WO2022071430A1 - 配線基板の製造方法、半導体装置の製造方法、及び樹脂シート - Google Patents

配線基板の製造方法、半導体装置の製造方法、及び樹脂シート Download PDF

Info

Publication number
WO2022071430A1
WO2022071430A1 PCT/JP2021/035957 JP2021035957W WO2022071430A1 WO 2022071430 A1 WO2022071430 A1 WO 2022071430A1 JP 2021035957 W JP2021035957 W JP 2021035957W WO 2022071430 A1 WO2022071430 A1 WO 2022071430A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
wiring
resin sheet
manufacturing
Prior art date
Application number
PCT/JP2021/035957
Other languages
English (en)
French (fr)
Inventor
正也 鳥羽
一行 満倉
真樹 山口
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to KR1020237010627A priority Critical patent/KR20230074735A/ko
Priority to CN202180067236.5A priority patent/CN116325127A/zh
Priority to US18/247,077 priority patent/US20240030044A1/en
Priority to JP2022554059A priority patent/JPWO2022071430A1/ja
Publication of WO2022071430A1 publication Critical patent/WO2022071430A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector

Definitions

  • the present invention relates to a method for manufacturing a wiring board, a method for manufacturing a semiconductor device, and a resin sheet. More specifically, the present invention relates to a manufacturing method for efficiently and at low cost to manufacture a wiring board and a semiconductor device, which are highly required to be miniaturized or have a high density.
  • Non-Patent Document 1 and Non-Patent Document 2 are widely used in smartphones and tablet terminals (see, for example, Non-Patent Document 1 and Non-Patent Document 2).
  • a packaging technology organic interposer
  • FO-WLP fan-out type packaging technology
  • TSV through mold via
  • TSV through silicon via
  • TSV through silicon via
  • TMV Through Mold Via
  • ECTC Electronics Components and Technology Conference
  • eWLB-PoP Embedded Wafer Level PoP
  • the formation of the above-mentioned fine wiring layer requires steps of seed layer formation by sputtering, resist formation, electroplating, resist removal, and seed layer removal, which complicates the manufacturing process. Therefore, a simpler method for forming a fine wiring layer is desired.
  • an object of the present invention is to provide a simplified method for forming a fine wiring layer.
  • the present invention relates to a method for manufacturing a wiring board as one aspect.
  • a structure in which a resin sheet in which a glass cloth is arranged in an organic resin is attached on a support having a metal layer on the surface or on a built-in wiring layer provided in the support is prepared.
  • a step of forming a wiring layer and a step of forming a wiring layer in the recess and the opening are provided.
  • a resin sheet in which a glass cloth is arranged in an organic resin is used, and a recess is formed in the first resin layer region where the glass cloth does not exist in the resin sheet by an excimer laser, and wiring is performed in the recess or the like.
  • the excimer laser can be used to finely process the concave portion, and the fine wiring layer can be easily formed.
  • the step of forming the recess and the step of forming the opening may be performed first, or may be performed at the same time. Further, in this manufacturing method, in order to form the wiring layer in the recess and the opening, a plating treatment may be used, or another method may be used.
  • the present invention relates to another method for manufacturing a wiring board as another aspect.
  • This method of manufacturing a wiring board has a higher elastic modulus than the first resin layer region and the first resin layer region located outside on a support provided with a metal layer on the surface or on a built-in wiring layer provided on the support.
  • a step of preparing a structure to which a resin sheet in which a highly elastic layer region located inside is formed in order is prepared, and a recess is formed in the first resin layer region on the surface side of the resin sheet by laser or imprint.
  • a step of forming an opening extending from the surface of the resin sheet to the metal layer on the support, and a step of forming a wiring layer in the recess and the opening are provided.
  • a resin sheet provided with a first resin layer region and a highly elastic layer region located on the outside is used, and a recess is formed in the first resin layer region of the resin sheet by laser or imprint.
  • a wiring layer is formed in the recesses and the like.
  • the concave portion can be finely machined by laser or imprint, and the fine wiring layer can be easily formed.
  • the step of forming the recess and the step of forming the opening may be performed first, or may be performed at the same time. Further, in this manufacturing method, in order to form the wiring layer in the recess and the opening, a plating treatment may be used, or another method may be used.
  • the highly elastic layer region may be formed by arranging at least one of the inorganic fiber and the organic fiber in the organic resin material.
  • the inorganic fiber may be at least one of glass fiber, ceramic fiber, and carbon fiber
  • the organic fiber may be at least one of aramid fiber and polyethylene fiber.
  • the thickness of the first resin layer region on the surface side of the resin sheet may be 20 ⁇ m or less.
  • the layer region forming the fine wiring layer can be thinned to reduce the height of the manufactured wiring board.
  • the thickness of the first resin layer region may be 5 ⁇ m or more.
  • the line width of the recess formed in the first resin layer region may be 0.5 ⁇ m or more and 5 ⁇ m or less. In this case, it is possible to form a fine wiring layer having excellent conductivity.
  • the resin sheet has a second resin layer region on the opposite side of the first resin layer region, and in the step of preparing the structure, wiring is performed on the support or built-in wiring.
  • a resin sheet may be attached on the layer by the second resin layer region to prepare a structure.
  • the structure can be prepared by a simple method such as laminating, and the manufacturing method can be simplified.
  • a structure in which the resin sheet is preliminarily attached on the support or the built-in wiring layer may be prepared and used in the subsequent steps.
  • the pulse width of the excimer laser may be 10 nanoseconds or more and 50 nanoseconds or less, and the output of the excimer laser may be formed. May be 10 mJ / pulse or more and 1000 mJ / pulse or less. In this case, finer recesses can be easily formed.
  • a plated metal layer is formed in the recesses and openings to form the wiring layer, and the resin sheet is a seed for forming the plated metal layer.
  • It may contain a component consisting of a heteroaromatic ring capable of coordinating with the metal material constituting the layer. In this case, it becomes easier to form a finer wiring layer.
  • the component consisting of a heteroaromatic ring capable of coordination bond with the metal material constituting the seed layer is composed of, for example, a group consisting of a maleimide compound, a bismaleimide compound, a triazole compound, a benzotriazole compound, and a benzoxazole compound. It may be at least one compound of choice.
  • the resin sheet or the coating layer covering the resin sheet may contain a laser light-absorbing coloring component consisting of an inorganic dye, an inorganic pigment, an organic dye, and at least one of the organic pigments. ..
  • the concave portion can be machined more reliably by the laser.
  • the laser light-absorbing coloring component may be, for example, at least one of graphite, graphene, carbon nanotubes, carbon fibers, carbon black, phthalocyanine, cyanine, alkaline earth metal, and a metal complex.
  • a seed layer by electroless plating is provided in the recess and the opening to form a plated metal layer to form the wiring layer, and the resin sheet is formed by the resin sheet.
  • It may contain a catalyst for forming electroless plating. In this case, it becomes easier to form a finer wiring layer.
  • the catalyst for forming the electroless plating may be at least one of palladium particles, a palladium complex, copper particles, and a copper complex.
  • the concave portion and the opening are filled with the conductive material, and the conductive material is applied on the surface of the first resin layer region excluding the concave portion and the opening. It may have a step of forming a conductive layer and a step of flattening the conductivity. In the flattening step, at least the first portion of the conductive layer provided on the surface of the first resin layer region is polished, and the second portion of the conductive layer formed from the conductive material filled in the recesses and openings.
  • the wiring layer may be formed from. In this case, the fine wiring layer can be formed more efficiently.
  • the method for manufacturing any of the above wiring boards may further include a step of forming a built-in wiring portion having at least one built-in wiring layer on the support, and a step of preparing a structure is on the built-in wiring portion.
  • the structure may be prepared by attaching the resin sheet to the wiring.
  • the built-in wiring layer is composed of a build-up material
  • the fine wiring layer on the surface is composed of an organic resin material such as prepreg. be able to.
  • the degree of freedom in designing the wiring board can be increased.
  • another resin sheet is attached on a resin sheet on which a wiring layer is formed, and another recess is formed by a laser with respect to a first resin layer region of the other resin sheet.
  • a step of forming another wiring layer, a step of attaching another resin sheet, a step of forming another recess, a step of forming another opening, and a step of forming another wiring layer are further provided.
  • the process may be repeated at least once. In this case, it is possible to simplify the method of manufacturing a wiring board provided with two or more fine wiring layers.
  • the steps for forming the wiring layer are at least a step of performing desmear treatment on the openings and recesses and forming a seed layer on at least the openings and recesses by electroless plating.
  • the present invention relates to a method for manufacturing a semiconductor device as yet another aspect.
  • the method for manufacturing this semiconductor device includes a step of preparing a wiring board manufactured by any of the above methods for manufacturing a wiring board, mounting a semiconductor element on a wiring layer or another wiring layer, and mounting the semiconductor element on the wiring layer or. A process of electrically connecting to another wiring layer is provided.
  • a semiconductor device having a wiring board provided with a fine wiring layer can be manufactured by a simplified method.
  • it is manufactured by a simplified method it is possible to improve the manufacturing yield or reduce the cost of manufactured products.
  • the semiconductor elements when a plurality of semiconductor elements (chips) are mounted (especially when mounted at a high density), the semiconductor elements can be connected to each other by a fine wiring layer having excellent transmissibility. , It becomes possible to provide a small semiconductor device having better performance.
  • the present invention relates to a resin sheet as yet another aspect.
  • This resin sheet is a resin sheet used in any of the above methods for manufacturing a wiring substrate, and has a higher elastic modulus than the first resin layer region located on the outside and the first resin layer region and is located on the inside. It comprises a high elastic layer region or a high elastic layer region having a glass cloth and located inside.
  • the above resin sheet may further include a second resin layer region located on the opposite side of the first resin layer region via the highly elastic layer region, and the second resin layer region has adhesiveness. May be good.
  • the structure including the resin sheet can be formed more easily, and the above-mentioned method for manufacturing the wiring board and the method for manufacturing the semiconductor device can be further simplified.
  • FIG. 1 (a) to 1 (d) are views showing a part of a method for manufacturing a wiring board according to an embodiment of the present invention.
  • 2 (a) to 2 (c) are views showing a part of a method for manufacturing a wiring board according to an embodiment of the present invention, and are views showing steps performed after the step of FIG. 1. ..
  • FIG. 3 is a diagram showing an example of a semiconductor device in which a semiconductor element is mounted on a wiring board manufactured by the manufacturing methods shown in FIGS. 1 and 2.
  • FIG. 4A is a diagram showing a wiring board according to a modified example
  • FIG. 4B is a diagram showing a semiconductor device according to a modified example.
  • the term “layer” includes not only a structure having a shape formed on the entire surface but also a structure having a shape partially formed when observed as a plan view.
  • the term “process” is used not only as an independent process but also as long as the intended action of the process is achieved even if it cannot be clearly distinguished from other processes. included.
  • the numerical range indicated by using “-” indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • a method for manufacturing a wiring board and a method for manufacturing a semiconductor device according to an embodiment of the present invention will be described.
  • the method for manufacturing a wiring board and the method for manufacturing a semiconductor device according to the present embodiment are preferably applied to, but are not limited to, a form in which miniaturization and multi-pinning are required.
  • the manufacturing method according to the present embodiment is preferably applied to a package form that requires an interposer for mixedly mounting different types of chips, but is not limited to this.
  • the case where one semiconductor element is mounted is described, but the same applies to the form in which two or more (or two or more types) of semiconductor elements are mounted.
  • ⁇ Structure preparation process> 1 and 2 are diagrams showing a method of manufacturing a wiring board according to the present embodiment.
  • a structure 1a in which a resin sheet 3 is attached is prepared on a support 1 having a copper layer 2 (metal layer) on its surface.
