux after melting, but the flux immediately after the flux is added onto the molten steel is a solid, and the spreadability of the period until the flux melts is taken into consideration. It has not been. As a result, the location where the flux was added was biased, and there was a risk that the expected inclusion absorption performance and atmospheric blocking effect could not be obtained regardless of the viscosity after melting. In addition, when the flux coating is locally biased, there are places where the slag thickness becomes locally large, and in such places, fluctuations at the molten steel / slag interface become large, and depending on the surface flow velocity of the molten steel, it becomes viscous.
  • the present invention can further sufficiently reduce the amount of oxide-based non-metal inclusions in the molten steel by more sufficiently suppressing the oxidation of the molten steel, and in the molten steel by the flow of the molten steel. It is an object of the present invention to provide a flux to be added on molten steel contained in a container, which is difficult to be caught in a container.
  • the gist of the present invention is as follows.
  • (CaO) / (SiO 2 ) which is the ratio of the CaO component concentration (mass%) to the SiO 2 component concentration (mass%), is 6.0 or more.
  • the ratio (CaO) / (Al 2 O 3 ) of the CaO component concentration (mass%) to the Al 2 O 3 component concentration (mass%) is 0.6 to 2.5.
  • a flux characterized in that the powder or granular material raw material that brings about the CaO component contains calcium carbonate.
  • the flux according to the embodiment of the present invention is added to the molten steel contained in the container so as to be in contact with the molten steel, and is a mixture of powders and granules having various components.
  • the flux (powder / granular material mixture) may consist of powder, granules, or powder and granules.
  • the method for producing the flux is not particularly limited, and may be (i) a method of mixing a raw material made of powder to obtain a powder flux, or (ii) a method of mixing a raw material made of granules to obtain a granule flux.
  • the mixed raw material (iii) is mixed to obtain a mixed powder, and then the mixed powder is processed by a method such as extrusion molding, hollow spraying, or stirring granulation to obtain a flux of granules. It may be a method.
  • a raw material consisting of one or both of powder and granule is collectively referred to as "powder / granular material". The powder constituting the raw material for the powder or granular material may be premelted.
  • the flux of the present embodiment contains a CaO component, an Al 2 O 3 component, an arbitrary SiO 2 component, and optionally at least one component selected from K 2 O, TiO 2 and B 2 O 3 . And optionally contains F (fluorine) component, MgO component, and S (sulfur) component, the balance of which is T.I. It is an unavoidable impurity such as Fe component and Na 2 O component.
  • the raw materials for the powders and granules that bring about the CaO component are, as chemical substance names, calcium carbonate (CaCO 3 ); calcium oxide (CaO); calcium silicate (CaSiO 3 ), dicalcium silicate (Ca2SiO 4 ), and tricalcium silicate (CaSiO 4 ).
  • Calcium silicate such as Ca 3 SiO 5 ); and at least one of calcium aluminate (CaAl 2 O 4 ). It is important to include.
  • Examples of the calcium carbonate source include limestone.
  • limestone powder obtained by crushing limestone may be used, or calcium carbonate obtained by chemically synthesizing from limestone (commonly known as tancal or light tancal) may be used.
  • Examples of the calcium oxide source include quicklime.
  • Examples of calcium silicate sources include Portland cement, synthetic calcium silicate, blast furnace slag, Wollastonite, alumina cement, and rinse slag.
  • Alumina cement can be mentioned as a source of calcium aluminate.
  • Al 2 O 3 aluminum oxide (III)
  • CaAl 2 O 4 calcium aluminate
  • Murite (Al 6 Si 2 O 13 ), potassium hexafluoroaluminate (AlF 6 K 3 ) and the like may be contained.
  • the aluminum (III) oxide source include so-called alumina powder as an industrial product.
  • Alumina cement can be mentioned as a source of calcium aluminate.
  • the mullite source include mullite as a mineral.
  • potassium hexafluoroaluminate source include potassium cryolite.
  • the raw materials for the powders and granules that bring about the SiO 2 component are silicon dioxide (SiO 2 ); calcium silicate (CaSiO 3 ), dicalcium silicate (Ca2 SiO 4 ), and tricalcium silicate (Ca 3 SiO 5 ) as chemical substance names.
  • Calcium silicates such as; as well as at least one of Murite (Al 6 Si 2 O 13 ).
  • Examples of the silicon dioxide source include diatomaceous earth, silica sand, silica stone, pearlite, fly ash, silica fume, silica flower, and glass powder.
  • Examples of calcium silicate sources include Portland cement, synthetic calcium silicate, blast furnace slag, Wollastonite, alumina cement, and rinse slag.
  • Examples of the mullite source include mullite as a mineral.
  • the present inventors have studied various fluxes for addition to ensure the cleanliness of molten steel in tundish, and added the flux to the surface of molten steel by using a flux containing calcium carbonate as the raw material for powder or granular material that brings CaO component. It was found that good dispersibility was obtained and a uniform slag molten layer could be formed. This is because when calcium carbonate (CaCO 3 ) is added to the surface of molten steel, the CO 2 gas generated by thermal decomposition can promote the dispersion of the flux over the entire surface of the molten steel, and the slag is immediately uniform without bias. This is thought to be because a molten layer can be formed.
