WO2022073284A1 - Oled显示面板及其制作方法 - Google Patents

Oled显示面板及其制作方法 Download PDF

Info

Publication number
WO2022073284A1
WO2022073284A1 PCT/CN2020/129745 CN2020129745W WO2022073284A1 WO 2022073284 A1 WO2022073284 A1 WO 2022073284A1 CN 2020129745 W CN2020129745 W CN 2020129745W WO 2022073284 A1 WO2022073284 A1 WO 2022073284A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display panel
oled display
flat layer
base substrate
Prior art date
Application number
PCT/CN2020/129745
Other languages
English (en)
French (fr)
Inventor
张乐陶
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US17/252,277 priority Critical patent/US20220352275A1/en
Publication of WO2022073284A1 publication Critical patent/WO2022073284A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/88Terminals, e.g. bond pads
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the present application relates to the field of display technology, and in particular, to an OLED display panel and a manufacturing method thereof.
  • AMOLED Active-Matrix Organic Light-Emitting Diode, active matrix organic light-emitting diode
  • AMOLED technology has mass-produced bottom-emitting white organic light-emitting diodes, but this technology uses evaporation method to prepare organic light-emitting diode devices.
  • the waste of light-emitting materials is huge; and white organic light-emitting diodes need color filter substrates to filter colors to obtain RGB, so the energy consumption is not dominant compared with traditional liquid crystal display panels; Conducive to high-resolution display applications.
  • top-emitting inkjet printing (IJP, Ink Jet Printing) technology has a utilization rate of more than 80% of raw materials, and can emit RGB color light without color filter substrates, and top emission is beneficial to Increase the opening rate.
  • the normal top-emitting inkjet printing technology has high requirements on the flatness of the backplane, and a flat layer is generally used to fill in the unevenness caused by the devices and traces.
  • a flat layer is generally used to fill in the unevenness caused by the devices and traces.
  • the requirements for metal trace resistance are also getting higher and higher, resulting in a gradual increase in the thickness of metal traces.
  • the leveling property of the flat layer is limited.
  • the top-emitting IJP technology also has a high requirement on the flatness of the backplane, but the existing flat layer has the problem of limited flat layer, which is in urgent need of improvement.
  • the present application relates to an OLED display panel and a manufacturing method thereof, which are used to solve the problem that the top-emitting inkjet printing technology in the prior art has high requirements on the flatness of the backplane, but the existing flat layer has limited flatness. .
  • the application provides an OLED display panel, wherein the OLED display panel is sequentially stacked along a first direction: a base substrate and a plurality of film layers deposited on one side of the base substrate; wherein,
  • the flat layer includes:
  • a first planarization layer for preliminarily planarizing the array substrate
  • the materials of the first flat layer and the second flat layer are different;
  • the base substrate is a glass substrate or a flexible substrate.
  • the material of the first flat layer is one of PI-based or acrylic-based organic materials; the material of the second flat layer is a siloxane-based organic photoresist material .
  • the main element components of the second flat layer are carbon, silicon, oxygen, and hydrogen.
  • the first flat layer has a predetermined thickness along the first direction, and the predetermined thickness of the first flat layer along the first direction is the first thickness H1;
  • the second flat layer also has a predetermined thickness along the first direction, and the predetermined thickness of the second flat layer along the first direction is a second thickness H2.
  • the range of the first thickness H1 is: 1.0um to 2.5um; the range of the second thickness H2 is: 1.0um to 2.5um.
  • the OLED display panel is further provided with a passivation layer on the side of the flat layer close to the base substrate, and the material of the passivation layer is: silicon oxide, nitride One or a combination of silicon and aluminum oxide.
  • an anode layer is formed on the side of the OLED display panel away from the second flat layer, and the anode layer is ITO/Ag/ITO, Ag/ITO, Al/WOx , one of Ag/IZO.
  • the present application also provides an OLED display panel, which is sequentially stacked along a first direction: a base substrate and a plurality of film layers deposited on one side of the base substrate; wherein,
  • the flat layer includes:
  • a first planarization layer for preliminarily planarizing the array substrate
  • the materials of the first flat layer and the second flat layer are different.
  • the material of the first flat layer is one of PI-based or acrylic-based organic materials; the material of the second flat layer is a siloxane-based organic photoresist material .
  • the main element components of the second flat layer are carbon, silicon, oxygen, and hydrogen.
  • the first flat layer has a predetermined thickness along the first direction, and the predetermined thickness of the first flat layer along the first direction is the first thickness H1;
  • the second flat layer also has a predetermined thickness along the first direction, and the predetermined thickness of the second flat layer along the first direction is a second thickness H2.
  • the range of the first thickness H1 is: 1.0um to 2.5um; the range of the second thickness H2 is: 1.0um to 2.5um.
  • the OLED display panel is further provided with a passivation layer on the side of the flat layer close to the base substrate, and the material of the passivation layer is: silicon oxide, nitride One or a combination of silicon and aluminum oxide.
  • an anode layer is formed on the side of the OLED display panel away from the second flat layer, and the anode layer is ITO/Ag/ITO, Ag/ITO, Al/WOx , one of Ag/IZO.
  • the array substrate further includes: a buffer layer, a light shielding layer, an active layer, a gate insulating layer, a gate layer, an interlayer insulating layer, and a source and drain layer.
  • the material used for the buffer layer includes one of silicon oxide, silicon nitride or aluminum oxide.
  • the material used for the active layer includes one of indium gallium zinc oxide, indium zinc oxide, and indium zinc tin oxide.
  • the present application also provides a method for manufacturing an OLED display panel, and the method for manufacturing an OLED display panel includes:
  • a base substrate is provided, and a plurality of film layers are sequentially stacked along the first direction on one side of the base substrate, and the plurality of film layers include a passivation layer;
  • the anode layer is deposited on both sides along the second direction with bank corners to define a light-emitting area.
  • the material of the bank corners 18 is a hydrophobic organic photoresist.
  • the steps of using a halftone mask process to fabricate patterns of openings and clearance areas include:
  • the first through hole in the display area and the second through hole in the non-display area are manufactured by the same mask process, which reduces the number of OLED display panels.
  • the number of photomask processes saves raw materials and costs.
  • FIG. 1 is a schematic structural diagram of an OLED display panel provided by an embodiment of the present application.
  • FIG. 2 is a first manufacturing flow chart of the OLED display panel provided by the embodiment of the present application.
  • FIG. 3 is a second manufacturing flow chart of the OLED display panel provided by the embodiment of the present application.
  • FIG. 4 is a third manufacturing flow chart of the OLED display panel provided by the embodiment of the present application.
