WO2022070542A1 - 電極、及び電極の製造方法 - Google Patents

電極、及び電極の製造方法 Download PDF

Info

Publication number
WO2022070542A1
WO2022070542A1 PCT/JP2021/025572 JP2021025572W WO2022070542A1 WO 2022070542 A1 WO2022070542 A1 WO 2022070542A1 JP 2021025572 W JP2021025572 W JP 2021025572W WO 2022070542 A1 WO2022070542 A1 WO 2022070542A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
active material
particles
electrode mixture
ptfe powder
Prior art date
Application number
PCT/JP2021/025572
Other languages
English (en)
French (fr)
Inventor
大輔 加藤
礼子 泉
拓弥 神
真一郎 近藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP21874846.5A priority Critical patent/EP4224550A1/en
Priority to US18/027,545 priority patent/US20230378468A1/en
Priority to JP2022553479A priority patent/JPWO2022070542A1/ja
Priority to CN202180063987.XA priority patent/CN116157935A/zh
Publication of WO2022070542A1 publication Critical patent/WO2022070542A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to an electrode and a method for manufacturing the electrode.
  • an electrode mixture slurry containing an active material, a binder, etc. is applied to the surface of a core material which is a metal foil, and the coating film is dried. It is produced by a wet method of compression. In this case, there is a problem that migration in which the binder moves during the drying of the coating film is likely to occur. When migration of the binder occurs, the amount of the binder increases on the surface side of the coating film (electrode mixture layer) rather than on the core material side, and the distribution of the binder in the thickness direction of the electrode mixture layer becomes biased. Occurs.
  • an electrode mixture sheet is produced by rolling an electrode mixture and formed into a sheet, and the sheet is attached to a core material to manufacture an electrode.
  • an active material, a particulate binder, and a conductive material are mixed using a mill, and then a large shearing force is applied to the mixture at a high pressure to treat the mixture for a long time.
  • An electrode film (electrode mixture) produced by fibrillating a material is disclosed.
  • Patent Document 1 As a result of the studies by the present inventors, as disclosed in Patent Document 1, when a large shearing force is applied to the electrode mixture and the treatment is performed for a long time, the conductive material adheres to the binder material instead of the active material. It has been found that the mixture resistance is greatly reduced, and as a result, the discharge capacity of the battery is reduced.
  • the electrode according to one aspect of the present disclosure is an electrode in which an electrode mixture containing a coating active material having a conductive material adhered to the surface of the active material and PTFE powder is laminated on the surface of the core material, and is a coating active material.
  • the coverage of the conductive material on the surface of the electrode mixture is 10% to 60%, the mixture resistance of the electrode mixture is 20 ⁇ cm or less, the electrode mixture is divided into three equal parts in the thickness direction, and the electrode mixture is divided into three equal parts from the core material side.
  • the content of the PTFE powder in the 1st region (a), the content of the PTFE powder in the 2nd region (b), and the content of the PTFE powder in the 3rd region satisfies ⁇ 10% ⁇ (ca) / (a + b + c) ⁇ 10%.
  • electrode mixture particles having a solid content concentration of substantially 100% by mixing a coating active material having a conductive material adhered to the surface of the active material and PTFE powder.
  • a mixing step to make an electrode mixture sheet a rolling step to make an electrode mixture sheet by rolling the electrode mixture particles into a sheet, and a pasting to make an electrode by attaching the electrode mixture sheet to the core material. Including the step.
  • an electrode having a low mixture resistance can be obtained, and the discharge capacity of the battery can be increased.
  • FIG. 1 is a cross-sectional view of an electrode which is an example of an embodiment.
  • FIG. 2 is a diagram showing an outline of a mechanofusion reaction apparatus which is an apparatus for producing a coating active material in an example of the embodiment.
  • FIG. 3A is a diagram showing a mixing step in the electrode manufacturing process which is an example of the embodiment, and
  • FIG. 3B is a diagram showing a rolling step.
  • the figure is a figure which shows the bonding step in the manufacturing process of an electrode which is an example of an embodiment.
  • the electrode according to the present disclosure is suitable for a non-aqueous electrolyte secondary battery such as a lithium ion battery, but it can also be applied to a battery containing an aqueous electrolyte or a power storage device such as a capacitor.
  • a non-aqueous electrolyte secondary battery such as a lithium ion battery
  • a power storage device such as a capacitor
  • FIG. 1 is a cross-sectional view of an electrode which is an example of an embodiment.
  • the electrode 10 includes a core material 11 and an electrode mixture 12 provided on the surface of the core material 11. As shown in FIG. 1, the electrode 10 may be provided with an electrode mixture 12 on both sides of the core material 11.
  • the electrode 10 may be a long electrode constituting a wound electrode body, or may be a rectangular electrode constituting a laminated electrode body.
  • the electrode 10 can be applied to the positive electrode, the negative electrode, or both of the non-aqueous electrolyte secondary battery.
  • the core material 11 a metal foil, a film having a metal layer formed on the surface, or the like can be used.
  • the thickness of the core material 11 is, for example, 5 ⁇ m to 20 ⁇ m.
  • a metal foil containing aluminum as a main component can be used for the core material 11.
  • a metal foil containing copper as a main component can be used.
  • the main component means a component having the highest mass ratio.
  • the core material 11 may be a substantially 100% aluminum aluminum foil or a substantially 100% copper copper foil.
  • the electrode mixture 12 contains a coating active material and PTFE powder.
  • the thickness of the electrode mixture 12 is, for example, 30 ⁇ m to 120 ⁇ m, preferably 50 ⁇ m to 100 ⁇ m.
  • the electrode mixture 12 may contain a binder such as polyvinylidene fluoride (PVdF) that does not fibrillate.
  • PVdF polyvinylidene fluoride
  • the coating active material is an active material in which a conductive material is attached to the surface.
  • the coverage of the conductive material on the surface of the coating active material is preferably 10% to 60%, more preferably 20% to 60%. Since the coverage of the conductive material is sufficiently high, the battery characteristics of the electrode can be improved. It is preferable that the surface of the covering active material has irregularities, and the conductive material penetrates and adheres to the concave portions in the irregularities. This makes it difficult for the conductive material on the surface of the coating active material to be taken up by the PTFE powder during the mixing treatment of the coating active material and the PTFE powder, which will be described later.
  • the coverage of the conductive material can be increased by relatively shortening the time for mixing the PTFE powder with the active material and the conductive material.
  • the increase / decrease in the conductive material before and after the mixing treatment is ⁇ 5% or less.
  • the coating active material can be produced by dry-mixing the active material and the conductive material.
  • a mechanofusion method may be used.
  • the mechanofusion method is a dry processing method performed by a mechanofusion reactor 15 having a compression tool 17 inside and a cylindrical chamber 16 rotating at high speed, as shown in FIG. The rotation speed is usually faster than 1000 rpm.
  • the rotation speed is usually faster than 1000 rpm.
  • the mechanofusion reactor 15 includes a "Nobilta” (registered trademark) crusher manufactured by Hosokawa Micron Corporation (Japan), a “Mechanofusion” (registered trademark) crusher, and a “hybrid dicer” manufactured by Nara Machinery Co., Ltd. ( Trademark) Crusher, "Balance Gran” manufactured by Freund Turbo Co., Ltd., “COMPOSI” manufactured by Nippon Coke Industries Co., Ltd., etc. may be mentioned.
  • Lithium transition metal composite oxide is generally used as the active material for the positive electrode (positive electrode active material).
  • Metallic elements contained in the lithium transition metal composite oxide include Ni, Co, Mn, Al, B, Mg, Ti, V, Cr, Fe, Cu, Zn, Ga, Sr, Zr, Nb, In and Sn. , Ta, W and the like. Above all, it is preferable to contain at least one of Ni, Co and Mn.
  • the active material of the negative electrode include natural graphite such as scaly graphite, massive graphite, and earthy graphite, artificial graphite such as massive artificial graphite (MAG), and graphitized mesophase carbon microbeads (MCMB). Carbon-based active material is used.
  • the negative electrode active material a Si-based active material that alloys with lithium may be used.
  • the active material is the main component of the electrode mixture 12, and the content of the active material in the electrode mixture 12 is preferably 85% by mass to 99% by mass, and more preferably 90% by mass to 99% by mass. Is.
  • the positive electrode active material is, for example, secondary particles formed by aggregating a plurality of primary particles.