  • the thickness of the slag layer formed after the addition of the flux is uneven, the fluctuation of the slag due to the flow of molten steel becomes large in the thick portion of the slag layer. Then, it was found that some of the slag that could not follow this fluctuation was separated from the bulk slag by the shearing force of the molten steel flow and was caught in the molten steel side. Further, in the portion where the thickness of the slag layer is excessively thin, the molten slag layer is broken by the flow of molten steel, and it is easily assumed that slag droplets are caught in the fractured portion and direct contact between the unmelted portion and the molten steel is easily assumed. That is, when the local bias in the slag thickness is eliminated, there is an effect that slag is less likely to be caught in the molten steel, and from this, it was found that a steel having a high degree of cleanliness can be obtained.
  • (CaO) / (SiO 2 ) it is necessary to secure 6.0 or more of (CaO) / (SiO 2 ).
  • (CaO) / (SiO 2 ) is smaller than 6.0, even if a uniform slag molten layer is obtained, in Al killed steel, the reaction of the following formula (1), that is, Al and slag in the molten steel The reaction with the medium SiO 2 proceeds, and reoxidation may occur. Further, it is desirable that (CaO) / (SiO 2 ) is 10 or more.
  • the oxide in parentheses () represents the component in the slag
  • the parentheses [] represent the component in the molten steel.
  • the upper limit of (CaO) / (SiO 2 ) is not particularly limited, but when the SiO 2 component presumed to be mixed as an impurity is taken into consideration, it is approximately 160 or less.
  • 3 (SiO 2 ) + 4 [Al] 3 [Si] + 2 (Al 2 O 3 ) ... (1)
  • (CaO) / (Al 2 O 3 ) should be in the range of 0.6 to 2.5.
  • (CaO) / (Al 2 O 3 ) is larger than 2.5, the proportion of the solid phase deposited in the slag becomes large, which is disadvantageous for the absorption of inclusions.
  • (CaO) / (Al 2 O 3 ) is smaller than 0.6, the driving force for absorption of Al 2 O 3 system inclusions is lost because the concentration is near or exceeds the saturated Al 2 O 3 concentration. More preferably, (CaO) / (Al 2 O 3 ) is preferably in the range of 1.0 to 2.0.
  • the total amount of (CaO), (SiO 2 ), and (Al 2 O 3 ) is 80% by mass or more.
  • the flux of the present invention by exhibiting good dispersibility when the molten steel surface is added, a powder layer and a slag molten layer having a uniform thickness are formed, and the molten steel is suppressed from reoxidation and has high absorption of inclusions. Demonstrate sex. Further, since the slag thickness is not biased, it is difficult for the slag to get caught in the molten steel. This makes it possible to produce steel having extremely high cleanliness.
  • the concentration of each component of the flux specified in the present invention is a value obtained based on the result of analyzing the flux by an analysis method such as ICP inductively coupled plasma emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy).
  • ICP inductively coupled plasma emission spectroscopy high frequency inductively coupled plasma emission spectroscopy.
  • carbonate is used as a raw material for powder or granular material, or when some volatile matter is contained, Ig.Ig.
  • ignition loss it is not considered in the scope of the present invention because all of them are removed under the molten steel temperature. That is, when determining the concentration of each component, Ig. Subtract the mass for loss.
  • the present inventors have found that there is an appropriate content of calcium carbonate CaCO 3 in the above-mentioned flux.
  • the content of calcium carbonate in the flux is more than 70% by mass with respect to the total mass of the flux (powder / granular material mixture)
  • the amount of CO 2 gas generated during thermal decomposition increases and the amount of scattered flux increases. This is not preferable because the working environment deteriorates.
  • the thermal decomposition of calcium carbonate is an endothermic reaction, it also leads to deterioration of heat retention.
  • the content of calcium carbonate in the flux is preferably 25 to 70% by mass with respect to the total mass of the flux (powder / granular material mixture).
  • potassium carbonate K2CO 3 or magnesium carbonate MgCO 3 may be used as a raw material for powders, and in that case, potassium carbonate is added to calcium carbonate. It is preferable that the total amount of carbonate in the flux in consideration of magnesium carbonate and magnesium carbonate is 25 to 70% by mass with respect to the total mass of the flux (powder / granule mixture).
  • a carbonate such as calcium carbonate in the flux when added onto the molten steel, it is thermally decomposed to generate CO 2 gas.
  • the amount of CO 2 gas that is reduced by heating is evaluated as ignition loss (Ig. Loss).
  • Is Ig. The loss is obtained by heating the dried sample at a high temperature and calculating the mass ratio before and after heating.
  • Ig.Ig. The range of the loss amount is preferably 9.0 to 31.5% by mass. Ig. If the amount of loss is less than 9.0% by mass, sufficient dispersibility of the flux cannot be obtained.
  • the loss amount exceeds 31.5% by mass, the amount of CO 2 gas generated during thermal decomposition increases, and the amount of flux scattered increases, which deteriorates the working environment, which is not preferable.
  • the thermal decomposition of carbonate is an endothermic reaction, it also leads to deterioration of heat retention.
  • K 2 O, TiO 2 and B 2 O 3 can reduce the interfacial tension between molten steel and slag without causing an excessive decrease in slag viscosity, the absorption of inclusions reaching the molten steel-slag interface is promoted. It is advantageous to. In order to exhibit the effect, it is desirable that the total amount of one or more components selected from K2O , TiO2 and B2O3 is 0.1% by mass or more, and more preferably the total amount. Is 5% by mass or more.
  • the raw materials for powders and granules that bring about the K2O component are potassium oxide ( K2O), potassium carbonate (K2 CO 3 ) , potassium fluoride (KF), and potassium hexafluoroaluminate (potassium hexafluoroaluminate) as chemical substance names. It is at least one of AlF 6K 3 ) .
  • the potassium oxide source include potassium oxide powder
  • examples of the potassium carbonate source include potassium carbonate powder
  • examples of the potassium fluoride source include potassium fluoride powder.
  • Examples of the potassium acid source include potassium glacial stone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

