WO2022067648A1 - 显示基板、显示面板和显示装置 - Google Patents

显示基板、显示面板和显示装置 Download PDF

Info

Publication number
WO2022067648A1
WO2022067648A1 PCT/CN2020/119347 CN2020119347W WO2022067648A1 WO 2022067648 A1 WO2022067648 A1 WO 2022067648A1 CN 2020119347 W CN2020119347 W CN 2020119347W WO 2022067648 A1 WO2022067648 A1 WO 2022067648A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
layer
display substrate
base substrate
substrate
Prior art date
Application number
PCT/CN2020/119347
Other languages
English (en)
French (fr)
Inventor
高涛
黄鹏
贵炳强
杨柯
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/310,401 priority Critical patent/US20220320227A1/en
Priority to CN202080002200.4A priority patent/CN114930536A/zh
Priority to PCT/CN2020/119347 priority patent/WO2022067648A1/zh
Publication of WO2022067648A1 publication Critical patent/WO2022067648A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1251Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs comprising TFTs having a different architecture, e.g. top- and bottom gate TFTs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • G09G3/3241Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0417Special arrangements specific to the use of low carrier mobility technology
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0216Interleaved control phases for different scan lines in the same sub-field, e.g. initialization, addressing and sustaining in plasma displays that are not simultaneous for all scan lines
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display substrate, a display panel and a display device.
  • An organic light emitting diode (abbreviated as OLED) display device is a type of display device that uses an OLED that emits light to display information such as images.
  • the OLED display device has characteristics such as low power consumption, high brightness, and high response speed.
  • Low Temperature Polysilicon Oxide Thin Film Transistor (Low Temperature Poly-Oxide TFT, hereinafter referred to as LTPO TFT) technology is an emerging thin film transistor technology in recent years. Theoretically, LTPO TFT can save 5-15% of power compared to the traditional low temperature polysilicon thin film transistor (Low Temperature Poly-Silicon TFT, hereinafter referred to as LTPS TFT) technology, making the power consumption of the entire display screen more efficient. Low.
  • a display substrate comprising:
  • the display substrate further includes a plurality of thin film transistors disposed on the base substrate, and the plurality of thin film transistors at least include a first transistor and a third transistor,
  • Each of the plurality of thin film transistors includes an active layer, the active layer of the first transistor includes an oxide semiconductor material, the active layer of the third transistor includes a polysilicon semiconductor material, and the third transistor The active layer of the first transistor is located in the first semiconductor layer, and the active layer of the first transistor is located in the second semiconductor layer;
  • the first transistor includes a first bottom gate and a first top gate, the first bottom gate is located between the base substrate and the active layer of the first transistor, and the first top gate is located on the The active layer of the first transistor is away from the side of the base substrate, and any two of the active layer of the first transistor, the first bottom gate and the first top gate are on the substrate orthographic projections on the substrate at least partially overlap each other;
  • the display substrate includes a first conductive layer and a second conductive layer disposed on the base substrate, the first conductive layer is located on a side of the first semiconductor layer away from the base substrate, and the second conductive layer is located on the side of the first semiconductor layer away from the base substrate. a conductive layer is located between the first conductive layer and the second semiconductor layer;
  • the third transistor includes a gate electrode, a source electrode and a drain electrode, the gate electrode of the third transistor is located in the first conductive layer, the source electrode of the third transistor and the drain electrode of the third transistor are located in the first conductive layer. the second conductive layer; and
  • the first bottom gate is located on the second conductive layer.
  • the display substrate further includes a second transistor, the second transistor includes a second bottom gate and a second top gate, the second bottom gate is located between the base substrate and the first Between the active layers of two transistors, the second top gate is located on the side of the active layer of the second transistor away from the base substrate, the active layer of the second transistor, the second bottom gate Orthographic projections of any two of the gate and the second top gate on the base substrate at least partially overlap each other.
  • the active layer in the second transistor includes an oxide semiconductor material, the active layer in the second transistor is located in the second semiconductor layer, and the second bottom gate is located in the second conductive layer.