  • the particle size of the primary particles constituting the secondary particles is, for example, 0.05 ⁇ m to 1 ⁇ m.
  • the particle size of the primary particle is measured as the diameter of the circumscribed circle in the particle image observed by a scanning electron microscope (SEM).
  • the positive electrode active material is a particle having a volume-based median diameter (D50) of, for example, 3 ⁇ m to 30 ⁇ m, preferably 5 ⁇ m to 25 ⁇ m, and particularly preferably 7 ⁇ m to 15 ⁇ m.
  • D50 means a particle size in which the cumulative frequency is 50% from the smaller size in the volume-based particle size distribution, and is also called a medium diameter.
  • the particle size distribution of the positive electrode active material can be measured using a laser diffraction type particle size distribution measuring device (for example, MT3000II manufactured by Microtrac Bell Co., Ltd.) and water as a dispersion medium.
  • Examples of the conductive material contained in the electrode mixture 12 include carbon materials such as carbon black (CB), acetylene black (AB), ketjen black, carbon nanotubes (CNT), and graphite.
  • the particle size of the conductive material is, for example, 0.01 ⁇ m to 0.1 ⁇ m. As a result, it is possible to invade and adhere to the recesses on the surface of the positive electrode active material.
  • the content of the conductive material in the electrode mixture 12 is, for example, 0.5% by mass to 5.0% by mass.
  • the PTFE powder is contained in the electrode mixture 12 as a binder.
  • the PTFE powder is a dry powder, not a powder dispersed in a dispersion such as water. As a result, the electrode mixture can be produced by the dry method described later.
  • the content of the PTFE powder in the electrode mixture 12 is, for example, 0.5% by mass to 5.0% by mass.
  • the PTFE powder adheres to the particle surface of the coating active material and is entangled with the coating active material. In other words, the coating active material is retained by the PTFE powder that exists in a network.
  • the PTFE powder contains fibrous particles having an aspect ratio of 1.5 or more at a ratio of 20% to 60% with respect to the total particles.
  • the average major axis size of the fibrous particles is 1 ⁇ m to 20 ⁇ m (hereinafter, the fibrous particles having the shape are referred to as fibrous particles A).
  • fibrous particles A the fibrous particles having the shape are referred to as fibrous particles A.
  • the ratio of the fibrous particles A to the total particles can be calculated as follows.
  • the ratio of the fibrous particles B described later to the total particles can also be measured by the same method.
  • the PTFE powder containing the fibrous particles A is imaged with a scanning electron microscope (SEM). The shooting magnification can be, for example, 300 to 1000 times.
  • the captured image is taken into a computer, and all the particles are divided into fibrous particles A and particles having an aspect ratio of less than 1.5 by using image analysis software such as ImageJ.
  • image analysis software such as ImageJ.
  • the ratio of the fibrous particles A to the total particles by dividing the number of the fibrous particles A by the total number of the particles, that is, the total number of the fibrous particles A and the particles having an aspect ratio of less than 1.5. Is calculated.
  • the SEM image is analyzed by image analysis software in the same manner as in the calculation of the ratio of the fibrous particles A to all the particles, and the fibrous particles 100 having an aspect ratio of 1.5 or more are analyzed. It can be calculated by measuring the major axis size (major axis length) of a book and averaging the measured values.
  • the average minor axis size of the fibrous particles B which will be described later, can also be measured by the same method.
  • the average aspect ratio of the fibrous particles A may be 2 to 20.
  • the aspect ratio (length) of 100 fibrous particles having an aspect ratio of 1.5 or more is obtained by analyzing the SEM image with image analysis software in the same manner as in the above calculation of the average major axis size. It can be calculated by measuring the axis / minor axis) and averaging the measured values.
  • the average aspect ratio of the fibrous particles B which will be described later, can also be measured by the same method.
  • the PTFE powder containing the fibrous particles A can be produced by fibrillating the PTFE raw material (PTFE particles) belonging to the fine powder capable of fibrillation (fibrosis) with a dry crusher such as a jet mill crusher.
  • the PTFE raw material may be secondary particles.
  • the average particle size of the PTFE raw material is, for example, 100 ⁇ m to 700 ⁇ m, preferably 100 ⁇ m to 500 ⁇ m, and more preferably 100 ⁇ m to 400 ⁇ m.
  • the average particle size of the PTFE raw material can be obtained by observing the particles of the PTFE raw material with SEM.
  • the major axis (longest diameter) of each of the 100 particles is obtained, and the average value thereof is taken as the average particle diameter of the PTFE raw material.
  • the ratio of fibrous particles A to all particles is 20% to 60 by appropriately adjusting the supply rate of the PTFE raw material, the crushing pressure, and the like. Can be adjusted to%.
  • the PTFE powder contains fibrous particles having an aspect ratio of 5 or more at a ratio of 60% or more with respect to the total particles.
  • the PTFE powder preferably contains fibrous particles having an aspect ratio of 5 or more at a ratio of 80% or more with respect to all the particles.
  • the average minor axis size of the fibrous particles is 1 ⁇ m to 20 ⁇ m (hereinafter, the fibrous particles having the shape are referred to as fibrous particles B).
  • the PTFE powder containing the fibrous particles B can be produced by fibrillating the PTFE raw material (PTFE particles) belonging to the fine powder capable of fibrillation (fibrosis) with a dry crusher such as an air flow crusher.
  • a dry crusher such as an air flow crusher.
  • the PTFE raw material the same material as in the case of producing the PTFE powder containing the above-mentioned fibrous particles A can be used.
  • the ratio of fibrous particles B to all particles can be adjusted by appropriately adjusting the supply speed of the PTFE raw material, the number of rotations of the blades, the gaps, and the like. It can be adjusted to 60% or more.
  • the median diameter of the PTFE powder containing the fibrous particles A and / or B is preferably 2 ⁇ m to 20 ⁇ m.
  • the median diameter can be measured with a particle size distribution meter.
  • the median diameter of the PTFE powder containing the fibrous particles A and / or B is 2 ⁇ m to 20 ⁇ m, which means that the PTFE powder containing the fibrous particles A and / or B is in a finely divided size with respect to the PTFE particles as the raw material for PTFE. It means that there is.
  • the mixture resistance of the electrode mixture 12 is 20 ⁇ cm or less. As a result, the discharge capacity of the battery can be increased.
  • the mixture resistance is the resistance of the electrode mixture 12 only.
  • the mixed material resistance can be measured as follows, for example, by using an electrode resistance measuring system manufactured by Hioki Electric Co., Ltd. (1) Prepare an electrode 10 cut out to a size of 20 mm ⁇ 50 mm. (2) The thickness of the electrode mixture 12 and the thickness of the core material 11 are measured and input to the measurement conditions as measurement parameters. (3) Select an appropriate main current and voltage range. (4) The electrode 10 is set at a predetermined position, the probe is brought into contact with the electrode 10, and the mixture resistance is measured.
  • the electrode mixture 12 When the electrode mixture 12 is divided into three equal parts in the thickness direction to form the first region, the second region, and the third region from the core material 11 side, the content (a) of the PTFE powder in the first region, the second region.
  • the content (b) of the PTFE powder in the region and the content (c) of the PTFE powder in the third region satisfy -10% ⁇ (ca) / (a + b + c) ⁇ 10%, and -5% ⁇ (c). It is more preferable to satisfy ⁇ a) / (a + b + c) ⁇ 5%.
  • the difference between the content (a) of the PTFE powder in the first region near the surface and the content (c) of the PTFE powder in the third region near the core material 11 is the total content (a + b + c) of the PTFE powder.
  • the PTFE powder is not ubiquitous in a part of the electrode mixture 12 and is substantially uniform throughout. Can exist.
  • the electrode mixture 12 is preferably a mixture in which the coating active material and the PTFE powder are uniformly dispersed. Further, it is preferable that the electrode mixture 12 has less particle cracking of the active material, and most of the conductive material adheres to the particle surface of the active material to form a conductive path between the particles. That is, it is necessary to prepare the electrode mixture 12 so that the conductive material is taken into the PTFE powder and the amount of the conductive material attached to the particle surface of the active material is not reduced while suppressing the particle cracking of the active material. According to the manufacturing method described later, it is possible to manufacture a high-quality electrode mixture 12 satisfying such conditions.
