WO2022071300A1 - 導電積層体、及び、導電積層体の製造方法 - Google Patents

導電積層体、及び、導電積層体の製造方法 Download PDF

Info

Publication number
WO2022071300A1
WO2022071300A1 PCT/JP2021/035589 JP2021035589W WO2022071300A1 WO 2022071300 A1 WO2022071300 A1 WO 2022071300A1 JP 2021035589 W JP2021035589 W JP 2021035589W WO 2022071300 A1 WO2022071300 A1 WO 2022071300A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
conductive
conductive ink
metal
firing
Prior art date
Application number
PCT/JP2021/035589
Other languages
English (en)
French (fr)
Inventor
貢太郎 前田
憲英 下原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202180066283.8A priority Critical patent/CN116234641B/zh
Priority to JP2022553998A priority patent/JPWO2022071300A1/ja
Publication of WO2022071300A1 publication Critical patent/WO2022071300A1/ja
Priority to US18/173,773 priority patent/US20230212413A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • B05D1/38Successively applying liquids or other fluent materials, e.g. without intermediate treatment with intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/0047Digital printing on surfaces other than ordinary paper by ink-jet printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1208Pretreatment of the circuit board, e.g. modifying wetting properties; Patterning by using affinity patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods

Definitions

  • the present disclosure relates to a conductive laminate and a method for manufacturing the conductive laminate.
  • a conductive laminate in which a conductive film is provided on a base material is used as an electronic material for manufacturing various electronic devices.
  • Japanese Patent Application Laid-Open No. 2010-183082 describes a base material and an organometallic complex provided on the base material and providing a conductive channel between the conductive inorganic metal particles and at least a part of the conductive inorganic metal particles. Substrates including with conductive patterns including are described.
  • both low surface resistivity and thermal cycle stability may be required.
  • the present disclosure has been made in view of such circumstances, and according to one embodiment of the present invention, a conductive laminate having a low surface resistivity and excellent thermal cycle stability, and a conductive laminate.
  • a manufacturing method is provided.
  • the disclosure includes the following aspects: ⁇ 1> A substrate and a conductive ink film provided on the substrate are provided, and in the conductive ink film, the surface on the side close to the substrate is the first main surface, and the surface on the side far from the substrate is the surface.
  • the first porosity in the region from the first main surface to the second main surface at a thickness of 50% is 15% to 50%, and from the second main surface.
  • a conductive laminate in which the second porosity in the region from the 10% thickness position toward the first main surface to the second main surface is smaller than the first porosity.
  • ⁇ 3> The conductive laminate according to ⁇ 1> or ⁇ 2>, wherein the second porosity is 20% or less.
  • ⁇ 4> The conductive laminate according to any one of ⁇ 1> to ⁇ 3>, wherein the conductive ink film contains at least one selected from the group consisting of silver, gold, platinum, nickel, palladium and copper. body.
  • ⁇ 5> The conductive laminate according to any one of ⁇ 1> to ⁇ 4>, wherein the conductive ink film has a thickness of 0.5 ⁇ m to 30 ⁇ m.
  • ⁇ 6> A step of applying the first conductive ink containing metal particles to the base material, a step of firing the first conductive ink, and a step of firing the first conductive ink, and a metal salt or a metal complex on the first conductive ink after firing.
  • the method for producing a conductive laminate according to any one of ⁇ 1> to ⁇ 6> which comprises a step of applying a second conductive ink containing the ink and a step of firing the second conductive ink.
  • ⁇ 7> The method for producing a conductive laminate according to ⁇ 6>, which is a particle containing at least one selected from the group consisting of metal particles, silver, gold, platinum, nickel, palladium and copper.
  • ⁇ 8> The method for producing a conductive laminate according to ⁇ 6> or ⁇ 7>, wherein the metal particles have an average particle size of 10 nm to 200 nm.
  • ⁇ 9> The production of the conductive laminate according to any one of ⁇ 6> to ⁇ 8>, wherein the content of the metal particles is 10% by mass to 90% by mass with respect to the total amount of the first conductive ink.
  • Method. ⁇ 10> The invention according to any one of ⁇ 6> to ⁇ 9>, wherein the metal salt and the metal complex each contain at least one selected from the group consisting of silver, gold, platinum, nickel, palladium and copper.
  • the metal complex is a metal complex having a structure derived from at least one selected from the group consisting of an ammonium carbamate compound, an ammonium carbonate compound, an alkylamine, and a carboxylic acid having 8 to 20 carbon atoms.
  • the first conductive ink is applied using the inkjet recording method
  • the second conductive ink is applied using the inkjet recording method.
  • the temperature of the base material when applying the first conductive ink is 20 ° C to 120 ° C, any one of ⁇ 6> to ⁇ 13>.
  • ⁇ 15> Described in any one of ⁇ 6> to ⁇ 14>, wherein in the step of firing the first conductive ink, the firing temperature is 250 ° C. or lower and the firing time is 1 minute to 120 minutes.
  • Method for manufacturing a conductive laminate In the step of applying the second conductive ink, the temperature of the base material when applying the second conductive ink is 20 ° C to 120 ° C, any one of ⁇ 6> to ⁇ 15>.
  • the method for manufacturing a conductive laminate according to the above. ⁇ 17> The step according to any one of 67> to ⁇ 16>, wherein in the step of firing the second conductive ink, the firing temperature is 250 ° C. or lower and the firing time is 1 minute to 120 minutes.
  • a method for manufacturing a conductive laminate ⁇ 18> Any of ⁇ 6> to ⁇ 17>, the time from the time when the step of applying the first conductive ink to the time of starting the step of firing the first conductive ink is 60 seconds or less.
  • the method for manufacturing a conductive laminate according to one.
  • a conductive laminate having a low surface resistivity and excellent thermal cycle stability, and a method for manufacturing the conductive laminate are provided.
  • the numerical range indicated by using "-" in the present specification means a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. Means. In the present specification, a combination of two or more preferred embodiments is a more preferred embodiment.
  • the term "process" is included in this term as long as the intended purpose of the process is achieved, not only in an independent process but also in cases where it cannot be clearly distinguished from other processes. Is done.
  • image means the whole film
  • image recording means the formation of an image (that is, a film).
  • image in the present specification also includes a solid image.
  • thermal cycle stability refers to the property that the surface resistivity changes little when the conductive laminate is repeatedly heated and cooled.
  • the conductive laminate of the present disclosure includes a base material and a conductive ink film provided on the base material, and the surface of the conductive ink film on the side close to the base material is from the first main surface and the base material.
  • the surface on the far side is the second main surface
  • the first porosity in the region from the first main surface to the 50% thick position toward the second main surface is 15% to 50%
  • the second porosity in the region from the 10% thickness position from the second main surface to the first main surface to the second main surface is smaller than the first porosity.
  • the present inventors pay attention to the porosity in a specific region of the conductive ink film, and when the first porosity is 15% to 50% and the second porosity is smaller than the first porosity. , It has been found that both low surface resistance and high thermal cycle stability can be achieved.
  • the first porosity of the conductive ink film is 15% or more, even if the conductive laminate has a volume change such as expansion or contraction due to heat, it may be peeled off, cracked, or the like. Excellent thermal cycle stability without defects. Further, in the conductive laminate of the present disclosure, since the first porosity of the conductive ink film is 50% or less, the surface resistivity is lowered.
  • the second porosity of the conductive ink film is smaller than the first porosity. That is, since the vicinity of the surface of the conductive ink film is dense, the surface resistivity is lowered.
  • Patent Document 1 does not pay attention to the porosity of the conductive ink film. Further, when the conductive laminate is produced by the method disclosed in Patent Document 1, the porosity becomes almost constant in the entire conductive ink film, and both low surface resistivity and high thermal cycle stability can be achieved at the same time. I can't expect it.
  • the conductive laminate of the present disclosure comprises a substrate.
  • the material of the base material is not particularly limited and can be selected according to the purpose. Specifically, as the material of the base material, polyimide, polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polycarbonate, polyurethane, polyethylene, polypropylene, polyvinyl chloride, polystyrene, poly Vinyl acetate, acrylic resin, AS resin (acrylonitrile styrene resin), ABS resin (acrylonitrile-butadiene-styrene copolymer), triacetyl cellulose, polyamide, polyacetal, polyphenylensulfide, polysulfone, epoxy resin, glass epoxy resin, melamine resin , Phenolic resin, urea resin, alkyd resin, fluororesin, polylactic acid, etc .; inorganic materials such as copper, steel, aluminum, silicon, soda glass, non-alkali glass
  • the form of the base material is preferably sheet-like or film-like.
  • the thickness of the base material is preferably 20 ⁇ m to 2000 ⁇ m. When the thickness of the base material is 20 ⁇ m or more, the conductive ink film can be stably held, and the handleability of the laminate on which the conductive ink film is formed becomes good.
  • the base material may have an ink receiving layer, and the thickness of the ink receiving layer is preferably 1 ⁇ m to 20 ⁇ m.
  • the ink receiving layer can be held more stably, the homogeneity of the wet spread of the conductive ink is improved, and the quality of the conductive ink film is improved. improves.
  • the ink receiving layer is a coating layer formed on a substrate for absorbing ink and fixing the ink.
  • the base material is preferably a glass base material or a plastic base material from the viewpoint of insulation and adhesion.
  • the conductive ink film is provided on the base material. Although another layer may be provided between the conductive ink film and the base material, it is preferable that the conductive ink film is provided directly on the base material.
  • conductivity means a property having a surface resistivity of 1 ⁇ 10 4 ⁇ / ⁇ or less.
  • the conductive ink film is a conductive ink film from the first main surface to the second main surface when the surface closer to the substrate is the first main surface and the surface far from the substrate is the second main surface.
  • the first porosity in the region up to the 50% thickness position is 15% to 50%, and the second from the 10% thickness position from the second main surface to the first main surface.
  • the second porosity in the region up to the main surface is smaller than the first porosity.
  • the conductive ink film has a first porosity of 15% to 50% in the base material side 50% region in the thickness direction when the region is divided in the thickness direction, and is in the thickness direction.
  • the second porosity in the non-base material side 10% region is smaller than the first porosity.
  • the first porosity is 15% or more, even if the conductive laminate has a volume change such as expansion or contraction due to heat, defects such as peeling and cracking do not occur, and the thermal cycle stability is excellent.
  • the first porosity is 50% or less, the surface resistivity decreases.
  • the fact that the second porosity is smaller than the first porosity means that the non-base material side 10% region is denser than the base material side 50% region in the conductive ink film. When the non-base material side 10% region is dense, the surface resistivity decreases.
  • the first porosity is preferably 30% to 40%.
  • the second porosity is preferably 20% or less, more preferably 10% or less, and further preferably 7% or less.
  • the lower limit of the second porosity is not particularly limited, and is, for example, 0%.
  • the difference between the first porosity and the second porosity is not particularly limited, but is preferably 5% to 40%, preferably 20% to 30%, from the viewpoint of achieving both low surface resistivity and thermal cycle stability. Is more preferable.
  • the void ratio in the conductive ink film can be controlled by the type of the conductive ink for forming the conductive ink film and the firing conditions after applying the conductive ink. For example, when an ink containing metal particles is used as the conductive ink, it is easy to form voids in the conductive ink film. When an ink containing metal particles is used, the porosity decreases when the firing temperature is increased. Moreover, when the firing time is lengthened, the porosity becomes low.
  • the porosity is measured by, for example, the following method.
  • the conductive laminate is cut in the thickness direction of the conductive laminate using a microtome (product name RM2255, manufactured by Leica) to obtain a cross section.
  • a cross-section observation photograph is obtained from the obtained cross-section using a scanning electron microscope (product name S-4700, manufactured by Hitachi, Ltd.).
  • the obtained cross-sectional observation photograph was subjected to adjusting the threshold value with image software (“Adobe Photoshop” manufactured by Adobe Systems, Inc.) to form a white region in which a conductive substance is present and a black region in which voids are present. Binarize.
  • the upper side is the average position of the convex portions of the upper 5 points and the concave portions of the lower 5 points on the surface side of the ink film of the obtained image.
  • the position obtained by the same calculation is set as the base.
  • the area between the top side and the bottom side is divided into 10 equal parts, and the region from the bottom side to the 5th equal division is defined as the base material side 50% region, and the region from the 9th equal division to the upper side from the base material side is defined as the non-base material side 10% region.
  • the first porosity is calculated as the ratio of the area of the black region (void) to the area of the entire region in the 50% region on the substrate side in the cross-sectional observation photograph.
  • the second porosity is calculated as the ratio of the area of the black region (void) to the area of the entire region in the non-base material side 10% region in the cross-sectional observation photograph.
  • the conductive ink film preferably contains a conductive substance, and the conductive substance is preferably a metal.
  • the metal include base metals and precious metals.
  • Base metals include, for example, nickel, titanium, cobalt, copper, chromium, manganese, iron, zirconium, tin, tungsten, molybdenum, and vanadium.
  • Precious metals include, for example, gold, silver, platinum, palladium, iridium, osmium, ruthenium, rhodium, renium and alloys containing these metals.
  • the conductive ink film preferably contains at least one selected from the group consisting of silver, gold, platinum, nickel, palladium and copper, and more preferably contains silver.
  • the metal content in the conductive ink film is preferably 5% by mass to 70% by mass, more preferably 7% by mass to 50% by mass, based on the total amount of the conductive ink film.
  • the thickness of the conductive ink film is not particularly limited, but from the viewpoint of productivity and conductivity, it is preferably 0.5 ⁇ m to 30 ⁇ m, and more preferably 5 ⁇ m to 20 ⁇ m.
  • the method for producing the conductive laminate of the present disclosure is not particularly limited as long as the conductive ink film can be formed on the substrate.
  • the conductive ink film can be formed, for example, by applying the conductive ink on the base material and then firing the conductive ink applied on the base material.
  • the conductive ink film may be formed by repeating the application of the conductive ink and the firing a plurality of times.
  • the conductive ink is an ink containing metal particles (hereinafter, also referred to as “metal particle ink”), an ink containing a metal complex (hereinafter, also referred to as “metal complex ink”), or an ink containing a metal salt (hereinafter, "" It is also preferably a metal salt ink), and more preferably a metal particle ink or a metal complex ink.
  • the metal particle ink is, for example, an ink composition in which metal particles are dispersed in a dispersion medium.
  • Metal particles examples include particles of a base metal and a noble metal.
  • Base metals include, for example, nickel, titanium, cobalt, copper, chromium, manganese, iron, zirconium, tin, tungsten, molybdenum, and vanadium.
  • Precious metals include, for example, gold, silver, platinum, palladium, iridium, osmium, ruthenium, rhodium, renium and alloys containing these metals.
  • the metal constituting the metal particles preferably contains at least one selected from the group consisting of silver, gold, platinum, nickel, palladium and copper, and more preferably contains silver. ..
  • the average particle size of the metal particles is not particularly limited, but is preferably 10 nm to 500 nm, and more preferably 10 nm to 200 nm.
  • the average particle size is in the above range, the firing temperature of the metal particles is lowered, and the process suitability for producing the conductive ink film is enhanced.
  • the ejection property tends to be improved, the pattern forming property, and the uniformity of the film thickness of the conductive ink film tend to be improved.
  • the average particle size referred to here means an average value (average primary particle size) of the primary particle size of the metal particles.
  • the 50% volume cumulative diameter (D50) is measured three times using a laser diffraction / scattering type particle size distribution measuring device (product name "LA-960", manufactured by HORIBA, Ltd.). It is calculated as the average value of the values measured three times.
  • the metal particle ink may contain metal particles having an average particle size of 500 nm or more, if necessary.
  • the conductive ink film can be bonded by lowering the melting point of the nm-sized metal particles around the ⁇ m-sized metal particles.
  • the content of the metal particles in the metal particle ink is preferably 10% by mass to 90% by mass, more preferably 20% by mass to 50% by mass, based on the total amount of the metal particle ink.
  • the content of the metal particles is 10% by mass or more, the surface resistivity is further lowered.
  • the content of the metal particles is 90% by mass or less, the ejection property is improved when the metal particle ink is applied by a spray method or an inkjet recording method.
  • the metal particle ink may contain, for example, a dispersant, a resin, a dispersion medium, a thickener, and a surface tension adjusting agent.
  • the metal particle ink may contain a dispersant that adheres to at least a part of the surface of the metal particles.
  • the dispersant together with the metal particles, substantially constitutes the metal colloidal particles.
  • the dispersant has the effect of coating the metal particles to improve the dispersibility of the metal particles and prevent aggregation.
  • the dispersant is preferably an organic compound capable of forming metal colloidal particles.
  • the dispersant is preferably an amine compound, a carboxylic acid, an alcohol, or a resin dispersant from the viewpoint of conductivity and dispersion stability.
  • the dispersant contained in the metal particle ink may be one kind or two or more kinds.
  • the amine compound examples include saturated or unsaturated aliphatic amines. Above all, the amine compound is preferably an aliphatic amine having 4 to 8 carbon atoms. The aliphatic amine having 4 to 8 carbon atoms may be linear or branched, and may have a ring structure.
  • aliphatic amine examples include butylamine, normalpentylamine, isopentylamine, hexylamine, 2-ethylhexylamine, and octylamine.
  • Examples of the amine having an alicyclic structure include cycloalkylamines such as cyclopentylamine and cyclohexylamine.
  • Aniline is mentioned as an aromatic amine.
  • the amine compound may have a functional group other than the amino group.
  • the functional group other than the amino group include a hydroxy group, a carboxy group, an alkoxy group, a carbonyl group, an ester group, and a mercapto group.
  • carboxylic acid examples include formic acid, oxalic acid, acetic acid, caproic acid, acrylic acid, octyl acid, and oleic acid.
  • the carboxy group, which is part of the carboxylic acid, may form a salt with a metal ion.
  • the metal ions forming the salt may be one kind or two or more kinds.
  • the carboxylic acid may have a functional group other than the carboxy group.
  • the functional group other than the carboxy group include an amino group, a hydroxy group, an alkoxy group, a carbonyl group, an ester group, and a mercapto group.