  • the display substrate includes a storage capacitor
  • the storage capacitor includes a first capacitor electrode and a second capacitor electrode disposed on the base substrate, the first capacitor electrode on the substrate
  • the orthographic projection on the substrate at least partially overlaps with the orthographic projection of the second capacitive electrode on the base substrate; and the second capacitive electrode is located on the second conductive layer, and the first capacitive electrode is located on the the first conductive layer.
  • the display substrate includes a first bottom gate structure on the second conductive layer, the first bottom gate structure includes a first bottom gate body part and a first bottom gate extension part, and The orthographic projection of the first bottom gate body portion on the base substrate at least partially overlaps with the orthographic projection of the active layer of the first transistor on the base substrate, and the first bottom gate includes the a portion of the first bottom gate body portion overlapping the active layer of the first transistor; and/or the display substrate includes a second bottom gate structure located on the second conductive layer, the second bottom gate structure including a second bottom gate body part and a second bottom gate extension part, the orthographic projection of the second bottom gate body part on the base substrate and the active layer of the second transistor on the base substrate The orthographic projections of the second bottom gates at least partially overlap, and the second bottom gate includes a portion where the second bottom gate body portion overlaps with the active layer of the second transistor.
  • the display substrate further includes a data line for transmitting a data signal, the data line extending along a first direction on the base substrate, the first bottom gate extension and the At least one of the second bottom gate extensions extends along the first direction; at least one of the active layer of the first transistor and the active layer of the second transistor extends along the first direction.
  • the display substrate includes a third conductive layer, and the third conductive layer is located on a side of the second semiconductor layer away from the base substrate,
  • the display substrate includes a first top gate structure in the third conductive layer, the first top gate structure extends along a second direction, the second direction intersects the first direction;
  • the first top gate structure includes a first widened portion, the first widened portion having a dimension along the first direction greater than a dimension along the first direction of the remainder of the first top gate structure;
  • the orthographic projection of the first widening portion on the base substrate at least partially overlaps with the orthographic projection of the active layer of the first transistor on the base substrate, and the first top gate includes the The first widened portion overlaps with the active layer of the first transistor.
  • the display substrate includes a second top gate structure in the third conductive layer, the second top gate structure extending along the second direction;
  • the second top gate structure includes a second widened portion, the second widened portion having a dimension along the first direction greater than a dimension along the first direction of the remainder of the second top gate structure;
  • the orthographic projection of the second widening portion on the base substrate at least partially overlaps with the orthographic projection of the active layer of the second transistor on the base substrate, and the second top gate includes the A portion of the second widened portion overlapping the active layer of the second transistor.
  • the first widened portion protrudes to two sides respectively relative to the rest of the first top gate structure along the first direction; and/or, the second widened portion Relative to the rest of the second top gate structure along the first direction, protruding to both sides respectively.
  • the display substrate includes a fourth conductive layer, and the fourth conductive layer is located on a side of the third conductive layer away from the base substrate;
  • the first transistor includes a first source electrode and a first drain electrode
  • the second transistor includes a second source electrode and a second drain electrode, the first source electrode, the first drain electrode, the second source electrode and the second drain electrode are all located in the fourth conductive layer.
  • the display substrate includes an initialization voltage line located in the third conductive layer, and the initialization voltage line is used to transmit an initialization voltage signal; and the display substrate further includes an initialization voltage line located in the fourth conductive layer a first conductive part of the layer, one end of the first conductive part is electrically connected to the active layer of the first transistor through a first via hole, and a part of the first conductive part is also connected to the active layer of the first transistor through a second via hole Initialize the voltage line electrical connections.
  • the display substrate further includes a second conductive part and a third conductive part located in the fourth conductive layer, and one end of the second conductive part is connected to the second conductive part through a third via hole
  • the active layer of the transistor is electrically connected, and the other end of the second conductive member is electrically connected to the active layer of the first transistor and one end of the third conductive member through a fourth via hole; and the third conductive member is electrically connected The other end of the component is electrically connected to the gate of the third transistor and the first capacitor electrode through a fifth via hole.