  • FIG. 3 and 4 are diagrams schematically showing the manufacturing process of the electrode 10 which is an example of the embodiment.
  • the method for manufacturing the electrode 10 includes a mixing step shown in FIG. 3A, a rolling step shown in FIG. 3B, and a bonding step shown in FIG.
  • the mixing step the coating active material and the PTFE powder are mixed to prepare electrode mixture particles 12a having a solid content concentration of substantially 100%.
  • the rolling step the electrode mixture particles 12a are rolled and formed into a sheet to produce an electrode mixture sheet.
  • the bonding step an electrode is manufactured by bonding an electrode mixture sheet to a core material.
  • the method for manufacturing the electrode 10 is a dry process in which the electrode 10 is manufactured using the electrode mixture 12 having a solid content concentration of substantially 100%.
  • the dry process is a process of mixing the active material particles and the binder particles without using a solvent, that is, the solid content concentration of the active material and the binder is substantially 100%. It is to be mixed in the state.
  • the method for manufacturing the electrode 10 according to the present disclosure does not require the use of a solvent as in the conventional method for manufacturing the electrode 10.
  • the fact that there is no need to use a solvent means that not only is it unnecessary as a raw material, but also the solvent drying step is unnecessary, and the exhaust equipment and the like related to the drying step can be eliminated.
  • the mixing step raw materials such as a coating active material and PTFE powder are mixed by the mixer 20 to prepare electrode mixture particles 12a.
  • the coating active material prepared by mixing the active material and the conductive material By using the coating active material prepared by mixing the active material and the conductive material, the time of the mixing step for obtaining the electrode mixture in which the coating active material and the PTFE powder are uniformly dispersed can be shortened.
  • the conductive material is incorporated into the binder, and the coverage of the conductive material on the surface of the active material becomes less than 10%.
  • the coating active material it is possible to increase the dispersibility of the constituent materials and reduce the mixture resistance. Further, by shortening the mixing treatment time, cracking of the active material during the mixing treatment can be suppressed.
  • the active material contained in the electrode may include one cracked by the mixing treatment and one cracked by the rolling step described later.
  • a conventionally known mechanical stirring mixer can be used.
  • the suitable mixer 20 include a cutter mill, a pin mill, a bead mill, and a fine particle compounding device (shearing between a rotor having a special shape rotating at high speed inside a tank and a collision plate, which are devices capable of applying a mechanical shearing force.
  • a device that produces force a granulator, a kneader such as a twin-screw extruder or a planetary mixer, and a cutter mill, a fine particle compounding device, a granulator, and a twin-screw extruder are preferable.
  • the PTFE powder can be further made into fibril while mixing the raw materials.
  • the processing time of the mixing step is preferably within several minutes, and can be, for example, 0.5 minutes to 4 minutes. If the treatment time is too long, the amount of conductive material incorporated into the PTFE powder will increase. In this case, the conductivity of the electrode mixture sheet is greatly reduced and the resistance is increased, which adversely affects the battery characteristics. In addition, the longer the treatment time, the more the PTFE becomes fibrillated. Therefore, if the fibrillation progresses excessively, the breaking strength of the sheet decreases.
  • the PTFE powder Since the PTFE powder already contains a predetermined amount of fibrillated fibrous particles A and / or fibrous particles B, the PTFE powder can be adhered to the particle surface of the active material if the treatment time is 0.5 minutes or more. Can be entwined with active materials.
  • the electrode mixture particles 12a are rolled using two rolls 22 and formed into a sheet.
  • the two rolls 22 are arranged with a predetermined gap and rotate in the same direction.
  • the electrode mixture particles 12a are compressed by the two rolls 22 and stretched into a sheet shape.
  • the two rolls 22 have, for example, the same roll diameter.
  • the obtained electrode mixture sheet 12b may be passed through the gap between the two rolls 22 a plurality of times, or may be stretched one or more times using other rolls having different roll diameters, peripheral speeds, gaps, and the like. Further, the roll may be heated to heat-press the electrode mixture particles 12a.
  • the thickness of the electrode mixture sheet 12b can be controlled by, for example, the gap between the two rolls 22, the peripheral speed, the number of stretching treatments, and the like.
  • FIG. 4 shows a state in which the electrode mixture 12 is bonded to only one surface of the core material 11, but it is preferable that the electrode mixture 12 is bonded to both surfaces of the core material 11.
  • the two electrode mixture 12 may be bonded to both surfaces of the core material 11 at the same time, or one sheet may be bonded to one surface of the core material 11 and then the other sheet may be bonded to the other surface. good.
  • the electrode mixture sheet 12b is bonded to the surface of the core material 11 using two rolls 24.
  • the two rolls 24 have, for example, the same roll diameter, are arranged with a predetermined gap, and rotate in the same direction at the same peripheral speed. It is preferable that the two rolls 24 are heated to a predetermined temperature and applied a predetermined pressure.
  • Example> [Coating of conductive material on the surface of positive electrode active material] Using NOB300? Nobilta (registered trademark) manufactured by Hosokawa Micron Co., Ltd., 1000 g of a lithium transition metal composite oxide and 10 g of acetylene black (AB) were mixed with a novirta crusher for 5 minutes to prepare a carbon-coated positive electrode active material. The coverage of carbon (conductive material) in the carbon-coated positive electrode active material was 51.5%.
  • Example 1-1 The positive electrode mixture sheet produced in Example 1-1 is placed on the surface of the positive electrode core material, and the laminate of the positive electrode mixture sheet and the positive electrode core material is pressed using two rolls (linear pressure: 1.0 t /). cm) to obtain a positive electrode.
  • An aluminum alloy foil was used as the core material.
  • the mixture resistance was 18.2 ⁇ cm.
  • LiPF 6 as an electrolyte salt is dissolved in a non-aqueous solvent in which ethylene carbonate (EC) and ethylmethyl carbonate (EMC) are mixed at a volume ratio of 1: 3 at 1.0 mol / L, which is a liquid non-aqueous electrolyte. It was a water electrolyte.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • test cell An aluminum lead is attached to the positive electrode, and a nickel lead is attached to the lithium metal foil used as the negative electrode.
  • the positive electrode and the negative electrode are spirally wound via a polyolefin separator, and then press-molded in the radial direction to form a flat shape.
  • a wound electrode body was produced. This electrode body was housed in an exterior body made of an aluminum laminated sheet, and after injecting the non-aqueous electrolyte, the opening of the exterior body was sealed to obtain a test cell for evaluation.
  • the lithium transition metal composite oxide, AB, and the PTFE powder have a mass ratio of 100: 1: 4.
  • Test cells were prepared and evaluated in the same manner as in Examples except that they were put into the mixer by ratio.
  • the coating ratio of carbon (conductive material) on the surface of the positive electrode active material before the mixing step was 0%.
  • Preparation of positive electrode mixture particles The mixture resistance of the positive electrode was 55.1 ⁇ cm.
  • Table 1 shows the initial discharge capacities of Examples and Comparative Examples.
  • the discharge capacity of the comparative example is a value relatively expressed with the discharge capacity of the example as 100.
  • Table 1 shows the presence or absence of a coating treatment of the conductive material on the surface of the positive electrode active material, the value of the mixture resistance, and the inclusion of the binder in the first region, the second region, and the third region in the positive electrode mixture.
  • the quantities (a, b, c) are also shown.
  • the content (a, b, c) of the binder in the first region, the second region, and the third region was not measured.
  • the test cell of the example had a larger initial discharge capacity than the test cell of the comparative example. Since the positive electrode of the example has a higher coverage of the conductive material on the surface of the positive electrode active material than the positive electrode of the comparative example, it is presumed that the mixture resistance is lower and the initial discharge capacity is higher than that of the positive electrode of the comparative example. To.
  • Electrode 11 Core material 12 Electrode mixture 12a Electrode mixture particles 12b Electrode mixture sheet 15 Mechanofusion reactor 16 Chamber 17 Compression tool 20 Mixer 22, 24 rolls