  • Alcohol examples include terpene alcohol, allyl alcohol, oleyl alcohol, thiancic acid, ricinoleic acid, gallic acid, and salicylic acid. Alcohol easily coordinates with the surface of the metal particles and can suppress the aggregation of the metal particles.
  • the resin dispersant examples include a dispersant having a nonionic group as a hydrophilic group and being uniformly soluble in a solvent.
  • the resin dispersant examples include polyvinylpyrrolidone, polyethylene glycol, polyethylene glycol-polypropylene glycol copolymer, polyvinyl alcohol, polyallylamine, and polyvinyl alcohol-polyvinyl acetate copolymer.
  • the molecular weight of the resin dispersant is preferably 1000 to 50,000, and more preferably 1000 to 30,000 by weight average molecular weight.
  • the content of the dispersant in the metal particle ink is preferably 0.5% by mass to 50% by mass, more preferably 1% by mass to 30% by mass, based on the total amount of the metal particle ink. ..
  • the metal particle ink preferably contains a dispersion medium.
  • the type of the dispersion medium is not particularly limited, and examples thereof include hydrocarbons, alcohols, and water.
  • the dispersion medium contained in the metal particle ink may be one kind or two or more kinds.
  • the dispersion medium contained in the metal particle ink is preferably volatile.
  • the boiling point of the dispersion medium is preferably 50 ° C. to 250 ° C., more preferably 70 ° C. to 220 ° C., and even more preferably 80 ° C. to 200 ° C. When the boiling point of the dispersion medium is 50 ° C. to 250 ° C., the stability and calcinability of the metal particle ink tend to be compatible.
  • hydrocarbons examples include aliphatic hydrocarbons and aromatic hydrocarbons.
  • aliphatic hydrocarbon examples include saturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, and isoparaffin, or unsaturated hydrocarbons.
  • saturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, and isoparaffin, or unsaturated hydrocarbons.
  • saturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethyln
  • aromatic hydrocarbons examples include toluene and xylene.
  • the dispersant is preferably an amine compound or a carboxylic acid.
  • fatty alcohols examples include heptanol, octanol (eg, 1-octanol, 2-octanol, 3-octanol, etc.), decanol (eg, 1-decanol, etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, 2-.
  • fatty alcohols having 6 to 20 carbon atoms which may contain an ether bond in a saturated or unsaturated chain such as ethyl-1-hexanol, octadecyl alcohol, hexadecenol and oleyl alcohol.
  • Alicyclic alcohols include, for example, cycloalkanols such as cyclohexanol; terpineols (including ⁇ , ⁇ , ⁇ isomers, or any mixture thereof), terpene alcohols such as dihydroterpineols; dihydroterpineols, myltenol, etc.
  • cycloalkanols such as cyclohexanol
  • terpineols including ⁇ , ⁇ , ⁇ isomers, or any mixture thereof
  • terpene alcohols such as dihydroterpineols; dihydroterpineols, myltenol, etc.
  • sobrerol, menthol carbeol, perylyl alcohol, pinocarbeol, sobrerol, and berbenol.
  • the dispersion medium may be water. From the viewpoint of adjusting physical properties such as viscosity, surface tension, and volatility, the dispersion medium may be a mixed solvent of water and another solvent.
  • the other solvent to be mixed with water is preferably alcohol.
  • the alcohol used in combination with water is preferably an alcohol having a boiling point of 130 ° C. or lower that is miscible with water. Examples of the alcohol include 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, 1-pentanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, and propylene. Glycol monomethyl ether can be mentioned.
  • the content of the dispersion medium in the metal particle ink is preferably 1% by mass to 50% by mass with respect to the total amount of the metal particle ink.
  • the content of the dispersion medium is more preferably 10% by mass to 45% by mass, further preferably 20% by mass to 40% by mass.
  • the metal particle ink may contain a resin.
  • the resin include polyester, polyurethane, melamine resin, acrylic resin, styrene resin, polyether resin, and terpene resin.
  • the resin contained in the metal particle ink may be one kind or two or more kinds.
  • the content of the resin in the metal particle ink is preferably 0.1% by mass to 5% by mass with respect to the total amount of the metal particle ink.
  • the metal particle ink may contain a thickener.
  • the thickener include clay minerals such as clay, bentonite and hectorite; cellulose derivatives such as methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose and hydroxypropyl methyl cellulose; and polysaccharides such as xanthan gum and guar gum. Be done.
  • the thickener contained in the metal particle ink may be one kind or two or more kinds.
  • the content of the thickener in the metal particle ink is preferably 0.1% by mass to 5% by mass with respect to the total amount of the metal particle ink.
  • the metal particle ink may contain a surfactant.
  • a uniform conductive ink film is likely to be formed.
  • the surfactant may be any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant.
  • the surfactant is preferably a fluorine-based surfactant from the viewpoint that the surface tension can be adjusted with a small amount of content.
  • the surfactant is preferably a compound having a boiling point of more than 250 ° C.
  • the viscosity of the metal particle ink is not particularly limited, and may be 0.01 Pa ⁇ s to 5000 Pa ⁇ s, preferably 0.1 Pa ⁇ s to 100 Pa ⁇ s.
  • the viscosity of the metal particle ink is preferably 1 mPa ⁇ s to 100 mPa ⁇ s, and preferably 2 mPa ⁇ s to 50 mPa ⁇ s. More preferably, it is 3 mPa ⁇ s to 30 mPa ⁇ s.
  • the viscosity of the metal particle ink is a value measured at 25 ° C. using a viscometer.
  • the viscosity is measured, for example, using a VISCOMETER TV-22 type viscometer (manufactured by Toki Sangyo Co., Ltd.).
  • the surface tension of the metal particle ink is not particularly limited, and is preferably 20 mN / m to 45 mN / m, more preferably 25 mN / m to 40 mN / m.
  • the surface tension is a value measured at 25 ° C. using a surface tension meter.
  • the surface tension is measured using, for example, DY-700 (manufactured by Kyowa Interface Science Co., Ltd.).
  • the metal particles may be commercially available products or may be produced by a known method.
  • Examples of the method for producing metal particles include a wet reduction method, a gas phase method, and a plasma method.
  • a preferred method for producing the metal particles includes a wet reduction method capable of producing metal particles having an average particle size of 200 nm or less so that the particle size distribution is narrowed.
  • the method for producing metal particles by the wet reduction method includes, for example, a step of mixing the metal salt and the reducing agent described in JP-A-2017-37761 and WO2014-57633 to obtain a complexing reaction solution.
  • a method including a step of heating a complexing reaction solution to reduce metal ions in the complexing reaction solution to obtain a slurry of metal nanoparticles can be mentioned.
  • heat treatment may be performed in order to adjust the content of each component contained in the metal particle ink within a predetermined range.
  • the heat treatment may be performed under reduced pressure or under normal pressure.
  • when it is carried out under normal pressure it may be carried out in the atmosphere or in an inert gas atmosphere.
  • the metal complex ink is, for example, an ink composition in which a metal complex is dissolved in a solvent.
  • the metal constituting the metal complex examples include silver, copper, gold, aluminum, magnesium, tungsten, molybdenum, zinc, nickel, iron, platinum, tin, copper, and lead.
  • the metal constituting the metal complex preferably contains at least one selected from the group consisting of silver, gold, platinum, nickel, palladium and copper, and more preferably contains silver. ..
  • the content of the metal contained in the metal complex ink is preferably 1% by mass to 40% by mass, and more preferably 5% by mass to 30% by mass, in terms of metal elements, with respect to the total amount of the metal complex ink. It is preferably 7% by mass to 20% by mass, more preferably 7% by mass.
  • the metal complex is obtained, for example, by reacting a metal salt with a complexing agent.
  • the method for producing a metal complex include a method in which a metal salt and a complexing agent are added to an organic solvent and stirred for a predetermined time.
  • the stirring method is not particularly limited, and can be appropriately selected from known methods such as a method of stirring using a stirrer, a stirring blade or a mixer, and a method of applying ultrasonic waves.
  • Metal salts include metal oxides, thiocitrates, sulfides, chlorides, cyanides, cyanates, carbonates, acetates, nitrates, nitrites, sulfates, phosphates, perchlorates, Included are tetrafluoroborates, acetylacetonate complex salts, and carboxylates.
  • the complexing agent examples include amine compounds, ammonium carbamate compounds, ammonium carbonate compounds, ammonium biocarbonate compounds, and carboxylic acids.
  • the complexing agent is selected from at least a group consisting of an ammonium carbamate compound, an ammonium carbonate compound, an alkylamine, and a carboxylic acid having 8 to 20 carbon atoms. It is preferable to include one kind.
  • the metal complex has a structure derived from a complexing agent, and is at least one selected from the group consisting of an ammonium carbamate compound, an ammonium carbonate compound, an alkylamine, and a carboxylic acid having 8 to 20 carbon atoms. It is preferably a metal complex having a structure derived from.
  • Examples of the amine compound as a complexing agent include ammonia, primary amines, secondary amines, tertiary amines, and polyamines.
  • Examples of the primary amine having a linear alkyl group include methylamine, ethylamine, 1-propylamine, n-butylamine, n-pentylamine, n-hexylamine, heptylamine, octylamine, nonylamine and n.
  • Examples of the primary amine having a branched alkyl group include isopropylamine, sec-butylamine, tert-butylamine, isopentylamine, 2-ethylhexylamine, and tert-octylamine.
  • Examples of the primary amine having an alicyclic structure include cyclohexylamine and dicyclohexylamine.
  • Primary amines having a hydroxyalkyl group include, for example, ethanolamine, diethanolamine, triethanolamine, N-methylethanolamine, propanolamine, isopropanolamine, dipropanolamine, diisopropanolamine, tripropanolamine, and triisopropanol. Amine can be mentioned.
  • Examples of the primary amine having an aromatic ring include benzylamine, N, N-dimethylbenzylamine, phenylamine, diphenylamine, triphenylamine, aniline, N, N-dimethylaniline, N, N-dimethyl-p-.
  • Examples include triidine, 4-aminopyridine, and 4-dimethylaminopyridine.
  • Examples of the secondary amine include dimethylamine, diethylamine, dipropylamine, dibutylamine, diphenylamine, dicyclopentylamine, and methylbutylamine.
  • tertiary amine examples include trimethylamine, triethylamine, tripropylamine, and triphenylamine.
  • polyamines examples include ethylenediamine, 1,3-diaminopropane, diethylenetriamine, triethylenetetramine, tetramethylenepentamine, hexamethylenediamine, tetraethylenepentamine, and combinations thereof.
  • the amine compound is preferably an alkylamine, preferably an alkylamine having 3 to 10 carbon atoms, and more preferably a primary alkylamine having 4 to 10 carbon atoms.
  • the amine compound constituting the metal complex may be one kind or two or more kinds.
  • the ratio of the molar amount of the amine compound to the molar amount of the metal salt is preferably 1 to 15 times, more preferably 1.5 to 6 times. .. When the above ratio is within the above range, the complex formation reaction is completed and a transparent solution is obtained.
  • ammonium carbamate compound that is a complexing agent examples include ammonium carbamate, methylammonium methyl carbamate, ethyl ammonium ethyl carbamate, 1-propylammonium 1-propyl carbamate, isopropylammonium isopropyl carbamate, butylammonium butyl carbamate, isobutylammonium isobutyl carbamate, and amyl.
  • Examples thereof include ammonium amylcarbamate, hexylammonium hexylcarbamate, heptylammonium heptylcarbamate, octylammonium octylcarbamate, 2-ethylhexylammonium 2-ethylhexylcarbamate, nonylammonyl nonylcarbamate, and decylammonium decylcarbamate.
  • Ammonium carbonate compounds that are complexing agents include ammonium carbonate, methylammonium carbonate, ethylammonium carbonate, 1-propylammonium carbonate, isopropylammonium carbonate, butylammonium carbonate, isobutylammonium carbonate, amylammonium carbonate, hexylammonium carbonate, and heptyl.
  • Examples include ammonium carbonate, octyl ammonium carbonate, 2-ethylhexyl ammonium carbonate, nonyl ammonium carbonate, and decyl ammonium carbonate.
  • ammonium bicarbonate-based compound as a complexing agent examples include ammonium carbonate, methylammonium carbonate, ethylammonium carbonate, 1-propylammonium carbonate, isopropylammonium carbonate, butylammonium carbonate, isobutylammonium carbonate, and amyl.
  • Ammonium ammonium bicarbonate, hexyl ammonium biocarbonate, heptyl ammonium biocarbonate, octyl ammonium biocarbonate, 2-ethylhexyl ammonium biocarbonate, nonyl ammonium biocarbonate, and decyl ammonium biocarbonate can be mentioned.
  • the metal salt When the metal salt is reacted with the ammonium carbamate compound, the ammonium carbonate compound, or the ammonium carboxylate compound, the ammonium carbamate compound, the ammonium carbonate compound, or the ammonium carbide compound with respect to the molar amount of the metal salt is used.
  • the molar amount ratio is preferably 0.01 times to 1 time, more preferably 0.05 times to 0.6 times.
  • the carboxylic acid as a complexing agent examples include caproic acid, caprylic acid, pelargonic acid, 2-ethylhexanoic acid, caproic acid, neodecanoic acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid and palmitoleic acid. , Oleic acid, linoleic acid, and linolenic acid.
  • the carboxylic acid is preferably a carboxylic acid having 8 to 20 carbon atoms, and more preferably a carboxylic acid having 10 to 16 carbon atoms.
  • the content of the metal complex in the metal complex ink is preferably 10% by mass to 90% by mass, more preferably 10% by mass to 40% by mass, based on the total amount of the metal complex ink.
  • the content of the metal complex is 10% by mass or more, the surface resistivity is further lowered.
  • the content of the metal complex is 90% by mass or less, the ejection property is improved when the metal particle ink is applied by a spray method or an inkjet recording method.
  • the metal complex ink preferably contains a solvent.
  • the solvent is not particularly limited as long as it can dissolve the components contained in the metal complex ink such as the metal complex. From the viewpoint of ease of production, the solvent preferably has a boiling point of 30 ° C. to 300 ° C., more preferably 50 ° C. to 200 ° C., and even more preferably 50 ° C. to 150 ° C.
  • the content of the solvent in the metal complex ink is such that the concentration of metal ions with respect to the metal complex (the amount of metal present as free ions with respect to 1 g of the metal complex) is 0.01 mmol / g to 3.6 mmol / g. Is preferable, and it is more preferably 0.05 mmol / g to 2 mmol / g.
  • concentration of the metal ion is within the above range, the metal complex ink has excellent fluidity and can obtain conductivity.
  • the solvent examples include hydrocarbons, cyclic hydrocarbons, aromatic hydrocarbons, carbamates, alkenes, amides, ethers, esters, alcohols, thiols, thioethers, phosphines, and water.
  • the solvent contained in the metal complex ink may be only one kind or two or more kinds.
  • the hydrocarbon is preferably a linear or branched hydrocarbon having 6 to 20 carbon atoms.
  • Examples of the hydrocarbon include pentadecane, hexane, heptane, octane, nonan, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane and icosan.
  • the cyclic hydrocarbon is preferably a cyclic hydrocarbon having 6 to 20 carbon atoms.
  • Cyclic hydrocarbons can include, for example, cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclodecane, and decalin.
  • aromatic hydrocarbons examples include benzene, toluene, xylene, and tetralin.
  • the ether may be any of linear ether, branched chain ether, and cyclic ether.
  • Examples of the ether include diethyl ether, dipropyl ether, dibutyl ether, methyl-t-butyl ether, tetrahydrofuran, tetrahydropyran, dihydropyran, and 1,4-dioxane.
  • the alcohol may be any of primary alcohol, secondary alcohol, and tertiary alcohol.
  • alcohols examples include ethanol, 1-propanol, 2-propanol, 1-methoxy-2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3-pentanol and 1-hexanol.
  • ketone examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • ester examples include methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, methoxybutyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, and diethylene glycol.
  • the metal complex ink may contain a reducing agent.
  • the metal complex ink contains a reducing agent, the reduction from the metal complex to the metal is promoted.
  • reducing agent examples include boron hydride metal salt, aluminum hydride salt, amine compound, alcohol, organic acid, reduced sugar, sugar alcohol, sodium sulfite, hydrazine compound, dextrin, hydroquinone, hydroxylamine, ethylene glycol, glutathione, and the like. And oxime compounds.
  • the reducing agent may be an oxime compound described in JP-A-2014-516463.
  • the oxime compound include acetone oxime, cyclohexanone oxime, 2-butanone oxime, 2,3-butandion monooxime, dimethyl glyoxime, methyl acetoacetate mono oxime, methyl pyruvate mono oxime, benzaldehyde oxime, and 1-indanone.
  • Examples thereof include oxime, 2-adamantanone oxime, 2-methylbenzamide oxime, 3-methylbenzamide oxime, 4-methylbenzamide oxime, 3-aminobenzamide oxime, 4-aminobenzamide oxime, acetphenone oxime, benzamide oxime, and pinacolon oxime. ..
  • the reducing agent contained in the metal complex ink may be one kind or two or more kinds.
  • the content of the reducing agent in the metal complex ink is not particularly limited, but is preferably 0.1% by mass to 20% by mass, more preferably 0.3% by mass to 10% by mass, and 1% by mass. It is more preferably to 5% by mass.
  • the metal complex ink may contain a resin.
  • the adhesion of the metal complex ink to the base material is improved.
  • the resin examples include polyester, polyethylene, polypropylene, polyacetal, polyolefin, polycarbonate, polyamide, fluororesin, silicone resin, ethyl cellulose, hydroxyethyl cellulose, rosin, acrylic resin, polyvinyl chloride, polysulfone, polyvinylpyrrolidone, polyvinyl alcohol, and polyvinyl type.
  • resins examples include resins, polyacrylonitriles, polysulfides, polyamideimides, polyethers, polyarylates, polyether ether ketones, polyurethanes, epoxy resins, vinyl ester resins, phenolic resins, melamine resins, and urea resins.
  • the resin contained in the metal complex ink may be one kind or two or more kinds.
  • the metal complex ink is a surface conditioner, a wetting agent, a cross-linking agent, an antioxidant, a rust preventive, and a heat-resistant stable, as long as the effects of the present disclosure are not impaired.
  • Additives such as agents, surfactants, plasticizers, hardeners, thickeners, silane coupling agents and the like may be contained.
  • the total content of the additives in the metal complex ink is preferably 20% by mass or less with respect to the total amount of the metal complex ink.
  • the viscosity of the metal complex ink is not particularly limited, and may be 0.01 Pa ⁇ s to 5000 Pa ⁇ s, preferably 0.1 Pa ⁇ s to 100 Pa ⁇ s.
  • the viscosity of the metal complex ink is preferably 1 mPa ⁇ s to 100 mPa ⁇ s, and preferably 2 mPa ⁇ s to 50 mPa ⁇ s. It is more preferably 3 mPa ⁇ s to 30 mPa ⁇ s.
  • the viscosity of the metal complex ink is a value measured at 25 ° C. using a viscometer.
  • the viscosity is measured, for example, using a VISCOMETER TV-22 type viscometer (manufactured by Toki Sangyo Co., Ltd.).
  • the surface tension of the metal complex ink is not particularly limited, and is preferably 20 mN / m to 45 mN / m, more preferably 25 mN / m to 35 mN / m.
  • the surface tension is a value measured at 25 ° C. using a surface tension meter.
  • the surface tension is measured using, for example, DY-700 (manufactured by Kyowa Interface Science Co., Ltd.).
  • the metal salt ink is, for example, an ink composition in which a metal salt is dissolved in a solvent.
  • the metal constituting the metal salt examples include silver, copper, gold, aluminum, magnesium, tungsten, molybdenum, zinc, nickel, iron, platinum, tin, copper, and lead.
  • the metal constituting the metal salt preferably contains at least one selected from the group consisting of silver, gold, platinum, nickel, palladium and copper, and more preferably contains silver. ..
  • the content of the metal contained in the metal salt ink is preferably 1% by mass to 40% by mass, and more preferably 5% by mass to 30% by mass, in terms of metal elements, with respect to the total amount of the metal salt ink. It is preferably 7% by mass to 20% by mass, more preferably 7% by mass.
  • the content of the metal salt in the metal salt ink is preferably 10% by mass to 90% by mass, more preferably 10% by mass to 40% by mass, based on the total amount of the metal salt ink.
  • the content of the metal salt is 10% by mass or more, the surface resistivity is further lowered.
  • the content of the metal salt is 90% by mass or less, the ejection property is improved when the metal particle ink is applied by a spray method or an inkjet recording method.