  • the resin sheet 3 is, for example, a sheet obtained by impregnating a glass cloth with an organic resin, and has a first resin layer region 4 on the surface side where the glass sheet does not exist and a height located inside the first resin layer region 4. It has an elastic layer region 5 and a second resin layer region 6 located on the opposite side of the first resin layer region 4 via a highly elastic layer region 5 (glass cloth).
  • the resin sheet 3 may have a structure in which a highly elastic body such as a glass cloth is arranged in an organic resin, for example, and may have a structure in which both sides of the glass cloth are laminated with a resin sheet.
  • the second resin layer region 6 has adhesiveness, for example, and is attached by attaching the resin sheet 3 to the copper layer 2 of the support 1 via the second resin layer region 6.
  • the resin sheet 3 may be attached to the copper layer 2 on the support 1, or the resin sheet 3 may be attached to the structure 1a in advance on the support 1 via the copper layer 2. May be prepared and used.
  • the support 1 is not particularly limited, but is, for example, a silicon plate, a glass plate, a SUS plate, a substrate containing a glass cloth, a sealing resin substrate containing a semiconductor element, or the like, and is a substrate having high rigidity.
  • the thickness of the support 1 may be 0.2 mm or more and 2.0 mm or less. When the support 1 is 0.2 mm or more, the handling property can be improved, and when the support 1 is 2.0 mm or less, the wiring board can be easily lowered and the material cost can be reduced. It is possible to reduce costs.
  • the support 1 may have either a wafer shape or a panel shape, and the size of the support 1 is not particularly limited.
  • the support 1 may be a wafer having a diameter of 200 mm, a diameter of 300 mm or a diameter of 450 mm, or a rectangular panel having a side of 300 mm or more and 700 mm or less.
  • the resin sheet 3 is a semi-cured film-like member such as a prepreg.
  • the organic resin material contained in the resin sheet 3 may contain at least one of a thermosetting material and a thermoplastic material in order to ensure electrical insulation.
  • the thermosetting material used here is, for example, an epoxy resin, and the thermoplastic resin is, for example, an acrylic resin, but the present invention is not limited thereto.
  • the organic resin material contained in the resin sheet 3 may be a film-like composite from the viewpoint of film thickness flatness and cost. Further, the organic resin material may contain a thermosetting material in that fine recesses can be formed.
  • the size of the filler (filler) contained in the thermosetting material may have an average particle size of 500 nm or less. The thermosetting material does not have to contain a filler.
  • the first resin layer region 4 and the second resin layer region 6 of the resin sheet 3 are formed of such an organic resin material and are regions in which the glass cloth does not exist. Since the first resin layer region 4 forms a fine trench structure in the recess forming step described later, the film thickness of the first resin layer region 4 may be 20 ⁇ m or less or 10 ⁇ m or less. The film thickness of the first resin layer region 4 may be 5 ⁇ m or more in order to ensure conductivity in the fine wiring structure.
  • the glass cloth contained in the resin sheet 3 is composed of a woven fabric or a non-woven fabric containing glass fibers.
  • the glass fiber may be, for example, E glass, S glass, or quartz glass.
  • the thickness of the glass cloth may be, for example, 0.01 ⁇ m or more and 0.2 ⁇ m or less.
  • Such a glass cloth is impregnated with the above-mentioned organic resin material to form the highly elastic layer region 5. That is, the highly elastic layer region 5 is composed of a glass cloth and an organic resin material impregnated or penetrated into the glass cloth. Since the highly elastic layer region 5 contains a rigid material such as glass, it is configured to have a higher elastic modulus, specifically, Young's modulus than the first resin layer region 4 and the second resin layer region 6.
  • the other inorganic fiber and the organic fiber may be impregnated into the organic resin material to form the highly elastic layer region 5.
  • the inorganic fiber is, for example, a ceramic fiber or a carbon fiber
  • the organic fiber is, for example, an aramid fiber or a polyethylene fiber.
  • the organic resin material contained in the resin sheet 3 is arranged with a metal such as a maleimide compound, a bismaleimide compound, a triazole compound, a benzotriazole compound, or a benzoxazole compound in order to enhance the adhesion to the seed layer formed in a later step. It may contain a component consisting of a complex aromatic ring capable of coordinating.
  • the metal referred to here is a metal material constituting the seed layer. This component may be included in the filler surface treatment agent.
  • the resin sheet 3 may contain palladium particles, palladium complexes, copper particles, and copper complexes that serve as catalysts by electroless plating.
  • the resin sheet 3 has an inorganic dye or pigment such as graphite, graphene, carbon nanotube, carbon fiber, carbon black, or a phthalocyanine-based, cyanine-based, alkaline earth metal salt, for example, in order to enhance the absorption with laser light. It may contain a laser light-absorbing coloring component composed of an organic dye such as a metal complex or an organic pigment. This component may be included in the filler surface treatment agent.
  • an inorganic dye or pigment such as graphite, graphene, carbon nanotube, carbon fiber, carbon black, or a phthalocyanine-based, cyanine-based, alkaline earth metal salt, for example, in order to enhance the absorption with laser light.
  • It may contain a laser light-absorbing coloring component composed of an organic dye such as a metal complex or an organic pigment. This component may be included in the filler surface treatment agent.
  • the resin sheet 3 has the above-mentioned configuration, and may have a thickness of, for example, 10 ⁇ m or more and 100 ⁇ m or less. When the thickness of the resin sheet 3 is 10 ⁇ m or more, the handleability can be improved. Further, when the thickness of the resin sheet 3 is 100 ⁇ m or less, the manufactured wiring board or semiconductor device can be made into a thin package.
  • the resin sheet 3 may be formed, for example, by impregnating an organic resin (varnish) with glass cloth to form a structure having a first resin layer region 4, a highly elastic layer region 5, and a second resin layer region 6.
  • the glass cloth may be arranged between the resin layer corresponding to the first resin layer region 4 and the resin layer corresponding to the second resin layer region 6 and laminated or pressed.
  • a vacuum laminating, a roll laminating, a vacuum roll laminating, an atmospheric pressure press, a vacuum press or the like can be used.
  • the temperature at the time of forming the resin sheet 3 may be a temperature at which the thermosetting material contained in the resin sheet 3 is thermally cured, and may be, for example, 100 ° C. or higher and 250 ° C. or lower.
  • the formation temperature By setting the formation temperature to 100 ° C. or higher, the tackiness of the organic resin material of the resin sheet 3 can be weakened and the handleability can be improved.
  • the formation temperature By setting the formation temperature to 250 ° C. or lower, the warp of the resin sheet 3 can be suppressed.
  • Examples of such a resin sheet 3 include "MCL-E-705G, thickness 0.4 mm or 0.6 mm, 255 mm square (manufactured by Hitachi Chemical Co., Ltd.)” or “R-1766 thickness 0.4 mm or 0. "6 mm, 255 mm square", “R-5715ES thickness 0.4 mm or 0.6 mm, 255 mm square", “R-5670Kj thickness 0.4 mm or 0.6 mm, 255 mm square (all manufactured by Panasonic Corporation)", or "GHPL830NS Thickness 0.4mm or 0.6mm 255mm Square", “830NS Thickness 0.4mm or 0.6mm, 255mm Square”, “830NSF Thickness 0.4mm or 0.6mm, 255mm Square” (above, Mitsubishi Gas Chemical Company Limited) Made) ”can be used.
  • a coating layer can be provided on the surface of the resin sheet 3 (the side where the recess is formed).
  • the coating layer may be, for example, an organic resin film containing a polyethylene terephthalate (PET) resin, a polyethylene naphthalate (PEN) resin, a polyetheretherketone (PEEK) resin, a polyimide (PI) resin, or a Cu foil or Ni foil. It may be a metal foil such as SUS foil.
  • the organic resin film constituting the coating layer is an inorganic dye or pigment such as graphite, graphene, carbon nanotube, carbon fiber, carbon black, or a phthalocyanine-based, cyanine-based, alkaline earth metal. It may contain a laser light-absorbing coloring component composed of an organic dye such as a salt or a metal complex or an organic pigment. Further, the surface of the metal foil may be blackened.
  • the recess 7 refers to a portion recessed in the thickness direction of the first resin layer region 4 with respect to the surface of the first resin layer region 4, and includes an inner wall (side wall, bottom wall, etc.) of the recessed portion. ..
  • the recess 7 has a width along the left-right direction shown in the figure, is formed like a groove extending in the vertical direction shown in the figure, and has a shape corresponding to fine wiring in the plane direction.
  • an excimer laser may be used for processing from the viewpoint of miniaturization, but a carbon dioxide laser or UV-YAG may be used. Processing using a laser or imprint may be used.
  • the recess 7 may be formed so that the opening width is 0.5 ⁇ m or more and 20 ⁇ m or less, and from the viewpoint of miniaturization, the recess 7 is formed so that the opening width is 0.5 ⁇ m or more and 5 ⁇ m or less. May be formed. This makes it possible to provide a semiconductor device having a high density by forming a fine wiring layer. An excimer laser may be used to form a recess having such a fine opening width as described above.
  • the medium of the excimer laser used is argon / fluorine (ArF) or krypton / fluorine (KrF), and from the viewpoint of versatility, an excimer laser using KrF as a medium may be used.
  • the pulse energy may be 20 mJ or more and 100 mJ or less.
  • the pulse repetition frequency may be 1 Hz or more and 4000 Hz or less.
  • the pulse width may be 10 nanoseconds or more and 50 nanoseconds or less.
  • the laser irradiation amount may be greater than 0 and 1000 mJ / cm 2 or less.
  • the output of the excimer laser may be 10 mJ / pulse or more and 1000 mJ / pulse or less.
  • the resin sheet 3 including the first resin layer region 4 may be further heat-cured.
  • the heating temperature at this time may be 100 ° C. or higher and 250 ° C. or lower, and the heating time may be 30 minutes or longer and 3 hours or lower.
  • the recess 7 is configured so as not to reach the highly elastic layer region 5.
  • an opening 8 is formed from the surface of the resin sheet 3 to the copper layer 2 of the support 1.
  • the highly elastic layer region 5 including the glass cloth in the resin sheet 3 and the first resin layer region 4 and the second resin layer region 6 made of the organic resin material are put together.
  • the opening 8 is formed through the penetration.
  • a method for forming the opening 8 for example, carbon dioxide laser processing or drilling can be used, but from the viewpoint of miniaturization, a carbon dioxide laser may be used.
  • an opening 8 having an opening diameter of 30 ⁇ m or more and 200 ⁇ m or less is formed.
  • the opening step may be performed before, after, or at the same time as the recess forming step described above, and the order thereof is not particularly limited.
  • a step of desmearing is performed for the purpose of removing the smear formed by the laser opening.
  • a commercially available pretreatment liquid and a desmear liquid may be used.
  • a swelling liquid manufactured by Atotech Japan Co., Ltd., trade name: Swering Dip Securigant
  • a roughening liquid manufactured by Atotech Japan Co., Ltd., trade name: Concentrate Compact CP
  • a chemical solution used for neutralization after desmia for example, a neutralizing solution (manufactured by Atotech Japan Co., Ltd., trade name: reduction securigant) can be used.
  • the temperature of the swelling liquid may be 50 ° C. or higher and 80 ° C. or lower, and the immersion time may be 1 minute or longer and 30 minutes or lower.
  • the recess 7 and the opening 8 and the like may be washed with pure water or city water.
  • a step of roughening treatment with a desmear liquid is carried out.
  • the temperature of the desmear liquid is 30 ° C. or higher and 80 ° C. or lower, and the immersion time may be 1 minute or longer and 30 minutes or shorter. After the desmear treatment, it may be washed with pure water or city water.
  • a drag-out process is carried out with pure water or city water.
  • the drag-out temperature may be 25 ° C. or higher and 50 ° C. or lower, and the immersion time may be 1 minute or longer and 5 minutes or lower.
  • a neutralization step is carried out.
  • the neutralization temperature may be 25 ° C. or higher and 50 ° C. or lower, and the immersion time may be 1 minute or longer and 10 minutes or shorter.
  • the neutralization treatment it may be washed with pure water or city water. With the above, the desmear processing is completed.
  • the seed layer 9 can be formed by using a method using a copper paste, a sputtering method, or an electroless plating method. As a method suitable for paneling, an electroless plating method can be used.
  • the seed layer 9 In order to form the seed layer 9, first, palladium, which is a catalyst for electroless copper plating, is applied to the surface of the first resin layer region 4, the side wall and bottom wall of the recess 7, the side wall of the opening 8, and the opening.
  • the surface of the first resin layer region 4 and the like are washed with a pretreatment liquid in order to be adsorbed on the surface of the copper layer 2 exposed to 8 (hereinafter, also referred to as “the surface of the first resin layer region 4 and the like”).
  • the pretreatment liquid is a commercially available alkaline pretreatment liquid containing, for example, sodium hydroxide or potassium hydroxide.