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

電極は、活物質の表面に導電材が付着した被覆活物質と、PTFE粉末とを含む電極合材が芯材の表面に積層された電極であって、被覆活物質の表面における前記導電材の被覆率が、10%~60%であり、電極合材の合材抵抗が、20Ωcm以下であり、電極合材を厚み方向に3等分し、芯材側から第1領域、第2領域、及び第3領域とした場合に、第1領域におけるPTFE粉末の含有量(a)、第2領域におけるPTFE粉末の含有量(b)、第3領域におけるPTFE粉末の含有量(c)が、-10%≦(c-a)/(a+b+c)≦10%を満たす。

Description

電極、及び電極の製造方法
 本開示は、電極、及び電極の製造方法に関する。
 リチウムイオン電池等の非水電解質二次電池の電極は、一般的に、活物質、結着材等を含む電極合材スラリーを金属箔である芯材の表面に塗布し、塗膜を乾燥、圧縮する湿式法により作製される。この場合、塗膜の乾燥中に結着材が移動するマイグレーションが起こり易いという課題がある。結着材のマイグレーションが発生すると、塗膜(電極合材層)の芯材側よりも表面側で結着材量が多くなり、電極合材層の厚み方向における結着材の分布に偏りが生じる。
 近年、電極合材を圧延してシート状に成形することにより電極合材シートを作製し、当該シートを芯材に貼り合わせて電極を製造する乾式法が検討されている。特許文献1には、ミルを用いて、活物質、粒子状の結着材、及び導電材を混合した後、この混合物に高い圧力で大きなせん断力を加えて長時間処理することにより、結着材をフィブリル化して作製した電極フィルム(電極合材)が開示されている。
特表2019-512872号公報
 本発明者らの検討の結果、特許文献1に開示されるように、電極合材に大きなせん断力を加えて長時間処理すると、導電材が活物質ではなく結着材に付着してしまって合材抵抗が大きく低下し、その結果、電池の放電容量が低下することが判明している。
 本開示の一態様に係る電極は、活物質の表面に導電材が付着した被覆活物質と、PTFE粉末とを含む電極合材が芯材の表面に積層された電極であって、被覆活物質の表面における前記導電材の被覆率が、10%~60%であり、電極合材の合材抵抗が、20Ωcm以下であり、電極合材を厚み方向に3等分し、芯材側から第1領域、第2領域、及び第3領域とした場合に、第1領域におけるPTFE粉末の含有量(a)、第2領域におけるPTFE粉末の含有量(b)、第3領域におけるPTFE粉末の含有量(c)が、-10%≦(c-a)/(a+b+c)≦10%を満たす。
 本開示の一態様に係る電極の製造方法は、活物質の表面に導電材が付着した被覆活物質と、PTFE粉末とを混合して、固形分濃度が実質的に100%の電極合材粒子を作製する混合ステップと、電極合材粒子を圧延してシート状に成形することにより電極合材シートを作製する圧延ステップと、電極合材シートを芯材に貼り合わせることにより電極を作製する貼合ステップとを含む。
 本開示の一態様によれば、合材抵抗が低い電極が得られ、電池の放電容量を高くできる。
図1は、実施形態の一例である電極の断面図である。 図2は、実施形態の一例における被覆活物質の作製装置であるメカノフュージョン反応装置の概要を示す図である。 図3(a)は、実施形態の一例である電極の製造工程において、混合ステップを示す図であり、図3(b)は圧延ステップを示す図である。 図は、実施形態の一例である電極の製造工程において、貼合ステップを示す図である。
 以下、本開示に係る電極及び電極の製造方法の実施形態について詳細に説明する。以下で説明する実施形態はあくまでも一例であって、本開示は以下の実施形態に限定されない。また、実施形態の説明で参照する図面は模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは以下の説明を参酌して判断されるべきである。
 [電極]
 本開示に係る電極は、リチウムイオン電池等の非水電解質二次電池に好適であるが、水系電解質を含む電池、或いはキャパシタ等の蓄電装置に適用することも可能である。なお、以下では、非水電解質二次電池用の電極(特に正極に適用する場合)を例に挙げて説明する。
 図1は、実施形態の一例である電極の断面図である。電極10は、芯材11と、芯材11の表面に設けられた電極合材12とを備える。図1に示すように、電極10は、芯材11の両面に電極合材12を備えてもよい。電極10は、巻回型電極体を構成する長尺状の電極であってもよく、積層型電極体を構成する矩形状の電極であってもよい。なお、電極10は、非水電解質二次電池の正極、負極、又は両方に適用できる。
 芯材11には、金属箔や、表面に金属層が形成されたフィルム等を用いることができる。芯材11の厚みは、例えば5μm~20μmである。正極の場合、芯材11には、アルミニウムを主成分とする金属箔を用いることができる。負極の場合は、銅を主成分とする金属箔を用いることができる。本明細書において、主成分とは、最も質量比率が高い構成成分を意味する。芯材11は、実質的にアルミニウム100%のアルミニウム箔であってもよく、実質的に銅100%の銅箔であってもよい。
 電極合材12は、被覆活物質と、PTFE粉末とを含む。電極合材12の厚みは、例えば、30μm~120μmであり、好ましくは50μm~100μmである。電極合材12には、PTFE粉末に加えて、フィブリル化しないポリフッ化ビニリデン(PVdF)等の結着材が含まれていてもよい。
 被覆活物質は、表面に導電材が付着した活物質である。被覆活物質の表面における導電材の被覆率は、10%~60%であることが好ましく、20%~60%であることがより好ましい。導電材の被覆率が十分に高いので、電極の電池特性を向上させることができる。被覆活物質の表面には凹凸が存在し、導電材がこの凹凸における凹部に侵入して付着していることが好ましい。これにより、後述する被覆活物質とPTFE粉末との混合処理の際に、被覆活物質の表面の導電材がPTFE粉末に取られにくくできる。後述するように、PTFE粉末と、活物質及び導電材との混合処理の時間を比較的短くすることで、導電材の被覆率を高くすることができる。短時間の混合処理であれば、混合処理の前後での導電材の増減は±5%以下である。