  • metal salt examples include benzoate of metal, halide, carbonate, citrate, iodate, nitrite, nitrate, acetate, phosphate, sulfate, sulfide, trifluoroacetate, and the like. And carboxylates. Two or more kinds of salts may be combined.
  • the metal salt is preferably a metal carboxylate from the viewpoint of conductivity and storage stability.
  • the carboxylic acid forming the carboxylic acid salt is preferably at least one selected from the group consisting of formic acid and carboxylic acids having 1 to 30 carbon atoms, and more preferably carboxylic acids having 8 to 20 carbon atoms. , A fatty acid having 8 to 20 carbon atoms is more preferable.
  • the fatty acid may be linear, may be branched, or may have a substituent.
  • linear fatty acids examples include acetic acid, propionic acid, butyric acid, valeric acid, pentanic acid, hexanoic acid, heptanic acid, behenic acid, oleic acid, octanoic acid, nonanoic acid, decanoic acid, caproic acid, enanthic acid, and caprylic acid. , Perargonic acid, caproic acid, and undecanoic acid.
  • branched fatty acid examples include isobutyric acid, isovaleric acid, ethylhexanoic acid, neodecanoic acid, pivalic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2,2-dimethylbutanoic acid, and the like. Included are 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, and 2-ethylbutanoic acid.
  • carboxylic acid having a substituent examples include hexafluoroacetylacetone acid, hydroangelica acid, 3-hydroxybutyric acid, 2-methyl-3-hydroxybutyric acid, 3-methoxybutyric acid, acetonedicarboxylic acid, 3-hydroxyglutaric acid, 2 -Methyl-3-hydroxyglutaric acid and 2,2,4,4-hydroxyglutaric acid can be mentioned.
  • the metal salt may be a commercially available product or may be manufactured by a known method.
  • the silver salt is produced, for example, by the following method.
  • a silver compound for example, silver acetate
  • an organic solvent such as ethanol
  • the mixture is stirred using an ultrasonic stirrer for a predetermined time, and the generated precipitate is washed with ethanol and decanted. All of these steps can be performed at room temperature.
  • the mixing ratio of the silver compound to formic acid or a fatty acid having 1 to 30 carbon atoms is preferably 1: 2 to 2: 1 in terms of molar ratio, and more preferably 1: 1.
  • the metal salt ink may contain a solvent, a reducing agent, a resin, and an additive.
  • Preferred embodiments of the solvent, reducing agent, resin, and additive are the same as the solvent, reducing agent, resin, and additive that may be contained in the metal complex ink.
  • the viscosity of the metal salt ink is not particularly limited, and may be 0.01 Pa ⁇ s to 5000 Pa ⁇ s, preferably 0.1 Pa ⁇ s to 100 Pa ⁇ s.
  • the viscosity of the metal salt ink is preferably 1 mPa ⁇ s to 100 mPa ⁇ s, and preferably 2 mPa ⁇ s to 50 mPa ⁇ s. It is more preferably 3 mPa ⁇ s to 30 mPa ⁇ s.
  • the viscosity of the metal salt ink is a value measured at 25 ° C using a viscometer.
  • the viscosity is measured, for example, using a VISCOMETER TV-22 type viscometer (manufactured by Toki Sangyo Co., Ltd.).
  • the surface tension of the metal salt ink is not particularly limited, and is preferably 20 mN / m to 45 mN / m, more preferably 25 mN / m to 35 mN / m.
  • the surface tension is a value measured at 25 ° C. using a surface tension meter.
  • the surface tension is measured using, for example, DY-700 (manufactured by Kyowa Interface Science Co., Ltd.).
  • Preferred embodiments of the method for producing a conductive laminate of the present disclosure include the following embodiments.
  • a method of applying a metal particle ink, a firing step, a step of applying a metal complex ink, and a firing step in this order (2) A step of applying the metal particle ink, a firing step, and a metal particle ink are applied. (3) A step of applying the metal complex ink, a firing step, a step of applying the metal complex ink, and a method of performing the firing step in this order (4) A method of applying, firing, metal complex ink, firing, metal complex ink, and firing in this order (5) Metal particle ink applying, firing, metal A method of applying a complex ink, a firing step, a metal complex ink applying step, a firing step, a metal complex ink applying step, and a firing step in this order (6) Metal particle ink applying step, firing A method of performing a step, a step of applying metal particle ink, a firing step, a step of applying metal particle ink, a firing step, a step of applying metal complex ink, and a firing step in this order.
  • the metal particle ink used in each step when the steps of applying the metal particle ink are included twice or more, the metal particle ink used in each step may be the same or different. Further, in the above manufacturing method, when the steps of applying the metal complex ink are included twice or more, the metal complex ink used in each step may be the same or different.
  • the fact that the two inks are the same means that the types and contents of the components contained in the inks are the same, and that the two inks are different means that the types and contents of the components contained in the inks are the same. It means that at least one is different from each other.
  • the firing temperature and firing time in each firing step may be the same or different.
  • a step of applying a first conductive ink containing metal particles (hereinafter referred to as “first applying step”) and a first conductive ink are applied onto a base material.
  • a step of firing (hereinafter referred to as “first firing step”) and a step of applying a second conductive ink containing a metal salt or a metal complex onto the first conductive ink after firing (hereinafter referred to as “second addition”). It is preferable to include a step (referred to as “step”) and a step of firing the second conductive ink (hereinafter referred to as “second firing step”).
  • the first applying step is a step of applying the first conductive ink containing metal particles onto the base material.
  • the details of the base material are as described above.
  • the method of applying the first conductive ink on the substrate is not particularly limited, and examples thereof include known methods such as a coating method, an inkjet recording method, and a dipping method. Above all, from the viewpoint that a small amount can be dropped to reduce the thickness of the conductive ink film, it is preferable to apply the first conductive ink by using an inkjet recording method in the first application step.
  • the inkjet recording method is a charge control method that uses electrostatic attraction to eject ink, a drop-on-demand method that uses the vibration pressure of a piezo element (pressure pulse method), and an electric signal that is converted into an acoustic beam to irradiate the ink. It may be either an acoustic inkjet method in which ink is ejected by using radiation pressure, or a thermal inkjet (bubble jet (registered trademark)) method in which ink is heated to form bubbles and the generated pressure is used. ..
  • the ink subjected to the action of heat energy causes a rapid volume change, and the ink is ejected from the nozzle by the acting force due to this state change.
  • the inkjet recording method for ejecting can be effectively used.
  • the inkjet head used in the inkjet recording method a short serial head is used, and a shuttle method in which recording is performed while scanning the head in the width direction of the base material and a recording element are arranged corresponding to the entire area of one side of the base material.
  • a line method using a line head that has been used can be mentioned.
  • a pattern can be formed on the entire surface of the base material by scanning the base material in a direction intersecting the arrangement direction of the recording elements, and a transport system such as a carriage that scans a short head becomes unnecessary.
  • the movement of the carriage and the complicated scanning control with the base material are not required, and only the base material moves, so that the formation speed can be increased as compared with the shuttle method.
  • the amount of the first conductive ink ejected from the inkjet head is preferably 1 pL (picolitre) to 100 pL, more preferably 3 pL to 80 pL, and even more preferably 3 pL to 20 pL.
  • the temperature of the base material when applying the first conductive ink is preferably 20 ° C to 120 ° C, more preferably 40 ° C to 80 ° C.
  • the temperature of the base material is 20 ° C to 120 ° C, the influence of deformation of the base material due to heat is small and the drying of the ink is promoted.
  • the first firing step is a step of firing the first conductive ink.
  • the firing temperature is preferably 250 ° C. or lower, and the firing time is preferably 1 minute to 120 minutes.
  • the firing temperature is more preferably 50 ° C to 200 ° C, and even more preferably 60 ° C to 120 ° C. Further, the firing time is more preferably 1 minute to 40 minutes. When the firing temperature and the firing time are within the above ranges, the influence of deformation of the base material due to heat is small, and the ink can be fired.
  • the porosity of the conductive ink film can be adjusted by the firing temperature and firing time. For example, when the firing temperature is high, the porosity tends to be low.
  • the firing method is not particularly limited, and can be usually performed by a known method.
  • the time from the time when the second applying step is completed to the time when the second firing step is started is preferably 60 seconds or less.
  • the lower limit of the time is not particularly limited, but is, for example, 1 microsecond.
  • time point at which the second application step is completed means the time point at which all the ink droplets of the second conductive ink land on the base material.
  • time point at which the second firing step is started refers to the time point at which the base material is placed in the apparatus for the firing step and heating is started.
  • the second applying step is a step of applying the second conductive ink containing the metal complex onto the first conductive ink after firing.
  • the method of applying the second conductive ink onto the first conductive ink after firing is not particularly limited, and examples thereof include known methods such as a coating method, an inkjet recording method, and a dipping method. Above all, from the viewpoint that a small amount can be dropped to reduce the thickness of the conductive ink film, it is preferable to apply the second conductive ink by using an inkjet recording method in the second application step.
  • the details of the inkjet recording method are as described above.
  • the temperature of the base material when applying the second conductive ink is preferably 20 ° C to 120 ° C, more preferably 40 ° C to 80 ° C.
  • the second firing step is a step of firing the second conductive ink.
  • the firing temperature is preferably 250 ° C. or lower, and the firing time is preferably 1 minute to 120 minutes.
  • the firing temperature and the firing time are within the above ranges, the influence of deformation of the base material due to heat can be reduced and the ink can be fired.
  • the firing temperature is more preferably 50 ° C to 200 ° C, and even more preferably 60 ° C to 120 ° C. Further, the firing time is more preferably 1 minute to 40 minutes.
  • the firing method is not particularly limited, and can be usually performed by a known method.
  • a solution a in which 6.8 g of polyvinylpyrrolidone (weight average molecular weight 3000, manufactured by Sigma-Aldrich) was dissolved in 100 mL of water was prepared.
  • a solution b in which 50.00 g of silver nitrate was dissolved in 200 mL of water was prepared.
  • the solid content in this dispersion is 50% by mass, and the silver content in the solid is measured by TG-DTA (differential thermal weight simultaneous measurement) (Hitachi High-Tech, Inc., model: STA7000 series). As a result, it was 96.0% by mass.
  • the obtained silver particle dispersion 1 was diluted 20-fold with ion-exchanged water and measured using a particle size analyzer FPAR-1000 (manufactured by Otsuka Denshi Co., Ltd.) to determine the volume average particle size of the silver particles. rice field.
  • the volumetric particle size of the silver particle dispersion 1 was 60 nm.
  • the silver particle dispersion 2 was prepared in the same manner as the dispersion 1.
  • the volumetric particle size of the silver particle dispersion liquid 2 was 100 nm.
  • Silver complex ink B1 To a 50 mL three-necked flask, 5.0 g of 1-propanol, 0.17 g of silver acetate, and 0.05 g of formic acid were added, and the mixture was stirred for 20 minutes. The silver halide precipitate formed was decanted three times with 1-propanol and washed. To the precipitate, 0.12 g of 1-propylamine and 5.0 g of 1-propanol were added, and the mixture was stirred for 30 minutes. Next, 1.0 g of water was added and further stirred to obtain a solution containing a silver complex. This solution was filtered using a PTFE (polytetrafluoroethylene) membrane filter having a pore size of 0.45 ⁇ m to obtain silver complex ink B1.
  • PTFE polytetrafluoroethylene
  • Silver complex ink B2 6.08 g of isobutylammonium carbonate and 15.0 g of isopropyl alcohol were added to a 50 mL three-necked flask and dissolved. Next, 2.0 g of silver oxide was added and reacted at room temperature for 2 hours to obtain a uniform solution. Further, 0.3 g of 2-hydroxy-2-methylpropylamine was added and stirred to obtain a solution containing a silver complex. This solution was filtered using a PTFE (polytetrafluoroethylene) membrane filter having a pore size of 0.45 ⁇ m to obtain silver complex ink B2.
  • PTFE polytetrafluoroethylene
  • Silver halide ink C1 4 g of silver neodecanoate was added to a 50 mL three-necked flask. Next, 3.0 g of trimethylbenzene and 3.0 g of terpineol were added and stirred to obtain a solution containing a silver salt. This solution was filtered using a PTFE (polytetrafluoroethylene) membrane filter having a pore size of 0.45 ⁇ m to obtain silver salt ink C1.
  • PTFE polytetrafluoroethylene
  • Example 1 As a base material, a polyethylene terephthalate film (product name "Viewful UV TP-100", manufactured by Kimoto Co., Ltd.) was prepared. The silver particle ink A1 was filled in an ink cartridge (for 10 picolitres) for an inkjet recording device (product name "DMP-2850", manufactured by FUJIFILM DIMATIX). The image recording conditions were a resolution of 600 dpi (dots per inch) and a droplet amount of 10 picolitres per dot. The substrate was preheated to 60 ° C., and a solid image having a width of 5 cm and a length of 10 cm was recorded on the substrate at 60 ° C. (application step 1).
  • the solid image was heated at 150 ° C. for 20 minutes using a hot plate (baking step 1). As a result, a conductive ink film having a metallic luster was formed on the base material.
  • the silver complex ink B1 was filled in an ink cartridge (for 10 picolitres) for an inkjet recording device (product name "DMP-2850", manufactured by FUJIFILM DIMATIX).
  • the base material on which the conductive ink film formed by the silver particle ink A1 is formed is preheated to 60 ° C., and the solid image is placed on the base material at 60 ° C. under the same conditions as the above image recording conditions so as to overlap the above solid image.
  • was recorded giving step 2.
  • a solid image was heated using a hot plate at 120 ° C. for 20 minutes to have a metallic luster.
  • a conductive laminate on which a conductive ink film having a thickness of 7 ⁇ m was formed was obtained (baking step 2).
  • Example 2 to 18 and Comparative Examples 1 to 6 In Examples 2 to 18 and Comparative Examples 1 to 6, the types of the conductive ink, the temperature of the base material, the firing temperature, and the firing time are changed to the conditions shown in Tables 1 and 2. Obtained a conductive laminate by the same method as in Example 1. Each treatment was performed in the order of the applying step 1, the firing step 1, the imparting step 2, the firing step 2, the imparting step 3, the firing step 3, the imparting step 4, and the firing step 4. For the examples and comparative examples in which the treatment was completed in the firing step 2, "-" is described after the imparting step 3 in the table. In addition, the thickness (film thickness) of the conductive ink film in each conductive laminate is shown in the table.
  • Example 19 In Example 19, a conductive laminate was obtained by the same method as in Example 2 except that the time from the time when the second applying step was completed to the time when the second firing step was started was changed to 60 seconds.
  • the conductive laminate was cut in the thickness direction of the conductive laminate using a microtome (product name RM2255, manufactured by Leica) to obtain a cross section.
  • a cross-section observation photograph was obtained from the obtained cross-section using a scanning electron microscope (product name S-4700, manufactured by Hitachi, Ltd.).
  • the obtained cross-sectional observation photograph was subjected to adjusting the threshold value with image software (“Adobe Photoshop” manufactured by Adobe Systems, Inc.) to form a white region in which a conductive substance is present and a black region in which voids are present. It was binarized.
  • the position obtained by averaging the convex portions of the upper 5 points and the concave portions of the lower 5 points on the surface side of the ink film of the obtained image was defined as the upper side. Further, on the ink film base material side, the position obtained by the same calculation was used as the base. The area between the upper side and the bottom side was divided into 10 equal parts, and the region from the bottom to the 5th equal division was defined as a 50% region on the base material side, and the region from the 9th equal division to the upper side from the base material side was defined as a 10% region on the non-base material side.
  • the first porosity was calculated as the ratio of the area of the black region (void) to the area of the entire region in the 50% region on the substrate side in the cross-sectional observation photograph.
  • the second porosity was calculated as the ratio of the area of the black region (void) to the area of the entire region in the non-base material side 10% region in the cross-sectional observation photograph.
  • ⁇ Evaluation of surface resistivity> A print pattern was formed so that the surface of the conductive ink film had a size of 5 cm ⁇ 10 cm, and an evaluation sample was obtained.
  • a resistivity meter (trade name "Lorester GP", manufactured by Mitsubishi Chemical Analytech Co., Ltd.) was used, and the surface resistivity [ ⁇ / ⁇ ] was measured at room temperature (23 ° C) by the 4-terminal method. It was measured.
  • the evaluation criteria are as follows. Rank 2 or higher is a level at which there is no practical problem. 5: The surface resistivity is less than 5 ⁇ / ⁇ . 4: The surface resistivity is 5 ⁇ / ⁇ or more and less than 10 ⁇ / ⁇ .
  • the surface resistivity is 10 ⁇ / ⁇ or more and less than 15 ⁇ / ⁇ .
  • the surface resistivity is 15 ⁇ / ⁇ or more and less than 20 ⁇ / ⁇ .
  • the surface resistivity is 20 ⁇ / ⁇ or more.
  • the thermal cycle stability was evaluated based on the amount of change between the surface resistivity before the start of the test and the surface resistivity after the end of the test.
  • the evaluation criteria are as follows. It can be said that the smaller the amount of change in surface resistivity, the better the thermal cycle stability. Rank 2 or higher is a level at which there is no practical problem.
  • Amount of change (surface resistivity after the end of the test)-(surface resistivity before the start of the test) 5: The amount of change is less than 1.5 ⁇ / ⁇ . 4: The amount of change is 1.5 ⁇ / ⁇ or more and less than 2.0 ⁇ / ⁇ . 3: The amount of change is 2.0 ⁇ / ⁇ or more and less than 2.5 ⁇ / ⁇ . 2: The amount of change is 2.5 ⁇ / ⁇ or more and less than 3.0 ⁇ / ⁇ . 1: The amount of change is 3.0 ⁇ / ⁇ or more.
  • Examples 1 to 18 include a base material and a conductive ink film provided on the base material, and the conductive ink film is a conductive ink film.
  • the thickness from the first main surface to the second main surface is 50%.
  • the first void ratio in the region is 15% to 50%
  • the second void ratio in the region from the thickness position of 10% from the second main surface to the first main surface to the second main surface is. Since it is smaller than the first void ratio, it was found that the surface resistance is low and the thermal cycle stability is excellent.
  • Comparative Example 3 Comparative Example 4, and Comparative Example 6, the second porosity is the same as the first porosity, or the second porosity is larger than the first porosity and the surface resistivity is high. Do you get it.
  • Example 1 in the step of applying the first conductive ink, the temperature of the base material when applying the first conductive ink is 20 ° C to 120 ° C, and the thermal cycle is stable as compared with Example 13. It turned out to be excellent in sex.
  • Example 1 the firing temperature in the step of firing the first conductive ink is 250 ° C. or lower, and the firing time is 1 minute to 120 minutes, and the thermal cycle stability is improved as compared with Example 14. It turned out to be excellent.
  • Example 2 the time from the time when the second applying step is completed to the start of the second firing step is 1 second, which is compared with Example 19 in which the time is 60 seconds. It was found that the second porosity was high and the surface resistivity was high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)