  • FIG. 5 is a fourth manufacturing flow chart of the OLED display panel provided by the embodiment of the present application.
  • FIG. 6 is a fifth manufacturing flowchart of the OLED display panel provided by the embodiment of the present application.
  • FIG. 7 is a sixth manufacturing flowchart of the OLED display panel provided by the embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for fabricating an OLED display panel according to an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second” may expressly or implicitly include one or more of said features. In the description of the present application, “plurality” means two or more, unless otherwise expressly and specifically defined.
  • the present application provides an OLED display panel and a manufacturing method thereof, please refer to FIG. 1 to FIG. 8 for details.
  • the existing top-emitting IJP technology has high requirements on the flatness of the backplane, and a flat layer is generally used to fill in the unevenness caused by the device and wiring.
  • a flat layer is generally used to fill in the unevenness caused by the device and wiring.
  • the requirements for metal trace resistance are also getting higher and higher, resulting in a gradual increase in the thickness of metal traces.
  • the leveling property of the flat layer is limited. Therefore, the present application provides an OLED display panel and a manufacturing method thereof to solve the above problems.
  • FIG. 1 it is a schematic structural diagram of an OLED display panel according to an embodiment of the present application.
  • the OLED display panel is sequentially stacked along the first direction Y: a base substrate 11 and a plurality of film layers deposited on one side of the base substrate 11; wherein, the flat layer It includes: a first flat layer 15 for preliminarily flattening the array substrate; a second flat layer 16 for further flattening the array substrate; the first flat layer 15 and the second flat layer 16 are made of the same material different. Different from the existing display panel design, only one flat layer is provided, the present application sets the flat layer into two layers, and the materials of the first flat layer 15 and the second flat layer 16 are different, which greatly improves the the flatness of the flat layer.
  • the material of the first planarization layer 15 is one of PI-based or acrylic-based organic materials; the material of the second planarization layer 16 is a siloxane-based organic photoresist material.
  • the main element components of the second flat layer 16 are carbon, silicon, oxygen, and hydrogen.
  • the first flat layer 15 has a predetermined thickness along the first direction Y, and the predetermined thickness of the first flat layer 15 along the first direction Y is the first thickness H1; the second flat layer 16 also has a predetermined thickness along the first direction Y, and the predetermined thickness of the second flat layer 16 along the first direction Y is a second thickness H2.
  • the range of the first thickness H1 is: 1.0um to 2.5um; the range of the second thickness H2 is: 1.0um to 2.5um.
  • the OLED display panel is further provided with a passivation layer 14 on the side of the flat layer close to the base substrate 11 , and the material of the passivation layer 14 is: silicon oxide, silicon nitride A combination of one or more of alumina.
  • an anode layer 17 is formed on the side of the OLED display panel away from the second flat layer 16, and the anode layer 17 is ITO/Ag/ITO, Ag/ITO, Al/WOx, One of Ag/IZO.
  • the materials of the gate electrode, the metal layer of the second source electrode 142 and the metal layer of the second drain electrode 144 are at least one of molybdenum, aluminum, titanium, and copper.
  • the array substrate further includes: a buffer layer 12, a light shielding layer 122, an active layer 133, a gate insulating layer 131, a gate layer 132, an interlayer insulating layer 13, a source and drain layer 143, and an indium tin oxide layer 151; wherein,
  • the material used for the base substrate 11 includes one of a glass substrate or a flexible substrate, the material used for the buffer layer 12 includes one of silicon oxide, silicon nitride or aluminum oxide, and the active layer 133 is made of
  • the material used for the gate insulating layer 131 includes one of indium gallium zinc oxide, indium zinc oxide, and indium zinc tin oxide, and the material used for the gate insulating layer 131 includes one of silicon oxide, silicon nitride or aluminum oxide.
  • the material used for the source electrode 142 and the drain electrode 143 is at least one of molybdenum Mo, aluminum Al, copper Gu, and titanium Ti, and the material used for the interlayer dielectric layer includes silicon oxide, silicon nitride or aluminum oxide. A sort of.
  • a first sub-storage capacitor 121 is further provided on one side of the base substrate 11
  • a second sub-storage capacitor 134 and a second sub-storage capacitor 134 are further provided on the side of the first sub-storage capacitor 121 away from the base substrate 11 .
  • Three sub-storage capacitors 141, the second sub-storage capacitor 134 and the first sub-storage capacitor 121 form a first storage capacitor
  • the second sub-storage capacitor 134 and the third sub-storage capacitor 141 form a second storage capacitor Since the first sub-storage capacitor 121 and the third sub-storage capacitor 141 are electrically connected through vias, the capacitance value of the storage capacitor of the OLED display panel is the same as that of the first storage capacitor.
  • the sum of the capacitance values of the second storage capacitor can not only increase the capacitance value of the storage capacitor, but also adjust the thickness of the first dielectric layer and the second dielectric layer so that the capacitance value of the first storage capacitor and the The sum of the capacitance values of the second storage capacitors reaches an optimum value, so that the display panel keeps the brightness constant within a frame time, thereby displaying a stable picture.
  • the present application further provides a method for fabricating an OLED display panel, and the method for fabricating the OLED display panel includes:
  • a base substrate 11 is provided, and a plurality of film layers are sequentially stacked along the first direction Y on one side of the base substrate 11, and the plurality of film layers include a passivation layer 14;
  • a base substrate 11 is provided first, and the base substrate 11 is a glass substrate or a flexible substrate; then a first metal layer is deposited on the base substrate 11 , and the first metal layer
  • the material is at least one of molybdenum Mo, aluminum Al, titanium Ti, copper Cu; finally, the first metal layer is patterned as a first bottom gate electrode and light shielding through a mask and a first mask Layer 122.
  • a buffer layer 12 is prepared on the base substrate 11 by a chemical vapor deposition method or a sputtering method, the buffer layer 12 completely covers the first bottom gate electrode and the light shielding layer 122; after that, on the buffer layer A semiconductor layer, a gate insulating layer 131 and the first metal layer are sequentially fabricated on 12 .
  • a halftone mask is used as a second mask to form a semiconductor region pattern on the buffer layer 12 (that is, part of the semiconductor layer outside the semiconductor region, part of the gate insulating layer 131 and part of the first metal layer)
  • Wet etching, dry etching and wet etching are used to etch away respectively)
  • part of the gate insulating layer 131 and part of the first metal layer in the regions of the source electrode 142 and the drain electrode 143 are ashed away, and a first metal layer is formed.
  • the top gate electrode and the second top gate electrode that is, part of the first metal layer and part of the gate insulating layer 131 in the source and drain regions are etched away by wet etching and dry etching, respectively).