  • the pretreatment may be carried out when the concentration of sodium hydroxide or potassium hydroxide is 1% or more and 30% or less, or the immersion time in the pretreatment liquid is 1 minute or more and 60 minutes or less. It may be carried out while the immersion temperature in the pretreatment liquid is 25 ° C. or higher and 80 ° C. or lower. After the pretreatment, it may be washed with city water, pure water, ultrapure water or an organic solvent in order to remove excess pretreatment liquid.
  • the pretreatment liquid After removing the pretreatment liquid, it is immersed and washed with an acidic aqueous solution in order to remove alkaline ions from the surface of the first resin layer region 4 and the like.
  • the immersion washing may be carried out using a sulfuric acid aqueous solution as an acidic aqueous solution, or may be carried out while the concentration is 1% or more and 20% or less, and the soaking time is 1 minute or more and 60 minutes or less.
  • the acidic aqueous solution it may be washed with city water, pure water, ultrapure water or an organic solvent. Then, palladium is attached to the first resin layer region 4 and the like after being immersed and washed with an acidic aqueous solution.
  • a commercially available palladium sol colloidal solution, an aqueous solution containing palladium ions, a palladium ion suspension, or the like may be used for adhering palladium, but an aqueous solution containing palladium ions that effectively adsorbs to the modified layer is used. You may.
  • the temperature of the aqueous solution containing palladium ions may be 25 ° C. or higher and 80 ° C. or lower, and the immersion time for adsorption may be 1 minute or longer and 60 minutes or shorter.
  • After adsorbing the palladium ions it may be washed with city water, pure water, ultrapure water or an organic solvent in order to remove excess palladium ions.
  • activation is performed so that the palladium ion acts as a catalyst.
  • a commercially available activator activation treatment liquid
  • the temperature of the activator soaked to activate the palladium ions is between 25 ° C and 80 ° C, and the soaking time to activate is between 1 minute and 60 minutes or less. good.
  • the seed layer 9 is formed by electroless plating using palladium as a catalyst.
  • the seed layer 9 is an electroless plating layer selected from the group consisting of, for example, a copper layer, a nickel layer, a copper nickel alloy layer, a nickel phosphorus alloy layer, and a copper nickel phosphorus alloy layer. From the viewpoint of cost, the material of the seed layer 9 may be a copper layer.
  • a commercially available plating solution may be used as the electroless plating solution.
  • an electroless copper plating solution manufactured by Atotech Japan Co., Ltd., trade name: Copper Solution Print Gantt MSK
  • the formation of electroless copper plating is carried out in an electroless copper plating solution at a temperature of 20 ° C. or higher and 40 ° C. or lower.
  • the thickness of the seed layer 9 may be 0.1 nm or more and 500 nm or less, 0.1 nm or more and 400 nm or less, or 0.1 nm or more and 300 nm or less.
  • the thickness of the seed layer 9 By setting the thickness of the seed layer 9 to 0.1 nm or more, it becomes easy to form wiring with a uniform thickness in the subsequent electrolytic plating. On the other hand, by setting the thickness of the seed layer 9 to 500 nm or less, it is possible to prevent excessive etching of the wiring in the etching process of the seed layer 9, and it is possible to form fine wiring with good yield.
  • thermosetting temperature 80 ° C. or higher and 200 ° C. or lower.
  • the thermosetting temperature may be heated to 120 ° C. or higher and 200 ° C. or lower, or the thermosetting temperature may be heated to 120 ° C. or higher and 180 ° C. or lower.
  • the thermosetting time may be 5 minutes or more and 60 minutes or less, 10 minutes or more and 60 minutes or less, or 20 minutes or more and 60 minutes or less.
  • ⁇ Copper layer forming process> When the step of forming the seed layer is completed, as shown in FIG. 2A, copper layers 10, 11 and 12 (plated metal layer, conductive layer) are formed on the seed layer 9 by electrolytic copper plating (conductive material). Perform the forming step. More specifically, the copper layer formed by electroless copper plating is used as the seed layer 9, and the copper layers 10 to 12 are formed on the seed layer 9 by electrolytic copper plating. In the present embodiment, electrolytic copper plating is used as a method for forming the copper layers 10 to 12, but in addition to this, for example, electroless plating may be used.
  • the copper layer 10 (second portion) is filled in the recess 7 provided on the surface of the first resin layer region 4, and the copper layer 11 (second portion) is the first resin layer region 4.
  • the inside of the opening 8 provided so as to reach the copper layer 2 from the surface of the copper layer 12 is filled, and the copper layer 12 (first portion) is formed on the surface of the first resin layer region 4 excluding the recess 7 and the opening 8.
  • the surface of the first resin layer region 4 excluding the recess 7 and the opening 8 in the subsequent step can be used.
  • Copper formed on the surface of the first resin layer region 4, the recess 7, and the opening 8 by simply removing the copper layer 12, the seed layer, and the palladium adsorption layer without scraping the surface of the first resin layer region 4. It becomes possible to flatten the layers 10 to 12. After removing the copper layer, the seed layer, and the palladium adsorption layer, the surface of the first resin layer region 4 is further scraped, and the copper layer formed on the surface of the first resin layer region 4, the recess 7 and the opening 8 respectively. 10 and 11 may be flattened.
  • the inside of the recess 7 and the opening 8 are compared with the surface of the first resin layer region 4. So-called filled plating, in which the amount of electrolytic copper plating deposited on the surface (plating thickness) is large, may be used.
  • the copper layers 10 and 11 may not be filled in the recess 7 or the opening 8, and may be formed along the inner wall (bottom wall and side wall) of the recess 7 or the opening 8.
  • the main portion of the wiring layer 13 is formed of a copper layer 10 formed in a plurality of recesses 7.
  • the wiring layer 13 is connected to the connection terminal of the semiconductor element 22 described later.
  • the surface of the first resin layer region 4 excluding the recess 7 are separated. It may be flattened. Further, when removing the copper layer 12, the seed layer, and the palladium adsorption layer on the upper part of the first resin layer region 4, a part in the thickness direction is removed from the upper (surface) side of the first resin layer region 4. You may. A back grind method, a fly-cut method, or chemical mechanical polishing (CMP) is used as a method for removing the copper layer 12, the seed layer, the palladium adsorption layer, and the first resin layer region 4 above the first resin layer region 4.
  • CMP chemical mechanical polishing
  • a plurality of removal methods may be used in combination.
  • a grinding device with a diamond bite is used.
  • an automatic surface planar (manufactured by Disco Corporation, trade name "DAS8930”) compatible with a 300 mm wafer can be used.
  • the removal of the metal layer and the palladium adsorption layer by the fly-cut method is a flattening process because the entire surface is uniformly polished from the upper side (surface side) of the first resin layer region 4, so that the polished surface becomes flat. It can be said that.
  • CMP chemical mechanical polishing
  • a CMP polishing device compatible with a 300 mm wafer manufactured by Applied Materials, trade name "F-REX300X"
  • polishing can be performed using a polishing liquid containing abrasive grain components such as silica, alumina, and ceria. Further, a plurality of polishing liquids may be used in combination, or the polishing liquids may be sequentially used. After polishing, polishing debris and excess abrasive grains may be removed with a cleaning liquid such as pure water or a solvent.
  • the copper layer 12 the seed layer, the palladium adsorption layer and the upper part of the first resin layer region 4
  • the exposed seed layer and the surfaces of the copper layers 10 and 11 may be chemically or physically roughened.
  • the exposed seed layer, the copper layers 10 and 11 (wiring layer 13), and the palladium adsorption layer are cap-plated by electroless plating. 14, 15 may be formed.
  • the metal type of the cap platings 14 and 15 a metal containing any one of Cu, Ni, Cr, and W may be used.
  • the wiring board 20 having the fine wiring layer 13 is manufactured.
  • the semiconductor element 22 is mounted on the wiring layer 13 on the wiring board 20, and the connection terminals of the semiconductor element 22 are electrically connected to the wiring layer 13. As a result, the semiconductor device 25 connected by the fine wiring layer 13 is manufactured.
  • the resin sheet 3 in which the glass cloth is arranged in the organic resin is used, and the excimer laser is used in the first resin layer region 4 in which the glass cloth does not exist in the resin sheet 3. 7 is formed, and the wiring layer 13 is formed in the recess 7 and the like.
  • the concave portion 7 can be finely machined by a laser, and the fine wiring layer can be easily formed.
  • the thickness of the first resin layer region 4 on the surface side of the resin sheet 3 may be 20 ⁇ m or less.
  • the layer region forming the fine wiring layer 13 can be thinned to reduce the height of the manufactured wiring board 20.
  • the thickness of the first resin layer region 4 may be 5 ⁇ m or more.
  • the line width of the recess 7 formed in the first resin layer region 4 may be 0.5 ⁇ m or more and 5 ⁇ m or less. In this case, it is possible to form a fine wiring layer 13 having excellent conductivity.
  • the resin sheet 3 has a second resin layer region 6 on the opposite side of the first resin layer region 4, and in the step of preparing the structure, the resin sheet 3 has a second resin layer region 6.
  • the structure 1a is prepared by attaching the resin sheet 3 on the support 1 by the second resin layer region 6.
  • the structure 1a can be prepared by a simple method such as laminating, and the manufacturing method can be simplified.
  • the steps for forming the plating layer include a step of performing desmear treatment on the recess 7 and the opening 8 and the surface of the first resin layer region, and the recess 7.
  • the conductive portion of the fine wiring layer 13 can be formed more reliably.
  • the semiconductor device 25 having the wiring board 20 provided with the fine wiring layer 13 can be manufactured by a simplified method by the various methods described above. In addition, since it is manufactured by a simplified method, it is possible to improve the manufacturing yield or reduce the cost of manufactured products. Further, but not limited to this, when a plurality of semiconductor elements (chips) are mounted (especially when mounted at a high density), the semiconductor elements can be connected to each other by a fine wiring layer having excellent transmissibility. , It becomes possible to provide a small semiconductor device having better performance.
  • the resin sheet 3 according to the present embodiment includes a first resin layer region 4 located on the outer side and a highly elastic layer region 5 having a higher elastic modulus than the first resin layer region 4 and located on the inner side.
  • the resin sheet 3 according to the present embodiment further includes a second resin layer region 6 located on the opposite side of the first resin layer region 4 via the highly elastic layer region 5, and the second resin layer region 6 is provided. It has adhesiveness. Therefore, the structure 1a including the resin sheet 3 can be formed more easily, and the above-mentioned manufacturing method of the wiring board 20 and the manufacturing method of the semiconductor device 25 can be further simplified.
  • one wiring layer 13 is provided and a semiconductor element 22 is arranged on the wiring layer 13 to manufacture a semiconductor device 25.
  • the wiring layer 13 has two layers. It may be the above.
  • another resin sheet 3 is further attached to the first resin layer region 4 on which the wiring layer 13 is formed by sticking or the like. The step, the step of forming another recess 7 in the first resin layer region 4 of another resin sheet 3, the step of forming another opening 8 in another resin sheet 3, and another wiring layer 13 are separated.
  • the wiring layer 13 may be multi-layered by repeating the process of forming the recess 7 and the other opening 8 one or more times. When the number of layers is increased, another opening 8 is formed so as to reach the copper layer 11 or the wiring layer 13 of the inner opening 8 from the surface side of another resin sheet 3. As a result, it is possible to obtain a wiring board and a semiconductor device in which the fine wiring layer 13 is multi-layered.
  • one or more built-in wiring layers 31 are provided on the support 1 to form a built-in wiring portion, and a resin sheet 3 is attached on the built-in wiring layer 3 by sticking or the like to form a recess. 7 may be formed, an opening 8 may be formed, and a wiring layer 13 may be formed to form a multilayer wiring board 30.
  • the semiconductor element 32 may be mounted on the multilayer wiring board 30 to form the semiconductor device 35.
  • the built-in wiring layer 31 can be formed by using the build-up method.
  • the built-in wiring layer 31 can be multi-layered by using a conventional method, and only the wiring layer 13 on the surface layer (that is, the connection portion with the semiconductor element) can be made into a finer wiring layer.
  • the built-in wiring layer 31 is composed of a build-up material, and the fine wiring layer 13 on the surface is optimally configured by using different materials such as laser processing an organic resin material such as prepreg to form recesses.
  • Wiring board can be manufactured. Further, according to the manufacturing method according to such a modification, it is possible to increase the degree of freedom in designing the wiring board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Laminated Bodies (AREA)
  • Laser Beam Processing (AREA)