溶鋼の酸化をより十分に抑制することで溶鋼中の酸化物系非金属介在物量をより十分に低減することが可能であり、かつ、溶鋼流動によって溶鋼中に巻き込まれにくい、容器に収容された溶鋼上に添加するフラックスを提供する。容器に収容された溶鋼上に、該溶鋼と接するように添加されるフラックスであって、CaO成分と、Al2O3成分と、任意のSiO2成分とを含み、(CaO)/(SiO2)が6.0以上であり、(CaO)/(Al2O3)が0.6~2.5であり、前記CaO成分をもたらす粉粒体原料が、炭酸カルシウムを含むことを特徴とするフラックス。

Description

容器に収容された溶鋼上に添加するフラックス
 本発明は、鋼の連続鋳造に用いるタンディッシュ等の容器に収容された溶鋼上に添加するフラックスに関するものである。
 鋼中の非金属介在物(以下、「介在物」と記す。)は、最終製品において表面疵や特性劣化の原因となることは勿論のこと、例えばアルミナ系介在物は浸漬ノズルの内壁に付着しノズル詰まりを引き起こし、操業を阻害する。近年、鉄鋼材料に求められる清浄性はより厳格なものとなってきており、二次精錬法技術の向上や、連続鋳造の鋳型における電磁流動撹拌等の開発により、鋼の清浄性は向上してきた。一方で、二次精錬段階で清浄性の高い溶鋼が得られても、連続鋳造の鋳型への分注の役割を果たすタンディッシュにて溶鋼が汚染されるおそれがあり、その防止が高清浄度鋼の製造にあたり重要となる。その中で、タンディッシュ内溶鋼へのフラックス添加は、溶鋼の保温効果だけでなく、大気と溶鋼の遮断や介在物吸収の機能も有しており、タンディッシュにおける溶鋼汚染対策の一つである。また、これらの機能を充分に発現させるためには、添加したフラックスで溶鋼表面が速やかに覆われ、溶鋼表面が外気に暴露される期間を極力少なくする必要がある。そのためフラックスは、溶鋼面へ添加した際の広がり性が良好であることも望まれる。さらに、フラックスは添加後に溶鋼上でスラグとして存在するが、溶鋼内へ巻き込まれると粗大な介在物となり、鋼材中において品質や特性を劣化させる要因となり得るため、溶鋼流動による巻き込まれ難さを有する必要がある。
 このような高清浄度鋼製造のためのタンディッシュフラックス添加技術として、特許文献1には、連続鋳造用タンディッシュ内の溶鋼表面に、溶融温度が1500℃以下の低融点保温材を下層側保温材として添加すると共に、溶融温度が1580℃超の高融点保温材を上層側保温材として添加し、溶鋼表面を2層構造で被覆する方法であって、前記下層側保温材の組成が、CaO/Al質量比が1.1~2.0であり、且つMgO含有率が10質量%以上30質量%未満であり、SiO含有率が5質量%以下であり、前記上層側保温材の組成が、CaCO含有率が60質量%以上であることを特徴とする鋼の連続鋳造方法が記載されている。
 特許文献2には、CaO、SiO、Al、並びにRO(R=K、Rb、およびCsから選択される1種以上)を主成分とし、その合計量が85質量%以上であり、さらに、(RO):5.0質量%以上、(MgO):5.0質量%以下、(T.Fe)+(MnO):1.0質量%以下、(CaO)/(SiO):4.0以上、(CaO)/(Al):0.5~1.5、1550℃における粘度が1.1poise以上を満たすフラックスを、タンディッシュに入った溶鋼上へ添加することを特徴とする鋼の製造方法が記載されている。
特開2006-239754号公報 特開2019- 38036号公報
 しかしながら、上記従来技術には以下の問題点がある。すなわち、特許文献1では、融点の異なる保温材を二層に分けて添加する鋼の連続鋳造方法を開示しているが、下層に用いるフラックス中のMgO濃度は10~30質量%と高く、フラックス組成によっては融点が高位になるため、高炭素鋼のような比較的低温で鋳造する鋼種では滓化不良を起こし、本来発現すべきタンディッシュフラックスの効果が得られない場合があった。特に、上層用フラックスの広がり性に問題があった。具体的には、溶鋼上に添加された上層用フラックスは、下層用フラックスが溶融した後に広がり、そのため、上層用フラックスが溶鋼面を覆うまでの時間が、満足できるレベルまで短くはならなかった。ここで、上層用フラックスに含有されるCaCOは、溶鋼に添加されると熱分解してCOガスを発生させるが、このCOガスは上層用フラックス中を抜けていくだけであり、下層用フラックスの広がりには影響を及ぼさなかった。
 また、特許文献2では、添加フラックスの溶融後のスラグ粘度を規定しているが、溶鋼上へフラックスを添加した直後のフラックスは固体であり、フラックスが溶融するまでの期間の広がり性については考慮されていない。その結果、フラックスを添加した箇所に偏りが生じ、溶融後の粘性に関わらず、期待した介在物吸収性能や大気遮断効果が得られないおそれがあった。また、局所的にフラックスの被覆に偏りが生じた場合、スラグ厚みが局所的に大きくなる箇所が生じ、そのような箇所では溶鋼/スラグ界面における揺らぎが大きくなり、溶鋼の表面流速によっては粘性の高いスラグであっても溶鋼中への巻き込みが生じ得る。また、スラグ厚みが局所的に過度に薄くなる場合は、スラグ層が溶鋼流動によって破断され、破断部スラグ滴や露出した未溶融フラックスの巻き込みが生じ得る。
 そこで本発明は、上記課題に鑑み、溶鋼の酸化をより十分に抑制することで溶鋼中の酸化物系非金属介在物量をより十分に低減することが可能であり、かつ、溶鋼流動によって溶鋼中に巻き込まれにくい、容器に収容された溶鋼上に添加するフラックスを提供することを目的とする。
 本発明の要旨構成は以下のとおりである。
 [1]容器に収容された溶鋼上に、該溶鋼と接するように添加されるフラックスであって、
 CaO成分と、Al成分と、任意のSiO成分とを含み、
 CaO成分濃度(質量%)のSiO成分濃度(質量%)に対する比である(CaO)/(SiO)が6.0以上であり、
 CaO成分濃度(質量%)のAl成分濃度(質量%)に対する比である(CaO)/(Al)が0.6~2.5であり、
 前記CaO成分をもたらす粉粒体原料が、炭酸カルシウムを含むことを特徴とするフラックス。
 [2]Ig.loss量が前記フラックスの全質量に対して9.0~31.5質量%である、上記[1]に記載のフラックス。
 [3]前記炭酸カルシウムの含有量が、前記フラックスの全質量に対して25~70質量%である、上記[1]又は[2]に記載のフラックス。
 [4]KO、TiO及びBから選ばれる少なくとも一つの成分を合計で0.1~10質量%含む、上記[1]~[3]のいずれか一項に記載のフラックス。
 [5]F成分を含み、F成分濃度(F)が10質量%以下である、上記[1]~[4]のいずれか一項に記載のフラックス。
 [6]MgO成分を含み、MgO成分濃度(MgO)が2質量%以下である、上記[1]~[5]のいずれか一項に記載のフラックス。