 被覆活物質は、活物質と導電材とを乾式混合することで作製できる。乾式混合する方法としては、例えば、メカノフュージョン法を用いてもよい。メカノフュージョン法とは、図2に示すような、内部に圧縮用具17を備え且つ高速回転する筒状のチャンバー16を有するメカノフュージョン反応装置15で行われる乾式処理法である。回転速度は、通常1000rpmより速い。導電材及び活物質をチャンバー16内に入れ、チャンバー16を回転させることによって、当該粒子は、粒子相互で及びチャンバー16壁で押圧される。圧縮用具17を使用し且つ高速回転によって遠心力を生じさせると、導電材と活物質との付着結合が促進される。メカノフュージョン反応装置15としては、ホソカワミクロン株式会社(日本)製の「ノビルタ」(登録商標)粉砕機又は「メカノフュージョン」(登録商標)粉砕機、や株式会社奈良機械製作所製の「ハイブリダイサー」(商標)粉砕機、フロイント・ターボ株式会社製の「バランスグラン」、日本コークス工業株式会社製の「COMPOSI」、等が挙げられる。
 正極の活物質(正極活物質)には、一般的に、リチウム遷移金属複合酸化物が用いられる。リチウム遷移金属複合酸化物に含有される金属元素としては、Ni、Co、Mn、Al、B、Mg、Ti、V、Cr、Fe、Cu、Zn、Ga、Sr、Zr、Nb、In、Sn、Ta、W等が挙げられる。中でも、Ni、Co、Mnの少なくとも1種を含有することが好ましい。負極の活物質(負極活物質)には、例えば鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛(MAG)、黒鉛化メソフェーズカーボンマイクロビーズ(MCMB)等の人造黒鉛などの炭素系活物質が用いられる。また、負極活物質には、リチウムと合金化するSi系活物質等が用いられてもよい。活物質は、電極合材12の主成分であり、電極合材12における活物質の含有率は、好適には85質量%~99質量%であり、より好適には90質量%~99質量%である。
 正極活物質は、例えば、複数の一次粒子が凝集してなる二次粒子である。これにより、正極活物質の表面には凹凸が存在し、上述のようにこの凹凸における凹部に導電材が侵入して付着することができる。二次粒子を構成する一次粒子の粒径は、例えば0.05μm~1μmである。一次粒子の粒径は、走査型電子顕微鏡(SEM)により観察される粒子画像において外接円の直径として測定される。正極活物質は、体積基準のメジアン径(D50)が、例えば3μm~30μm、好ましくは5μm~25μm、特に好ましくは7μm~15μmの粒子である。D50は、体積基準の粒度分布において頻度の累積が粒径の小さい方から50%となる粒径を意味し、中位径とも呼ばれる。正極活物質の粒度分布は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製、MT3000II)を用い、水を分散媒として測定できる。
 電極合材12に含まれる導電材としては、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、カーボンナノチューブ(CNT)、黒鉛等の炭素材料が例示できる。導電材の粒子径は、例えば、0.01μm~0.1μmである。これにより、正極活物質の表面の凹部に侵入して付着することができる。電極合材12における導電材の含有率は、例えば0.5質量%~5.0質量%である。
 PTFE粉末は、結着材として電極合材12に含まれる。PTFE粉末は、乾燥状態の粉末であり、水等のディスパージョンに分散した状態の粉末ではない。これにより、後述する乾式の方法で電極合材を作製することができる。
 電極合材12におけるPTFE粉末の含有率は、例えば0.5質量%~5.0質量%である。PTFE粉末は、被覆活物質の粒子表面に付着し、被覆活物質と絡み合っている。言い換えると、網目状に存在するPTFE粉末によって、被覆活物質が保持されている。
 実施形態の一例として、PTFE粉末は、アスペクト比が1.5以上の繊維状粒子を、全粒子に対して、20%~60%の割合で含む。また、当該繊維状粒子の平均長軸サイズは1μm~20μmである(以下、該形状の繊維状粒子を繊維状粒子Aという)。このPTFE粉末を用いることで、成形性が良好で、破断強度が高い電極合材シートを作製することができる。繊維状粒子Aの全粒子に対する割合は、以下のようにして算出することができる。なお、後述する繊維状粒子Bの全粒子に対する割合についても同様の方法で測定することができる。
(1)繊維状粒子Aを含むPTFE粉末を走査型電子顕微鏡(SEM)で撮像する。撮影倍率は、例えば、300~1000倍とすることができる。
(2)撮像した画像をコンピュータに取り込み、ImageJ等の画像解析ソフトで、全粒子を繊維状粒子Aと、アスペクト比が1.5未満の粒子とに分ける。
(3)繊維状粒子Aの個数を、全粒子の個数、即ち、繊維状粒子Aとアスペクト比が1.5未満の粒子の個数の合計で除して、全粒子に対する繊維状粒子Aの割合を算出する。
 繊維状粒子Aの平均長軸サイズは、上記の繊維状粒子Aの全粒子に対する割合の算出と同様に、SEM画像を画像解析ソフトで解析し、アスペクト比が1.5以上の繊維状粒子100本の長軸サイズ(長軸長さ)を測定し、測定値を平均することで算出できる。なお、後述する繊維状粒子Bの平均短軸サイズについても同様の方法で測定することができる。
 繊維状粒子Aの平均アスペクト比は、2~20であってもよい。繊維状粒子Aの平均アスペクト比は、上記の平均長軸サイズの算出と同様に、SEM画像を画像解析ソフトで解析し、アスペクト比が1.5以上の繊維状粒子100本のアスペクト比(長軸/短軸)を測定し、測定値を平均することで算出できる。なお、後述する繊維状粒子Bの平均アスペクト比についても同様の方法で測定することができる。
 繊維状粒子Aを含むPTFE粉末は、フィブリル化(繊維化)が可能なファインパウダーに属するPTFE原料(PTFE粒子)を、ジェットミル粉砕機等の乾式粉砕機によりフィブリル化することで作製できる。PTFE原料は二次粒子であってもよい。PTFE原料の平均粒子径は、例えば、100μm~700μmであり、好ましくは100μm~500μmであり、より好ましくは100μm~400μmである。PTFE原料の平均粒子径は、PTFE原料の粒子をSEMで観察することで求めることができる。具体的には、ランダムに選択した100個の粒子の外形を特定した上で、100個の粒子それぞれの長径(最長径)を求め、それらの平均値をPTFE原料の平均粒子径とする。ジェットミル粉砕機で繊維状粒子Aを含むPTFE粉末を作製する場合には、PTFE原料の供給速度、粉砕圧力等を適宜調整することで、全粒子に対する繊維状粒子Aの割合を20%~60%に調整することができる。