Abstract

配線基板20の製造方法は、表面に銅層2を設けた支持体1上に有機樹脂中にガラスクロスを配置した樹脂シート3が取り付けられた構造体1aを準備する工程と、樹脂シート3の表面側であってガラスクロスが存在しない第1樹脂層領域4に対してエキシマレーザにより凹部7を形成する工程と、樹脂シート3の表面から支持体1上の銅層2に到る開口部8を形成する工程と、凹部7及び開口部8に銅層10~12を形成して配線層13を形成する工程と、を備える。

Description

配線基板の製造方法、半導体装置の製造方法、及び樹脂シート
 本発明は、配線基板の製造方法、半導体装置の製造方法、及び樹脂シートに関する。より詳しくは、微細化又は高密度化の要求が高い配線基板及び半導体装置を効率よく且つ低コストに製造するための製造方法に関する。
 半導体パッケージの高密度化及び高性能化を目的に、異なる性能のチップを一つのパッケージに混載する実装形態が提案されており、コスト面に優れたチップ間の高密度インターコネクト技術が重要になっている(例えば特許文献1参照)。
 パッケージ上に異なるパッケージをフリップチップ実装によって積層することで接続するパッケージ・オン・パッケージがスマートフォン及びタブレット端末に広く採用されている(例えば非特許文献1及び非特許文献2参照)。さらに高密度で実装するための形態として、高密度配線を有する有機基板を用いたパッケージ技術(有機インターポーザ)、スルーモールドビア(TMV)を有するファンアウト型のパッケージ技術(FO-WLP)、シリコン又はガラスインターポーザを用いたパッケージ技術、シリコン貫通電極(TSV)を用いたパッケージ技術、基板に埋め込まれたチップをチップ間伝送に用いるパッケージ技術等が提案されている。
 特に有機インターポーザ又はFO―WLPでは、半導体チップ同士を並列して搭載する場合には、高密度で導通させるために微細配線層が必要となる(例えば特許文献2参照)。
特表2012―529770号公報 米国特許出願公開第2001/0221071号明細書
Application of Through Mold Via (TMV) as PoP Base Package, Electronic Components and Technology Conference (ECTC), 2008 Advanced Low Profile PoP Solution with Embedded Wafer Level PoP (eWLB-PoP) Technology, ECTC, 2012
 上記の微細配線層の形成には、スパッタによるシード層形成、レジスト形成、電気めっき、レジスト除去、及び、シード層除去の工程が必要となり、製造プロセスが煩雑化してしまっている。そこで、より簡素化された微細配線層の形成方法が望まれている。
 そこで、本発明は、簡素化された微細配線層の形成方法を提供することを目的とする。
 本発明は、一側面として、配線基板の製造方法に関する。この配線基板の製造方法は、表面に金属層を設けた支持体上に又は支持体に設けた内蔵配線層上に有機樹脂中にガラスクロスを配置した樹脂シートが取り付けられた構造体を準備する工程と、樹脂シートの表面側であってガラスクロスが存在しない第1樹脂層領域に対してエキシマレーザにより凹部を形成する工程と、樹脂シートの表面から支持体上の金属層に到る開口部を形成する工程と、凹部及び開口部に配線層を形成する工程と、を備える。
 この配線基板の製造方法では、有機樹脂中にガラスクロスを配置した樹脂シートを用い、その樹脂シートにおいてガラスクロスが存在しない第1樹脂層領域にエキシマレーザで凹部を形成し、その凹部等に配線層を形成している。この場合、エキシマレーザによる凹部の微細加工が可能となり、微細配線層を容易に形成することができる。この製造方法において、凹部を形成する工程と開口部を形成する工程は、何れの工程を先に行ってもよく、また同時に行ってもよい。また、この製造方法において、凹部及び開口部に配線層を形成するには、めっき処理を用いてもよいし、他の方法を用いてもよい。
 本発明は、別側面として、もう一つの配線基板の製造方法に関する。この配線基板の製造方法は、表面に金属層を設けた支持体上に又は支持体に設けた内蔵配線層上に外側に位置する第1樹脂層領域と第1樹脂層領域より弾性率が高く内側に位置する高弾性層領域とが順に形成された樹脂シートが取り付けられた構造体を準備する工程と、樹脂シートの表面側であって第1樹脂層領域にレーザ又はインプリントにより凹部を形成する工程と、樹脂シートの表面から支持体上の金属層に到る開口部を形成する工程と、凹部及び開口部に配線層を形成する工程と、を備える。
 この配線基板の製造方法では、外側に位置する第1樹脂層領域と高弾性層領域とが設けられた樹脂シートを用い、その樹脂シートにおいて第1樹脂層領域にレーザ又はインプリントで凹部を形成し、その凹部等に配線層を形成している。この場合、レーザ又はインプリントによる凹部の微細加工が可能となり、微細配線層を容易に形成することができる。この製造方法において、凹部を形成する工程と開口部を形成する工程は、何れの工程を先に行ってもよく、また同時に行ってもよい。また、この製造方法において、凹部及び開口部に配線層を形成するには、めっき処理を用いてもよいし、他の方法を用いてもよい。また、この製造方法において、高弾性層領域は、無機繊維及び有機繊維の少なくとも一方が有機樹脂材料中に配置されることにより形成されていてもよい。無機繊維は、ガラス繊維、セラミック繊維、及び炭素繊維の少なくとも1つであってもよく、有機繊維は、アラミド繊維、及びポリエチレン繊維の少なくとも1つであってもよい。
 上記何れかの配線基板の製造方法において、樹脂シートの表面側における第1樹脂層領域の厚みは20μm以下であってもよい。この場合、微細な配線層を形成する層領域を薄くして、製造される配線基板の低背化を図ることができる。この場合において、第1樹脂層領域の厚みは5μm以上であってもよい。これにより、適切な深さの凹部を形成し、導通性に優れた微細な配線層を形成することができる。
 上記何れかの配線基板の製造方法において、第1樹脂層領域に形成される凹部のライン幅は0.5μm以上5μm以下であってもよい。この場合、導通性に優れた微細な配線層を形成することができる。
 上記何れかの配線基板の製造方法において、樹脂シートは、第1樹脂層領域とは逆側に第2樹脂層領域を有しており、構造体を準備する工程では、支持体上又は内蔵配線層上に樹脂シートを第2樹脂層領域によって貼り付けて、構造体を準備してもよい。この場合、構造体の準備をラミネート等の簡易な手法により行うことができ、製造方法を簡素化することができる。なお、構造体を準備する工程では、支持体上又は内蔵配線層上に樹脂シートが予め取り付けられた構造体を準備し、その後の工程に用いてもよい。
 上記何れかの配線基板の製造方法において、第1樹脂層領域にエキシマレーザにより凹部を形成する場合、エキシマレーザのパルス幅が10ナノ秒以上50ナノ秒以下であってもよく、エキシマレーザの出力が10mJ/パルス以上1000mJ/パルス以下であってもよい。この場合、より微細な凹部を容易に形成することができる。
 上記何れかの配線基板の製造方法において、配線層を形成する工程では、凹部及び開口部にめっき金属層を形成して配線層を形成し、樹脂シートは、めっき金属層を形成するためのシード層を構成する金属材料と配位結合が可能な複素芳香族環からなる成分を含んでもよい。この場合、より微細な配線層を形成し易くなる。なお、シード層を構成する金属材料と配位結合が可能な複素芳香族環からなる成分は、例えば、マレイミド化合物、ビスマレイミド化合物、トリアゾール化合物、ベンゾトリアゾール化合物、及び、ベンゾオキサゾール化合物からなる群から選ばれる少なくとも1つの化合物であってもよい。
 上記何れかの配線基板の製造方法において、樹脂シート又は樹脂シートを覆う被覆層は、無機染料、無機顔料、有機染料、及び有機顔料の少なくとも1つからなるレーザ光吸収性着色成分を含んでもよい。この場合、レーザによる凹部の加工をより確実に行うことができる。なお、レーザ光吸収性着色成分は、例えば、黒鉛、グラフェン、カーボンナノチューブ、カーボンファイバー、カーボンブラック、フタロシアニン、シアニン、アルカリ土類金属、及び、金属錯体の少なくとも1つであってもよい。
 上記何れかの配線基板の製造方法において、配線層を形成する工程では、凹部及び開口部に無電解めっきによるシード層を設けてめっき金属層を形成して配線層を形成し、樹脂シートは、無電解めっきを形成するための触媒を含んでもよい。この場合、より微細な配線層を形成し易くなる。なお、無電解めっきを形成するための触媒は、パラジウム粒子、パラジウム錯体、銅粒子、及び、銅錯体の少なくとも1つであってもよい。
 上記何れかの配線基板の製造方法において、配線層を形成する工程は、凹部及び開口部に導電性材料を充填すると共に凹部及び開口部を除く第1樹脂層領域の表面上に導電性材料を設けて、導電層を形成する工程と、導電性を平坦化する工程と、を有してもよい。平坦化する工程では、第1樹脂層領域の表面上に設けられた導電層の第1部分を少なくとも研磨し、凹部及び開口部に充填された導電性材料から形成される導電層の第2部分から配線層を形成してもよい。この場合、微細な配線層をより効率的に形成することができる。
 上記何れかの配線基板の製造方法は、支持体上に、内蔵配線層を少なくとも一層有する内蔵配線部を形成する工程を更に備えてもよく、構造体を準備する工程は、当該内蔵配線部上に樹脂シートを貼り付けることにより取り付けを行い、構造体を準備してもよい。この場合、例えば、内蔵配線層をビルドアップ材から構成し、表面の微細な配線層をプリプレグ等の有機樹脂材料から構成するといったように異なる材料を用いて最適な層構成の配線基板を作製することができる。また、配線基板の設計自由度を高めることもできる。
 上記何れかの配線基板の製造方法は、配線層が形成された樹脂シートの上に別の樹脂シートを取り付ける工程と、別の樹脂シートの第1樹脂層領域に対してレーザにより別の凹部を形成する工程と、別の樹脂シートの表面から開口部のめっき金属層又は配線層に到る別の開口部を形成する工程と、別の凹部及び別の開口部に別のめっき金属層を形成して別の配線層を形成する工程と、を更に備え、別の樹脂シートを取り付ける工程、別の凹部を形成する工程、別の開口部を形成する工程、及び、別の配線層を形成する工程を少なくとも一回以上繰り返してもよい。この場合、微細な配線層を2層以上備えた配線基板の製造方法を簡素化することができる。
 上記何れかの配線基板の製造方法において、配線層を形成する工程は、少なくとも開口部及び凹部に対してデスミア処理を行う工程と、少なくとも開口部及び凹部に対して無電解めっきによりシード層を形成する工程と、シード層上に電解めっきを施してめっき金属層を形成する工程と、第1樹脂層領域の表面とシード層とめっき金属層とが平坦化するように第1樹脂層領域の表面上のシード層及びめっき金属層を除去する工程と、を有してもよい。この場合、微細な配線層の導通部分をより確実に形成することができる。