  • a first semiconductor layer, a second semiconductor layer, a first gate insulating layer 131, a second gate insulating layer, a first top gate electrode 132 and a second top gate electrode are formed on the buffer layer 12; the first The gate insulating layer 131 and the first top gate electrode 132 are disposed in the non-display area, and the second gate insulating layer and the second top gate electrode are disposed in the display area.
  • the materials of the buffer layer 12 , the first gate insulating layer 131 and the second gate insulating layer are all at least one of silicon dioxide, silicon nitride and aluminum oxide;
  • the resulting gate insulating layer has better insulating properties, which can well prevent the gate from contacting with the active layer 133 thereon, avoid short circuit phenomenon, and reduce product performance.
  • the materials of the first semiconductor layer and the second semiconductor layer are IZO (indium zinc oxide, indium zinc oxide) and IZTO (indium At least one of zinc tin oxide, indium zinc tin oxide);
  • the materials of the first top gate electrode and the second top gate electrode are at least one of molybdenum Mo, aluminum Al, titanium Ti, copper Cu kind.
  • An interlayer insulating layer 13 is prepared on the buffer layer 12 by chemical vapor deposition or sputtering, and the interlayer insulating layer 13 completely covers the first semiconductor layer, the second semiconductor layer, the first semiconductor layer, and the first semiconductor layer.
  • the interlayer insulating layer 13 will be etched), and then the opening area corresponding to the interlayer insulating layer 13 is ashed away.
  • the opening area corresponding to the interlayer insulating layer 13 is the source electrode 142 and the drain electrode. above the region 143 and above the first top gate electrode 132 .
  • the buffer layer 12 in the opening region of the buffer layer 12 will also be etched away, so that the source and drain electrode regions of the three TFTs and the light shielding layer will be etched away. 122. Both the first top gate electrode 132 and the first bottom gate electrode are drained.
  • a first through hole, a second through hole, a third through hole, a fourth through hole and a fifth through hole are formed on the interlayer insulating layer 13 by using a halftone mask as the third mask.
  • the first through hole exposes the first bottom gate electrode
  • the second through hole exposes the first semiconductor layer
  • the third through hole exposes the first top gate electrode
  • the third through hole exposes the first top gate electrode.
  • the fourth through hole exposes the second semiconductor layer
  • the fifth through hole exposes the light shielding layer 122 .
  • a second metal layer is deposited on the interlayer insulating layer 13, and the second metal layer is patterned into a first source electrode 142 metal layer, a first drain electrode 143 metal layer, and a second source electrode with a fourth mask. 142 metal layer and second drain 144 metal layer.
  • the metal layer of the first source electrode 142 and the metal layer of the first drain electrode 143 are electrically connected to both ends of the edge of the first conductive layer through the second through hole, and the metal layer of the second source electrode 142 is electrically connected layer and the metal layer of the second drain 144 are electrically connected to both ends of the edge of the second conductive layer through the fourth through hole, and the metal layer of the second drain 144 is also electrically connected through the fifth through hole
  • the holes are electrically connected to the light shielding layer 122 .
  • a passivation layer 14 is prepared on the interlayer insulating layer 13 by a chemical vapor deposition method or a sputtering method, and the passivation layer 14 completely covers the metal layer of the first source electrode 142 and the metal layer of the first drain electrode 143 layer, the metal layer of the second source electrode 142 and the metal layer of the second drain electrode 144, and the material of the passivation layer 14 is at least one of silicon dioxide, silicon nitride and aluminum oxide. Then, a fifth mask is used to expose the first bottom gate electrode, the first top gate electrode and the metal layer of the first drain electrode 143 on the passivation layer 14 . On the first drain electrode 143 A sixth through hole is formed above the metal layer.
  • the composition material of the active layer 133 can be selected from an amorphous oxide semiconductor material, and specifically can be one or more of IGZO, IZO, and IZTO.
  • the first flat layer 15 is formed on the side of the passivation layer 14 away from the base substrate 11 and cured.
  • a metal oxide layer is formed on the side of the non-display area of the passivation layer 14 away from the base substrate 11 , and the material of the metal oxide layer is ITO (Indium Tin Oxide).
  • the oxide metal layer is patterned as a pixel electrode, the pixel electrode is electrically connected to the bottom gate electrode through the first through hole, and the pixel electrode is also electrically connected to the top gate electrode through a third through hole.
  • the electrode is also electrically connected to the metal layer of the drain electrode 143 through the sixth through hole, and finally the array substrate is prepared.
  • FIG. 4 a third manufacturing flowchart of the OLED display panel provided by the embodiment of the present application is shown.
  • the areas of the first flat layer and the second flat layer are the same, the areas covered on the array substrate are the same, and are orthographically projected at the same position in the first direction.
  • FIG. 5 a fourth manufacturing flowchart of the OLED display panel provided by the embodiment of the present application is shown.
  • the length of the anode along the second direction is smaller than the length of the first flat layer or the second flat layer along the second direction, and the coverage area of the anode on the array substrate is smaller than that of the first flat layer
  • the coverage area of the flat layer or the second flat layer on the array substrate, and the orthographic projection area along the first direction is smaller than the normal projection area of the first flat layer or the second flat layer along the first direction. shadow area.
  • the anode layer 17 is deposited on both sides along the second direction X with bank corners 18 to define a light emitting area.
  • FIG. 7 it is a sixth manufacturing flow chart of the OLED display panel provided by the embodiment of the present application.
  • the material of the bank corners 18 is a hydrophobic organic photoresist.
  • the steps of using a halftone mask process to fabricate patterns of openings and clearance areas include:
  • the beneficial effects of an OLED display panel and a manufacturing method thereof provided by the present application are as follows: first, the OLED display panel provided by the present application is provided with two layers of planarization layers of different materials without increasing the total thickness of the planarization layer. layer to fully improve the flatness of the planarization layer; secondly, in the manufacturing method of the OLED display panel provided by the present application, when manufacturing the OLED display panel, the first through hole in the display area is connected to the non-display area.
  • the second through-holes of the device are made by the same mask process, which reduces the number of mask processes and saves its raw materials and costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种OLED显示面板及其制作方法,OLED显示面板沿第一方向依次层叠设置有:衬底基板(11)以及沉积在衬底基板(11)一侧的多个膜层;其中,平坦层包括:第一平坦层(15),用于初步平坦化阵列基板;第二平坦层(16),用于进一步平坦化阵列基板;第一平坦层(15)与第二平坦层(16)的材料相异。