  • the display substrate further includes a light-emitting device disposed on the base substrate, the light-emitting device including at least a first electrode, and the first electrode is located on the fourth conductive layer away from the fourth conductive layer.
  • a light-emitting device disposed on the base substrate, the light-emitting device including at least a first electrode, and the first electrode is located on the fourth conductive layer away from the fourth conductive layer.
  • one side of a base substrate; and an orthographic projection of the first electrode on the base substrate at least partially overlaps an orthographic projection of the active layer of the first transistor on the base substrate.
  • the orthographic projection of the first electrode on the base substrate is spaced apart from the orthographic projection of the active layer of the second transistor on the base substrate.
  • the display substrate further includes a pixel defining layer and spacers disposed on the base substrate, the pixel defining layer including an opening exposing at least a portion of the first electrode , the spacer is located on the side of the pixel defining layer away from the base substrate; and the orthographic projection of the spacer on the base substrate is at the same position as the active layer of the second transistor.
  • the orthographic projections on the base substrate at least partially overlap.
  • the display substrate includes a first buffer layer between the base substrate and the first semiconductor layer, the first buffer layer including silicon oxide or silicon nitride; and/or or,
  • the display substrate includes a first gate insulating layer located between the first semiconductor layer and the first conductive layer, the first gate insulating layer including silicon oxide; and/or,
  • the display substrate includes a second buffer layer between the second conductive layer and the second semiconductor layer, the second buffer layer includes silicon oxide; and/or,
  • the display substrate includes a second gate insulating layer between the second semiconductor layer and the third conductive layer, and the second gate insulating layer includes silicon oxide.
  • the display substrate is a bendable flexible display substrate, the flexible display substrate includes a display area and a bending area; and the display substrate further includes a groove located in the bending area , the groove exposes at least a part of the base substrate located in the bending region.
  • the display substrate further includes traces located in the bending region, the traces are located in the fourth conductive layer, and the traces are located at the bottom of the groove.
  • the display substrate further includes a passivation layer, the passivation layer is located on a side of the fourth conductive layer away from the base substrate, and a part of the passivation layer at least covers the and the display substrate further includes a planarization layer, the planarization layer is located on a side of the passivation layer away from the base substrate, and the planarization layer is filled in the groove.
  • a display panel including the display substrate as described above.
  • a display device comprising the above-mentioned display substrate or the above-mentioned display panel.
  • FIG. 1 is a schematic plan view of a display device according to some embodiments of the present disclosure.
  • FIG. 2 is a schematic plan view of a display substrate included in a display device according to some embodiments of the present disclosure
  • FIG. 3 is a partial enlarged view of a display substrate at portion I in FIG. 2 according to some embodiments of the present disclosure
  • FIG. 4 is an equivalent circuit diagram of one pixel driving circuit of a display substrate according to some exemplary embodiments of the present disclosure
  • FIG. 5 is a schematic diagram illustrating a planar structure of a pixel driving circuit of one sub-pixel of a display substrate according to some exemplary embodiments of the present disclosure
  • FIG. 6 is a schematic diagram showing a planar structure of a first semiconductor layer of the pixel driving circuit shown in FIG. 5;
  • FIG. 7 is a schematic diagram illustrating a planar structure of a combination of a first semiconductor layer and a first conductive layer of the pixel driving circuit shown in FIG. 5;
  • FIG. 8 is a schematic diagram illustrating a planar structure of a combination of a first semiconductor layer, a first conductive layer, and a second conductive layer of the pixel driving circuit shown in FIG. 5;
  • FIG. 9 is a schematic diagram illustrating a planar structure of a combination of a first semiconductor layer, a first conductive layer, a second conductive layer, and a second semiconductor layer of the pixel driving circuit shown in FIG. 5;
  • FIG. 10 is a schematic diagram showing a planar structure of a combination of a first semiconductor layer, a first conductive layer, a second conductive layer, a second semiconductor layer, and a third conductive layer of the pixel driving circuit shown in FIG. 5;
  • FIG. 11 is a schematic diagram illustrating a planar structure of a combination of a first semiconductor layer, a first conductive layer, a second conductive layer, a second semiconductor layer, a third conductive layer, and a fourth conductive layer of the pixel driving circuit shown in FIG. 5 ;
  • FIG. 12 is a schematic diagram illustrating a cross-sectional structure of a display substrate taken along lines AA' and BB' in FIG. 5 according to some exemplary embodiments of the present disclosure, and for convenience of description, it will be taken along line AA' in FIG. 5 .