 本発明は、更に別の側面として、半導体装置の製造方法に関する。この半導体装置の製造方法は、上記何れかの配線基板の製造方法によって製造される配線基板を準備する工程と、配線層又は別の配線層上に半導体素子を実装し、半導体素子を配線層又は別の配線層に電気的に接続する工程と、備える。この場合、微細な配線層を備えた配線基板を有する半導体装置を簡素化された方法で作製することができる。また、簡素化された方法で作製するため、製造歩留まりの向上又は製造品のコスト低減等を図ることも可能となる。更に、これに限定されないが、複数の半導体素子(チップ)を実装する場合(特に高密度に実装する場合)、半導体素子同士の間を伝送性に優れた微細な配線層で接続することができ、より性能の優れた小型の半導体装置を提供することが可能となる。
 本発明は、更に別の側面として、樹脂シートに関する。この樹脂シートは、上記の何れかの配線基板の製造方法に使用される樹脂シートであって、外側に位置する第1樹脂層領域と、第1樹脂層領域より弾性率が高く内側に位置する高弾性層領域又はガラスクロスを有し内側に位置する高弾性層領域と、を備える。このような樹脂シートを予め設けておくことにより、上述した配線基板の製造方法及び半導体装置の製造方法をより簡素化して、製造される配線基板及び半導体装置の歩留まり向上又は製造品のコスト低減等を図ることが可能となる。
 上記の樹脂シートは、第1樹脂層領域とは高弾性層領域を介して反対側に位置する第2樹脂層領域を更に備えてもよく、第2樹脂層領域が粘着性を有していてもよい。この場合、樹脂シートを含む構造体をより容易に形成することが可能となり、上述した配線基板の製造方法及び半導体装置の製造方法をより簡素化することができる。
 本発明によれば、微細な配線層を備えた配線基板及び半導体装置の簡素化された製造方法を提供することができる。
図1の(a)~(d)は、本発明の一実施形態に係る配線基板の製造方法の一部を示す図である。 図2の(a)~(c)は、本発明の一実施形態に係る配線基板の製造方法の一部を示す図であり、図1の工程の後に続いて行われる工程を示す図である。 図3は、図1及び図2に示す製造方法によって製造される配線基板に半導体素子を実装した半導体装置の一例を示す図である。 図4の(a)は、変形例に係る配線基板を示す図であり、図4の(b)は、変形例に係る半導体装置を示す図である。
 以下、図面を参照しながら本発明に係る実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一の符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
 本明細書の記載及び請求項において「左」、「右」、「正面」、「裏面」、「上」、「下」、「上方」、「下方」等の用語が利用されている場合、これらは、説明を意図したものであり、必ずしも永久にこの相対位置である、という意味ではない。また、「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本発明の一実施形態に係る配線基板の製造方法及び半導体装置の製造方法について説明する。本実施形態に係る配線基板の製造方法及び半導体装置の製造方法は、微細化及び多ピン化が必要とされる形態に適用されることが好ましいが、これに限定されない。また、本実施形態に係る製造方法は、異種チップを混載するためのインターポーザが必要なパッケージ形態に適用することが好ましいが、これに限定されない。なお、以下では説明を容易にするため、実装される半導体素子が1つの場合で説明しているが、2以上(又は2種以上)の半導体素子が実装される形態でも同様である。
<構造体の準備工程>
 図1及び図2は、本実施形態に係る配線基板の製造方法を示す図である。図1の(a)に示すように、まず、表面に銅層2(金属層)を設けた支持体1上に樹脂シート3が取り付けられた構造体1aを準備する。樹脂シート3は、例えば、ガラスクロスに有機樹脂を含浸させたシートであり、表面側であってガラスシートが存在しない第1樹脂層領域4と、第1樹脂層領域4の内側に位置する高弾性層領域5と、第1樹脂層領域4とは高弾性層領域5(ガラスクロス)を介して反対側に位置する第2樹脂層領域6とを、有している。樹脂シート3は、例えば有機樹脂中にガラスクロス等の高弾性体が配置されている構成であればよく、ガラスクロスの両面を樹脂シートでラミネートした構成のものであってもよい。第2樹脂層領域6は、例えば粘着性を有しており、第2樹脂層領域6を介して支持体1の銅層2に樹脂シート3が貼り付けられることで取り付けられる。構造体1aの準備工程では、支持体1上の銅層2に樹脂シート3を貼り付けてもよいし、樹脂シート3が銅層2を介して支持体1上に予め取り付けられた構造体1aを用意しておき、それを用いてもよい。
 支持体1は、特に限定されないが、例えば、シリコン板、ガラス板、SUS板、ガラスクロス入り基板、又は、半導体素子入り封止樹脂基板等であり、高剛性からなる基板である。支持体1の厚みは0.2mm以上2.0mm以下であってもよい。支持体1が0.2mm以上であることによりハンドリング性をよくすることができ、支持体1が2.0mm以下であることにより、配線基板を低背化しやすくなり、また材料費を低減してコスト低減を行うことが可能となる。また、支持体1はウェハ状又はパネル状の何れの形態を有してよく、支持体1のサイズは特に限定されない。支持体1は、直径200mm、直径300mm若しくは直径450mmのウェハ、又は、一辺が300mm以上700mm以下の矩形パネルであってもよい。
 樹脂シート3は、例えばプリプレグ等の半硬化されたフィルム状部材である。樹脂シート3に含まれる有機樹脂材料は、電気絶縁性を確保するため、熱硬化性材料及び熱可塑性材料の少なくとも一方を含んでもよい。ここで用いる熱硬化性材料は、例えばエポキシ樹脂であり、熱可塑性樹脂は、例えば、アクリル樹脂であるが、これらに限定されない。樹脂シート3に含まれる有機樹脂材料は、膜厚平坦性とコストの観点から、フィルム状の複合体であってもよい。また、有機樹脂材料は、微細な凹部を形成できる点で、熱硬化性材料を含んでいてもよい。熱硬化性材料に含有するフィラ(充填材)のサイズは、平均粒径500nm以下であってもよい。熱硬化性材料はフィラを含有しなくてもよい。樹脂シート3の第1樹脂層領域4及び第2樹脂層領域6は、このような有機樹脂材料から形成され、ガラスクロスが存在しない領域となっている。第1樹脂層領域4は、後述する凹部の形成工程において、微細なトレンチ構造を形成するため、その膜厚が20μm以下であってもよく、10μm以下であってもよい。第1樹脂層領域4の膜厚は、微細配線構造における導通性を確保するため、5μm以上であってもよい。
 樹脂シート3に含まれるガラスクロスは、ガラス繊維を含む織布又は不織布から構成される。ガラス繊維は、例えばEガラス、Sガラス、又は石英ガラスであってもよい。ガラスクロスの厚みは、例えば0.01μm以上0.2μm以下であってもよい。このようなガラスクロスが上述した有機樹脂材料に含浸されて、高弾性層領域5を構成する。即ち、高弾性層領域5は、ガラスクロスと、ガラスクロスに含浸又は入り込んでいる有機樹脂材料とから構成される。高弾性層領域5は、ガラス等の剛性材料を含むため、第1樹脂層領域4及び第2樹脂層領域6よりも弾性率、具体的にはヤング率が高くなるように構成されている。なお、ガラス繊維に代えて、他の無機繊維及び有機繊維の少なくとも一方を有機樹脂材料に含浸させて高弾性層領域5を形成してもよい。無機繊維は、例えば、セラミック繊維又は炭素繊維等であり、有機繊維は、例えば、アラミド繊維又はポリエチレン繊維である。
 樹脂シート3に含まれる有機樹脂材料は、後の工程で形成するシード層との密着性を高めるため、例えばマレイミド化合物、ビスマレイミド化合物、トリアゾール化合物、ベンゾトリアゾール化合物、ベンゾオキサゾール化合物等の金属と配位結合ができる複素芳香族環からなる成分を含んでいてもよい。ここでいう金属は、シード層を構成する金属材料である。本成分は、フィラ表面処理剤に含めてもよい。なお、後述するシード層を無電解めっきで形成する場合、樹脂シート3に、無電解めっきで触媒となるパラジウム粒子、パラジウム錯体、銅粒子、銅錯体を含ませてもよい。
 樹脂シート3は、レーザ光との吸収性を高めるため、例えば黒鉛、グラフェン、カーボンナノチューブ、カーボンファイバー、カーボンブラック等の無機染料若しくは無機顔料、又は、フタロシアニン系、シアニン系、アルカリ土類金属塩、金属錯体等の有機染料若しくは有機顔料からなるレーザ光吸収性着色成分を含んでいてもよい。本成分はフィラ表面処理剤に含めてもよい。
 樹脂シート3は、上述した構成を備えており、例えばその厚みが10μm以上100μm以下であってもよい。樹脂シート3の厚みが10μm以上であることにより、ハンドリング性を高めることができる。また、樹脂シート3の厚みが100μm以下であることにより、製造される配線基板または半導体装置を薄型パッケージにすることができる。
 樹脂シート3は、例えば、ガラスクロスを有機樹脂(ワニス)中に含浸させて第1樹脂層領域4、高弾性層領域5、及び第2樹脂層領域6を有する構造に形成してもよいし、第1樹脂層領域4に対応する樹脂層と、第2樹脂層領域6に対応する樹脂層との間にガラスクロスを配置してラミネート又はプレスすることにより形成してもよい。樹脂シート3のラミネート等の形成方法としては、真空ラミネート、ロールラミネート、真空ロールラミネート、大気圧プレス、又は真空プレスなどを用いることができる。なお、真空プレスを用いた場合、樹脂シート3に含まれる熱硬化性材料の酸化を容易に抑制でき、膜厚平坦性をより向上することが可能である。また、樹脂シート3の形成の際の温度は、樹脂シート3に含まれる熱硬化性材料が熱硬化する温度であってもよく、例えば100℃以上250℃以下であってもよい。形成温度を100℃以上とすることにより、樹脂シート3の有機樹脂材料のタック性を弱めて取り扱い性を向上することができる。形成温度を250℃以下とすることにより、樹脂シート3の反りを抑制することができる。
 このような樹脂シート3としては、例えば、「MCL-E-705G、厚み0.4mm又は0.6mm、255mm角(日立化成株式会社製)」、又は「R-1766 厚み0.4mm又は0.6mm、255mm角」、「R-5715ES 厚み0.4mm又は0.6mm、255mm角」、「R-5670Kj 厚み0.4mm又は0.6mm、255mm角(以上、パナソニック株式会社製)」、又は、「GHPL830NS 厚み0.4mm又は0.6mm 255mm角」、「830NS 厚み0.4mm又は0.6mm、255mm角」、「830NSF 厚み0.4mm又は0.6mm、255mm角(以上、三菱ガス化学株式会社製)」を用いることが可能である。