 実施形態の他の例として、PTFE粉末は、アスペクト比が5以上の繊維状粒子を、全粒子に対して、60%以上の割合で含む。PTFE粉末は、アスペクト比が5以上の繊維状粒子を、全粒子に対して、80%以上の割合で含むことが好ましい。また、当該繊維状粒子の平均短軸サイズは1μm~20μmである(以下、該形状の繊維状粒子を繊維状粒子Bという)。このPTFE粉末を用いることで、成形性が良好で、破断強度が高い電極合材シートを作製することができる。
 繊維状粒子Bを含むPTFE粉末は、フィブリル化(繊維化)が可能なファインパウダーに属するPTFE原料(PTFE粒子)を、気流式粉砕機等の乾式粉砕機によりフィブリル化することで作製できる。PTFE原料は、上記の繊維状粒子Aを含むPTFE粉末を作製する場合と同じものを用いることができる。気流式粉砕機で繊維状粒子Bを含むPTFE粉末を作製する場合には、PTFE原料の供給速度、ブレードの回転数や間隙等を適宜調整することで、全粒子に対する繊維状粒子Bの割合を60%以上に調整することができる。
 繊維状粒子Aおよび/又はBを含むPTFE粉末のメジアン径は、2μm~20μmであることが好ましい。メジアン径は、粒度分布計で測定しうる。繊維状粒子Aおよび/又はBを含むPTFE粉末のメジアン径が2μm~20μmとは、繊維状粒子Aおよび/又はBを含むPTFE粉末が、PTFE原料のPTFE粒子に対して微粉化されたサイズであることを意味する。
 電極合材12の合材抵抗は、20Ωcm以下である。これにより、電池の放電容量を高くすることができる。合材抵抗は、電極合材12のみの抵抗である。合材抵抗は、例えば、日置電機社製の電極抵抗測定システムを用いて、以下のようにして測定できる。
(1)20mm×50mmサイズに切り出した電極10を用意する。
(2)電極合材12の厚みと、芯材11の厚みを測定し、測定パラメータとして、測定条件に入力する。
(3)適切な主力電流、電圧レンジを選択する。
(4)電極10を所定の位置にセットし、プローブを接触させ、合材抵抗を測定する。
 電極合材12を厚み方向に3等分し、芯材11側から第1領域、第2領域、及び第3領域とした場合に、第1領域におけるPTFE粉末の含有量(a)、第2領域におけるPTFE粉末の含有量(b)、第3領域におけるPTFE粉末の含有量(c)が、-10%≦(c-a)/(a+b+c)≦10%を満たし、-5%≦(c-a)/(a+b+c)≦5%を満たすことがより好ましい。即ち、表面近傍の第1領域におけるPTFE粉末の含有量(a)と、芯材11近傍の第3領域におけるPTFE粉末の含有量(c)との差が、PTFE粉末の全含有量(a+b+c)に対して、±10%の範囲内に、好ましくは±5%の範囲内になるようにすることで、PTFE粉末が電極合材12の一部に遍在することなく、全体に略均一に存在できる。
 電極合材12は、被覆活物質、及びPTFE粉末が均一に分散してなる混合物であることが好ましい。また、電極合材12は、活物質の粒子割れが少なく、導電材の多くが活物質の粒子表面に付着して粒子間の導電パスが形成されることが好ましい。つまり、活物質の粒子割れを抑えつつ、導電材がPTFE粉末に取り込まれて活物質の粒子表面に付着する導電材の量が減少しないように、電極合材12を作製する必要がある。後述する製造方法によれば、このような条件を満たす良質な電極合材12を作製することが可能である。
 [電極の製造方法]
 以下、電極10の製造方法について、さらに詳説する。以下では、正極の製造方法を例示するが、この製造方法は負極の製造にも同様に適用できる。負極の場合、正極活物質の代わりに負極活物質を用いる。
 図3及び図4は、実施形態の一例である電極10の製造工程を模式的に示す図である。電極10の製造方法は、図3(a)に示す混合ステップと、図3(b)に示す圧延ステップと、図4に示す貼合ステップとを含む。混合ステップでは、被覆活物質と、PTFE粉末とを混合して、固形分濃度が実質的に100%の電極合材粒子12aを作製する。圧延ステップでは、電極合材粒子12aを圧延してシート状に成形することにより電極合材シートを作製する。貼合ステップでは、電極合材シートを芯材に貼り合わせることにより電極を作製する。
 電極10の製造方法は、固形分濃度が実質的に100%の電極合材12を用いて電極10を製造する乾式プロセスである。乾式プロセスとは、活物質粒子と結着材粒子とを混合する際に溶媒を用いずに混合するプロセスであり、つまり活物質と結着材とで固形分濃度が実質的に100%である状態にて混合するものである。本開示に係る電極10の製造方法は、従来の電極10の製造方法のような溶媒を使用する必要が無い。溶媒を使用する必要が無いというのは、単なる原材料として不要というのみならず、溶媒の乾燥工程が不要であり、乾燥工程に係る排気設備等をも不要にできることを意図する。
 混合ステップでは、被覆活物質、PTFE粉末等の原料を混合機20で混合して電極合材粒子12aを作製する。活物質と導電材とを混合して作製した被覆活物質を用いることで、被覆活物質及びPTFE粉末が均一に分散した電極合材を得るための混合ステップの時間を短くすることができる。長時間の混合処理を行った場合、導電材が結着材に取り込まれ、活物質の表面における導電材の被覆率は10%未満となる。被覆活物質を用いることで、構成材料の分散性を高めて合材抵抗を小さくすることができる。また、混合処理の時間を短くすることで、混合処理時の活物質の割れが抑制できる。なお、電極に含まれる活物質においては、混合処理で割れたものと、後述する圧延ステップで割れたものとが含まれ得る。
 混合機20としては、例えば、従来公知の機械式攪拌混合機を使用できる。好適な混合機20の具体例としては、機械的せん断力を付与できる装置である、カッターミル、ピンミル、ビーズミル、微粒子複合化装置(タンク内部で高速回転する特殊形状を有するローターと衝突板の間でせん断力が生み出される装置)、造粒機、二軸押出混錬機やプラネタリミキサーといった混錬機などが挙げられ、カッターミルや微粒子複合化装置、造粒機、二軸押出混錬機が好ましい。これにより、原料を混合しつつ、PTFE粉末をさらにフィブリル化することができる。混合ステップの処理時間(材料にせん断力をかける時間)は、数分以内であることが好ましく、例えば0.5分~4分とすることができる。処理時間が長すぎる場合は、PTFE粉末に取り込まれる導電材の量が増加する。この場合、電極合材シートの導電性が大きく低下して抵抗が上昇する等、電池特性に悪影響を与える。また、処理時間が長くなるほどPTFEのフィブリル化が進むため、フィブリル化が過度に進むとシートの破断強度が低くなる。PTFE粉末は既にフィブリル化された繊維状粒子Aおよび/又は繊維状粒子Bを所定量含有しているので、0.5分以上の処理時間であればPTFE粉末を活物質の粒子表面に付着させて活物質に絡み合わせることができる。