Description

OLED显示面板及其制作方法 技术领域
本申请涉及显示技术领域,尤其涉及一种OLED显示面板及其制作方法。
背景技术
随着AMOLED(Active-Matrix Organic Light-Emitting Diode,有源矩阵有机发光二极体)显示技术的蓬勃发展,AMOLED技术目前已量产的是底发光的白色有机发光二极管但该技术采用蒸镀方法制备有机发光二极管器件,对有机发光材料浪费极大;且白色有机发光二极管需要彩膜基板来滤色才能得到RGB,因而能耗相比传统液晶显示面板并不占优;此外,开口率低是底发光结构的先天缺陷,不利于高分辨显示应用。相比底发光的白色有机发光二极管,顶发光的喷墨打印(IJP,Ink Jet Printing)技术对原材料利用率超过80%,无需彩膜基板进行滤色即可发出RGB色光,且顶发光有利于提高开口率。正常的顶发光喷墨打印技术对背板平坦度要求很高,一般都会采用平坦层来填平器件、走线引起的不平整。随着人们对显示面板分辨率、开口率、刷新频率的要求逐渐提高,金属走线方阻的要求也越来越高,导致金属走线厚度也逐步增加,然而,平坦层的填平性是有限的。
因此,现有的OLED显示面板技术中,还存在着顶发光IJP技术对背板的平坦度要求很高,但现有的平坦层存在平坦层有限的问题,急需改进。
技术问题
本申请涉及一种OLED显示面板及其制作方法,用于解决现有技术中存在着顶发光喷墨打印技术对背板的平坦度要求很高,但现有的平坦层存在平坦性有限的问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请提供的一种OLED显示面板,所述OLED显示面板沿第一方向依次层叠设置有:衬底基板以及沉积在所述衬底基板一侧的多个膜层;其中,
平坦层包括:
第一平坦层,用于初步平坦化阵列基板;
第二平坦层,用于进一步平坦化所述阵列基板;
所述第一平坦层与所述第二平坦层的材料相异;
所述衬底基板采用玻璃基板或是柔性基板中的一种。
在本申请提供的一种实施例中,所述第一平坦层的材料为PI系或是亚克力系有机材料中的一种;所述第二平坦层的材料为硅氧烷系有机光阻材料。
在本申请提供的一种实施例中,所述第二平坦层的主要元素成份为碳、硅、氧、氢。
在本申请提供的一种实施例中,所述第一平坦层沿所述第一方向具有一定的预设厚度,所述第一平坦层沿所述第一方向的预设厚度为第一厚度H1;所述第二平坦层沿所述第一方向也具有一定的预设厚度,所述第二平坦层沿所述第一方向的预设厚度为第二厚度H2。
在本申请提供的一种实施例中,所述第一厚度H1的范围为:1.0um至2.5um;所述第二厚度H2的范围为:1.0um至2.5um。
在本申请提供的一种实施例中,所述OLED显示面板在所述平坦层靠近所述衬底基板一侧还设置有钝化层,所述钝化层的材料为:氧化硅、氮化硅与氧化铝中的一种或是多种的组合。
在本申请提供的一种实施例中,所述OLED显示面板在背离所述第二平坦层的一侧形成有阳极层,所述阳极层为ITO/Ag/ITO、Ag/ITO、Al/WOx、Ag/IZO中的一种。
本申请还提供一种OLED显示面板,所述OLED显示面板沿第一方向依次层叠设置有:衬底基板以及沉积在所述衬底基板一侧的多个膜层;其中,
平坦层包括:
第一平坦层,用于初步平坦化阵列基板;
第二平坦层,用于进一步平坦化所述阵列基板;
所述第一平坦层与所述第二平坦层的材料相异。
在本申请提供的一种实施例中,所述第一平坦层的材料为PI系或是亚克力系有机材料中的一种;所述第二平坦层的材料为硅氧烷系有机光阻材料。
在本申请提供的一种实施例中,所述第二平坦层的主要元素成份为碳、硅、氧、氢。
在本申请提供的一种实施例中,所述第一平坦层沿所述第一方向具有一定的预设厚度,所述第一平坦层沿所述第一方向的预设厚度为第一厚度H1;所述第二平坦层沿所述第一方向也具有一定的预设厚度,所述第二平坦层沿所述第一方向的预设厚度为第二厚度H2。
在本申请提供的一种实施例中,所述第一厚度H1的范围为:1.0um至2.5um;所述第二厚度H2的范围为:1.0um至2.5um。
在本申请提供的一种实施例中,所述OLED显示面板在所述平坦层靠近所述衬底基板一侧还设置有钝化层,所述钝化层的材料为:氧化硅、氮化硅与氧化铝中的一种或是多种的组合。
在本申请提供的一种实施例中,所述OLED显示面板在背离所述第二平坦层的一侧形成有阳极层,所述阳极层为ITO/Ag/ITO、Ag/ITO、Al/WOx、Ag/IZO中的一种。
在本申请提供的一种实施例中,所述阵列基板还包括:缓冲层、遮光层、有源层、栅绝缘层、栅极层、层间绝缘层以及源漏极。
在本申请提供的一种实施例中,所述缓冲层采用的材料包括氧化硅、氮化硅或氧化铝中的一种。
在本申请提供的一种实施例中,所述有源层采用的材料包括铟镓锌氧化物、铟锌氧化物、铟锌锡氧化物中的一种。
本申请还提供一种OLED显示面板的制作方法,所述OLED显示面板的制作方法包括:
S10,提供衬底基板,在所述衬底基板一侧沿所述第一方向依次层叠多个膜层,所述多个膜层包括钝化层;
S20,在所述钝化层背离所述衬底基板一侧形成所述第一平坦层并进行固化;
S30,在所述第一平坦层背离所述衬底基板的一侧形成第二平坦层,并采用半色调掩膜板工艺制作开孔和非显示区图形;
S40,在所述第二平坦层背离所述衬底基板的一侧形成氧化铟锡薄膜,并将所述氧化铟锡薄膜图形化为所述非显示区的粘结垫;
S50,在所述第二平坦层背离所述衬底基板一侧形成阳极反射膜,并将所述阳极反射膜图形化为阳极图案;
S60,在所述第二平坦层背离所述衬底基板一侧,所述阳极层沿第二方向的两侧沉积堤角,以限定出发光区域。
在本申请提供的一种实施例中,所述堤角18的材料为疏水性的有机光阻。
在本申请提供的一种实施例中,采用半色调掩膜板工艺制作开孔和净空区图形的步骤,包括:
S301,在所述第一平坦层背离所述衬底基板一侧通入氧气进行灰化处理,以便于所述第一平坦层更容易开孔;
S302,采用同一道掩膜板在所述第二平坦层背离所述衬底基板一侧进行刻蚀,同时蚀刻出显示区内的第一过孔与所述非显示区内的第二过孔,使得所述第一过孔与所述第二过孔贯穿所述第二平坦层;
S303,再次通入氧气,继续蚀刻所述第一过孔与所述第二过孔,使得所述第二过孔与所述第二过孔贯穿所述第一平坦层。
有益效果