 [7]前記炭酸カルシウムを含む炭酸塩の合計含有量が、前記フラックスの全質量に対して25~70質量%である、上記[1]~[6]のいずれか一項に記載のフラックス。
 [8]S成分を含み、S成分濃度(S)が1質量%以下である、上記[1]~[7]のいずれか一項に記載のフラックス。
 [9]溶融速度が2.0~7.0kg/(min・m)である、上記[1]~[8]のいずれか一項に記載のフラックス。
 [10]前記容器が、鋼の連続鋳造に用いるタンディッシュである、上記[1]~[9]のいずれか一項に記載のフラックス。
 本発明のフラックスを容器に収容された溶鋼上に添加すれば、溶鋼の酸化をより十分に抑制し、溶鋼中の酸化物系非金属介在物量をより十分に低減することが可能である。また、本発明のフラックスは、溶鋼上に添加された後、溶鋼流動によって溶鋼中に巻き込まれにくい。
 本発明の実施形態によるフラックスは、容器に収容された溶鋼上に、該溶鋼と接するように添加されるものであり、種々の成分を有する粉粒体の混合物である。フラックス(粉粒体混合物)は、粉末からなってもよいし、顆粒からなってもよいし、粉末及び顆粒からなってもよい。フラックスの製造方法は特に限定されず、(i)粉末からなる原料を混合して、粉末のフラックスを得る方法でもよいし、(ii)顆粒からなる原料を混合して、顆粒のフラックスを得る方法でもよいし、(iii)粉末からなる原料を混合して混合粉末を得た後、例えば、押出成形、中空スプレー、撹拌造粒等の方法でこの混合粉末を加工して、顆粒のフラックスを得る方法でもよい。なお、本明細書において、粉末及び顆粒の一方又は両方からなる原料を「粉粒体原料」と総称する。なお、粉粒体原料を構成する粉末は、プリメルト加工されたものであってもよい。
 本実施形態のフラックスは、CaO成分と、Al成分と、任意のSiO成分とを含み、さらに、任意で、KO、TiO及びBから選ばれる少なくとも一つの成分を含み、さらに、任意で、F(フッ素)成分、MgO成分、及びS(硫黄)成分を含み、残部はT.Fe成分及びNaO成分などの不可避的不純物である。
 CaO成分をもたらす粉粒体原料は、化学物質名として、炭酸カルシウム(CaCO);酸化カルシウム(CaO);カルシムシリケート(CaSiO)、ダイカルシウムシリケート(CaSiO)、及びトライカルシウムシリケート(CaSiO)などのケイ酸カルシウム類;並びにカルシウムアルミネート(CaAl)のうち少なくとも一種であり、後述のとおり、本実施形態では、CaO成分をもたらす粉粒体原料が、炭酸カルシウムを含むことが肝要である。炭酸カルシウム源としては、石灰石を挙げることができる。なお、炭酸カルシウム源として、石灰石を粉砕して得た石灰石粉粒を用いてもよいし、石灰石から化学合成して得た炭酸カルシウム(通称:タンカル、または軽質タンカル)を用いてもよい。酸化カルシウム源としては、生石灰を挙げることができる。ケイ酸カルシウム類源としては、ポルトランドセメント、合成ケイ酸カルシウム、高炉スラグ、Wollastonite、アルミナセメント、リンスラグ等を挙げることができる。カルシウムアルミネート源としては、アルミナセメントを挙げることができる。
 Al成分をもたらす粉粒体原料としては、化学物質名として、主に酸化アルミニウム(III)(Al)を挙げることができ、その他に、カルシウムアルミネート(CaAl)、ムライト(AlSi13)、ヘキサフルオロアルミン酸カリウム(AlF)等を含んでもよい。酸化アルミニウム(III)源としては、工業製品としてのいわゆるアルミナ粉末を挙げることができる。カルシウムアルミネート源としては、アルミナセメントを挙げることができる。ムライト源としては、鉱物としてのムライトを挙げることができる。ヘキサフルオロアルミン酸カリウム源としては、カリウム氷晶石を挙げることができる。
 SiO成分をもたらす粉粒体原料は、化学物質名として、二酸化ケイ素(SiO);カルシムシリケート(CaSiO)、ダイカルシウムシリケート(CaSiO)、及びトライカルシウムシリケート(CaSiO)などのケイ酸カルシウム類;並びにムライト(AlSi13)のうち少なくとも一種である。二酸化ケイ素源としては、珪藻土、珪砂、珪石、パーライト、フライアッシュ、シリカフューム、シリカフラワー、ガラス粉等を挙げることができる。ケイ酸カルシウム類源としては、ポルトランドセメント、合成ケイ酸カルシウム、高炉スラグ、Wollastonite、アルミナセメント、リンスラグ等を挙げることができる。ムライト源としては、鉱物としてのムライトを挙げることができる。
 その他の成分をもたらす粉粒体原料については後述する。
 本発明者らは、タンディッシュにおける溶鋼清浄性を確保するための添加用フラックスについて種々検討し、CaO成分をもたらす粉粒体原料が炭酸カルシウムを含むフラックスを用いることにより、これを溶鋼表面へ添加した際に良好な分散性が得られ、均一なスラグ溶融層を形成することができることを知見した。これは、炭酸カルシウム(CaCO)が溶鋼表面へ添加されたとき、熱分解にて発生するCOガスにより、フラックスの溶鋼表面全体への分散を促進することができ、偏りなく直ちに均一なスラグ溶融層を形成させることができるためと考えられる。これは、フラックスの溶鋼への添加時において、未溶融部分の厚み差が50mm以下となり、スラグ厚みのばらつきが緩和されて、スラグ厚みの均一化が達成されるためである。その結果、大気からの再酸化が抑制されるとともに、介在物吸収性が向上し、清浄度の高い鋼を得られることを見出した。
 さらに、発明者が行なった水モデル実験によると、フラックス添加後に形成されるスラグ層の厚みに偏りが多いと、スラグ層の厚みの大きい部分で溶鋼流動に伴うスラグの揺らぎが大きくなった。そして、この揺らぎに追従できなくなった一部のスラグが溶鋼流によるせん断力によりバルクスラグから切り離されて溶鋼側へ巻き込まれる場合があることがわかった。また、過度にスラグ層の厚みの薄い部分においては、溶鋼流動により溶融スラグ層が破断され、破断部のスラグ滴の巻き込みや未溶融部と溶鋼との直接接触も容易に想定された。すなわち、局所的なスラグ厚みの偏りが無くなると、溶鋼中へのスラグ巻き込みが生じ難くなる効果も生じ、このことからも、清浄度の高い鋼を得られることが分かった。
 このとき、(CaO)/(SiO)は6.0以上を確保する必要がある。(CaO)/(SiO)が6.0より小さいと、均一なスラグ溶融層が得られたとしても、Alキルド鋼においては、以下の(1)式の反応、すなわち溶鋼中のAlとスラグ中SiOとの反応が進み、再酸化が起こり得る。また、(CaO)/(SiO)は10以上が望ましい。ここで、括弧()内の酸化物は、スラグ中の成分、括弧[]内は溶鋼中の成分を表す。SiO成分は任意であるため、(CaO)/(SiO)の上限は特に限定されないが、不純物として混入されると推定されるSiO成分を考慮すると、概ね160以下となる。
 