 樹脂シート3の表面(凹部を形成する側)に被覆層を設けることもできる。被覆層は、例えば、ポリエチレンテレフタレート(PET)樹脂、ポリエチレンナフタレート(PEN)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリイミド(PI)樹脂等を含む有機樹脂フィルム、又は、Cu箔、Ni箔、SUS箔等の金属箔であってもよい。レーザ光の吸収を高めるため、被覆層を構成する有機樹脂フィルムは、黒鉛、グラフェン、カーボンナノチューブ、カーボンファイバー、カーボンブラック等の無機染料若しくは無機顔料、又は、フタロシアニン系、シアニン系、アルカリ土類金属塩、金属錯体等の有機染料若しくは有機顔料からなるレーザ光吸収性着色成分を含んでいてもよい。また、前記金属箔の表面は、黒化処理されていてもよい。
<凹部の形成工程>
 次に、構造体1aの準備工程が終了すると、図1の(b)に示すように、樹脂シート3の表面側であってガラスクロスが存在しない第1樹脂層領域4に対してエキシマレーザにより複数の凹部7を形成する。凹部7は、第1樹脂層領域4の表面に対して、第1樹脂層領域4の厚さ方向に凹んだ部位をいい、この凹んだ部位の内壁(側壁及び底壁等)を含んでいる。凹部7は、図示の左右方向に沿った幅で、図示垂直方向等に伸びる溝のように形成されており、平面方向において微細配線に対応する形状を有している。熱硬化性材料又は熱可塑性材料から形成される第1樹脂層領域4に凹部を形成するには、微細化の観点からはエキシマレーザを用いて加工してもよいが、炭酸ガスレーザ若しくはUV-YAGレーザを用いた加工、又は、インプリントを用いてもよい。
 凹部の形成工程では、開口幅が0.5μm以上20μm以下となるように凹部7を形成してもよく、微細化の観点からは、開口幅が0.5μm以上5μm以下となるように凹部7を形成してもよい。これにより、微細な配線層を形成して高密度化した半導体装置を提供することができる。このような微細な開口幅の凹部を形成するには、上述したようにエキシマレーザを用いてもよい。使用されるエキシマレーザの媒質は、アルゴン・フッ素(ArF)又はクリプトン・フッ素(KrF)であり、汎用性の観点からは、KrFを媒質としたエキシマレーザを用いてもよい。また、エキシマレーザによる加工条件として、パルスエネルギーは20mJ以上100mJ以下であってもよい。パルス繰り返し周波数は、1Hz以上4000Hz以下であってもよい。パルス幅は、10ナノ秒以上50ナノ秒以下であってもよい。レーザ照射量は、0より大きく1000mJ/cm以下であってもよい。エキシマレーザの出力は、10mJ/パルス以上1000mJ/パルス以下であってもよい。
 凹部の形成工程では、凹部7を形成した後、第1樹脂層領域4を含む樹脂シート3を更に加熱硬化させてもよい。この際の加熱温度は100℃以上250℃以下であってもよく、加熱時間は30分以上3時間以下であってもよい。なお、凹部7は、高弾性層領域5には到達しないように構成されている。
<開口部の形成工程>
 次に、凹部7の形成が終了すると、図1の(c)に示すように、樹脂シート3の表面から支持体1の銅層2に到る開口部8を形成する。開口部の形成工程では、樹脂シート3においてガラスクロスを含んで構成される高弾性層領域5と、有機樹脂材料から構成される第1樹脂層領域4及び第2樹脂層領域6とをまとめて貫通して開口部8が形成される。開口部8を形成する方法としては、例えば、炭酸ガスレーザ加工又はドリル加工を用いることができるが、微細化の観点からは、炭酸ガスレーザを用いてもよい。
 開口部の形成工程では、例えば、直径が30μm以上200μm以下の開口径を有する開口部8を形成する。このような大きさの開口部8により、高密度化を実現する半導体装置を提供でき、また、微細配線層を有する半導体装置を良好な歩留まり、かつ低コストで製造できる。開口部の形成工程は、上述した凹部の形成工程より先に行ってもよく、後に行ってもよく、又は、同時に行ってもよく、その順番は特に限定されない。
<デスミアする工程>
 次に、凹部7及び開口部8の形成が終了すると、レーザ開口で形成されたスミアを除去する目的で、デスミアする工程を行う。デスミア液は、市販の前処理液及びデスミア液を用いてもよい。前処理液としては、例えば膨潤液(株式会社アトテックジャパン製、商品名:スウェリングディップセキュリガント)を用いることができる。デスミア液として、例えば粗化液(株式会社アトテックジャパン製、商品名:コンセントレートコンパクトCP)を用いることができる。デスミア後の中和に使用する薬液として、例えば中和液(株式会社アトテックジャパン製、商品名:リダクションセキュリガント)を用いることができる。
 デスミア処理における膨潤条件として、膨潤液の温度は50℃以上80℃以下であり、浸漬時間1分以上30分以下であってもよい。膨潤処理後に、凹部7及び開口部8等を純水または市水によって洗浄してもよい。また、膨潤処理後、デスミア液で粗化処理する工程を実施する。デスミア条件として、デスミア液の温度は30℃以上80℃以下であり、浸漬時間1分以上30分以下で実施されてもよい。デスミア処理後、純水または市水によって洗浄してもよい。デスミア液によって粗化後、純水または市水によってドラッグアウト工程を実施する。ドラッグアウト温度は25℃以上50℃以下であり、浸漬時間は1分以上5分以下であってもよい。そして、ドラッグアウト後、中和工程を実施する。中和温度は25℃以上50℃以下であり、浸漬時間は1分以上10分以下であってもよい。中和処理後、純水または市水によって洗浄してもよい。以上により、デスミア処理が終了する。
<シード層の形成工程>
 デスミア処理が終了すると、図1(d)に示すように、第1樹脂層領域4の表面と、凹部7の側壁及び底壁と、開口部8の側壁と、開口部8に露出する銅層2の表面とにシード層9を形成する工程を行う。シード層の形成工程では、銅ペーストを用いた方法、スパッタリング方法、又は無電解めっき法を用いて、シード層9を形成することができる。パネル化に適した方法としては、無電解めっき法を用いることができる。
 シード層9を形成するには、まず、無電解銅めっきの触媒となるパラジウムを、第1樹脂層領域4の表面と、凹部7の側壁及び底壁と、開口部8の側壁と、開口部8に露出する銅層2の表面(以下「第1樹脂層領域4の表面等」とも記す)とに吸着させるため、第1樹脂層領域4の表面等を前処理液で洗浄する。前処理液は、例えば水酸化ナトリウム又は水酸化カリウムを含む市販のアルカリ性前処理液である。前処理は、水酸化ナトリウム又は水酸化カリウムの濃度が1%以上30%以下の間で実施してもよく、前処理液への浸漬時間が1分以上60分以下の間で実施してもよく、前処理液への浸漬温度が25℃以上80℃以下の間で実施されてもよい。前処理した後、余分な前処理液を除去するため、市水、純水、超純水又は有機溶剤で洗浄してもよい。
 前処理液を除去した後、第1樹脂層領域4の表面等からアルカリイオンを除去するために、酸性水溶液で浸漬洗浄する。浸漬洗浄は、酸性水溶液として硫酸水溶液を用いて実施されてもよく、濃度が1%以上20%以下の間、浸漬時間が1分以上60分以下の間で実施されてもよい。酸性水溶液を除去するため、市水、純水、超純水又は有機溶剤で洗浄してもよい。その後、酸性水溶液で浸漬洗浄がなされた後の第1樹脂層領域4等にパラジウムを付着させる。パラジウムの付着には、市販のパラジウムースズコロイド溶液、パラジウムイオンを含む水溶液、又はパラジウムイオン懸濁液等を用いてもよいが、改質層に効果的に吸着するパラジウムイオンを含む水溶液を用いてもよい。パラジウムイオンを含む水溶液に浸漬する際、パラジウムイオンを含む水溶液の温度が25℃以上80℃以下の間で、吸着させるための浸漬時間が1分以上60分以下の間で実施されてもよい。パラジウムイオンを吸着させた後、余分なパラジウムイオンを除去するため、市水、純水、超純水又は有機溶剤で洗浄してもよい。
 続いて、パラジウムイオンを吸着した後、パラジウムイオンを触媒として作用させるための活性化を行う。パラジウムイオンを活性化させる試薬は、市販の活性化剤(活性化処理液)を用いてもよい。パラジウムイオンを活性化させるために浸漬する活性化剤の温度は、25℃以上80℃以下の間であり、活性化させるために浸漬する時間は、1分以上60分以下の間であってもよい。パラジウムイオンを活性化した後、余分な活性化剤を除去するため、市水、純水、超純水又は有機溶剤で洗浄してもよい。その後、パラジウムを触媒として、無電解めっきによりシード層9を形成する。シード層9は、例えば、銅層、ニッケル層、銅ニッケル合金層、ニッケルリン合金層、及び銅ニッケルリン合金層からなる群から選ばれる無電解めっき層である。コストの観点から、シード層9の材質は、銅層であってもよい。
 シード層9として銅層を形成する場合、無電解めっき液として市販のめっき液を使用すればよく、例えば、無電解銅めっき液(株式会社アトテックジャパン製、商品名:カッパーソリューションプリントガントMSK)を用いることができる。無電解銅めっきの形成は、20℃以上40℃以下の間で無電解銅めっき液中で実施される。シード層9の厚さは、0.1nm以上500nm以下であってもよく、0.1nm以上400nm以下であってもよく、0.1nm以上300nm以下であってもよい。シード層9の厚さを0.1nm以上にすることで、その後の電解めっきにおいて均一な厚さで配線を形成し易くなる。他方、シード層9の厚さを500nm以下にすることで、シード層9のエッチング工程において配線への過剰なエッチングを防ぐことができ、微細な配線を歩留まり良く形成できる。
 無電解めっきを行った後、余分なめっき液を除去するため、水又は有機溶剤で洗浄してもよい。無電解めっき後、シード層9と第1樹脂層領域4の表面との密着力を高めるため、熱硬化(アニーリング:加熱による時効硬化処理)を行ってもよい。熱硬化温度が80℃以上200℃以下となるように加熱してもよい。より反応性を早めるために、熱硬化温度が120℃以上200℃以下となるように加熱してもよく、熱硬化温度が120℃以上180℃以下となるように加熱してもよい。熱硬化時間は、5分以上60分以下であってもよく、10分以上60分以下であってもよく、20分以上60分以下であってもよい。
<銅層の形成工程>
 シード層の形成工程が終了すると、図2の(a)に示すように、シード層9上に電解銅めっき(導電性材料)により銅層10,11,12(めっき金属層、導電層)を形成する工程を行う。より具体的には、無電解銅めっきで形成した銅層をシード層9として、その上に電解銅めっきにより、銅層10~12を形成する。なお、本実施形態では、銅層10~12を形成する方法として、電解銅めっきを用いるが、これ以外に、例えば、無電解めっきを用いてもよい。