 図3(b)に示すように、圧延ステップでは、2つのロール22を用いて電極合材粒子12aを圧延し、シート状に成形する。2つのロール22は、所定のギャップをあけて配置され、同じ方向に回転する。電極合材粒子12aは、2つのロール22の間隙に供給されることで、2つのロール22により圧縮されてシート状に延伸される。2つのロール22は、例えば、同じロール径を有する。得られた電極合材シート12bは、2つのロール22の間隙に複数回通されてもよく、ロール径、周速、ギャップ等が異なる他のロールを用いて1回以上延伸されてもよい。また、ロールを加熱して電極合材粒子12aを熱プレスしてもよい。
 電極合材シート12bの厚みは、例えば、2つのロール22のギャップ、周速、延伸処理回数等によって制御できる。圧延ステップでは、周速比が2倍以上異なる2つのロール22を用いて電極合材粒子12aをシート状に成形することが好ましい。2つのロール22の周速比を異ならせることで、例えば、電極合材シート12bの薄膜化が容易になり生産性が向上する。
 次に、図4に示すように、貼合ステップでは、電極合材シート12bを芯材11に貼り合わせることにより、芯材11の表面に電極合材12からなる合材層が設けられた電極10が得られる。図4では、芯材11の一方の面のみに電極合材12が接合した状態を示しているが、電極合材12は芯材11の両面に接合されることが好ましい。2枚の電極合材12は、芯材11の両面に同時に接合されてもよく、芯材11の一方の面に1枚が接合された後、他方の面にもう1枚が接合されてもよい。
 貼合ステップでは、2つのロール24を用いて、電極合材シート12bを芯材11の表面に貼り合わせる。2つのロール24は、例えば、同じロール径を有し、所定のギャップをあけて配置され、同じ方向に同じ周速で回転する。2つのロール24は、所定の温度に加熱され、所定の圧力を付与していることが好ましい。
 <実施例>
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例>
 [正極活物質表面への導電材の被膜処理]
 ホソカワミクロン株式会社製NOB300?ノビルタ(登録商標)を用いて、リチウム遷移金属複合酸化物1000gとアセチレンブラック(AB)10gとをノビルタ粉砕機で5分間混合し、炭素被覆正極活物質を作製した。当該炭素被覆正極活物質における炭素(導電材)の被覆率は51.5%であった。
 [正極合材粒子の作製(混合ステップ)]
 PTFE粉末として、全粒子に対して、アスペクト比1.5以上の繊維状粒子を33%の割合で含み、繊維状粒子の平均長軸サイズが8.3μmであるものを使用した。上記の炭素被覆正極活物質と、当該PTFE粉末とを、101:4の質量比で混合機(大阪ケミカル製、ワンダークラッシャー)に投入し、室温で、メモリ5の回転数で5分間混合処理した。なお、ワンダークラッシャーの回転数は、メモリ10で最大の28000rpmである。この混合処理によって、炭素被覆正極活物質及びPTFE粉末が均一に分散した正極合材粒子が得られた。得られた正極合材は、固形分濃度100%であった。
 [正極合材シートの作製(圧延ステップ)]
 得られた正極合材粒子を2つのロールの間に通して圧延し、正極合材シートを作製した。2つのロールの周速比を1:3とし、正極合材シートの厚みを約100μmに調整した。
 [正極の作製(貼合ステップ)]
 実施例1-1で作製した正極合材シートを正極芯材の表面に配置し、2つのロールを用いて、正極合材シートと正極芯材の積層体をプレス(線圧:1.0t/cm)して正極を得た。芯材としては、アルミニウム合金箔を用いた。合材抵抗は、18.2Ωcmであった。
 [非水電解質の作製]
 エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比1:3で混合させた非水溶媒に、電解質塩としてのLiPFを1.0mol/L溶解させ液状の非水電解質である非水電解液とした。
 [試験セルの作製]
 上記正極にアルミニウムリードを、負極として用いたリチウム金属箔にニッケルリードをそれぞれ取り付け、ポリオレフィン製のセパレータを介して正極と負極を渦巻き状に巻回した後、径方向にプレス成形して扁平状の巻回型電極体を作製した。この電極体をアルミラミネートシートで構成される外装体内に収容し、上記非水電解質を注入した後、外装体の開口部を封止して、評価用の試験セルを得た。
 [初期放電容量の評価]
 上記試験セルについて、25℃の温度環境下、0.5Cの定電流で電池電圧が4.2Vになるまで充電した後、4.2Vで電流値が1/50Cになるまで定電圧で充電し、その後、0.5Cの定電流で電池電圧が2.5Vになるまで放電を行った。この時の放電容量を初期放電容量とした。
 <比較例>
 正極活物質表面への導電材の被膜処理を行わず、正極合材粒子の作製(混合ステップ)において、リチウム遷移金属複合酸化物と、ABと、PTFE粉末とを、100:1:4の質量比で混合機に投入したこと以外は、実施例と同様にして試験セルを作製し、評価を行った。混合ステップ前での正極活物質表面における炭素(導電材)の被膜率は、0%であった。また、正極合材粒子の作製正極の合材抵抗は、55.1Ωcmであった。
 実施例及び比較例の初期放電容量を表1に示す。比較例の放電容量は、実施例の放電容量を100として相対的に表した値である。また、表1には、正極活物質表面への導電材の被膜処理の有無、合材抵抗の値、及び正極合材における第1領域、第2領域、及び第3領域の結着材の含有量(a,b,c)を併せて示す。なお、比較例については、第1領域、第2領域、及び第3領域の結着材の含有量(a,b,c)は測定しなかった。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例の試験セルは、比較例の試験セルに比べて、初期放電容量が大きかった。実施例の正極は、比較例の正極に比べて、正極活物質の表面における導電材の被覆率が高いため、比較例の正極よりも合材抵抗が低く、初期放電容量が高くなったと推察される。
10  電極
11  芯材
12  電極合材
12a  電極合材粒子
12b  電極合材シート
15  メカノフュージョン反応装置
16  チャンバー
17  圧縮用具
20  混合機
22,24  ロール