 3(SiO)+4[Al]=3[Si]+2(Al) ・・・(1)
 
 また、(CaO)/(Al)は、0.6~2.5の範囲内とする必要がある。(CaO)/(Al)が2.5より大きいと、スラグ中に析出する固相の割合が大きくなり、介在物の吸収には不利である。一方、(CaO)/(Al)が0.6より小さいと、飽和Al濃度近傍もしくはその濃度を超えるため、Al系介在物吸収の駆動力が無くなる。さらに望ましくは、(CaO)/(Al)は1.0~2.0の範囲が良い。
 また、本発明のフラックスについて、より優れた効果を発現するためには(CaO)、(SiO)、及び(Al)の合計量が80質量%以上であることが望ましい。
 ここで、CaO成分濃度(CaO)は、フラックス中の全カルシウム濃度(質量%)×1.40を示す。「全カルシウム濃度」は、例えばICP発光分光分析により得られるCa濃度(T.Ca)である。また、SiO成分濃度(SiO)は、フラックス中の全ケイ素濃度(質量%)×2.14を示す。「全ケイ素濃度」は、例えば、ICP発光分光分析により得られるSi濃度(T.Si)である。また、Al成分濃度(Al)は、フラックス中の全アルミニウム濃度(質量%)×1.89を示す。「全アルミニウム濃度」は、例えばICP発光分光分析により得られるAl濃度(T.Al)である。
 以上説明した本発明のフラックスによれば、溶鋼表面添加時に良好な分散性を発揮することで、均一な厚みの粉体層及びスラグ溶融層を形成し、溶鋼の再酸化抑制および高い介在物吸収性を発揮する。また、スラグ厚みの偏りが生じないため、溶鋼中にスラグが巻き込まれにくい。これにより、極めて高い清浄性を有した鋼を製造することができる。
 なお、本発明で規定するフラックスの各成分濃度は、フラックスをICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)などの分析法にて分析した結果に基づいて、得られる値である。また、粉粒体原料として炭酸塩を用いる場合や、多少なり揮発分が含まれる場合等、フラックス中にはIg.lossすなわち強熱減量分が存在するが、溶鋼温度下ではいずれも除去されるため、本発明の範囲には考慮しない。つまり、各成分の濃度を求める際に、分母のフラックス質量からIg.loss分の質量を差し引く。
 さらに、本発明者らは上述したフラックス中の炭酸カルシウムCaCOについて、適切な含有量があることを見出した。フラックス中の炭酸カルシウムの含有量が、フラックス(粉粒体混合物)の全質量に対して70質量%よりも多い場合、熱分解時に発生するCOガス量が増加し、フラックスの飛散量が増加することで、作業環境が悪化するため好ましくない。また、炭酸カルシウムの熱分解は吸熱反応であるため、保温性の悪化にもつながる。それに対し、フラックス中の炭酸カルシウムの含有量が、フラックス(粉粒体混合物)の全質量に対して25質量%よりも小さい場合、熱分解時の発生COガス量が少なく、フラックスの十分な分散性が得られない。したがって、フラックス中の炭酸カルシウムの含有量は、フラックス(粉粒体混合物)の全質量に対して25~70質量%とするのが良い。また、KO成分やMgO成分をフラックス中に含有する場合は、炭酸カリウムKCOや炭酸マグネシウムMgCOを粉粒体原料として使用してもよく、その際は、炭酸カルシウムに炭酸カリウムや炭酸マグネシウムを考慮したフラックス中の炭酸塩の合計量が、フラックス(粉粒体混合物)の全質量に対して25~70質量%とするのが良い。
 また、上述したように、フラックス中の炭酸カルシウム等の炭酸塩は溶鋼上に添加されると熱分解してCOガスが発生する。加熱により減量するCOガスの量は、強熱減量(Ignition Loss;Ig.loss)として評価される。は、Ig.lossは、乾燥試料を高温で加熱し、加熱前後の質量比を算出することで求められる。本発明では、フラックス(粉粒体混合物)の全質量に対するIg.loss量の範囲を9.0~31.5質量%とするのが良い。Ig.loss量が9.0質量%より少ないと、フラックスの十分な分散性が得られない。Ig.loss量が31.5質量%を超えると、熱分解時に発生するCOガス量が増加し、フラックスの飛散量が増加することで、作業環境が悪化するため好ましくない。また、炭酸塩の熱分解は吸熱反応であるため、保温性の悪化にもつながる。