  • the cross-sectional structure taken by line BB' is shown in the same schematic diagram;
  • FIG. 13 is a schematic diagram illustrating a planar structure of a display substrate according to some exemplary embodiments of the present disclosure, wherein a planar structure of a first electrode of a light emitting device is schematically illustrated;
  • FIG. 14 is a schematic diagram illustrating a planar structure of a display substrate according to some exemplary embodiments of the present disclosure, in which an opening of a pixel defining layer is schematically illustrated;
  • FIG. 15 is a schematic diagram illustrating a planar structure of a display substrate according to some exemplary embodiments of the present disclosure, wherein the planar structure of a spacer is schematically illustrated;
  • 16 is a schematic diagram illustrating a cross-sectional structure of a display substrate according to some exemplary embodiments of the present disclosure
  • FIG. 17 is a schematic diagram of a flexible display substrate in a folded state according to an exemplary embodiment of the present disclosure
  • FIG. 18 shows a cross-sectional view of the flexible display substrate in FIG. 17 along the X direction
  • FIG. 19 is a flowchart of a method of manufacturing a display substrate according to some exemplary embodiments of the present disclosure.
  • FIGS. 20 to 23 are respectively schematic diagrams of cross-sectional structures of the display substrate formed after some steps in the manufacturing method shown in FIG. 19 are performed.
  • the X axis, the Y axis and the Z axis are not limited to the three axes of the rectangular coordinate system, and may be interpreted in a broader sense.
  • the X, Y, and Z axes may be perpendicular to each other, or may represent different directions that are not perpendicular to each other.
  • "at least one of X, Y, and Z" and "at least one selected from the group consisting of X, Y, and Z” may be interpreted as X only, Y only, Z only, or Any combination of two or more of X, Y and Z such as XYZ, XYY, YZ and ZZ.
  • the term "and/or" includes any and all combinations of one or more of the associated listed items.
  • first the terms “first”, “second”, etc. may be used herein to describe various components, components, elements, regions, layers and/or sections, these components, components, elements, regions, layers and/or parts shall not be limited by these terms. Rather, these terms are used to distinguish one element, member, element, region, layer and/or section from another. Thus, for example, a first part, first member, first element, first region, first layer and/or first section discussed below could be termed a second part, second member, second element, second region , the second layer and/or the second portion without departing from the teachings of the present disclosure.
  • spatially relational terms eg, "upper,” “lower,” “left,” “right,” etc. may be used herein to describe one element or feature relative to another element or feature as shown in the figures relation. It should be understood that the spatially relational terms are intended to encompass other different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” or “above” the other elements or features.
  • the expression "the same layer” refers to the formation of a film layer for forming a specific pattern using the same film forming process, and then using the same mask to pattern the film layer through a patterning process.
  • layer structure Depending on the specific pattern, one patterning process may include multiple exposure, development or etching processes, and the specific pattern in the formed layer structure may be continuous or discontinuous. That is, a plurality of elements, components, structures and/or sections located on the "same layer” are composed of the same material and formed by the same patterning process, and generally, a plurality of elements, components, structures and/or sections located on the "same layer” or parts with approximately the same thickness.
  • the expression “height” or “thickness” refers to the dimension along the surface of each film layer arranged perpendicular to the display substrate, that is, along the light exit direction of the display substrate size, or the size along the normal direction of the display device.