Abstract

基材と、基材上に設けられた導電性インク膜と、を備え、導電性インク膜において、基材に近い側の面を第1主面、基材から遠い側の面を第2主面としたとき、第1主面から第2主面に向かって50%の厚さ位置までの領域における第1空隙率が15%~50%であり、かつ、第2主面から第1主面に向かって10%の厚さ位置から、第2主面までの領域における第2空隙率が、第1空隙率より小さい導電積層体、及び、導電積層体の製造方法。

Description

導電積層体、及び、導電積層体の製造方法
 本開示は、導電積層体、及び、導電積層体の製造方法に関する。
 基材上に、導電性を有する膜が設けられた導電積層体は、さまざまな電子デバイスを作製するための電子材料として利用されている。
 例えば、特開2010-183082号公報には、基材と、基材上に備えられ、導電性無機金属粒子と少なくとも一部の導電性無機金属粒子間の導電性チャネルを提供する有機金属錯体を含む導電性パターンとを含む基板が記載されている。
 導電積層体においては、低い表面抵抗率と、熱サイクル安定性との両立が要求される場合がある。
 本開示はこのような事情に鑑みてなされたものであり、本発明の一実施形態によれば、表面抵抗率が低く、かつ、熱サイクル安定性に優れる導電積層体、及び、導電積層体の製造方法が提供される。
 本開示は以下の態様を含む。
<1>基材と、基材上に設けられた導電性インク膜と、を備え、導電性インク膜において、基材に近い側の面を第1主面、基材から遠い側の面を第2主面としたとき、第1主面から第2主面に向かって50%の厚さ位置までの領域における第1空隙率が15%~50%であり、かつ、第2主面から第1主面に向かって10%の厚さ位置から、第2主面までの領域における第2空隙率が、第1空隙率より小さい導電積層体。
<2>第1空隙率が30%~40%である、<1>に記載の導電積層体。
<3>第2空隙率が20%以下である、<1>又は<2>に記載の導電積層体。
<4>導電性インク膜は、銀、金、白金、ニッケル、パラジウム及び銅からなる群より選択される少なくとも1種を含む、<1>~<3>のいずれか1つに記載の導電積層体。
<5>導電性インク膜は、厚さが0.5μm~30μmである、<1>~<4>のいずれか1つに記載の導電積層体。
<6>基材上に、金属粒子を含む第1導電性インクを付与する工程と、第1導電性インクを焼成する工程と、焼成後の第1導電性インク上に、金属塩又は金属錯体を含む第2導電性インクを付与する工程と、第2導電性インクを焼成する工程と、を含む<1>~<6>のいずれか1つに記載の導電積層体の製造方法。
<7>金属粒子、銀、金、白金、ニッケル、パラジウム及び銅からなる群より選択される少なくとも1種を含む粒子である、<6>に記載の導電積層体の製造方法。
<8>金属粒子は、平均粒径が10nm~200nmである、<6>又は<7>に記載の導電積層体の製造方法。
<9>金属粒子の含有量は、第1導電性インクの全量に対して10質量%~90質量%である、<6>~<8>のいずれか1つに記載の導電積層体の製造方法。
<10>金属塩及び金属錯体はそれぞれ、銀、金、白金、ニッケル、パラジウム及び銅からなる群より選択される少なくとも1種を含む、<6>~<9>のいずれか1つに記載の導電積層体の製造方法。
<11>金属錯体は、アンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物、アルキルアミン、及び、炭素数8~20のカルボン酸からなる群より選択される少なくとも1種に由来する構造を有する金属錯体であり、金属塩は、炭素数8~20の金属カルボン酸塩である、<6>~<10>のいずれか1つに記載の導電積層体の製造方法。
<12>金属塩及び金属錯体の含有量はそれぞれ、第2導電性インクの全量に対して10質量%~90質量%である、<6>~<11>のいずれか1つに記載の導電積層体の製造方法。
<13>第1導電性インクを付与する工程では、インクジェット記録方式を用いて第1導電性インクを付与し、第2導電性インクを付与する工程では、インクジェット記録方式を用いて第2導電性インクを付与する、<6>~<12>のいずれか1つに記載の導電積層体の製造方法。
<14>第1導電性インクを付与する工程において、第1導電性インクを付与する際の基材の温度は、20℃~120℃である、<6>~<13>のいずれか1つに記載の導電積層体の製造方法。
<15>第1導電性インクを焼成する工程では、焼成温度は250℃以下であり、かつ、焼成時間は1分~120分である、<6>~<14>のいずれか1つに記載の導電積層体の製造方法。
<16>第2導電性インクを付与する工程において、第2導電性インクを付与する際の基材の温度は、20℃~120℃である、<6>~<15>のいずれか1つに記載の導電積層体の製造方法。
<17>第2導電性インクを焼成する工程では、焼成温度は250℃以下であり、かつ、焼成時間は1分~120分である、67>~<16>のいずれか1つに記載の導電積層体の製造方法。
<18>第1導電性インクを付与する工程を終了した時点から第1導電性インクを焼成する工程を開始する時点までの時間は60秒以下である、<6>~<17>のいずれか1つに記載の導電積層体の製造方法。
 本開示によれば、表面抵抗率が低く、かつ、熱サイクル安定性に優れる導電積層体、及び、導電積層体の製造方法が提供される。
 以下、本開示の導電積層体、及び、導電積層体の製造方法について詳細に説明する。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本明細書において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本明細書において、「工程」という語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば、本用語に含まれる。
 本明細書において、「画像」とは、膜全般を意味し、「画像記録」とは、画像(すなわち、膜)の形成を意味する。また、本明細書における「画像」の概念には、ベタ画像(solid image)も包含される。
 本明細書において、「熱サイクル安定性」とは、導電積層体に対して、加熱と冷却を繰り返し行った場合に、表面抵抗率の変化が少ない性質のことをいう。
[導電積層体]
 本開示の導電積層体は、基材と、基材上に設けられた導電性インク膜と、を備え、導電性インク膜において、基材に近い側の面を第1主面、基材から遠い側の面を第2主面としたとき、第1主面から第2主面に向かって50%の厚さ位置までの領域における第1空隙率が15%~50%であり、かつ、第2主面から第1主面に向かって10%の厚さ位置から、第2主面までの領域における第2空隙率が、第1空隙率より小さい。
 本発明者らは、導電性インク膜における特定の領域における空隙率に着目し、第1空隙率が15%~50%であり、かつ、第2空隙率が、第1空隙率より小さい場合に、低い表面抵抗率と、高い熱サイクル安定性との両立が達成できることを見出した。
 本開示の導電積層体では、導電性インク膜の第1空隙率が15%以上であるため、熱によって導電積層体に膨張、収縮等の体積変化があった場合にも、剥がれ、割れ等の欠陥が生じることなく、熱サイクル安定性に優れる。また、本開示の導電積層体では、導電性インク膜の第1空隙率が50%以下であるため、表面抵抗率が低下する。
また、本開示の導電積層体では、導電性インク膜の第2の空隙率が、第1空隙率より小さい。すなわち、導電インク膜の表面近傍が密であるため、表面抵抗率が低下する。
 一方、特許文献1では、導電性インク膜の空隙率には着目していない。また、特許文献1に開示されている方法で導電積層体を作製した場合には、空隙率が導電性インク膜全体でほぼ一定となり、低い表面抵抗率と、高い熱サイクル安定性との両立は期待できない。
<基材>
 本開示の導電積層体は、基材を備える。
 基材の材質は特に限定されず、目的に応じて選択することができる。具体的には、基材の材質としては、ポリイミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリカーボネート、ポリウレタン、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、アクリル樹脂、AS樹脂(アクリロニトリルスチレン樹脂)、ABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体)、トリアセチルセルロース、ポリアミド、ポリアセタール、ポリフェニレンスルファイド、ポリスルホン、エポキシ樹脂、ガラスエポキシ樹脂、メラミン樹脂、フェノール樹脂、尿素樹脂、アルキッド樹脂、フッ素樹脂、ポリ乳酸、等の合成樹脂;銅、鋼、アルミニウム、シリコン、ソーダガラス、無アルカリガラス、酸化インジウムスズ(ITO)等の無機材料;及び、原紙、アート紙、コート紙、キャストコート紙、レジンコート紙、合成紙等の紙類が挙げられる。また、基材は1層であってもよく、2層以上であってもよい。基材が2層以上である場合、材質の異なる2種以上の基材を積層させてもよい。
 基材の形態は、シート状又はフィルム状であることが好ましい。基材の厚さは、20μm~2000μmであることが好ましい。基材の厚さが20μm以上であると、導電性インク膜を安定して保持することができ、導電性インク膜が形成された積層体の取り扱い性も良好となる。
 基材はインク受容層を有していてもよく、インク受容層の厚さは1μm~20μmであることが好ましい。インク受容層の厚さが1μm~20μmであると、インク受容層をより安定して保持することができると共に、導電性インクの濡れ広がりの均質性が向上し、導電性インク膜の品質がより向上する。インク受容層とは、インクを吸収し、インクを定着させるために基材上に形成されるコーティング層のことである。
本開示の導電積層体では、絶縁性及び密着性の観点から、基材は、ガラス基材又はプラスチック基材であることが好ましい。
<導電性インク膜>
 本開示の導電積層体では、導電性インク膜は、基材上に設けられている。導電性インク膜と基材との間に他の層が設けられていてもよいが、導電性インク膜は、基材上に直接設けられていることが好ましい。
 本開示において、「導電性」とは、表面抵抗率が1×10 Ω/□以下である性質をいう。
 導電性インク膜は、導電性インク膜において、基材に近い側の面を第1主面、基材から遠い側の面を第2主面としたとき、第1主面から第2主面に向かって50%の厚さ位置までの領域における第1空隙率が15%~50%であり、かつ、第2主面から第1主面に向かって10%の厚さ位置から、第2主面までの領域における第2空隙率が、第1空隙率より小さい。
 簡単に言うと、導電性インク膜は、厚さ方向で領域を区分けした場合に、厚さ方向における基材側50%領域における第1空隙率が15%~50%であり、厚さ方向における非基材側10%領域における第2空隙率が、第1空隙率より小さい。第1空隙率が15%以上であると、熱によって導電積層体に膨張、収縮等の体積変化があった場合にも、剥がれ、割れ等の欠陥が生じることなく、熱サイクル安定性に優れる。一方、第1空隙率が50%以下であると、表面抵抗率が低下する。
 また、第2空隙率が、第1空隙率より小さいということは、導電性インク膜は、非基材側10%領域が、基材側50%領域よりも密であることを意味する。非基材側10%領域が密であると、表面抵抗率が低下する。
 熱サイクル安定性をより向上させる観点から、第1空隙率は30%~40%であることが好ましい。
 表面抵抗率をより低下させる観点から、第2空隙率は20%以下であることが好ましく、10%以下であることがより好ましく、7%以下であることがさらに好ましい。第2空隙率の下限値は特に限定されず、例えば、0%である。
 第1空隙率と第2空隙率との差は特に限定されないが、低い表面抵抗率と熱サイクル安定性との両立の観点から、5%~40%であることが好ましく、20%~30%であることがより好ましい。
 導電性インク膜における空隙率は、導電性インク膜を形成するための導電性インクの種類と、導電性インクを付与した後の焼成条件によって制御することができる。例えば、導電性インクとして、金属粒子を含むインクを用いると、導電性インク膜に空隙を形成させやすい。金属粒子を含むインクを用いた場合に、焼成温度を高くすると、空隙率が低くなる。また、焼成時間を長くすると、空隙率が低くなる。
 空隙率は、例えば、以下の方法で測定される。
 導電積層体をミクロトーム(製品名RM2255、Leica社製)を用いて、導電積層体の厚さ方向に向かって切断し、断面を得る。得られた断面を走査型電子顕微鏡(製品名S-4700、HITACHI社製)を用いて、断面観察写真を得る。
 得られた断面観察写真を、画像ソフト(Adobe Systems,Inc.製“Adobe Photoshop”)にて閾値を調整して、導電性物質が存在する白の領域と、空隙が存在する黒の領域とに二値化する。得られた画像のインク膜表面側の上位5点の凸部と下位5点の凹部を平均した位置を上辺とする。また、インク膜基材側についても同様に計算して得られた位置を底辺とする。上辺と底辺の間を10等分して底辺から5等分目までの領域を基材側50%領域、基材側から9等分目から上位領域を非基材側10%領域とする。
 第1空隙率は、上記断面観察写真における基材側50%領域において、領域全体の面積に対する黒の領域(空隙)の面積の割合として算出する。
 第2空隙率は、上記断面観察写真における非基材側10%領域において、領域全体の面積に対する黒の領域(空隙)の面積の割合として算出する。
 導電性インク膜は、導電性物質を含むことが好ましく、導電性物質は金属であることが好ましい。金属としては、例えば、卑金属及び貴金属が挙げられる。卑金属としては、例えば、ニッケル、チタン、コバルト、銅、クロム、マンガン、鉄、ジルコニウム、スズ、タングステン、モリブデン、及びバナジウムが挙げられる。貴金属としては、例えば、金、銀、白金、パラジウム、イリジウム、オスミウム、ルテニウム、ロジウム、レニウム及びこれらの金属を含む合金が挙げられる。導電性の観点から、導電性インク膜は、銀、金、白金、ニッケル、パラジウム及び銅からなる群より選択される少なくとも1種を含むことが好ましく、銀を含むことがより好ましい。
 導電性インク膜中、金属の含有量は、導電性インク膜の全量に対して、5質量%~70質量%であることが好ましく、7質量%~50質量%であることがより好ましい。
 導電性インク膜の厚さは特に限定されないが、生産性と導電性の観点から、0.5μm~30μmであることが好ましく、5μm~20μmであることがより好ましい。
[導電積層体の製造方法]
 本開示の導電積層体の製造方法は、基材上に、上記導電性インク膜を形成することができれば特に限定されない。
 導電性インク膜は、例えば、基材上に導電性インクを付与した後、基材上に付与された導電性インクを焼成することにより形成することができる。導電性インク膜は、導電性インクの付与と、焼成と、を複数回繰り返すことにより形成してもよい。
 導電性インクは、金属粒子を含むインク(以下、「金属粒子インク」ともいう)、金属錯体を含むインク(以下、「金属錯体インク」ともいう)、又は、金属塩を含むインク(以下、「金属塩インク」ともいう)であることが好ましく、金属粒子インク又は金属錯体インクであることがより好ましい。
<金属粒子インク>
 金属粒子インクは、例えば、金属粒子が分散媒中に分散したインク組成物である。
(金属粒子)
 金属粒子を構成する金属としては、例えば、卑金属及び貴金属の粒子が挙げられる。卑金属としては、例えば、ニッケル、チタン、コバルト、銅、クロム、マンガン、鉄、ジルコニウム、スズ、タングステン、モリブデン、及びバナジウムが挙げられる。貴金属としては、例えば、金、銀、白金、パラジウム、イリジウム、オスミウム、ルテニウム、ロジウム、レニウム及びこれらの金属を含む合金が挙げられる。中でも、導電性の観点から、金属粒子を構成する金属は、銀、金、白金、ニッケル、パラジウム及び銅からなる群より選択される少なくとも1種を含むことが好ましく、銀を含むことがより好ましい。
 金属粒子の平均粒径は特に限定されないが、10nm~500nmであることが好ましく、10nm~200nmであることがより好ましい。平均粒径が上記範囲であると、金属粒子の焼成温度が低下し、導電性インク膜作製のプロセス適性が高まる。特に、スプレー方式、又はインクジェット記録方式を用いて金属粒子インクを付与する場合に、吐出性が向上し、パターン形成性、及び、導電性インク膜の膜厚の均一性が向上する傾向にある。ここでいう平均粒径は、金属粒子の一次粒径の平均値(平均一次粒径)を意味する。
 金属粒子の平均粒径は、例えば、レーザー回折/散乱式粒度分布測定装置(製品名「LA-960」、堀場製作所製)を用いて50%体積累積径(D50)を3回測定して、3回測定した値の平均値として算出される。
 また、金属粒子インクには、必要に応じて、平均粒径が500nm以上の金属粒子が含まれていてもよい。平均粒径が500nm以上の金属粒子が含まれている場合には、nmサイズの金属粒子がμmサイズの金属粒子の周囲で融点降下することにより、導電性インク膜を接合できる。
 金属粒子インク中、金属粒子の含有量は、金属粒子インクの全量に対して、10質量%~90質量%であることが好ましく、20質量%~50質量%であることがより好ましい。金属粒子の含有量は10質量%以上であると、表面抵抗率がより低下する。金属粒子の含有量が90質量%以下であると、スプレー方式、又はインクジェット記録方式を用いて金属粒子インクを付与する場合に、吐出性が向上する。
 金属粒子インクには、金属粒子以外に、例えば、分散剤、樹脂、分散媒、増粘剤、及び表面張力調整剤が含まれていてもよい。
(分散剤)
 金属粒子インクは、金属粒子の表面の少なくとも一部に付着する分散剤を含有していてもよい。分散剤は、金属粒子と共に、実質的に金属コロイド粒子を構成する。分散剤は、金属粒子を被覆して金属粒子の分散性を向上させ、凝集を防止する作用を有する。分散剤は、金属コロイド粒子を形成することが可能な有機化合物であることが好ましい。分散剤は、導電性及び分散安定性の観点から、アミン化合物、カルボン酸、アルコール、又は樹脂分散剤であることが好ましい。
 金属粒子インクに含まれる分散剤は、1種であってもよく、2種以上であってもよい。
 アミン化合物としては、例えば、飽和又は不飽和の脂肪族アミンが挙げられる。中でも、アミン化合物は、炭素数4~8の脂肪族アミンであることが好ましい。炭素数が4~8の脂肪族アミンは、直鎖状であっても分岐鎖状であってもよく、環構造を有していてもよい。
 脂肪族アミンとしては、例えば、ブチルアミン、ノルマルペンチルアミン、イソペンチルアミン、ヘキシルアミン、2-エチルヘキシルアミン、及びオクチルアミンが挙げられる。
 脂環構造を有するアミンとしては、シクロペンチルアミン、シクロヘキシルアミン等のシクロアルキルアミンが挙げられる。
 芳香族アミンとしては、アニリンが挙げられる。
 アミン化合物は、アミノ基以外の官能基を有していてもよい。アミノ基以外の官能基としては、例えば、ヒドロキシ基、カルボキシ基、アルコキシ基、カルボニル基、エステル基、及びメルカプト基が挙げられる。
 カルボン酸としては、例えば、ギ酸、シュウ酸、酢酸、ヘキサン酸、アクリル酸、オクチル酸、及びオレイン酸が挙げられる。カルボン酸の一部であるカルボキシ基は、金属イオンと塩を形成していてもよい。塩を形成する金属イオンは、1種であってもよく、2種以上であってもよい。
 カルボン酸は、カルボキシ基以外の官能基を有していてもよい。カルボキシ基以外の官能基としては、例えば、アミノ基、ヒドロキシ基、アルコキシ基、カルボニル基、エステル基、及びメルカプト基が挙げられる。
 アルコールとしては、例えば、テルペン系アルコール、アリルアルコール、オレイルアルコール、チアンシ酸、リシノール酸、没食子酸、及びサリチル酸が挙げられる。アルコールは、金属粒子の表面に配位しやすく、金属粒子の凝集を抑制することができる。
 樹脂分散剤としては、例えば、親水性基としてノニオン性基を有し、溶媒に均一溶解可能な分散剤が挙げられる。樹脂分散剤としては、例えば、ポリビニルピロリドン、ポリエチレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体、ポリビニルアルコール、ポリアリルアミン、及びポリビニルアルコール-ポリ酢酸ビニル共重合体が挙げられる。樹脂分散剤の分子量は、重量平均分子量が1000~50000であることが好ましく、1000~30000であることがより好ましい。
 金属粒子インク中、分散剤の含有量は、金属粒子インクの全量に対して、0.5質量%~50質量%でああることが好ましく、1質量%~30質量%であることがより好ましい。
(分散媒)
 金属粒子インクは、分散媒を含むことが好ましい。分散媒の種類は特に限定されず、例えば、炭化水素、アルコール、及び水が挙げられる。
 金属粒子インクに含まれる分散媒は、1種であってもよく、2種以上であってもよい。金属粒子インクに含まれる分散媒は、揮発性であることが好ましい。分散媒の沸点は50℃~250℃であることが好ましく、70℃~220℃であることがより好ましく、80℃~200℃であることがさらに好ましい。分散媒の沸点が50℃~250℃であると、金属粒子インクの安定性と焼成性を両立できる傾向にある。
 炭化水素としては、脂肪族炭化水素、及び芳香族炭化水素が挙げられる。
 脂肪族炭化水素としては、例えば、テトラデカン、オクタデカン、ヘプタメチルノナン、テトラメチルペンタデカン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、トリデカン、メチルペンタン、ノルマルパラフィン、イソパラフィン等の飽和脂肪族炭化水素又は不飽和脂肪族炭化水素が挙げられる。
 芳香族炭化水素としては、例えば、トルエン、及びキシレンが挙げられる。
 アルコールとしては、脂肪族アルコール、及び脂環式アルコールが挙げられる。分散媒としてアルコールを使用する場合には、分散剤は、アミン化合物又はカルボン酸であることが好ましい。
 脂肪族アルコールとしては、例えば、ヘプタノール、オクタノール(例えば、1-オクタノール、2-オクタノール、3-オクタノール等)、デカノール(例えば、1-デカノール等)、ラウリルアルコール、テトラデシルアルコール、セチルアルコール、2-エチル-1-ヘキサノール、オクタデシルアルコール、ヘキサデセノール、オレイルアルコール等の飽和又は不飽和の鎖中にエーテル結合を含んでいてもよい炭素数6~20の脂肪族アルコールが挙げられる。
 脂環式アルコールとしては、例えば、シクロヘキサノール等のシクロアルカノール;テルピネオール(α、β、γ異性体、又はこれらの任意の混合物を含む。)、ジヒドロテルピネオール等のテルペンアルコール;ジヒドロターピネオール、ミルテノール、ソブレロール、メントール、カルベオール、ペリリルアルコール、ピノカルベオール、ソブレロール、及びベルベノールが挙げられる。
 分散媒は水であってもよい。粘度、表面張力、揮発性等の物性を調整する観点から、分散媒は、水と、他の溶媒との混合溶媒であってもよい。水と混合させる他の溶媒は、アルコールであることが好ましい。水と併用して用いられるアルコールは、水と混和可能な沸点130℃以下のアルコールであることが好ましい。アルコールとしては、例えば、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、及びプロピレングリコールモノメチルエーテルが挙げられる。
 金属粒子インク中、分散媒の含有量は、金属粒子インクの全量に対して、1質量%~50質量%であることが好ましい。分散媒の含有量が1質量%~50質量%であれば、導電性インクとして十分な導電性を得ることができる。分散媒の含有量は10質量%~45質量%であることがより好ましく、20質量%~40質量%であることがさらに好ましい。
(樹脂)
 金属粒子インクは、樹脂を含有していてもよい。樹脂としては、例えば、ポリエステル、ポリウレタン、メラミン樹脂、アクリル樹脂、スチレン系樹脂、ポリエーテル樹脂、及びテルペン樹脂が挙げられる。
 金属粒子インクに含まれる樹脂は、1種であってもよく、2種以上であってもよい。
 金属粒子インク中、樹脂の含有量は、金属粒子インクの全量に対して、0.1質量%~5質量%であることが好ましい。
(増粘剤)
 金属粒子インクは、増粘剤を含有していてもよい。増粘剤としては、例えば、クレイ、ベントナイト、ヘクトライト等の粘土鉱物;メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体;及び、キサンタンガム、グアーガム等の多糖類が挙げられる。