 加えて、KO、TiO及びBから選ばれる少なくとも一つの成分をフラックス中に含有することで、良好な介在物吸収性が得られることが分かった。KO、TiO及びBはスラグ粘度の過度な低下を招くことなく、溶鋼-スラグ間の界面張力を低下させることができるため、溶鋼-スラグ界面に到達した介在物の吸収促進に有利である。効果発現のためには、KO、TiO及びBから選ばれる1種または2種以上の成分の合計量が0.1質量%以上であることが望ましく、さらに望ましくは合計量が5質量%以上である。一方、これらの成分を多量に含むと発塵や環境制約の問題が発現してくるため、合計量は10質量%以下にするのが好ましい。なお、KO成分をもたらす粉粒体原料は、化学物質名として、酸化カリウム(KO)、炭酸カリウム(KCO)、フッ化カリウム(KF)、及びヘキサフルオロアルミン酸カリウム(AlF)のうち少なくとも一種である。酸化カリウム源としては、酸化カリウム粉末を挙げることができ、炭酸カリウム源としては、炭酸カリウム粉末を挙げることができ、フッ化カリウム源としては、フッ化カリウム粉末を挙げることができ、ヘキサフルオロアルミン酸カリウム源としては、カリウム氷晶石を挙げることができる。TiO成分をもたらす粉粒体原料は、二酸化チタン(TiO)である。二酸化チタン源としては、二酸化チタン粉末を挙げることができる。B成分をもたらす粉粒体原料は、ホウ酸(HBO)、コレマナイト(Ca11・5HO)、及びホウ砂(Na(OH)・10HO)のうち少なくとも一種である。ホウ酸源としては、ホウ酸粉末を挙げることができ、コレマナイト源としては、コレマナイト粉末を挙げることができ、ホウ砂源としては、ホウ砂粉末を挙げることができる。なお、B成分をもたらす粉粒体原料を他の酸化物と混合させて、一旦溶融させたプリメルト原料を用いてもよい。KO成分濃度(KO)は、フラックス中の全カリウム濃度(質量%)×1.20を示す。「全カリウム濃度」は、例えばICP発光分光分析により得られるK濃度(T.K)である。TiO成分濃度(TiO)は、フラックス中の全チタン濃度(質量%)×1.67を示す。「全チタン濃度」は、例えばICP発光分光分析により得られるTi濃度(T.Ti)である。B成分濃度(B)は、フラックス中の全ホウ素濃度(質量%)×3.22を示す。「全ホウ素濃度」は、例えばICP発光分光分析により得られるB濃度(T.B)である。
 また、F成分を含有させることで、良好な滓化性が得られる。例えば、高炭素鋼の場合、一般的な低炭素鋼と比べて連続鋳造時のタンディッシュ内溶鋼温度が低いため、フラックス組成によっては十分な滓化速度を確保できない可能性がある。そこで、F成分を含有させることで低温鋳造の場合でも、優れた滓化性が得られる。ただし、スラグ中にF成分を多量に含有することは環境面から望ましくなく、また、著しくスラグ粘度を低減させることでスラグ巻き込みによる溶鋼汚染を招き得るため、F成分濃度は10質量%以下であることが良い。ここで、F成分をもたらす粉粒体原料は、フッ化カルシウム(CaF)、フッ化マグネシウム(MgF)、フッ化カリウム(KF)、及びヘキサフルオロアルミン酸カリウム(AlF)のうち少なくとも一種である。フッ化カルシウム源としては、蛍石を挙げることができ、フッ化マグネシウム源としては、フッ化マグネシウム粉末を挙げることができ、フッ化カリウム源としては、フッ化カリウム粉末を挙げることができ、ヘキサフルオロアルミン酸カリウム源としては、カリウム氷晶石を挙げることができる。F成分濃度は、例えばICP発光分光分析により得られるF濃度(T.F)である。
 加えて、フラックス中のMgO成分は耐火物保護の観点から含有しても良いが、高濃度になると融点増加や過度なスラグ粘度の低下を招くため、MgO成分濃度は2質量%以下であることが望ましい。MgO成分濃度は低いほど望ましいため下限は設けないが、さらに好ましくは1.5質量%以下である。MgO成分をもたらす粉粒体原料は、酸化マグネシウム(MgO)及び炭酸マグネシウム(MgCO)の一方又は両方である。MgO成分濃度(MgO)は、フラックス中の全マグネシウム濃度(質量%)×1.66を示す。「全マグネシウム濃度」は、例えばICP発光分光分析により得られるMg濃度(T.Mg)である。
 さらに、フラックス中のS成分濃度についても好適な範囲があることが分かった。すなわち、S成分濃度が1質量%より多いと、溶鋼へフラックスを添加しスラグを形成した際に、溶鋼中へのSピックアップが生じ得る。溶鋼中のS成分が増加すると、溶鋼中あるいは凝固時に生成する硫化物量も増加することになり、材料特性の劣化を引き起こす。したがって、S成分濃度は1質量%以下であるのが良い。S濃度は低いほど望ましいため下限は設けないが、さらに好ましくは0.1質量%以下である。S成分は、主に、種々の粉粒体原料、特にポルトランドセメント及び高炉スラグ中の不純物に由来する。S成分濃度は、例えばICP発光分光分析により得られるS濃度(T.S)である。
 成分の残部については、Fe酸化物やNaOのような不可避的不純物であり、合計で2.0質量%以下である。T.Fe成分は、主にポルトランドセメント及び高炉スラグ等の粉粒体原料中の不純物に由来する。NaO成分は、ホウ砂をはじめとする各種粉粒体原料中の不純物に由来する。