Claims (7)

  1.  活物質の表面に導電材が付着した被覆活物質と、PTFE粉末とを含む電極合材が芯材の表面に積層された電極であって、
     前記被覆活物質の表面における前記導電材の被覆率が、10%~60%であり、
     前記電極合材の合材抵抗が、20Ωcm以下であり、
     前記電極合材を厚み方向に3等分し、前記芯材側から第1領域、第2領域、及び第3領域とした場合に、前記第1領域における前記PTFE粉末の含有量(a)、前記第2領域における前記PTFE粉末の含有量(b)、前記第3領域における前記PTFE粉末の含有量(c)が、-10%≦(c-a)/(a+b+c)≦10%を満たす、電極。
  2.  前記被覆活物質は、表面に凹凸が存在し、前記凹凸における凹部に前記導電材が侵入して付着している、請求項1に記載の電極。
  3.  前記活物質は、正極活物質である、請求項1又は2に記載の電極。
  4.  前記PTFE粉末は、アスペクト比が1.5以上の繊維状粒子を、全粒子に対して、20%~60%の割合で含み、前記繊維状粒子の平均長軸サイズが1μm~20μmである、請求項1~3のいずれか1項に記載の電極。
  5.  前記PTFE粉末は、アスペクト比が5以上の繊維状粒子を、全粒子に対して、60%以上の割合で含み、前記繊維状粒子の平均短軸サイズが1μm~20μmである、請求項1~3のいずれか1項に記載の電極。
  6.  活物質の表面に導電材が付着した被覆活物質と、PTFE粉末とを混合して、固形分濃度が実質的に100%の電極合材粒子を作製する混合ステップと、
     前記電極合材粒子を圧延してシート状に成形することにより電極合材シートを作製する圧延ステップと、
     前記電極合材シートを芯材に貼り合わせることにより電極を作製する貼合ステップとを含む、電極の製造方法。
  7.  前記被覆活物質は、前記活物質と前記導電材とを乾式混合して得られたものである、請求項6に記載の電極の製造方法。
PCT/JP2021/025572 2020-09-30 2021-07-07 電極、及び電極の製造方法 WO2022070542A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21874846.5A EP4224550A1 (en) 2020-09-30 2021-07-07 Electrode and method for producing electrode
US18/027,545 US20230378468A1 (en) 2020-09-30 2021-07-07 Electrode and method for producing electrode
JP2022553479A JPWO2022070542A1 (ja) 2020-09-30 2021-07-07
CN202180063987.XA CN116157935A (zh) 2020-09-30 2021-07-07 电极及电极的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020165211 2020-09-30
JP2020-165211 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022070542A1 true WO2022070542A1 (ja) 2022-04-07

Family

ID=80949814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025572 WO2022070542A1 (ja) 2020-09-30 2021-07-07 電極、及び電極の製造方法

Country Status (5)

Country Link
US (1) US20230378468A1 (ja)
EP (1) EP4224550A1 (ja)
JP (1) JPWO2022070542A1 (ja)
CN (1) CN116157935A (ja)
WO (1) WO2022070542A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117524735B (zh) * 2024-01-05 2024-04-05 西安稀有金属材料研究院有限公司 电容器电极材料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166155A (ja) * 2006-12-28 2008-07-17 Tdk Corp 紐状電気化学デバイス
JP2009206079A (ja) * 2008-01-30 2009-09-10 Panasonic Corp 非水系二次電池およびその製造方法
WO2012098970A1 (ja) * 2011-01-17 2012-07-26 昭栄化学工業株式会社 リチウムイオン二次電池用の正極材料及びその製造方法
JP2015183154A (ja) * 2014-03-26 2015-10-22 東ソー株式会社 ポリアリーレンスルフィド組成物
WO2019012872A1 (ja) 2017-07-14 2019-01-17 Jeインターナショナル株式会社 自動応答サーバー装置、端末装置、応答システム、応答方法、およびプログラム
JP2019091525A (ja) * 2017-11-10 2019-06-13 日立化成株式会社 リチウムイオン二次電池の製造方法
KR20190124038A (ko) * 2018-04-25 2019-11-04 주식회사 엘지화학 리튬 이차전지

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166155A (ja) * 2006-12-28 2008-07-17 Tdk Corp 紐状電気化学デバイス
JP2009206079A (ja) * 2008-01-30 2009-09-10 Panasonic Corp 非水系二次電池およびその製造方法
WO2012098970A1 (ja) * 2011-01-17 2012-07-26 昭栄化学工業株式会社 リチウムイオン二次電池用の正極材料及びその製造方法
JP2015183154A (ja) * 2014-03-26 2015-10-22 東ソー株式会社 ポリアリーレンスルフィド組成物
WO2019012872A1 (ja) 2017-07-14 2019-01-17 Jeインターナショナル株式会社 自動応答サーバー装置、端末装置、応答システム、応答方法、およびプログラム
JP2019091525A (ja) * 2017-11-10 2019-06-13 日立化成株式会社 リチウムイオン二次電池の製造方法
KR20190124038A (ko) * 2018-04-25 2019-11-04 주식회사 엘지화학 리튬 이차전지

Also Published As

Publication number Publication date
EP4224550A1 (en) 2023-08-09
CN116157935A (zh) 2023-05-23
JPWO2022070542A1 (ja) 2022-04-07
US20230378468A1 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
US8900747B2 (en) Method for producing battery electrode
JP2016189321A (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池
WO2022024520A1 (ja) Ptfe粉末、電極の製造方法、及び電極
JP6760097B2 (ja) リチウム二次電池用正極およびその製造方法
WO2015133583A1 (ja) 導電性カーボン、この導電性カーボンを含む電極材料及びこの電極材料を用いた電極
WO2021181887A1 (ja) 電極の製造方法および電極合材
WO2022070542A1 (ja) 電極、及び電極の製造方法
JP2023547117A (ja) 二次電池用乾式電極を製造するための電極用粉体、その製造方法、それを使用した乾式電極の製造方法、乾式電極、それを含む二次電池、エネルギー貯蔵装置、及び乾式電極の製造装置
JP4971646B2 (ja) 正極合剤含有組成物の製造方法、負極合剤含有組成物の製造方法、電池用正極の製造方法、電池用負極の製造方法、非水二次電池およびその製造方法
WO2021192541A1 (ja) 二次電池用電極およびその製造方法
JP7247909B2 (ja) 全固体電池用負極
WO2022113682A1 (ja) 電極、及び電極の製造方法
WO2022113498A1 (ja) 電極、及び電極の製造方法
WO2023032391A1 (ja) 電極
WO2023007962A1 (ja) 電極
WO2022163186A1 (ja) 電極、及び電極の製造方法
WO2022018954A1 (ja) 電池用正極及び電池
WO2023182030A1 (ja) 電極、非水電解質二次電池、および電極の製造方法
JP7207273B2 (ja) 負極の製造方法
WO2021186864A1 (ja) 電池用電極および電池
WO2023189467A1 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2023054042A1 (ja) 二次電池用負極および二次電池
CN116472620A (zh) 电极以及电极的制造方法
JP2022086554A (ja) 全固体電池
JP4933752B2 (ja) リチウム二次電池用正極合材塗料の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553479

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021874846

Country of ref document: EP

Effective date: 20230502