 金属粒子インクに含まれる増粘剤は、1種であってもよく、2種以上であってもよい。
 金属粒子インク中、増粘剤の含有量は、金属粒子インクの全量に対して、0.1質量%~5質量%であることが好ましい。
(界面活性剤)
 金属粒子インクは、界面活性剤を含有していてもよい。金属粒子インクに界面活性剤が含まれていると、均一な導電性インク膜が形成されやすい。
 界面活性剤は、アニオン性界面活性剤、カチオン性界面活性剤、及びノニオン性界面活性剤のいずれであってもよい。中でも、少量の含有量で表面張力を調整することができるという観点から、界面活性剤は、フッ素系界面活性剤であることが好ましい。また、界面活性剤は、沸点が250℃を超える化合物であることが好ましい。
 金属粒子インクの粘度は特に限定されず、0.01Pa・s~5000Pa・sであればよく、0.1Pa・s~100Pa・sであることが好ましい。金属粒子インクをスプレー法又はインクジェット記録方式を用いて付与する場合には、金属粒子インクの粘度は、1mPa・s~100mPa・sであることが好ましく、2mPa・s~50mPa・sであることがより好ましく、3mPa・s~30mPa・sであることがさらに好ましい。
 金属粒子インクの粘度は、粘度計を用い、25℃で測定される値である。粘度は、例えば、VISCOMETER TV-22型粘度計(東機産業社製)を用いて測定される。
 金属粒子インクの表面張力は特に限定されず、20mN/m~45mN/mであることが好ましく、25mN/m~40mN/mであることがより好ましい。表面張力は、表面張力計を用い、25℃で測定される値である。表面張力は、例えば、DY-700(協和界面科学社製)を用いて測定される。
(金属粒子の製造方法)
 金属粒子は、市販品であってもよく、公知の方法により製造されたものであってもよい。金属粒子の製造方法としては、例えば、湿式還元法、気相法、及びプラズマ法が挙げられる。金属粒子の好ましい製造方法としては、平均粒径200nm以下の金属粒子を粒径分布が狭くなるように製造可能な湿式還元法が挙げられる。湿式還元法による金属粒子の製造方法は、例えば、特開2017-37761号公報、国際公開第2014-57633号公報等に記載の金属塩及び還元剤を混合して錯化反応液を得る工程と、錯化反応液を加熱して、錯化反応液中の金属イオンを還元し、金属ナノ粒子のスラリーを得る工程と、を含む方法が挙げられる。
 金属粒子インクの製造において、金属粒子インクに含まれる各成分の含有量を所定の範囲に調整するために、加熱処理を行ってもよい。加熱処理は、減圧下で行ってもよく、常圧下で行ってもよい。また、常圧下で行う場合には、大気中で行ってもよく、不活性ガス雰囲気下で行ってもよい。
<金属錯体インク>
 金属錯体インクは、例えば、金属錯体が溶媒中に溶解したインク組成物である。
 金属錯体を構成する金属としては、例えば、銀、銅、金、アルミニウム、マグネシウム、タングステン、モリブデン、亜鉛、ニッケル、鉄、白金、スズ、銅、及び鉛が挙げられる。中でも、導電性の観点から、金属錯体を構成する金属は、銀、金、白金、ニッケル、パラジウム及び銅からなる群より選択される少なくとも1種を含むことが好ましく、銀を含むことがより好ましい。
 金属錯体インクに含まれる金属の含有量は、金属錯体インクの全量に対して、金属元素換算で1質量%~40質量%であることが好ましく、5質量%~30質量%であることがより好ましく、7質量%~20質量%であることがさらに好ましい。
 金属錯体は、例えば、金属塩と、錯化剤とを反応させることにより得られる。金属錯体の製造方法としては、例えば、金属塩及び錯化剤を有機溶媒に加え、所定時間撹拌する方法が挙げられる。撹拌方法は特に限定されず、撹拌子、撹拌翼又はミキサーを用いて撹拌させる方法、超音波を加える方法等の公知の方法から適宜選択することができる。
 金属塩としては、金属の酸化物、チオシアン酸塩、硫化物、塩化物、シアン化物、シアン酸塩、炭酸塩、酢酸塩、硝酸塩、亜硝酸塩、硫酸塩、リン酸塩、過塩素酸塩、テトラフルオロホウ酸塩、アセチルアセトナート錯塩、及びカルボン酸塩が挙げられる。
 錯化剤としては、アミン化合物、アンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物、アンモニウムバイカーボネート化合物、及びカルボン酸が挙げられる。中でも、導電性及び金属錯体の安定性の観点から、錯化剤は、アンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物、アルキルアミン、及び、炭素数8~20のカルボン酸からなる群より選択される少なくとも1種を含むことが好ましい。
 金属錯体は、錯化剤に由来する構造を有しており、アンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物、アルキルアミン、及び、炭素数8~20のカルボン酸からなる群より選択される少なくとも1種に由来する構造を有する金属錯体であることが好ましい。
 錯化剤であるアミン化合物としては、例えば、アンモニア、第1級アミン、第2級アミン、第3級アミン、及びポリアミンが挙げられる。
 直鎖状のアルキル基を有する第1級アミンとしては、例えば、メチルアミン、エチルアミン、1-プロピルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、n-デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、及びオクタデシルアミンが挙げられる。
 分岐鎖状アルキル基を有する第1級アミンとしては、例えば、イソプロピルアミン、sec-ブチルアミン、tert-ブチルアミン、イソペンチルアミン、2-エチルヘキシルアミン、及びtert-オクチルアミンが挙げられる。
 脂環構造を有する第1級アミンとしては、例えば、シクロヘキシルアミン、及びジシクロヘキシルアミンが挙げられる。
 ヒドロキシアルキル基を有する第1級アミンとしては、例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルエタノールアミン、プロパノールアミン、イソプロパノールアミン、ジプロパノールアミン、ジイソプロパノールアミン、トリプロパノールアミン、及びトリイソプロパノールアミンが挙げられる。
 芳香環を有する第1級アミンとしては、例えば、ベンジルアミン、N,N-ジメチルベンジルアミン、フェニルアミン、ジフェニルアミン、トリフェニルアミン、アニリン、N,N-ジメチルアニリン、N,N-ジメチル-p-トルイジン、4-アミノピリジン、及び4-ジメチルアミノピリジンが挙げられる。
 第二級アミンとしては、例えば、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジフェニルアミン、ジシクロペンチルアミン、及びメチルブチルアミンが挙げられる。
 第三級アミンとしては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、及びトリフェニルアミンが挙げられる。
 ポリアミンとしては、例えば、エチレンジアミン、1,3-ジアミノプロパン、ジエチレントリアミン、トリエチレンテトラミン、テトラメチレンペンタミン、ヘキサメチレンジアミン、テトラエチレンペンタミン、及びこれらの組み合わせが挙げられる。
 アミン化合物は、アルキルアミンであることが好ましく、炭素原子数が3~10のアルキルアミンであることが好ましく、炭素原子数が4~10の第1級アルキルアミンであることがより好ましい。
 金属錯体を構成するアミン化合物は1種であってもよく、2種以上であってもよい。
 金属塩とアミン化合物とを反応させる際、金属塩のモル量に対するアミン化合物のモル量の比率は、1倍~15倍であることが好ましく、1.5倍~6倍であることがより好ましい。上記比率が上記範囲内であると、錯体形成反応が完結し、透明な溶液が得られる。
 錯化剤であるアンモニウムカルバメート系化合物としては、アンモニウムカルバメート、メチルアンモニウムメチルカルバメート、エチルアンモニウムエチルカルバメート、1-プロピルアンモニウム1-プロピルカルバメート、イソプロピルアンモニウムイソプロピルカルバメート、ブチルアンモニウムブチルカルバメート、イソブチルアンモニウムイソブチルカルバメート、アミルアンモニウムアミルカルバメート、ヘキシルアンモニウムヘキシルカルバメート、ヘプチルアンモニウムヘプチルカルバメート、オクチルアンモニウムオクチルカルバメート、2-エチルヘキシルアンモニウム2-エチルヘキシルカルバメート、ノニルアンモニウムノニルカルバメート、及びデシルアンモニウムデシルカルバメートが挙げられる。
 錯化剤であるアンモニウムカーボネート系化合物としては、アンモニウムカーボネート、メチルアンモニウムカーボネート、エチルアンモニウムカーボネート、1-プロピルアンモニウムカーボネート、イソプロピルアンモニウムカーボネート、ブチルアンモニウムカーボネート、イソブチルアンモニウムカーボネート、アミルアンモニウムカーボネート、ヘキシルアンモニウムカーボネート、ヘプチルアンモニウムカーボネート、オクチルアンモニウムカーボネート、2-エチルヘキシルアンモニウムカーボネート、ノニルアンモニウムカーボネート、及びデシルアンモニウムカーボネートが挙げられる。
 錯化剤であるアンモニウムバイカーボネート系化合物としては、アンモニウムバイカーボネート、メチルアンモニウムバイカーボネート、エチルアンモニウムバイカーボネート、1-プロピルアンモニウムバイカーボネート、イソプロピルアンモニウムバイカーボネート、ブチルアンモニウムバイカーボネート、イソブチルアンモニウムバイカーボネート、アミルアンモニウムバイカーボネート、ヘキシルアンモニウムバイカーボネート、ヘプチルアンモニウムバイカーボネート、オクチルアンモニウムバイカーボネート、2-エチルヘキシルアンモニウムバイカーボネート、ノニルアンモニウムバイカーボネート、及びデシルアンモニウムバイカーボネートが挙げられる。
 金属塩と、アンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物、又はアンモニウムバイカーボネート系化合物とを反応させる際、金属塩のモル量に対する、アンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物、又はアンモニウムバイカーボネート系化合物のモル量の比率は、0.01倍~1倍であることが好ましく、0.05倍~0.6倍であることがより好ましい。
 錯化剤であるカルボン酸としては、例えば、カプロン酸、カプリル酸、ペラルゴン酸、2-エチルヘキサン酸、カプリン酸、ネオデカン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、パルミトレイン酸、オレイン酸、リノール酸、及びリノレン酸が挙げられる。中でも、カルボン酸は、炭素数8~20のカルボン酸であることが好ましく、炭素数10~16のカルボン酸であることがより好ましい。
 金属錯体インク中、金属錯体の含有量は、金属錯体インクの全量に対して、10質量%~90質量%であることが好ましく、10質量%~40質量%であることがより好ましい。金属錯体の含有量は10質量%以上であると、表面抵抗率がより低下する。金属錯体の含有量が90質量%以下であると、スプレー方式、又はインクジェット記録方式を用いて金属粒子インクを付与する場合に、吐出性が向上する。
 (溶媒)
 金属錯体インクは、溶媒を含有することが好ましい。溶媒は、金属錯体等の金属錯体インクに含まれる成分を溶解することができれば特に限定されない。溶媒は、製造容易性の観点から、沸点が30℃~300℃であることが好ましく、50℃~200℃であることがより好ましく、50℃~150℃であることがより好ましい。
 金属錯体インク中、溶媒の含有量は、金属錯体に対する金属イオンの濃度(金属錯体1gに対して遊離イオンとして存在する金属の量)が、0.01mmol/g~3.6mmol/gであることが好ましく、0.05mmol/g~2mmol/gであることがより好ましい。金属イオンの濃度が上記範囲内であると、金属錯体インクが流動性に優れ、かつ、導電性を得ることができる。
 溶媒としては、例えば、炭化水素、環状炭化水素、芳香族炭化水素、カルバメート、アルケン、アミド、エーテル、エステル、アルコール、チオール、チオエーテル、ホスフィン、及び水が挙げられる。金属錯体インクに含まれる溶媒は、1種のみであってもよく、2種以上であってもよい。
 炭化水素は、炭素数6~20の直鎖状又は分枝状の炭化水素であることが好ましい。炭化水素としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、オクタデカン、ノナデカン及びイコサンが挙げられる。
 環状炭化水素は、炭素数6~20の環状炭化水素であることが好ましい。環状炭化水素としては、例えば、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン、及びデカリンを含むことができる。
 芳香族炭化水素としては、例えば、ベンゼン、トルエン、キシレン、及びテトラリンが挙げられる。
 エーテルは、直鎖状エーテル、分枝鎖状エーテル、及び環状エーテルのいずれであってもよい。エーテルとしては、例えば、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、メチル-t-ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジヒドロピラン、及び1,4-ジオキサンが挙げられる。
 アルコールは、第1級アルコール、第2級アルコール、及び第3級アルコールのいずれであってもよい。
 アルコールとしては、例えば、エタノール、1-プロパノール、2-プロパノール、1-メトキシ-2-プロパノール、1-ブタノール、2-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、1-オクタノール、2-オクタノール、3-オクタノール、テトラヒドロフルフリルアルコール、シクロペンタノール、テルピネオール、デカノール、イソデシルアルコール、ラウリルアルコール、イソラウリルアルコール、ミリスチルアルコール、イソミリスチルアルコール、セチルアルコール(セタノール)、イソセチルアルコール、ステアリルアルコール、イソステアリルアルコール、オレイルアルコール、イソオレイルアルコール、リノリルアルコール、イソリノリルアルコール、パルミチルアルコール、イソパルミチルアルコール、アイコシルアルコール、及びイソアイコシルアルコールが挙げられる。
 ケトンとしては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、及びシクロヘキサノンが挙げられる。
 エステルとしては、例えば、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸メトキシブチル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート、及び3-メトキシブチルアセテートが挙げられる。
(還元剤)
 金属錯体インクは、還元剤を含有していてもよい。金属錯体インクに還元剤が含まれていると、金属錯体から金属への還元が促進される。
 還元剤としては、例えば、水素化ホウ素金属塩、水素化アルミニウム塩、アミン化合物、アルコール、有機酸、還元糖、糖アルコール、亜硫酸ナトリウム、ヒドラジン化合物、デキストリン、ハイドロキノン、ヒドロキシルアミン、エチレングリコール、グルタチオン、及びオキシム化合物が挙げられる。
 還元剤は、特表2014-516463号公報に記載のオキシム化合物であってもよい。オキシム化合物としては、例えば、アセトンオキシム、シクロヘキサノンオキシム、2-ブタノンオキシム、2,3-ブタンジオンモノオキシム、ジメチルグリオキシム、メチルアセトアセテートモノオキシム、メチルピルベートモノオキシム、ベンズアルデヒドオキシム、1-インダノンオキシム、2-アダマンタノンオキシム、2-メチルベンズアミドオキシム、3-メチルベンズアミドオキシム、4-メチルベンズアミドオキシム、3-アミノベンズアミドオキシム、4-アミノベンズアミドオキシム、アセトフェノンオキシム、ベンズアミドオキシム、及びピナコロンオキシムが挙げられる。
 金属錯体インクに含まれる還元剤は、1種であってもよく、2種以上であってもよい。
 金属錯体インク中、還元剤の含有量は特に限定されないが、0.1質量%~20質量%であることが好ましく、0.3質量%~10質量%であることがより好ましく、1質量%~5質量%であることがさらに好ましい。
(樹脂)
 金属錯体インクは、樹脂を含有していてもよい。金属錯体インクに樹脂が含まれていると、金属錯体インクの基材への密着性が向上する。
 樹脂としては、例えば、ポリエステル、ポリエチレン、ポリプロピレン、ポリアセタール、ポリオレフィン、ポリカーボネート、ポリアミド、フッ素樹脂、シリコーン樹脂、エチルセルロース、ヒドロキシエチルセルロース、ロジン、アクリル樹脂、ポリ塩化ビニル、ポリスルホン、ポリビニルピロリドン、ポリビニルアルコール、ポリビニル系樹脂、ポリアクリロニトリル、ポリスルフィド、ポリアミドイミド、ポリエーテル、ポリアリレート、ポリエーテルエーテルケトン、ポリウレタン、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂、メラミン樹脂、及び尿素樹脂が挙げられる。
 金属錯体インクに含まれる樹脂は、1種であってもよく、2種以上であってもよい。
(添加剤)
 金属錯体インクは、本開示の効果を損なわない範囲で、さらに、無機塩、有機塩、シリカ等の無機酸化物;表面調整剤、湿潤剤、架橋剤、酸化防止剤、防錆剤、耐熱安定剤、界面活性剤、可塑剤、硬化剤、増粘剤、シランカップリング剤等の添加剤を含有してもよい。金属錯体インク中、添加剤の合計含有量は、金属錯体インクの全量に対して、20質量%以下であることが好ましい。
 金属錯体インクの粘度は特に限定されず、0.01Pa・s~5000Pa・sであればよく、0.1Pa・s~100Pa・sであることが好ましい。金属錯体インクをスプレー法又はインクジェット記録方式を用いて付与する場合には、金属錯体インクの粘度は、1mPa・s~100mPa・sであることが好ましく、2mPa・s~50mPa・sであることがより好ましく、3mPa・s~30mPa・sであることがさらに好ましい。
 金属錯体インクの粘度は、粘度計を用い、25℃で測定される値である。粘度は、例えば、VISCOMETER TV-22型粘度計(東機産業社製)を用いて測定される。
 金属錯体インクの表面張力は特に限定されず、20mN/m~45mN/mであることが好ましく、25mN/m~35mN/mであることがより好ましい。表面張力は、表面張力計を用い、25℃で測定される値である。表面張力は、例えば、DY-700(協和界面科学社製)を用いて測定される。
<金属塩インク>
 金属塩インクは、例えば、金属塩が溶媒中に溶解したインク組成物である。
 金属塩を構成する金属としては、例えば、銀、銅、金、アルミニウム、マグネシウム、タングステン、モリブデン、亜鉛、ニッケル、鉄、白金、スズ、銅、及び鉛が挙げられる。中でも、導電性の観点から、金属塩を構成する金属は、銀、金、白金、ニッケル、パラジウム及び銅からなる群より選択される少なくとも1種を含むことが好ましく、銀を含むことがより好ましい。
 金属塩インクに含まれる金属の含有量は、金属塩インクの全量に対して、金属元素換算で1質量%~40質量%であることが好ましく、5質量%~30質量%であることがより好ましく、7質量%~20質量%であることがさらに好ましい。
 金属塩インク中、金属塩の含有量は、金属塩インクの全量に対して、10質量%~90質量%であることが好ましく、10質量%~40質量%であることがより好ましい。金属塩の含有量は10質量%以上であると、表面抵抗率がより低下する。金属塩の含有量が90質量%以下であると、スプレー方式、又はインクジェット記録方式を用いて金属粒子インクを付与する場合に、吐出性が向上する。
 金属塩としては、例えば、金属の安息香酸塩、ハロゲン化物、炭酸塩、クエン酸塩、ヨウ素酸塩、亜硝酸塩、硝酸塩、酢酸塩、リン酸塩、硫酸塩、硫化物、トリフルオロ酢酸塩、及びカルボン酸塩が挙げられる。なお、塩は、2種以上を組み合わせてもよい。
 金属塩は、導電性及び保存安定性の観点から、金属カルボン酸塩であることが好ましい。カルボン酸塩を形成するカルボン酸は、ギ酸及び炭素数1~30のカルボン酸からなる群より選択される少なくとも1種であることが好ましく、炭素数8~20のカルボン酸であることがより好ましく、炭素数8~20の脂肪酸であることがさらに好ましい。脂肪酸は直鎖状であってもよく、分岐鎖状であってもよく、置換基を有していてもよい。
 直鎖脂肪酸としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、ペンタン酸、ヘキサン酸、ヘプタン酸、ベヘン酸、オレイン酸、オクタン酸、ノナン酸、デカン酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、及びウンデカン酸が挙げられる。
 分岐脂肪酸としては、例えば、イソ酪酸、イソ吉草酸、エチルヘキサン酸、ネオデカン酸、ピバル酸、2-メチルペンタン酸、3-メチルペンタン酸、4-メチルペンタン酸、2,2-ジメチルブタン酸、2,3-ジメチルブタン酸、3,3-ジメチルブタン酸、及び2-エチルブタン酸が挙げられる。
 置換基を有するカルボン酸としては、例えば、ヘキサフルオロアセチルアセトン酸、ヒドロアンゲリカ酸、3-ヒドロキシ酪酸、2-メチル-3-ヒドロキシ酪酸、3-メトキシ酪酸、アセトンジカルボン酸、3-ヒドロキシグルタル酸、2-メチル-3-ヒドロキシグルタル酸、及び2,2,4,4-ヒドロキシグルタル酸が挙げられる。
 金属塩は市販品であってもよく、公知の方法により製造されたものであってもよい。銀塩は、例えば、以下の方法で製造される。
 まず、エタノール等の有機溶媒中に、銀の供給源となる銀化合物(例えば酢酸銀)と、銀化合物のモル当量に対して等量のギ酸又は炭素数1~30の脂肪酸とを加える。所定時間、超音波撹拌機を用いて撹拌し、生成した沈殿物をエタノールで洗浄してデカンテーションする。これらの工程は全て室温で行うことができる。銀化合物と、ギ酸又は炭素数1~30の脂肪酸との混合比は、モル比で1:2~2:1であることが好ましく、1:1であることがより好ましい。
 金属塩インクは、溶媒、還元剤、樹脂、及び添加剤を含有していてもよい。溶媒、還元剤、樹脂、及び添加剤の好ましい態様は、金属錯体インクに含まれていてもよい溶媒、還元剤、樹脂、及び添加剤と同様である。
 金属塩インクの粘度は特に限定されず、0.01Pa・s~5000Pa・sであればよく、0.1Pa・s~100Pa・sであることが好ましい。金属塩インクをスプレー法又はインクジェット記録方式を用いて付与する場合には、金属塩インクの粘度は、1mPa・s~100mPa・sであることが好ましく、2mPa・s~50mPa・sであることがより好ましく、3mPa・s~30mPa・sであることがさらに好ましい。
 金属塩インクの粘度は、粘度計を用い、25℃で測定される値である。粘度は、例えば、VISCOMETER TV-22型粘度計(東機産業社製)を用いて測定される。
 金属塩インクの表面張力は特に限定されず、20mN/m~45mN/mであることが好ましく、25mN/m~35mN/mであることがより好ましい。表面張力は、表面張力計を用い、25℃で測定される値である。表面張力は、例えば、DY-700(協和界面科学社製)を用いて測定される。
 本開示の導電積層体の製造方法では、基材上に、上記金属粒子インク、金属錯体インク、及び金属塩インクからなる群より選択される少なくとも1種の導電性インクを付与する工程と、付与された導電性インクを焼成する工程とを、含み、導電性インクを付与する工程と焼成する工程とを、2回以上繰り返すことが好ましい。また、本開示の導電積層体の製造方法では、導電性インクを複数回付与した後に焼成してもよい。特に、第1空隙率が15%~50%であり、かつ、第2空隙率が第1空隙率より小さい導電積層体を得るために、本開示の導電積層体の製造方法では、基材上に、上記金属粒子インクを付与し、金属粒子インクを焼成する工程を含むことが好ましい。
 