 さらに、本発明のフラックスを溶鋼に添加した際、適切な溶融速度を確保することが清浄な溶鋼を得るために重要であることが分かった。すなわち、フラックスを溶鋼上へ添加した際、2.0kg/(min・m)以上の溶融速度であるとき、直ちに溶鋼上で均一な溶融スラグ層を形成でき、大気酸化の抑制や介在物吸収に対して効果的である。ここで、フラックスの溶融速度は、次のように求めることができる。まず、高周波炉溶解炉等で1480℃に温度調整した溶鋼上にフラックスを添加し、所定の溶融層厚みに到達するまでの時間を測定する。次に得られた所定溶融層厚みまでの到達時間および高周波炉溶解炉等の断面積でフラックス溶融重量を除すことでフラックスの溶融速度が求められる。なお、断面積当たりのフラックス添加量は、28.2kg/mとし、「所定溶融層厚み」は4.2mmとする。この溶融層厚みは、添加したフラックスの約90%が溶融したと想定される厚みに相当する。
 フラックスの溶融速度が2.0kg/(min・m)未満のとき、スラグ液相の形成が遅れ、溶鋼が大気に晒される時間が増加するため、汚染部位が増加する。さらに、スラグ液相形成が遅れると、溶鋼/スラグ界面に浮上した介在物の吸収ができず、同じく溶鋼の清浄性を悪化させる要因となる。また、フラックスの溶融速度が7.0kg/(min・m)を超えるとき、スラグ液相の形成が過剰に速くなるため、添加したフラックス上部の未溶融スラグ層が形成されずに溶鋼表面の保温が著しく低下し、凝固したスラグ層表面はロングノズル挿入を阻害したり、排滓性が悪化するなど、操業面での問題が発生しやすくなる。以上から、フラックスを溶鋼へ添加した際の溶融速度は2.0~7.0kg/(min・m)であることが良い。本発明のフラックスをタンディッシュフラックスとして使用する場合、フラックスの溶融速度は2.7~5.6kg/(min・m)であることが好ましい。
 また、本発明のフラックスを溶鋼に添加した際、未溶融部分の厚みの均一性が鋼の品質向上に重要であることが判明した。すなわち、フラックスを溶鋼に添加した3分後において、フラックスの厚みの最大部位と最小部位との差が50mm以下になる時、溶鋼の被覆性が十分に高まり、大気酸化の抑制、断熱性、均一な溶融スラグ層の形成が達成される。当該フラックス厚み差が50mm超えの場合は、これらの効果が損なわれ、特に均一なスラグ形成が損なわれた。ここで、フラックス厚みは、金属製の棒をタンディッシュ内の溶鋼湯面まで浸漬させて引き上げた後、棒の表面に付着した溶融スラグおよび未溶融フラックスから、測定することができる。なお、これは測定法の一例であり、この方法に限定されるものではない。
 1チャージの溶鋼量が約200トン規模の実機にて、転炉-取鍋精錬炉-RH真空脱ガス炉-連続鋳造の工程で高清浄度鋼の代表として挙げられる軸受け鋼を製造した。連続鋳造において、溶鋼をタンディッシュ満杯まで注ぎあげた後、表1に示すフラックスをタンディッシュ内の溶鋼上に添加した。軸受け鋼の成分組成は、炭素濃度0.90質量%以上1.10質量%以下、ケイ素濃度0.15質量%以上0.25質量%以下、マンガン濃度0.45質量%以下、リン濃度0.020質量%以下、イオウ濃度0.0050質量%以下、アルミニウム濃度0.030質量%以下、クロム濃度1.4質量%以上1.7質量%以下、窒素濃度0.0050質量%以下、残部は鉄及び不可避的不純物である。既述の方法で測定したフラックス溶融速度及びフラックス厚み差も表1に示す。RH真空脱ガス処理終了時および連続鋳造定常時におけるタンディッシュにて溶鋼サンプルを採取し、鋼中のトータル酸素濃度を測定し、その変化量Δ[T.O.]を測定した。結果を表1に示す。トータル酸素濃度は、鋼中に存在する酸化物系介在物分の酸素も測定していることから、例えば、トータル酸素濃度の減少はすなわち、鋼中に存在する酸化物系介在物個数の減少を示す。
Figure JPOXMLDOC01-appb-T000001
 本発明例においては、RHからタンディッシュにおける鋼中トータル酸素量の変化が0.0002質量%以下と比較的低位であった。一方、フラックスが本発明の条件を満たさない比較例においては、RHからタンディッシュにおける鋼中トータル酸素濃度の変化が0.0005質量%以上と高位であり、溶鋼を汚染する結果であった。
 上記実施例は、本発明に係るフラックスをタンディッシュ内の溶鋼に添加する場合について示したが、本発明に係るフラックスの利用は、タンディッシュに限定されない。鋼の連続鋳造用の鋳型(モールドフラックス)、鋼の造塊や鋳鉄の鋳造用の鋳型(インゴットフラックス)、あるいは取鍋に保持された溶鋼や溶鉄の保温材などとしても利用できる。
 本発明のフラックスを容器に収容された溶鋼上に添加すれば、溶鋼の酸化をより十分に抑制し、溶鋼中の酸化物系非金属介在物量をより十分に低減することが可能である。そのため、高清浄度の鋼を製造することができる。また、本発明のフラックスは、溶鋼上に添加された後、溶鋼流動によって溶鋼中に巻き込まれにくい。