与现有技术相比,本申请提供的一种OLED显示面板及其制作方法的有益效果为:
1.本申请提供的OLED显示面板,在不增加平坦化层总厚度的情况下,设置两层不同材料的平坦化层,以充分提高所述平坦化层的平坦性;
2.本申请提供的OLED显示面板的制作方法,在制作OLED显示面板时,将显示区内的所述第一通孔与非显示区内的第二通孔采用同一道光罩工艺制作,减少了光罩制程的次数,节省了原材料和成本。
附图说明
图1为本申请实施例提供的OLED显示面板的结构示意图。
图2为本申请实施例提供的OLED显示面板的第一制作流程图。
图3为本申请实施例提供的OLED显示面板的第二制作流程图。
图4为本申请实施例提供的OLED显示面板的第三制作流程图。
图5为本申请实施例提供的OLED显示面板的第四制作流程图。
图6为本申请实施例提供的OLED显示面板的第五制作流程图。
图7为本申请实施例提供的OLED显示面板的第六制作流程图。
图8为本申请实施例提供的OLED显示面板制作方法的流程示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本申请提供一种OLED显示面板及其制作方法,具体参阅图1-图8。
现有的顶发光IJP技术对背板平坦度要求很高,一般都会采用平坦层来填平器件、走线引起的不平整。随着人们对显示面板分辨率、开口率、刷新频率的要求逐渐提高,金属走线方阻的要求也越来越高,导致金属走线厚度也逐步增加,然而,平坦层的填平性是有限的。因此,本申请提供一种OLED显示面板及其制作方法以解决上述问题。
参阅图1,为本申请实施例提供的OLED显示面板的结构示意图。
本申请提供的一种OLED显示面板,所述OLED显示面板沿第一方向Y依次层叠设置有:衬底基板11以及沉积在所述衬底基板11一侧的多个膜层;其中,平坦层包括:第一平坦层15,用于初步平坦化阵列基板;第二平坦层16,用于进一步平坦化所述阵列基板;所述第一平坦层15与所述第二平坦层16的材料相异。不同于现有的显示面板设计,只设置一层平坦层,本申请将平坦层设置为两层,且所述第一平坦层15与所述第二平坦层16的材料不同,大大提高了所述平坦层的平坦度。
在一种实施例中,所述第一平坦层15的材料为PI系或是亚克力系有机材料中的一种;所述第二平坦层16的材料为硅氧烷系有机光阻材料。
在一种实施例中,所述第二平坦层16的主要元素成份为碳、硅、氧、氢。
在一种实施例中,所述第一平坦层15沿所述第一方向Y具有一定的预设厚度,所述第一平坦层15沿所述第一方向Y的预设厚度为第一厚度H1;所述第二平坦层16沿所述第一方向Y也具有一定的预设厚度,所述第二平坦层16沿所述第一方向Y的预设厚度为第二厚度H2。
进一步地,所述第一厚度H1的范围为:1.0um至2.5um;所述第二厚度H2的范围为:1.0um至2.5um。
在一种实施例中,所述OLED显示面板在所述平坦层靠近所述衬底基板11一侧还设置有钝化层14,所述钝化层14的材料为:氧化硅、氮化硅与氧化铝中的一种或是多种的组合。
在一种实施例中,所述OLED显示面板在背离所述第二平坦层16的一侧形成有阳极层17,所述阳极层17为ITO/Ag/ITO、Ag/ITO、Al/WOx、Ag/IZO中的一种。
进一步地,所述第一底栅电极、所述遮光层122、所述第一顶栅电极、所述第一源极142金属层、所述第一漏极143金属层、所述第二顶栅电极、所述第二源极142金属层以及所述第二漏极144金属层的材料均为钼、铝、钛、铜中的至少一种。所述阵列基板还包括:缓冲层12、遮光层122、有源层133、栅绝缘层131、栅极层132、层间绝缘层13、源漏极143层以及氧化铟锡层151;其中,所述衬底基板11采用的材料包括玻璃基板或柔性基板中的一种,所述缓冲层12采用的材料包括氧化硅、氮化硅或氧化铝中的一种,所述有源层133采用的材料包括铟镓锌氧化物、铟锌氧化物、铟锌锡氧化物中的一种,所述栅绝缘层131采用的材料包括氧化硅、氮化硅或氧化铝中的一种,所述源极142、漏极143采用的材料至少采用钼Mo、铝Al、铜Gu、钛Ti金属中的一种,所述层间介质层采用的材料包括氧化硅、氮化硅或氧化铝中的一种。
进一步地,所述衬底基板11一侧还设置有第一子存储电容121,所述第一子存储电容121背离所述衬底基板11的一侧还设置有第二子存储电容134和第三子存储电容141,所述第二子存储电容134与所述第一子存储电容121形成第一存储电容,所述第二子存储电容134与所述第三子存储电容141形成第二存储电容,由于所述第一子存储电容121与所述第三子存储电容141通过过孔电连接,因此,该OLED显示面板的存储电容的电容值为所述第一存储电容的电容值与所述第二存储电容的电容值之和,这种设置方式不仅可以增大存储电容的电容值,还可以通过调节第一电介质层与第二电介质层的厚度,使得第一存储电容的电容值和第二存储电容的电容值之和达到最佳的数值,促使所述显示面板在一帧时间内保持亮度不变,进而显示稳定的画面。
参阅图8,本申请还提供一种OLED显示面板的制作方法,所述OLED显示面板的制作方法包括:
S10,提供衬底基板11,在所述衬底基板11一侧沿所述第一方向Y依次层叠多个膜层,所述多个膜层包括钝化层14;
具体地,参阅图2,首先提供一衬底基板11,所述衬底基板11为玻璃基板或者柔性衬底;之后在所述衬底基板11上沉积第一金属层,所述第一金属层的材料为钼Mo、铝Al、钛Ti、铜Cu中的至少一种;最后,通过一掩膜版以第一道光罩将所述第一金属层图形化为第一底栅电极以及遮光层122。在所述衬底基板11上通过化学气相沉积法或溅射方法制备缓冲层12,所述缓冲层12完全覆盖所述第一底栅电极以及所述遮光层122;之后,在所述缓冲层12上依次制作半导体层、栅绝缘层131以及所述第一金属层。接着采用半色调掩膜版为第二道光罩在所述缓冲层12上方形成半导体区图形(即将半导体区外的部分所述半导体层、部分所述栅绝缘层131以及部分所述第一金属层分别用湿法蚀刻、干法蚀刻以及湿法蚀刻腐蚀掉),接着灰化掉源极142、漏极143区域的部分所述栅绝缘层131以及部分所述第一金属层,并形成第一顶栅电极以及第二顶栅电极(即将源漏区域的部分所述第一金属层、部分所述栅绝缘层131分别用湿法蚀刻以及干法蚀刻腐蚀掉)。之后,在所述缓冲层12上形成第一半导体层、第二半导体层、第一栅绝缘层131、第二栅绝缘层、第一顶栅电极132以及第二顶栅电极;所述第一栅绝缘层131和所述第一顶栅电极132设置在非显示区内,所述第二栅绝缘层和所述第二顶栅电极设置在显示区内。具体地,所述缓冲层12、所述第一栅绝缘层131以及所述第二栅绝缘层的材料均为二氧化硅、硅氮化物以及三氧化二铝中的至少一种;由此制成的栅绝缘层的绝缘性能更佳,可以很好的防止栅极与其上的有源层133进行接触,避免产生短路现象,降低产品性能。所述第一半导体层以及所述第二半导体层的材料为IZO(indium zinc oxide,铟锌氧化物)以及IZTO(indium zinc tin oxide,铟锌锡氧化物)中的至少一种;所述第一顶栅电极以及所述第二顶栅电极的材料均为钼Mo、铝Al、钛Ti、铜Cu中的至少一种。