本開示の導電積層体の製造方法の好ましい態様としては、以下の態様が挙げられる。
(1)金属粒子インクを付与する工程、焼成工程、金属錯体インクを付与する工程、及び、焼成工程をこの順に行う方法
(2)金属粒子インクを付与する工程、焼成工程、金属粒子インクを付与する工程、及び、焼成工程をこの順に行う方法
(3)金属錯体インクを付与する工程、焼成工程、金属錯体インクを付与する工程、及び、焼成工程をこの順に行う方法
(4)金属粒子インクを付与する工程、焼成工程、金属錯体インクを付与する工程、焼成工程、金属錯体インクを付与する工程、及び、焼成工程をこの順に行う方法
(5)金属粒子インクを付与する工程、焼成工程、金属錯体インクを付与する工程、焼成工程、金属錯体インクを付与する工程、焼成工程、金属錯体インクを付与する工程、及び、焼成工程をこの順に行う方法
(6)金属粒子インクを付与する工程、焼成工程、金属粒子インクを付与する工程、焼成工程、金属粒子インクを付与する工程、焼成工程、金属錯体インクを付与する工程、及び、焼成工程をこの順に行う方法
 上記製造方法の好ましい態様において、金属粒子インクを付与する工程が2回以上含まれる場合に、各工程で用いる金属粒子インクは同じであっても異なっていてもよい。また、上記製造方法において、金属錯体インクを付与する工程が2回以上含まれる場合に、各工程で用いる金属錯体インクは同じであっても異なっていてもよい。なお、2つのインクが同じであるとは、インクに含まれる成分の種類及び含有量が同じであることを意味し、2つのインクが異なるとは、インクに含まれる成分の種類及び含有量の少なくとも一方が互いに異なることを意味する。
 上記製造方法の好ましい態様において、各焼成工程における焼成温度及び焼成時間は同じであってもよく、異なっていてもよい。
 特に、本開示の導電積層体の製造方法は、基材上に、金属粒子を含む第1導電性インクを付与する工程(以下、「第1付与工程」という)と、第1導電性インクを焼成する工程(以下、「第1焼成工程」という)と、焼成後の第1導電性インク上に、金属塩又は金属錯体を含む第2導電性インクを付与する工程(以下、「第2付与工程」という)と、第2導電性インクを焼成する工程(以下、「第2焼成工程」という)と、を含むことが好ましい。
(第1付与工程)
 第1付与工程は、基材上に、金属粒子を含む第1導電性インクを付与する工程である。基材の詳細は、上記のとおりである。
 基材上に第1導電性インクを付与する方法は特に限定されず、例えば、塗布法、インクジェット記録方式、浸漬法等の公知の方法が挙げられる。中でも、少量を打滴して導電性インク膜の厚さを薄くできる観点から、第1付与工程では、インクジェット記録方式を用いて、第1導電性インクを付与することが好ましい。
 インクジェット記録方式は、静電誘引力を利用してインクを吐出させる電荷制御方式、ピエゾ素子の振動圧力を利用するドロップオンデマンド方式(圧力パルス方式)、電気信号を音響ビームに変えインクに照射して放射圧を利用してインクを吐出させる音響インクジェット方式、及びインクを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット(バブルジェット(登録商標))方式のいずれであってもよい。
 インクジェット記録方式としては、特に、特開昭54-59936号公報に記載の方法で、熱エネルギーの作用を受けたインクが急激な体積変化を生じ、この状態変化による作用力によって、インクをノズルから吐出させるインクジェット記録方式を有効に利用することができる。
 また、インクジェット記録方式については、特開2003-306623号公報の段落0093~0105に記載の方法も参照できる。
 インクジェット記録方式に用いるインクジェットヘッドとしては、短尺のシリアルヘッドを用い、ヘッドを基材の幅方向に走査させながら記録を行なうシャトル方式と、基材の1辺の全域に対応して記録素子が配列されているラインヘッドを用いたライン方式とが挙げられる。
 ライン方式では、記録素子の配列方向と交差する方向に基材を走査させることで基材の全面にパターン形成を行なうことができ、短尺ヘッドを走査するキャリッジ等の搬送系が不要となる。
 また、キャリッジの移動と基材との複雑な走査制御が不要になり、基材だけが移動するので、シャトル方式に比べて形成速度の高速化が実現できる。
 インクジェットヘッドから吐出される第1導電性インクの打滴量は、1pL(ピコリットル)~100pLであることが好ましく、3pL~80pLであることがより好ましく、3pL~20pLであることがさらに好ましい。
 第1付与工程において、第1導電性インクを付与する際の基材の温度は、20℃~120℃であることが好ましく、40℃~80℃であることがより好ましい。基材の温度が20℃~120℃であると、熱による基材変形等の影響が小さく、インクの乾燥を促進される
(第1焼成工程)
 第1焼成工程は、第1導電性インクを焼成する工程である。
 第1焼成工程では、焼成温度は250℃以下であり、かつ、焼成時間は1分~120分であることが好ましい。
 焼成温度は、50℃~200℃であることがより好ましく、60℃~120℃であることがさらに好ましい。また、焼成時間は、1分~40分であることがより好ましい。焼成温度及び焼成時間が上記範囲であると、熱による基材変形等の影響を小さく、インクを焼成することが可能である。
 導電性インク膜の空隙率は、焼成温度及び焼成時間によって調整することができる。例えば、焼成温度が高いと、空隙率が低くなる傾向にある。
 焼成方法は特に限定されず、通常公知の方法により行うことができる。
 第2付与工程を終了した時点から第2焼成工程を開始する時点までの時間は60秒以下であることが好ましい。上記時間の下限値は特に限定されないが、例えば、1マイクロ秒である。上記時間が60秒以下であると、導電性インクが基材へ浸透する前に、導電性インクに含まれる溶媒が取り除かれることにより、導電性インク膜の表面に、より密度の高い膜が形成されやすい。
 なお、「第2付与工程を終了した時点」とは、第2導電性インクの全てのインク滴が基材に着弾した時点をいう。
 「第2焼成工程を開始する時点」とは、基材を焼成工程の装置に入れ、加温を開始した時点を指す。
(第2付与工程)
 第2付与工程は、焼成後の第1導電性インク上に、金属錯体を含む第2導電性インクを付与する工程である。
 焼成後の第1導電性インク上に第2導電性インクを付与する方法は特に限定されず、例えば、塗布法、インクジェット記録方式、浸漬法等の公知の方法が挙げられる。中でも、少量を打滴して導電性インク膜の厚さを薄くできる観点から、第2付与工程では、インクジェット記録方式を用いて、第2導電性インクを付与することが好ましい。インクジェット記録方式の詳細は上記のとおりである。
 第2付与工程において、第2導電性インクを付与する際の基材の温度は、20℃~120℃であることが好ましく、40℃~80℃であることがより好ましい。
(第2焼成工程)
 第2焼成工程は、第2導電性インクを焼成する工程である。
 第2焼成工程では、焼成温度は250℃以下であり、かつ、焼成時間は1分~120分であることが好ましい。焼成温度及び焼成時間が上記範囲であると、熱による基材変形等の影響を小さくし、インクを焼成することが可能である。
 焼成温度は、50℃~200℃であることがより好ましく、60℃~120℃であることがさらに好ましい。また、焼成時間は、1分~40分であることがより好ましい。
 焼成方法は特に限定されず、通常公知の方法により行うことができる。
 以下、本開示を実施例によりさらに具体的に説明するが、本開示はその主旨を超えない限り、以下の実施例に限定されるものではない。
<導電性インク(銀粒子インク)の調製>
(1)銀粒子インクA1
-銀粒子分散液1の調製-
 分散剤としてポリビニルピロリドン(重量平均分子量3000、シグマアルドリッチ社製)6.8gを水100mLに溶解させた溶液aを調製した。別途、硝酸銀50.00gを水200mLに溶解させた溶液bを調製した。溶液aと溶液bとを混合し、攪拌して得られた混合液に、85質量%N,N-ジエチルヒドロキシルアミン水溶液78.71gを室温で滴下し、さらに、ポリビニルピロリドン6.8gを水1000mLに溶解させた溶液を室温でゆっくり滴下した。得られた懸濁液を限外濾過ユニット(ザルトリウス・ステディム社製ビバフロー50、分画分子量:10万、ユニット数:4個)に通し、限外濾過ユニットから約5Lの滲出液が出るまで精製水を通過させて精製した。精製水の供給を止め、濃縮し、銀粒子分散液1を30g得た。この分散液中の固形分の含有量は50質量%であり、固形分中の銀の含有量をTG-DTA(示差熱熱重量同時測定)(日立ハイテク社製、モデル:STA7000シリーズ)により測定したところ、96.0質量%であった。得られた銀粒子分散液1を、イオン交換水を用いて20倍に希釈し、粒径アナライザーFPAR-1000(大塚電子社製)を用いて測定を行い、銀粒子の体積平均粒子径を求めた。銀粒子分散液1の体積粒径は60nmであった。
-銀粒子インクA1の調整-
 銀粒子分散液10gに2-プロパノール2g、界面活性剤としてオルフィンE-1010(日信化学工業社製)0.1gを添加し、銀濃度が40質量%になるように水を添加し、導電性インクA1を得た。
(2)銀粒子インクA2
-銀粒子分散液2の調製-
 銀粒子分散液1における分散剤を、ポリビニルピロリドン(重量平均分子量6000、シグマアルドリッチ社製)に変更し、ポリビニルピロリドンの添加量をそれぞれ6.8gから7.4gに変更したこと以外は、銀粒子分散液1と同様の方法で、銀粒子分散液2を調製した。なお、銀粒子分散液2の体積粒径は100nmであった。
-銀粒子インクA2の調製-
 銀粒子分散液1の代わりに銀粒子分散液2を用いたこと以外は、銀粒子インクA1と同様の方法で銀粒子インクA2を調製した。
<導電性インク(銀錯体インク)の調製>
(1)銀錯体インクB1
 50mLの3口フラスコに、1-プロパノール5.0g、酢酸銀0.17g、及びギ酸0.05gを加え、20分間撹拌した。生成した銀塩の沈殿物を、1-プロパノールを用いて3回デカンテーションを行い、洗浄した。沈殿物に、1-プロピルアミン0.12g、及び1-プロパノール5.0gを加え、30分間撹拌した。次に、水1.0gを加え、さらに撹拌し、銀錯体を含む溶液を得た。この溶液を、孔径0.45μmのPTFE(ポリテトラフルオロエチレン)製メンブレンフィルターを使用してろ過し、銀錯体インクB1を得た。
(2)銀錯体インクB2
 50mLの3口フラスコに、イソブチルアンモニウムカーボネート6.08g、及びイソプロピルアルコール15.0gを加え、溶解させた。次に、酸化銀2.0gを加え、常温で2時間反応させ、均一な溶液を得た。さらに、2-ヒドロキシ-2-メチルプロピルアミン0.3gを加え、撹拌し、銀錯体を含む溶液を得た。この溶液を、孔径0.45μmのPTFE(ポリテトラフルオロエチレン)製メンブレンフィルターを使用してろ過し、銀錯体インクB2を得た。
(3)銀錯体インクB3
 25mLの3口フラスコに、ネオデカン酸銀2.5g、キシレン5g、及びテルピネオール3.0gを加え、溶解させた。次に、tert-オクチルアミン1gを加え撹拌し、銀錯体を含む溶液を得た。常温で2時間反応させ、均一な溶液を得た。この溶液を、孔径0.45μmのPTFE(ポリテトラフルオロエチレン)製メンブレンフィルターを使用してろ過し、銀錯体インクB3を得た。
(4)銀錯体インクB4
 25mLの3口フラスコに、水5.0g、酢酸銀1.0g、エチレンジアミン1.0g、及びアミルアミン1.0gを加え、20分間撹拌した。得られた溶液にギ酸0.2gを加え、さらに30分間撹拌し銀錯体を含む溶液を得た。この溶液を、孔径0.45μmのPTFE(ポリテトラフルオロエチレン)製メンブレンフィルターを使用してろ過し、銀錯体インクB4を得た。
<導電性インク(銀塩インク)の調製>
・銀塩インクC1
 50mLの3口フラスコに、ネオデカン酸銀4gを加えた。次に、トリメチルベンゼン3.0g、及びテルピネオール3.0gを加え、撹拌し、銀塩を含む溶液を得た。この溶液を、孔径0.45μmのPTFE(ポリテトラフルオロエチレン)製メンブレンフィルターを使用してろ過し、銀塩インクC1を得た。
[実施例1]
 基材として、ポリエチレンテレフタレートフィルム(製品名「ビューフルUV TP-100」、きもと社製)を準備した。銀粒子インクA1を、インクジェット記録装置(製品名「DMP-2850」、FUJIFILM DIMATIX社製)用インクカートリッジ(10ピコリットル用)に充填した。画像記録条件は、解像度を600dpi(dots per inch)、打滴量を1ドット当たり10ピコリットルとした。基材をあらかじめ60℃まで加温し、60℃の基材上に、幅5cm、長さ10cmのベタ画像を記録した(付与工程1)。銀粒子インクA1の最後のインク滴が基材上に着弾した時点から1秒経過した後に、ホットプレートを用いて、ベタ画像を150℃で20分間加熱した(焼成工程1)。これにより、基材上に、金属光沢のある導電性インク膜が形成された。
 次に、銀錯体インクB1を、インクジェット記録装置(製品名「DMP-2850」、FUJIFILM DIMATIX社製)用インクカートリッジ(10ピコリットル用)に充填した。銀粒子インクA1による導電性インク膜が形成された基材をあらかじめ60℃まで加温し、60℃の基材上に、上記ベタ画像と重なるように、上記画像記録条件と同じ条件でベタ画像を記録した(付与工程2)。銀錯体インクB1の最後のインク滴が基材上に着弾した時点から1秒経過した後に、ホットプレートを用いてベタ画像を、ホットプレートを用いて120℃で20分間加熱し、金属光沢のある厚さ7μmの導電性インク膜が形成された導電積層体を得た(焼成工程2)。
[実施例2~実施例18及び比較例1~比較例6]
 実施例2~実施例18及び比較例1~比較例6では、導電性インクの種類、基材の温度、焼成温度、及び焼成時間を、表1及び表2に記載の条件に変更したこと以外は、実施例1と同様の方法で導電積層体を得た。付与工程1、焼成工程1、付与工程2、焼成工程2、付与工程3、焼成工程3、付与工程4、及び焼成工程4の順で、各処理を行った。焼成工程2で処理を終えた実施例及び比較例については、表中、付与工程3以降に「-」を記載した。また、表に、各導電積層体における導電性インク膜の厚さ(膜厚)を記載した。
 なお、比較例6に関しては、焼成工程1における焼成温度が低いため、銀の焼成が不十分であり、基材上に形成された導電性インク膜は黒色であった。
[実施例19]
 実施例19では、第2付与工程を終了した時点から第2焼成工程を開始するまでの時間を60秒に変更したこと以外は、実施例2と同様の方法で導電積層体を得た。
 各実施例及び各比較例で得られた導電積層体を用いて、第1空隙率及び第2空隙率を測定し、表面抵抗率及び熱サイクル安定性に関する評価を行った。測定結果及び評価結果を表に示す。
<第1空隙率及び第2空隙率の測定>
 導電積層体をミクロトーム(製品名RM2255、Leica社製)を用いて、導電積層体の厚さ方向に向かって切断し、断面を得た。得られた断面を走査型電子顕微鏡(製品名S-4700、HITACHI社製)を用いて、断面観察写真を得た。
 得られた断面観察写真を、画像ソフト(Adobe Systems,Inc.製“Adobe Photoshop”)にて閾値を調整して、導電性物質が存在する白の領域と、空隙が存在する黒の領域とに二値化した。得られた画像のインク膜表面側の上位5点の凸部と下位5点の凹部を平均した位置を上辺とした。また、インク膜基材側についても同様に計算して得られた位置を底辺とした。上辺と底辺の間を10等分して底辺から5等分目までの領域を基材側50%領域、基材側から9等分目から上位領域を非基材側10%領域とした。
 第1空隙率は、上記断面観察写真における基材側50%領域において、領域全体の面積に対する黒の領域(空隙)の面積の割合として算出した。
 第2空隙率は、上記断面観察写真における非基材側10%領域において、領域全体の面積に対する黒の領域(空隙)の面積の割合として算出した。
<表面抵抗率の評価>
 導電性インク膜の表面が5cm×10cmの大きさとなるように印刷パターンを形成し、評価サンプルを得た。
 評価サンプルにおける導電性インク膜について、抵抗率計(商品名「ロレスターGP」、三菱化学アナリテック社製)を用い、表面抵抗率[Ω/□]を4端子法により室温(23℃)下で測定した。評価基準は以下のとおりである。ランク2以上は、実用上問題ないレベルである。
 5:表面抵抗率が5Ω/□未満である。 
 4:表面抵抗率が5Ω/□以上10Ω/□未満である。 
 3:表面抵抗率が10Ω/□以上15Ω/□未満である。
 2:表面抵抗率が15Ω/□以上20Ω/□未満である。
 1:表面抵抗率が20Ω/□以上である。
<熱サイクル安定性の評価>
 導電性インク膜の表面が5cm×10cmの大きさとなるように印刷パターンを形成し、評価サンプルを得た。
 あらかじめ、評価サンプルにおける導電性インク膜について、抵抗率計(商品名「ロレスターGP」、三菱化学アナリテック社製)を用い、体積抵抗率を測定した。
 評価サンプルに対して、60℃と-20℃のサイクルサーモ試験を実施した。なお、各温度交互に2時間ずつ加温、冷却できるようにプログラムし、7日間実施した。試験終了後に、評価サンプルにおける導電性インク膜について、表面抵抗率を測定した。試験開始前の表面抵抗率と、試験終了後の表面抵抗率との変化量に基づいて、熱サイクル安定性の評価を行った。評価基準は以下のとおりである。表面抵抗率の変化量が少ないほど、熱サイクル安定性に優れるといえる。ランク2以上は、実用上問題ないレベルである。
 変化量=(試験終了後の表面抵抗率)-(試験開始前の表面抵抗率)
 5:変化量が1.5Ω/□未満である。
 4:変化量が1.5Ω/□以上2.0Ω/□未満である。
 3:変化量が2.0Ω/□以上2.5Ω/□未満である。
 2:変化量が2.5Ω/□以上3.0Ω/□未満である。
 1:変化量が3.0Ω/□以上である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~表3に示すように、実施例1~実施例18では、基材と、基材上に設けられた導電性インク膜と、を備え、導電性インク膜は、導電性インク膜において、基材に近い側の面を第1主面、基材から遠い側の面を第2主面としたとき、第1主面から第2主面に向かって50%の厚さ位置までの領域における第1空隙率が15%~50%であり、かつ、第2主面から第1主面に向かって10%の厚さ位置から、第2主面までの領域における第2空隙率が、第1空隙率より小さいため、表面抵抗率が低く、熱サイクル安定性に優れることが分かった。
 一方、比較例1及び比較例5では、第1空隙率が15%未満であり、熱サイクル安定性に劣ることが分かった。
 比較例2では、第1空隙率が50%超えであり、表面抵抗率が高いことが分かった。
 比較例3、比較例4、及び比較例6では、第2空隙率が第1空隙率と同じであるか、又は、第2空隙率が第1空隙率より大きく、表面抵抗率が高いことが分かった。
 実施例1では、第1導電性インクを付与する工程において、第1導電性インクを付与する際の基材の温度が20℃~120℃であり、実施例13と比較して、熱サイクル安定性に優れることが分かった。
 実施例1では、第1導電性インクを焼成する工程における焼成温度が250℃以下であり、かつ、焼成時間が1分~120分であり、実施例14と比較して、熱サイクル安定性に優れることが分かった。
 表4に示すように、実施例2では、第2付与工程を終了した時点から第2焼成工程を開始するまでの時間が1秒であり、上記時間が60秒である実施例19と比較して第2空隙率が高く、表面抵抗率が高いことが分かった。
 なお、2020年9月30日に出願された日本国特許出願2020-165595号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (18)