 銅層の形成工程では、銅層10(第2部分)が第1樹脂層領域4の表面に設けられた凹部7内に充填され、銅層11(第2部分)が第1樹脂層領域4の表面から銅層2に到るように設けられた開口部8内に充填され、銅層12(第1部分)が凹部7及び開口部8を除く第1樹脂層領域4の表面に形成される。銅層10が凹部7内に充填され、また銅層11が開口部8内に充填されることで、この後の工程で第1樹脂層領域4の凹部7及び開口部8を除く表面から、銅層12、シード層、パラジウム吸着層を除去するだけで、第1樹脂層領域4の表面を削ることなく、第1樹脂層領域4の表面と凹部7及び開口部8にそれぞれ形成された銅層10~12を平坦化することが可能になる。銅層、シード層、パラジウム吸着層を除去した後、さらに第1樹脂層領域4の表面を削って、第1樹脂層領域4の表面と、凹部7及び開口部8それぞれに形成された銅層10,11とを平坦化してもよい。
 電解銅めっきによって、銅層10を凹部7内に充填したり又は銅層11を開口部8に充填したりするには、第1樹脂層領域4の表面に比べて凹部7内及び開口部8への電解銅めっきの析出量(めっき厚)が大きい、いわゆるフィルドめっきを用いてもよい。銅層10,11は、凹部7内又は開口部8内に充填されなくてもよく、凹部7又は開口部8の内壁(底壁及び側壁)に沿って形成されてもよい。この場合は、第1樹脂層領域4の凹部7及び開口部8を除く表面から、銅層12、シード層、パラジウム吸着層を除去するだけでなく、さらに第1樹脂層領域4の表面を削ることによって、凹部7内(凹部7の底壁)の銅層10及び開口部8内の銅層11を露出させて、第1樹脂層領域4の表面と凹部7及び開口部8に形成された銅層10~12を平坦化することが可能になる。
<配線層の形成工程>
 次に、銅層の形成が終了すると、図2の(b)に示すように、第1樹脂層領域4の凹部7及び開口部8を除く表面から、銅層12、シード層及びパラジウム触媒を除去することによって、凹部7に形成された銅層10及び開口部8に形成された銅層11からなる配線層13を形成する工程を行う。すなわち、第1樹脂層領域4の表面の銅層12、シード層、パラジウム吸着層を除去することによって、第1樹脂層領域4の凹部7等を含む表面においては、凹部7及び開口部8にのみ銅層10,11(詳細には、銅層10,11に対応するシード層、パラジウム吸着層を含む)が残され、凹部7及び開口部8の銅層10、11等が配線層13を形成する。配線層13の主要部は、複数の凹部7に形成された銅層10から形成される。配線層13は、後述する半導体素子22の接続端子に接続される。
 第1樹脂層領域4の凹部7を除く表面から、銅層12、シード層及びパラジウム吸着層を除去する際に、第1樹脂層領域4の表面と凹部7に形成された銅層10とを平坦化してもよい。また、これらの第1樹脂層領域4の上部の銅層12、シード層、パラジウム吸着層を除去する際に、第1樹脂層領域4の上部(表面)側から厚さ方向の一部を除去してもよい。第1樹脂層領域4の上部の銅層12、シード層、パラジウム吸着層及び第1樹脂層領域4の除去方法としては、バックグラインド法、フライカット法、又は化学的機械研磨(CMP)を用いることができる。また、複数の除去方法を併用してもよい。フライカット法では、例えば、ダイヤモンドバイトによる研削装置を使用する。具体例としては、300mmウェハ対応のオートマチックサーフェースプレーナ(株式会社ディスコ製、商品名「DAS8930」)を用いることができる。フライカット法による金属層、パラジウム吸着層の除去は、第1樹脂層領域4の上部側(表面側)から面全体を均一に研磨するので、研磨面が平坦となるため、平坦化処理であるともいえる。
 化学的機械研磨(CMP)で研磨する場合、具体例として、300mmウェハ対応のCMP研磨装置(Applied Materials社製、商品名「F-REX300X」)を用いることができる。CMP研磨の際、シリカ、アルミナ、セリア等の砥粒成分を含む研磨液を用いて研磨することができる。また、複数の研磨液を併用してもよいし、順次行っても良い。研磨後、純水、溶剤等の洗浄液で研磨屑、余分な砥粒を除去してもよい。
 次の工程である無電解めっきを行う際に、シード層と銅層10上にパラジウムを吸着させやすくするために、第1樹脂層領域4の上部の銅層12、シード層、パラジウム吸着層及び第1樹脂層領域4を除去した後、露出したシード層と銅層10,11の表面を化学的又は物理的に粗化してもよい。
<キャップめっきする工程>
 次に、配線層の形成工程が終了すると、図2(c)に示すように、露出したシード層、銅層10、11(配線層13)、パラジウム吸着層上に、無電解めっきによってキャップめっき14,15を形成してもよい。キャップめっき14,15の金属種としては、Cu、Ni,Cr,Wのいずれか一種類を含む金属を用いてもよい。以上により、微細な配線層13を有する配線基板20が作製される。
<半導体装置の製造方法>
 次に、図3に示すように、配線基板20上の配線層13上に半導体素子22を実装し、半導体素子22の接続端子を配線層13に電気的に接続する。これにより、微細な配線層13によって接続された半導体装置25が作製される。
 以上、本実施形態に係る配線基板及び半導体装置の製造方法では、有機樹脂中にガラスクロスを配置した樹脂シート3を用い、樹脂シート3においてガラスクロスが存在しない第1樹脂層領域4にエキシマレーザで凹部7を形成し、凹部7等に配線層13を形成している。この場合、レーザによる凹部7の微細加工が可能となり、微細配線層を容易に形成することができる。
 本実施形態に係る配線基板及び半導体装置の製造方法では、樹脂シート3の表面側における第1樹脂層領域4の厚みが20μm以下であってもよい。この場合、微細な配線層13を形成する層領域を薄くして、製造される配線基板20の低背化を図ることができる。また、この製造方法では、第1樹脂層領域4の厚みが5μm以上であってもよい。これにより、適切な深さの凹部7を形成して、導通性に優れた微細な配線層13を形成することができる。
 本実施形態に係る配線基板及び半導体装置の製造方法では、第1樹脂層領域4に形成される凹部7のライン幅が0.5μm以上5μm以下であってもよい。この場合、導通性に優れた微細な配線層13を形成することができる。
 本実施形態に係る配線基板及び半導体装置の製造方法では、樹脂シート3は、第1樹脂層領域4とは逆側に第2樹脂層領域6を有しており、構造体を準備する工程では、支持体1上に樹脂シート3を第2樹脂層領域6によって貼り付けることにより構造体1aを準備している。この場合、構造体1aの準備をラミネート等の簡易な手法により行うことができ、製造方法を簡素化することができる。
 本実施形態に係る配線基板及び半導体装置の製造方法では、めっき層を形成する工程は、凹部7及び開口部8と第1樹脂層領域の表面とに対してデスミア処理を行う工程と、凹部7及び開口部8と第1樹脂層領域の表面とに対して無電解めっきによりシード層9を形成する工程と、シード層9上に電解めっきを施して銅層10~12を形成する工程と、第1樹脂層領域4の表面とシード層9と銅層10~12とが平坦化するように第1樹脂層領域4の表面上のシード層9及び銅層10~12を除去する工程と、を有している。これにより、微細な配線層13の導通部分をより確実に形成することができる。
 なお、本実施形態に係る半導体装置の製造方法では、上述した各種の方法により、微細な配線層13を備えた配線基板20を有する半導体装置25を簡素化された方法で作製することができる。また、簡素化された方法で作製するため、製造歩留まりの向上又は製造品のコスト低減等を図ることも可能となる。更に、これに限定されないが、複数の半導体素子(チップ)を実装する場合(特に高密度に実装する場合)、半導体素子同士の間を伝送性に優れた微細な配線層で接続することができ、より性能の優れた小型の半導体装置を提供することが可能となる。
 本実施形態に係る樹脂シート3は、外側に位置する第1樹脂層領域4と、第1樹脂層領域4より弾性率が高く内側に位置する高弾性層領域5と、を備える。このような樹脂シート3を予め作製しておくことにより、上述した配線基板の製造方法及び半導体装置の製造方法をより簡素化して、製造される配線基板20及び半導体装置25の歩留まり向上又は製造品のコスト低減等を図ることが可能となる。
 本実施形態に係る樹脂シート3は、第1樹脂層領域4とは高弾性層領域5を介して反対側に位置する第2樹脂層領域6を更に備えており、第2樹脂層領域6が粘着性を有している。このため、樹脂シート3を含む構造体1aをより容易に形成することが可能となり、上述した配線基板20の製造方法及び半導体装置25の製造方法をより簡素化することができる。
 以上、本発明の実施形態について詳細に説明してきたが、本発明は、上記実施形態に限定されるものではなく、様々な実施形態に適用することができる。例えば、上記実施形態では、図1~図3に示すように、配線層13を1層設けて、その上に半導体素子22を配置して半導体装置25を作製したが、配線層13は2層以上であってもよい。この場合、図2の(b)に示す配線層13の形成工程を行った後、さらに、別の樹脂シート3を配線層13が形成された第1樹脂層領域4上に貼り付け等により取り付ける工程と、別の凹部7を別の樹脂シート3の第1樹脂層領域4に形成する工程と、別の開口部8を別の樹脂シート3に形成する工程と、別の配線層13を別の凹部7及び別の開口部8に形成する工程とを1回以上繰り返して、配線層13を多層化してもよい。多層化する際、別の開口部8は、別の樹脂シート3の表面側から内側の開口部8の銅層11又は配線層13に到るように形成される。これにより、微細な配線層13が多層化された配線基板及び半導体装置を得ることができる。
 また、図4の(a)に示すように、支持体1上に内蔵配線層31を1層以上設けて内蔵配線部を形成し、その上に樹脂シート3を貼り付け等により取り付けて、凹部7を形成する工程と、開口部8を形成する工程と、配線層13を形成する工程とを行い、多層の配線基板30を形成してもよい。そして、図4の(b)に示すように、多層の配線基板30に半導体素子32を実装して半導体装置35としてもよい。この場合、ビルドアップ工法を用いて、内蔵配線層31を形成することができる。これにより、内蔵配線層31に従来の工法を用いて多層化し、表層(即ち半導体素子との接続部分)の配線層13のみ、より微細化した配線層とすることも可能である。この場合、例えば、内蔵配線層31をビルドアップ材から構成し、表面の微細な配線層13をプリプレグ等の有機樹脂材料をレーザ加工して凹部形成するといったように異なる材料を用いて最適な構成の配線基板を作製することができる。また、このような変形例に係る製造方法によれば、配線基板の設計自由度を高めることもできる。
 1…支持体、1a…構造体、2…銅層(金属層)、3…樹脂シート、4…第1樹脂層領域、5…高弾性層領域、6…第2樹脂層領域、7…凹部、8…開口部、9…シード層、10,11…銅層(めっき金属層、第2部分)、12…銅層(第1部分)、13…配線層、14,15…キャップめっき、20…配線基板、22…半導体素子、25…半導体装置、30…配線基板、31…内蔵配線層、32…半導体素子、35…半導体装置。