在所述缓冲层12上通过化学气相沉积法或溅射方法制备层间绝缘层13,所述层间绝缘层13完全覆盖所述第一半导体层、所述第二半导体层、所述第一栅绝缘层131、所述第二栅绝缘层、所述第一顶栅电极132以及所述第二顶栅电极;所述层间绝缘层13的材料为二氧化硅、硅氮化物以及三氧化二铝中的至少一种;之后,采用半色调掩膜版为第三道光罩对所述缓冲层12的开孔区域上方进行刻蚀(此时所述缓冲层12的开孔区域的部分所述层间绝缘层13将被刻开),接着灰化掉所述层间绝缘层13对应的开孔区域,此处所述层间绝缘层13对应的开孔区域为源极142、漏极143区域的上方以及所述第一顶栅电极132的上方。在第二次刻蚀所述层间绝缘层13的同时,所述缓冲层12的开孔区域的缓冲层12也将被刻掉,从而将三个TFT的源漏电极区域、所述遮光层122、所述第一顶栅电极132和所述第一底栅电极都漏出。即采用半色调掩膜版为第三道光罩在所述层间绝缘层13上形成第一通孔、第二通孔、第三通孔、第四通孔以及第五通孔。所述第一通孔暴露出所述第一底栅电极,所述第二通孔暴露出所述第一半导体层,所述第三通孔暴露出所述第一顶栅电极,所述第四通孔暴露出所述第二半导体层,所述第五通孔暴露出所述遮光层122。
在所述层间绝缘层13上沉积第二金属层,以第四道光罩将所述第二金属层图形化为第一源极142金属层、第一漏极143金属层、第二源极142金属层以及第二漏极144金属层。所述第一源极142金属层以及所述第一漏极143金属层经由所述第二通孔与所述第一导体化层的边缘两端电性相连,所述第二源极142金属层以及所述第二漏极144金属层经由所述第四通孔与所述第二导体化层的边缘两端电性相连,所述第二漏极144金属层还经由所述第五通孔与所述遮光层122电性相连。在所述层间绝缘层13上通过化学气相沉积法或溅射方法制备钝化层14,所述钝化层14完全覆盖所述第一源极142金属层、所述第一漏极143金属层、所述第二源极142金属层以及所述第二漏极144金属层,所述钝化层14的材料为二氧化硅、硅氮化物以及三氧化二铝中的至少一种。之后以第五道光罩在所述钝化层14上暴露出所述第一底栅电极、所述第一顶栅电极以及所述第一漏极143金属层,在所述第一漏极143金属层上方形成第六通孔。所述有源层133的组成材料可以选择非晶氧化物半导体材料,具体的可以是IGZO、IZO、IZTO中的一种或多种。
S20,在所述钝化层14背离所述衬底基板11一侧形成所述第一平坦层15并进行固化。
参阅图3,为本申请实施例提供的OLED显示面板的第二制作流程图。在所述钝化层14的非显示区背离所述衬底基板11一侧形成一氧化物金属层,所述氧化物金属层的材料为ITO(氧化铟锡);之后以光罩将所述氧化物金属层图形化为像素电极,所述像素电极经由所述第一通孔与底栅电极电性连接,所述像素电极还经由第三通孔与顶栅电极电性连接,所述像素电极还经由所述第六通孔与所述漏极143金属层电性连接,最后制备成所述阵列基板。
S30,在所述第一平坦层15背离所述衬底基板11的一侧形成第二平坦层16,并采用半色调掩膜板工艺制作开孔和非显示区图形。
参阅图4,为本申请实施例提供的OLED显示面板的第三制作流程图。所述第一平坦层与所述第二平坦层的面积相同,在阵列基板上覆盖区域的面积相等,且正投影在所述第一方向的相同位置。
S40,在所述第二平坦层16背离所述衬底基板11的一侧形成氧化铟锡薄膜,并将所述氧化铟锡薄膜图形化为所述非显示区的粘结垫。
参阅图5,为本申请实施例提供的OLED显示面板的第四制作流程图。
S50,在所述第二平坦层16背离所述衬底基板11一侧形成阳极反射膜,并将所述阳极反射膜图形化为阳极图案。
参阅图6,为本申请实施例提供的OLED显示面板的第五制作流程图。所述阳极沿所述第二方向的长度小于所述第一平坦层或是所述第二平坦层沿所述第二方向的长度,所述阳极在阵列基板上的覆盖区域小于所述第一平坦层或是所述第二平坦层在阵列基板上的覆盖区域,且沿所述第一方向的正投影面积小于所述第一平坦层或是第二平坦层沿所述第一方向的正投影面积。
S60,在所述第二平坦层16背离所述衬底基板11一侧,所述阳极层17沿第二方向X的两侧沉积堤角18,以限定出发光区域。
参阅图7,为本申请实施例提供的OLED显示面板的第六制作流程图。
在一种实施例中,所述堤角18的材料为疏水性的有机光阻。
在一种实施例中,采用半色调掩膜板工艺制作开孔和净空区图形的步骤,包括:
S301,在所述第一平坦层15背离所述衬底基板11一侧通入氧气进行灰化处理,以便于所述第一平坦层15更容易开孔;
S302,采用同一道掩膜板在所述第二平坦层16背离所述衬底基板11一侧进行刻蚀,同时蚀刻出显示区内的第一过孔与所述非显示区内的第二过孔,使得所述第一过孔与所述第二过孔贯穿所述第二平坦层16;
S303,再次通入氧气,继续蚀刻所述第一过孔与所述第二过孔,使得所述第二过孔与所述第二过孔贯穿所述第一平坦层15。
因此,本申请提供的一种OLED显示面板及其制作方法的有益效果为:首先,本申请提供的OLED显示面板,在不增加平坦化层总厚度的情况下,设置两层不同材料的平坦化层,以充分提高所述平坦化层的平坦性;其次,本申请提供的OLED显示面板的制作方法,在制作OLED显示面板时,将显示区内的所述第一通孔与非显示区内的第二通孔采用同一道光罩工艺制作,减少了光罩制程的次数,节省了其原材料和成本。