  1.  基材と、前記基材上に設けられた導電性インク膜と、を備え、
     前記導電性インク膜において、前記基材に近い側の面を第1主面、前記基材から遠い側の面を第2主面としたとき、
     前記第1主面から前記第2主面に向かって50%の厚さ位置までの領域における第1空隙率が15%~50%であり、かつ、
     前記第2主面から前記第1主面に向かって10%の厚さ位置から、前記第2主面までの領域における第2空隙率が、前記第1空隙率より小さい
     導電積層体。
  2.  前記第1空隙率が30%~40%である、請求項1に記載の導電積層体。
  3.  前記第2空隙率が20%以下である、請求項1又は請求項2に記載の導電積層体。
  4.  前記導電性インク膜は、銀、金、白金、ニッケル、パラジウム及び銅からなる群より選択される少なくとも1種を含む、請求項1~請求項3のいずれか1項に記載の導電積層体。
  5.  前記導電性インク膜は、厚さが0.5μm~30μmである、請求項1~請求項4のいずれか1項に記載の導電積層体。
  6.  基材上に、金属粒子を含む第1導電性インクを付与する工程と、
     前記第1導電性インクを焼成する工程と、
     焼成後の第1導電性インク上に、金属塩又は金属錯体を含む第2導電性インクを付与する工程と、
     前記第2導電性インクを焼成する工程と、を含む
     請求項1~請求項5のいずれか1項に記載の導電積層体の製造方法。
  7.  前記金属粒子は、銀、金、白金、ニッケル、パラジウム及び銅からなる群より選択される少なくとも1種を含む粒子である、請求項6に記載の導電積層体の製造方法。
  8.  前記金属粒子は、平均粒径が10nm~200nmである、請求項6又は請求項7に記載の導電積層体の製造方法。
  9.  前記金属粒子の含有量は、前記第1導電性インクの全量に対して10質量%~90質量%である、請求項6~請求項8のいずれか1項に記載の導電積層体の製造方法。
  10.  前記金属塩及び前記金属錯体はそれぞれ、銀、金、白金、ニッケル、パラジウム及び銅からなる群より選択される少なくとも1種を含む、請求項6~請求項9のいずれか1項に記載の導電積層体の製造方法。
  11.  前記金属錯体は、アンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物、アルキルアミン、及び、炭素数8~20のカルボン酸からなる群より選択される少なくとも1種に由来する構造を有する金属錯体であり、
     前記金属塩は、炭素数8~20の金属カルボン酸塩である、請求項6~請求項10のいずれか1項に記載の導電積層体の製造方法。
  12.  前記金属塩及び前記金属錯体の含有量はそれぞれ、前記第2導電性インクの全量に対して10質量%~90質量%である、請求項6~請求項11のいずれか1項に記載の導電積層体の製造方法。
  13.  前記第1導電性インクを付与する工程では、インクジェット記録方式を用いて前記第1導電性インクを付与し、
     前記第2導電性インクを付与する工程では、インクジェット記録方式を用いて前記第2導電性インクを付与する、請求項6~請求項12のいずれか1項に記載の導電積層体の製造方法。
  14.  前記第1導電性インクを付与する工程において、前記第1導電性インクを付与する際の基材の温度は、20℃~120℃である、請求項6~請求項13のいずれか1項に記載の導電積層体の製造方法。
  15.  前記第1導電性インクを焼成する工程では、焼成温度は250℃以下であり、かつ、焼成時間は1分~120分である、請求項6~請求項14のいずれか1項に記載の導電積層体の製造方法。
  16.  前記第2導電性インクを付与する工程において、前記第2導電性インクを付与する際の基材の温度は、20℃~120℃である、請求項6~請求項15のいずれか1項に記載の導電積層体の製造方法。
  17.  前記第2導電性インクを焼成する工程では、焼成温度は250℃以下であり、かつ、焼成時間は1分~120分である、請求項6~請求項16のいずれか1項に記載の導電積層体の製造方法。
  18.  前記第2導電性インクを付与する工程を終了した時点から前記第2導電性インクを焼成する工程を開始する時点までの時間は60秒以下である、請求項6~請求項17のいずれか1項に記載の導電積層体の製造方法。
PCT/JP2021/035589 2020-09-30 2021-09-28 導電積層体、及び、導電積層体の製造方法 WO2022071300A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180066283.8A CN116234641B (zh) 2020-09-30 2021-09-28 导电层叠体及导电层叠体的制造方法
JP2022553998A JPWO2022071300A1 (ja) 2020-09-30 2021-09-28
US18/173,773 US20230212413A1 (en) 2020-09-30 2023-02-23 Conductive laminate and manufacturing method of conductive laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020165595 2020-09-30
JP2020-165595 2020-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/173,773 Continuation US20230212413A1 (en) 2020-09-30 2023-02-23 Conductive laminate and manufacturing method of conductive laminate