Claims (10)

  1.  容器に収容された溶鋼上に、該溶鋼と接するように添加されるフラックスであって、
     CaO成分と、Al成分と、任意のSiO成分とを含み、
     CaO成分濃度(質量%)のSiO成分濃度(質量%)に対する比である(CaO)/(SiO)が6.0以上であり、
     CaO成分濃度(質量%)のAl成分濃度(質量%)に対する比である(CaO)/(Al)が0.6~2.5であり、
     前記CaO成分をもたらす粉粒体原料が、炭酸カルシウムを含むことを特徴とするフラックス。
  2.  Ig.loss量が前記フラックスの全質量に対して9.0~31.5質量%である、請求項1に記載のフラックス。
  3.  前記炭酸カルシウムの含有量が、前記フラックスの全質量に対して25~70質量%である、請求項1又は2に記載のフラックス。
  4.  KO、TiO及びBから選ばれる少なくとも一つの成分を合計で0.1~10質量%含む、請求項1~3のいずれか一項に記載のフラックス。
  5.  F成分を含み、F成分濃度(F)が10質量%以下である、請求項1~4のいずれか一項に記載のフラックス。
  6.  MgO成分を含み、MgO成分濃度(MgO)が2質量%以下である、請求項1~5のいずれか一項に記載のフラックス。
  7.  前記炭酸カルシウムを含む炭酸塩の合計含有量が、前記フラックスの全質量に対して25~70質量%である、請求項1~6のいずれか一項に記載のフラックス。
  8.  S成分を含み、S成分濃度(S)が1質量%以下である、請求項1~7のいずれか一項に記載のフラックス。
  9.  溶融速度が2.0~7.0kg/(min・m)である、請求項1~8のいずれか一項に記載のフラックス。
  10.  前記容器が、鋼の連続鋳造に用いるタンディッシュである、請求項1~9のいずれか一項に記載のフラックス。
PCT/JP2021/036279 2020-10-09 2021-09-30 容器に収容された溶鋼上に添加するフラックス WO2022075197A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180067183.7A CN116323039A (zh) 2020-10-09 2021-09-30 添加至收容于容器的钢液上的熔剂
JP2022509565A JP7219854B2 (ja) 2020-10-09 2021-09-30 容器に収容された溶鋼上に添加するフラックス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-171475 2020-10-09
JP2020171475 2020-10-09

Publications (1)

Publication Number Publication Date
WO2022075197A1 true WO2022075197A1 (ja) 2022-04-14

Family

ID=81126885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036279 WO2022075197A1 (ja) 2020-10-09 2021-09-30 容器に収容された溶鋼上に添加するフラックス

Country Status (3)

Country Link
JP (1) JP7219854B2 (ja)
CN (1) CN116323039A (ja)
WO (1) WO2022075197A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4202692A (en) * 1978-02-01 1980-05-13 The Clay Harden Company Tundish flux powder
US6174347B1 (en) * 1996-12-11 2001-01-16 Performix Technologies, Ltd. Basic tundish flux composition for steelmaking processes
CN1526493A (zh) * 2003-09-19 2004-09-08 宜兴振球炉料有限公司 一种连铸用中间包保护渣及制备
JP2010227972A (ja) * 2009-03-27 2010-10-14 Shinagawa Refractories Co Ltd 鋼の連続鋳造用モールドパウダー
JP2019038036A (ja) * 2017-08-25 2019-03-14 Jfeスチール株式会社 鋼の製造方法および溶鋼を収納した容器への添加用フラックス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4202692A (en) * 1978-02-01 1980-05-13 The Clay Harden Company Tundish flux powder
US6174347B1 (en) * 1996-12-11 2001-01-16 Performix Technologies, Ltd. Basic tundish flux composition for steelmaking processes
CN1526493A (zh) * 2003-09-19 2004-09-08 宜兴振球炉料有限公司 一种连铸用中间包保护渣及制备
JP2010227972A (ja) * 2009-03-27 2010-10-14 Shinagawa Refractories Co Ltd 鋼の連続鋳造用モールドパウダー
JP2019038036A (ja) * 2017-08-25 2019-03-14 Jfeスチール株式会社 鋼の製造方法および溶鋼を収納した容器への添加用フラックス

Also Published As

Publication number Publication date
JP7219854B2 (ja) 2023-02-08
CN116323039A (zh) 2023-06-23
JPWO2022075197A1 (ja) 2022-04-14

Similar Documents

Publication Publication Date Title
CN1321764C (zh) 不含氟的炼钢连铸用保护渣
AU764954B2 (en) Molding powder for continuous casting of steel and method for continuous casting of steel
JP3649153B2 (ja) 連続鋳造用モールドパウダ
KR102277782B1 (ko) 캐스팅 분말, 캐스팅 슬래그 및 강의 캐스팅 방법
JP6901696B1 (ja) モールドパウダー
KR20040079407A (ko) 강의 연속 주조 방법
CN111644582A (zh) 一种含钛钢用中间包覆盖剂及其制备方法和应用
JP2017170494A (ja) 鋼の連続鋳造用モールドパウダーおよび連続鋳造方法
JP5342296B2 (ja) 鋼の連続鋳造用モールドパウダー
JP7219854B2 (ja) 容器に収容された溶鋼上に添加するフラックス
JPS60258406A (ja) 溶鋼用合成フラツクス
EP0245107A1 (en) Steel making flux
JPH08141713A (ja) 鋼の連続鋳造用モールドパウダー
GB2265564A (en) Tundish cover layer containing flux ingredients and expandable graphite
JP3107739B2 (ja) 鋼の連続鋳造用パウダーのプリメルトフラックス
JP2021074782A (ja) モールドパウダー及び中炭素綱の製造方法
JP2020121320A (ja) モールドパウダー及び高Mn鋼の連続鋳造方法
JP7339568B2 (ja) モールドパウダー
JP7510256B2 (ja) 製鋼用フラックスの製造に用いられる基材、製鋼用フラックス及びその製造方法
JP7216310B2 (ja) モールドパウダー
JP6871525B2 (ja) モールドパウダー
JPH10314897A (ja) 鋼の連続鋳造用モールドパウダー
JP2003053497A (ja) 連続鋳造用フラックス
JP2000051998A (ja) 鉛含有鋼の連続鋳造方法
JP6718539B1 (ja) モールドパウダー

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022509565

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877498

Country of ref document: EP

Kind code of ref document: A1