以上对本申请实施例所提供的一种OLED显示面板及其制作方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种OLED显示面板,所述OLED显示面板沿第一方向依次层叠设置有:衬底基板以及沉积在所述衬底基板一侧的多个膜层;其中,
    平坦层包括:
    第一平坦层,用于初步平坦化阵列基板;
    第二平坦层,用于进一步平坦化所述阵列基板;
    所述第一平坦层与所述第二平坦层的材料相异;
    所述衬底基板采用玻璃基板或是柔性基板中的一种。
  2. 根据权利要求1所述的OLED显示面板,其中,所述第一平坦层的材料为PI系或是亚克力系有机材料中的一种;所述第二平坦层的材料为硅氧烷系有机光阻材料。
  3. 根据权利要求2所述的OLED显示面板,其中,所述第二平坦层的主要元素成份为碳、硅、氧、氢。
  4. 根据权利要求1所述的OLED显示面板,其中,所述第一平坦层沿所述第一方向具有一定的预设厚度,所述第一平坦层沿所述第一方向的预设厚度为第一厚度H1;所述第二平坦层沿所述第一方向也具有一定的预设厚度,所述第二平坦层沿所述第一方向的预设厚度为第二厚度H2。
  5. 根据权利要求4所述的OLED显示面板,其中,所述第一厚度H1的范围为:1.0um至2.5um;所述第二厚度H2的范围为:1.0um至2.5um。
  6. 根据权利要求1所述的OLED显示面板,其中,所述OLED显示面板在所述平坦层靠近所述衬底基板一侧还设置有钝化层,所述钝化层的材料为:氧化硅、氮化硅与氧化铝中的一种或是多种的组合。
  7. 根据权利要求1所述的OLED显示面板,其中,所述OLED显示面板在背离所述第二平坦层的一侧形成有阳极层,所述阳极层为ITO/Ag/ITO、Ag/ITO、Al/WOx、Ag/IZO中的一种。
  8. 一种OLED显示面板,所述OLED显示面板沿第一方向依次层叠设置有:衬底基板以及沉积在所述衬底基板一侧的多个膜层;其中,
    平坦层包括:
    第一平坦层,用于初步平坦化阵列基板;
    第二平坦层,用于进一步平坦化所述阵列基板;
    所述第一平坦层与所述第二平坦层的材料相异。
  9. 根据权利要求8所述的OLED显示面板,其中,所述第一平坦层的材料为PI系或是亚克力系有机材料中的一种;所述第二平坦层的材料为硅氧烷系有机光阻材料。
  10. 根据权利要求9所述的OLED显示面板,其中,所述第二平坦层的主要元素成份为碳、硅、氧、氢。
  11. 根据权利要求8所述的OLED显示面板,其中,所述第一平坦层沿所述第一方向具有一定的预设厚度,所述第一平坦层沿所述第一方向的预设厚度为第一厚度H1;所述第二平坦层沿所述第一方向也具有一定的预设厚度,所述第二平坦层沿所述第一方向的预设厚度为第二厚度H2。
  12. 根据权利要求11所述的OLED显示面板,其中,所述第一厚度H1的范围为:1.0um至2.5um;所述第二厚度H2的范围为:1.0um至2.5um。
  13. 根据权利要求8所述的OLED显示面板,其中,所述OLED显示面板在所述平坦层靠近所述衬底基板一侧还设置有钝化层,所述钝化层的材料为:氧化硅、氮化硅与氧化铝中的一种或是多种的组合。
  14. 根据权利要求8所述的OLED显示面板,其中,所述OLED显示面板在背离所述第二平坦层的一侧形成有阳极层,所述阳极层为ITO/Ag/ITO、Ag/ITO、Al/WOx、Ag/IZO中的一种。
  15. 根据权利要求8所述的OLED显示面板,其中,所述阵列基板还包括:缓冲层、遮光层、有源层、栅绝缘层、栅极层、层间绝缘层以及源漏极。
  16. 根据权利要求15所述的OLED显示面板,其中,所述缓冲层采用的材料包括氧化硅、氮化硅或氧化铝中的一种。
  17. 根据权利要求15所述的OLED显示面板,其中,所述有源层采用的材料包括铟镓锌氧化物、铟锌氧化物、铟锌锡氧化物中的一种。
  18. 一种OLED显示面板的制作方法,其中,所述OLED显示面板的制作方法包括:
    S10,提供衬底基板,在所述衬底基板一侧沿所述第一方向依次层叠多个膜层,所述多个膜层包括钝化层;
    S20,在所述钝化层背离所述衬底基板一侧形成所述第一平坦层并进行固化;
    S30,在所述第一平坦层背离所述衬底基板的一侧形成第二平坦层,并采用半色调掩膜板工艺制作开孔和非显示区图形;
    S40,在所述第二平坦层背离所述衬底基板的一侧形成氧化铟锡薄膜,并将所述氧化铟锡薄膜图形化为所述非显示区的粘结垫;
    S50,在所述第二平坦层背离所述衬底基板一侧形成阳极反射膜,并将所述阳极反射膜图形化为阳极图案;
    S60,在所述第二平坦层背离所述衬底基板一侧,所述阳极层沿第二方向的两侧沉积堤角,以限定出发光区域。
  19. 根据权利要求18所述的OLED显示面板的制作方法,其中,所述堤角的材料为疏水性的有机光阻。
  20. 根据权利要求18所述的OLED显示面板的制作方法,其中,采用半色调掩膜板工艺制作开孔和净空区图形的步骤,包括:
    S301,在所述第一平坦层背离所述衬底基板的一侧通入氧气进行灰化处理,以便于所述第一平坦层更容易开孔;
    S302,采用同一道掩膜板在所述第二平坦层背离所述衬底基板一侧进行刻蚀,同时蚀刻出显示区内的第一过孔与所述非显示区内的第二过孔,使得所述第一过孔与所述第二过孔贯穿所述第二平坦层;
    S303,再次通入氧气,继续蚀刻所述第一过孔与所述第二过孔,使得所述第二过孔与所述第二过孔贯穿所述第一平坦层。
PCT/CN2020/129745 2020-10-10 2020-11-18 Oled显示面板及其制作方法 WO2022073284A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/252,277 US20220352275A1 (en) 2020-10-10 2020-11-18 Oled display panel and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011077969.0 2020-10-10
CN202011077969.0A CN112259579B (zh) 2020-10-10 2020-10-10 Oled显示面板及其制作方法