Publications (1)

Publication Number Publication Date
WO2022071300A1 true WO2022071300A1 (ja) 2022-04-07

Family

ID=80950458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035589 WO2022071300A1 (ja) 2020-09-30 2021-09-28 導電積層体、及び、導電積層体の製造方法

Country Status (4)

Country Link
US (1) US20230212413A1 (ja)
JP (1) JPWO2022071300A1 (ja)
CN (1) CN116234641B (ja)
WO (1) WO2022071300A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286152A (ja) * 2006-04-13 2007-11-01 Konica Minolta Holdings Inc 電子写真用受像材料
WO2012026033A1 (ja) * 2010-08-27 2012-03-01 Dowaエレクトロニクス株式会社 低温焼結性銀ナノ粒子組成物および該組成物を用いて形成された電子物品
JP2015514265A (ja) * 2012-04-20 2015-05-18 エルジー・ケム・リミテッド 導電性パターン形成用基材およびこれを用いて形成された導電性パターン
JP2018041939A (ja) * 2016-09-09 2018-03-15 コニカミノルタ株式会社 導電性パターンの形成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10225931B2 (en) * 2015-06-04 2019-03-05 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
JP6583220B2 (ja) * 2016-11-15 2019-10-02 株式会社村田製作所 コンデンサ及びコンデンサの製造方法
US11077664B2 (en) * 2017-05-17 2021-08-03 Arizona Board Of Regents On Behalf Of Arizona State University Systems and methods for controlling the morphology and porosity of printed reactive inks for high precision printing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286152A (ja) * 2006-04-13 2007-11-01 Konica Minolta Holdings Inc 電子写真用受像材料
WO2012026033A1 (ja) * 2010-08-27 2012-03-01 Dowaエレクトロニクス株式会社 低温焼結性銀ナノ粒子組成物および該組成物を用いて形成された電子物品
JP2015514265A (ja) * 2012-04-20 2015-05-18 エルジー・ケム・リミテッド 導電性パターン形成用基材およびこれを用いて形成された導電性パターン
JP2018041939A (ja) * 2016-09-09 2018-03-15 コニカミノルタ株式会社 導電性パターンの形成方法

Also Published As

Publication number Publication date
JPWO2022071300A1 (ja) 2022-04-07
CN116234641B (zh) 2024-04-19
CN116234641A (zh) 2023-06-06
US20230212413A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
JP5923608B2 (ja) 銀ナノ粒子含有インクの製造方法及び銀ナノ粒子含有インク
JP6037494B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
JP5972479B2 (ja) 銀ナノ粒子含有分散液の製造方法及び銀ナノ粒子含有分散液
JP5791146B2 (ja) コロイド分散液
TWI635918B (zh) 銀奈米粒子之製造方法及銀奈米粒子
KR20140113936A (ko) 은 나노 입자의 제조 방법 및 은 나노 입자, 및 은 도료 조성물
CN109416955B (zh) 导电性糊及导电性图案的形成方法
TW201637994A (zh) 銀微粒子組成物
TWI744372B (zh) 接合用組成物及其製造方法、接合體以及被覆銀奈米粒子
WO2022071300A1 (ja) 導電積層体、及び、導電積層体の製造方法
WO2022071301A1 (ja) 導電積層体、及び、導電積層体の製造方法
WO2023190380A1 (ja) 導電層の製造方法
JP7474122B2 (ja) 銀ナノ粒子及びその製造方法
JP6267835B1 (ja) 接合用組成物及びその製造方法
WO2019111795A1 (ja) インクジェット印刷用インク
WO2023286748A1 (ja) 電子デバイス及び電子デバイスの製造方法
JP7029282B2 (ja) インクジェット印刷用インク
US20240147630A1 (en) Electronic device and manufacturing method of electronic device
JP7060368B2 (ja) インクジェット印刷用インク
WO2022091883A1 (ja) 画像記録方法
WO2022009837A1 (ja) 導電性インク
WO2023189328A1 (ja) 積層体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553998

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875601

Country of ref document: EP

Kind code of ref document: A1