Claims (22)

  1.  表面に金属層を設けた支持体上に又は前記支持体に設けた内蔵配線層上に有機樹脂中にガラスクロスを配置した樹脂シートが取り付けられた構造体を準備する工程と、
     前記樹脂シートの表面側であって前記ガラスクロスが存在しない第1樹脂層領域に対してエキシマレーザにより凹部を形成する工程と、
     前記樹脂シートの表面から前記支持体上の前記金属層に到る開口部を形成する工程と、
     前記凹部及び前記開口部に配線層を形成する工程と、
    を備える、配線基板の製造方法。
  2.  表面に金属層を設けた支持体上に又は前記支持体に設けた内蔵配線層上に外側に位置する第1樹脂層領域と前記第1樹脂層領域より弾性率が高く内側に位置する高弾性層領域とが順に形成された樹脂シートが取り付けられた構造体を準備する工程と、
     前記樹脂シートの表面側であって前記第1樹脂層領域にレーザ又はインプリントにより凹部を形成する工程と、
     前記樹脂シートの表面から前記支持体上の前記金属層に到る開口部を形成する工程と、
     前記凹部及び前記開口部に配線層を形成する工程と、
    を備える、配線基板の製造方法。
  3.  前記高弾性層領域は、無機繊維及び有機繊維の少なくとも一方が有機樹脂材料中に配置されることにより形成されている、
    請求項2に記載の配線基板の製造方法。
  4.  前記無機繊維は、ガラス繊維、セラミック繊維、及び炭素繊維の少なくとも1つであり、前記有機繊維は、アラミド繊維、及びポリエチレン繊維の少なくとも1つである、
    請求項3に記載の配線基板の製造方法。
  5.  前記樹脂シートの表面側における前記第1樹脂層領域の厚みが5μm以上20μm以下である、
    請求項1~4の何れか一項に記載の配線基板の製造方法。
  6.  前記第1樹脂層領域に形成される前記凹部のライン幅が0.5μm以上5μm以下である、
    請求項1~5の何れか一項に記載の配線基板の製造方法。
  7.  前記樹脂シートは、前記第1樹脂層領域とは逆側に第2樹脂層領域を有しており、
     前記構造体を準備する工程では、前記支持体上又は前記内蔵配線層上に前記樹脂シートを前記第2樹脂層領域によって貼り付けて、前記構造体を準備する、
    請求項1~6の何れか一項に記載の配線基板の製造方法。
  8.  前記第1樹脂層領域にエキシマレーザにより前記凹部を形成する場合において、前記エキシマレーザのパルス幅が10ナノ秒以上50ナノ秒以下であり、前記エキシマレーザの出力が10mJ/パルス以上1000mJ/パルス以下である、
    請求項1~7の何れか一項に記載の配線基板の製造方法。
  9.  前記配線層を形成する工程では、前記凹部及び前記開口部にめっき金属層を形成して前記配線層を形成し、
     前記樹脂シートは、前記めっき金属層を形成するためのシード層を構成する金属材料と配位結合が可能な複素芳香族環からなる成分を含む、
    請求項1~8の何れか一項に記載の配線基板の製造方法。
  10.  前記樹脂シート又は前記樹脂シートを覆う被覆層は、無機染料、無機顔料、有機染料、及び有機顔料の少なくとも1つからなるレーザ光吸収性着色成分を含む、
    請求項1~9の何れか一項に記載の配線基板の製造方法。
  11.  前記配線層を形成する工程では、前記凹部及び前記開口部に無電解めっきによるシード層を設けてめっき金属層を形成して前記配線層を形成し、
     前記樹脂シートは、前記無電解めっきを形成するための触媒を含む、
    請求項1~10の何れか一項に記載の配線基板の製造方法。
  12.  前記配線層を形成する工程は、
     前記凹部及び前記開口部に導電性材料を充填すると共に前記凹部及び前記開口部を除く前記第1樹脂層領域の表面上に導電性材料を設けて、導電層を形成する工程と、
     前記導電性を平坦化する工程と、を有し、
     前記平坦化する工程では、前記第1樹脂層領域の表面上に設けられた前記導電層の第1部分を少なくとも研磨し、前記凹部及び前記開口部に充填された前記導電性材料から形成される前記導電層の第2部分から前記配線層を形成する、
    請求項1~11の何れか一項に記載の配線基板の製造方法。
  13.  前記支持体上に、前記内蔵配線層を少なくとも一層有する内蔵配線部を形成する工程を更に備え、
     前記構造体を準備する工程は、当該内蔵配線部上に前記樹脂シートを貼り付けることにより取り付けを行い、前記構造体を準備する、
    請求項1~12の何れか一項に記載の配線基板の製造方法。
  14.  前記配線層が形成された前記樹脂シートの上に別の樹脂シートを取り付ける工程と、
     前記別の樹脂シートの第1樹脂層領域に対してレーザにより別の凹部を形成する工程と、
     前記別の樹脂シートの表面から前記開口部の前記めっき金属層又は前記配線層に到る別の開口部を形成する工程と、
     前記別の凹部及び前記別の開口部に別のめっき金属層を形成して別の配線層を形成する工程と、を更に備え、
     前記別の樹脂シートを取り付ける工程、前記別の凹部を形成する工程、前記別の開口部を形成する工程、及び、前記別の配線層を形成する工程を少なくとも1回以上繰り返す、
    請求項1~13の何れか一項に記載の配線基板の製造方法。
  15. 前記配線層を形成する工程は、
     少なくとも前記開口部及び前記凹部に対してデスミア処理を行う工程と、
     少なくとも前記開口部及び前記凹部に対して無電解めっきによりシード層を形成する工程と、
     前記シード層上に電解めっきを施してめっき金属層を形成する工程と、
     前記第1樹脂層領域の表面と前記シード層と前記めっき金属層とが平坦化するように前記第1樹脂層領域の表面上の前記シード層及び前記めっき金属層を除去する工程と、を有する、
    請求項1~14の何れか一項に記載の配線基板の製造方法。
  16.  請求項1~15の何れか一項に記載の配線基板の製造方法によって製造される配線基板を準備する工程と、
     前記配線層又は前記別の配線層上に半導体素子を実装し、前記半導体素子を前記配線層又は前記別の配線層に電気的に接続する工程と、
    備える、半導体装置の製造方法。
  17.  請求項16に記載の製造方法を用いて製造される構造を有する、半導体装置。
  18.  請求項1~15の何れか一項に記載の配線基板の製造方法に使用される樹脂シートであって、外側に位置する第1樹脂層領域と、前記第1樹脂層領域より弾性率が高く内側に位置する高弾性層領域又はガラスクロスを有し内側に位置する高弾性層領域と、を備える樹脂シート。
  19.  前記第1樹脂層領域とは前記高弾性層領域を介して反対側に位置する第2樹脂層領域を更に備え、前記第2樹脂層領域が粘着性を有している、
    請求項15に記載の樹脂シート。
  20.  前記第1樹脂層領域は、マレイミド化合物、ビスマレイミド化合物、トリアゾール化合物、ベンゾトリアゾール化合物、及び、ベンゾオキサゾール化合物からなる群から選ばれる少なくとも1つの化合物を含む、
    請求項18又は19に記載の樹脂シート。
  21.  前記第1樹脂層領域は、黒鉛、グラフェン、カーボンナノチューブ、カーボンファイバー、カーボンブラック、フタロシアニン、シアニン、アルカリ土類金属、及び、金属錯体の少なくとも1つを含む、
    請求項18~20の何れか一項に記載の樹脂シート。
  22.  前記第1樹脂層領域は、パラジウム粒子、パラジウム錯体、銅粒子、及び、銅錯体の少なくとも1つを含む、
    請求項18~21の何れか一項に記載の樹脂シート。
PCT/JP2021/035957 2020-10-01 2021-09-29 配線基板の製造方法、半導体装置の製造方法、及び樹脂シート WO2022071430A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237010627A KR20230074735A (ko) 2020-10-01 2021-09-29 배선 기판의 제조 방법, 반도체 장치의 제조 방법, 및 수지 시트
CN202180067236.5A CN116325127A (zh) 2020-10-01 2021-09-29 配线基板的制造方法、半导体装置的制造方法及树脂片
US18/247,077 US20240030044A1 (en) 2020-10-01 2021-09-29 Method for manufacturing wiring board, method for manufacturing semiconductor device, and resin sheet
JP2022554059A JPWO2022071430A1 (ja) 2020-10-01 2021-09-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2020/037450 2020-10-01
PCT/JP2020/037450 WO2022070389A1 (ja) 2020-10-01 2020-10-01 配線基板の製造方法、半導体装置の製造方法、及び樹脂シート

Publications (1)

Publication Number Publication Date
WO2022071430A1 true WO2022071430A1 (ja) 2022-04-07

Family

ID=80950098

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/037450 WO2022070389A1 (ja) 2020-10-01 2020-10-01 配線基板の製造方法、半導体装置の製造方法、及び樹脂シート
PCT/JP2021/035957 WO2022071430A1 (ja) 2020-10-01 2021-09-29 配線基板の製造方法、半導体装置の製造方法、及び樹脂シート

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037450 WO2022070389A1 (ja) 2020-10-01 2020-10-01 配線基板の製造方法、半導体装置の製造方法、及び樹脂シート

Country Status (6)

Country Link
US (1) US20240030044A1 (ja)
JP (1) JPWO2022071430A1 (ja)
KR (1) KR20230074735A (ja)
CN (1) CN116325127A (ja)
TW (1) TW202232675A (ja)
WO (2) WO2022070389A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936522A (ja) * 1995-07-14 1997-02-07 Fuji Kiko Denshi Kk プリント配線板における回路形成方法
JP2009099649A (ja) * 2007-10-15 2009-05-07 Shinko Electric Ind Co Ltd 配線基板の製造方法
JP2011100796A (ja) * 2009-11-04 2011-05-19 Panasonic Electric Works Co Ltd 回路基板
JP2012028511A (ja) * 2010-07-22 2012-02-09 On Semiconductor Trading Ltd 回路基板およびその製造方法、回路装置およびその製造方法、絶縁層付き導電箔

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3724312B2 (ja) 2000-02-07 2005-12-07 日産自動車株式会社 可変動弁エンジンの制御装置
US8227904B2 (en) 2009-06-24 2012-07-24 Intel Corporation Multi-chip package and method of providing die-to-die interconnects in same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936522A (ja) * 1995-07-14 1997-02-07 Fuji Kiko Denshi Kk プリント配線板における回路形成方法
JP2009099649A (ja) * 2007-10-15 2009-05-07 Shinko Electric Ind Co Ltd 配線基板の製造方法
JP2011100796A (ja) * 2009-11-04 2011-05-19 Panasonic Electric Works Co Ltd 回路基板
JP2012028511A (ja) * 2010-07-22 2012-02-09 On Semiconductor Trading Ltd 回路基板およびその製造方法、回路装置およびその製造方法、絶縁層付き導電箔

Also Published As

Publication number Publication date
WO2022070389A1 (ja) 2022-04-07
KR20230074735A (ko) 2023-05-31
US20240030044A1 (en) 2024-01-25
TW202232675A (zh) 2022-08-16
CN116325127A (zh) 2023-06-23
JPWO2022071430A1 (ja) 2022-04-07

Similar Documents

Publication Publication Date Title
JP4395098B2 (ja) Bgaパッケージおよびその製造方法
US20090314525A1 (en) Mold for Wiring Substrate Formation and Process for Producing the Same, Wiring Substrate and Process for Producing the Same, Process for Producing Multilayered Laminated Wiring Substrate and Method for Viahole Formation
JP2006210866A (ja) プリント基板の製造方法
JP2010171413A (ja) 部品内蔵配線基板の製造方法
TW201019439A (en) Package substrate for mounting semiconductor element and method for manufacturing the package substrate
WO2006129734A1 (ja) 配線基板形成用モールドおよびその製造方法、配線基板およびその製造方法、多層積層配線基板の製造方法並びにビアホールの形成方法
JP2011171528A (ja) 多層配線基板の製造方法
WO2020130100A1 (ja) 配線基板及びその製造方法
JP2021177546A (ja) 半導体装置の製造方法
WO2022071430A1 (ja) 配線基板の製造方法、半導体装置の製造方法、及び樹脂シート
JP4294967B2 (ja) 多層配線基板及びその製造方法
JP3942535B2 (ja) 多層配線基板の製造方法
WO2010035867A1 (ja) 半導体素子搭載用パッケージ基板とその製造方法
WO2010035864A1 (ja) 半導体素子搭載用パッケージ基板とその製法及び半導体パッケージ
TWI397361B (zh) 配線基板之製造方法
WO2022149219A1 (ja) 配線基板の製造方法、積層板及びその製造方法、並びにキャリア付き銅層
WO2010035865A1 (ja) 半導体素子搭載用パッケージ基板及びその製造方法
JP7119307B2 (ja) 半導体装置製造用部材の製造方法
JP2019212653A (ja) 配線基板の製造方法
WO2016104519A1 (ja) プリント配線板の製造方法
WO2024142742A1 (ja) 半導体装置製造用部材及びその製造方法
WO2022264378A1 (ja) 配線基板の製造方法及び積層板
WO2022104943A1 (zh) 一种印制线路板及其制备方法
JP2022103270A (ja) 半導体装置製造用部材の製造方法
TWI291847B (en) Multilayer circuit substrate and method of producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022554059

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18247077

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875727

Country of ref document: EP

Kind code of ref document: A1