Publications (1)

Publication Number Publication Date
WO2022073284A1 true WO2022073284A1 (zh) 2022-04-14

Family

ID=74241920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129745 WO2022073284A1 (zh) 2020-10-10 2020-11-18 Oled显示面板及其制作方法

Country Status (3)

Country Link
US (1) US20220352275A1 (zh)
CN (1) CN112259579B (zh)
WO (1) WO2022073284A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112885847B (zh) * 2021-01-27 2023-02-07 Tcl华星光电技术有限公司 显示面板及其制备方法
CN115606328A (zh) * 2021-04-21 2023-01-13 京东方科技集团股份有限公司(Cn) 显示基板及其制备方法、显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106094354A (zh) * 2015-04-30 2016-11-09 乐金显示有限公司 液晶显示装置
CN108470844A (zh) * 2018-03-30 2018-08-31 京东方科技集团股份有限公司 有机发光二极管及其制备方法、显示面板
US10068924B2 (en) * 2013-06-04 2018-09-04 Innolux Corporation Display panel and display apparatus
CN109031742A (zh) * 2018-07-26 2018-12-18 京东方科技集团股份有限公司 显示基板的制造方法、显示基板及显示装置
CN109148521A (zh) * 2018-08-06 2019-01-04 云谷(固安)科技有限公司 显示模组及显示屏
CN110335970A (zh) * 2019-07-15 2019-10-15 京东方科技集团股份有限公司 柔性显示基板及其制造方法、柔性显示装置
CN110346988A (zh) * 2018-04-02 2019-10-18 夏普株式会社 显示装置
CN111261642A (zh) * 2020-02-10 2020-06-09 武汉华星光电半导体显示技术有限公司 一种柔性显示面板

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907479B1 (ko) * 2002-12-31 2009-07-13 삼성전자주식회사 컬러 필터 기판과 이를 갖는 액정 표시 장치
KR20060047947A (ko) * 2004-07-22 2006-05-18 삼성전자주식회사 유기 전기 발광 표시장치
KR100911993B1 (ko) * 2008-06-03 2009-08-13 삼성모바일디스플레이주식회사 유기전계발광 표시장치
CN102629046B (zh) * 2011-06-29 2015-05-20 北京京东方光电科技有限公司 阵列基板及其制造方法、液晶显示器件
US9553156B2 (en) * 2014-07-16 2017-01-24 Lg Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
KR102540372B1 (ko) * 2015-05-28 2023-06-05 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN105448957B (zh) * 2016-01-04 2018-06-05 京东方科技集团股份有限公司 有机电致发光显示基板及其制作方法、显示装置
KR20180075056A (ko) * 2016-12-26 2018-07-04 엘지디스플레이 주식회사 표시 장치
CN106601779A (zh) * 2016-12-29 2017-04-26 深圳市华星光电技术有限公司 Oled基板及其制作方法
CN107394060B (zh) * 2017-09-07 2024-01-19 京东方科技集团股份有限公司 显示面板、显示装置及制备显示面板的方法
CN108470761B (zh) * 2018-05-10 2020-10-13 武汉华星光电半导体显示技术有限公司 一种oled显示面板以及显示装置
KR102591811B1 (ko) * 2018-05-18 2023-10-23 삼성디스플레이 주식회사 박막 트랜지스터 기판, 이의 제조 방법 및 이를 포함하는 표시 장치
CN109037282B (zh) * 2018-07-24 2021-10-22 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示面板、显示装置
CN109659322B (zh) * 2018-12-17 2020-12-08 武汉华星光电半导体显示技术有限公司 一种阵列基板及其制备方法
CN110289270B (zh) * 2019-06-28 2021-10-26 京东方科技集团股份有限公司 阵列基板及其制造方法、显示装置
CN110400810B (zh) * 2019-08-01 2022-01-11 京东方科技集团股份有限公司 显示基板及其制作方法、和显示装置
KR20210062780A (ko) * 2019-11-21 2021-06-01 삼성디스플레이 주식회사 디스플레이 장치 및 그 제조방법
KR20210090779A (ko) * 2020-01-10 2021-07-21 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
KR20210102558A (ko) * 2020-02-11 2021-08-20 삼성디스플레이 주식회사 표시 장치
JP2023529243A (ja) * 2020-04-09 2023-07-10 京東方科技集團股▲ふん▼有限公司 表示パネル及び表示装置
CN111682057B (zh) * 2020-07-07 2021-09-24 深圳市华星光电半导体显示技术有限公司 显示面板及显示面板的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10068924B2 (en) * 2013-06-04 2018-09-04 Innolux Corporation Display panel and display apparatus
CN106094354A (zh) * 2015-04-30 2016-11-09 乐金显示有限公司 液晶显示装置
CN108470844A (zh) * 2018-03-30 2018-08-31 京东方科技集团股份有限公司 有机发光二极管及其制备方法、显示面板
CN110346988A (zh) * 2018-04-02 2019-10-18 夏普株式会社 显示装置
CN109031742A (zh) * 2018-07-26 2018-12-18 京东方科技集团股份有限公司 显示基板的制造方法、显示基板及显示装置
CN109148521A (zh) * 2018-08-06 2019-01-04 云谷(固安)科技有限公司 显示模组及显示屏
CN110335970A (zh) * 2019-07-15 2019-10-15 京东方科技集团股份有限公司 柔性显示基板及其制造方法、柔性显示装置
CN111261642A (zh) * 2020-02-10 2020-06-09 武汉华星光电半导体显示技术有限公司 一种柔性显示面板

Also Published As

Publication number Publication date
US20220352275A1 (en) 2022-11-03
CN112259579A (zh) 2021-01-22
CN112259579B (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
TWI671898B (zh) 有機發光二極體顯示器
CN108735792B (zh) 底发射型oled阵列基板及其制作方法、显示面板、显示装置
US20210036081A1 (en) Transparent display substrate and manufacturing method therefor, and transparent display panel
WO2022111094A1 (zh) 显示基板及其制备方法、显示装置
WO2023280110A1 (zh) 显示基板及其制备方法
KR20100076603A (ko) 유기전계 발광소자 및 이의 제조 방법
US11864447B2 (en) Display substrate, display device and high-precision metal mask
WO2021022594A1 (zh) 阵列基板、显示面板及阵列基板的制作方法
CN111785760B (zh) 一种显示基板及其制备方法、显示装置
US11895879B2 (en) Display substrate and preparation method thereof, and display apparatus
CN109065590B (zh) 有机发光显示基板及其制作方法、有机发光显示装置
US20240196721A1 (en) Display panel and display device
CN111146215A (zh) 一种阵列基板、其制作方法及显示装置
CN109671722B (zh) 有机发光二极管阵列基板及其制造方法
WO2022073284A1 (zh) Oled显示面板及其制作方法
WO2022141444A1 (zh) 显示面板及显示装置
CN110416274B (zh) 一种基板及其制备方法和oled显示面板
US20240114728A1 (en) Organic light-emitting diode display substrate and manufacturing method thereof, and display panel
US11494019B2 (en) Touch display device, touch display panel and manufacturing method thereof
KR20150067974A (ko) 유기전계 발광소자 및 이의 제조 방법
CN212934665U (zh) 一种显示面板
CN112103398A (zh) 一种显示面板
WO2022160798A1 (zh) 显示面板、显示装置和制造方法
WO2021169568A1 (zh) 显示母板及其制备方法、显示基板和显示装置
CN110518042B (zh) 一种显示基板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956599

Country of ref document: EP

Kind code of ref document: A1