  • Embodiments of the present disclosure provide at least one display substrate.
  • the display substrate includes: a base substrate; a first semiconductor layer disposed on the base substrate; and a second semiconductor layer disposed on a side of the first semiconductor layer away from the base substrate, wherein the The display substrate further includes a plurality of thin film transistors disposed on the base substrate, the plurality of thin film transistors including at least a first transistor, a second transistor and a third transistor, wherein each of the plurality of thin film transistors is including an active layer, the active layer of at least one of the first transistor and the second transistor includes an oxide semiconductor material, the active layer of the third transistor includes a polysilicon semiconductor material, and the third transistor an active layer is located on the first semiconductor layer, an active layer of at least one of the first transistor and the second transistor is located on the second semiconductor layer; and the first transistor and the second transistor At least one of them has a double gate structure.
  • the active layer of at least one of the first transistor and the second transistor is formed using an oxide semiconductor material such as
  • FIG. 1 is a schematic plan view of a display device according to some embodiments of the present disclosure.
  • the display device may be an OLED display device.
  • a display apparatus 1000 may include a display panel 110 , a gate driver 120 , a data driver 130 , a controller 140 and a voltage generator 150 .
  • the display device 1000 may be an OLED display device.
  • the display panel 110 may include an array substrate 100 and a plurality of pixels PX, the array substrate 100 may include a display area AA and a non-display area NA, and the plurality of pixels PX are arranged in the display area AA in an array form.
  • Signals generated by the gate driver 120 may be applied to the pixels PX through signal lines such as scan signal lines GL, and signals generated by the data driver 130 may be applied to the pixels PX through signal lines such as data lines DL.
  • a first voltage such as VDD and a second voltage such as VSS may be applied to the pixels PX.
  • the first voltage, eg, VDD may be higher than the second voltage, eg, VSS.
  • a first voltage such as VDD may be applied to the anode of the light emitting device (eg OLED) and a second voltage such as VSS may be applied to the cathode of the light emitting device so that the light emitting device may emit light.
  • each pixel PX may include a plurality of subpixels, eg, red subpixels, green subpixels, and blue subpixels, or may include white subpixels, red subpixels, green subpixels, and blue subpixels.
  • the display substrate may be an array substrate for an OLED display panel.
  • the display substrate may include a display area AA and a non-display area NA.
  • the display area AA and the non-display area NA may include multiple boundaries, such as AAS1 , AAS2 , AAS3 and AAS4 as shown in FIG. 2 .
  • the display substrate may further include a driver located in the non-display area NA.
  • the driver may be located on at least one side of the display area AA.
  • the driving circuits are located on the left and right sides of the display area AA, respectively. It should be noted that the left side and the right side may be the left side and the right side of the display substrate (screen) viewed by human eyes during display.
  • the driver can be used to drive each pixel in the display substrate to display.
  • the driver may include the gate driver 120 and the data driver 130 described above.
  • the data driver 130 is used for sequentially latching the input data according to the timing of the clock signal, converting the latched data into an analog signal, and then inputting the latched data to each data line of the display substrate.
  • the gate driver 120 is usually implemented by a shift register, and the shift register converts the clock signal into an on/off voltage, which are respectively output to each scan signal line of the display substrate.
  • FIG. 2 shows that the drivers are located on the left and right sides of the display area AA, embodiments of the present disclosure are not limited thereto, and the driving circuits may be located at any suitable positions in the non-display area NA.
  • the driver may adopt GOA technology, namely Gate Driver on Array.
  • GOA technology the gate drive circuit is directly disposed on the array substrate instead of an external drive chip.
  • Each GOA unit is used as a first-level shift register, and each level of shift register is connected to a gate line, and the turn-on voltage is output in turn through the shift registers of each level to realize the progressive scanning of pixels.
  • each stage of the shift register may also be connected to multiple gate lines. In this way, it can adapt to the development trend of high resolution and narrow borders of display substrates.
  • a left GOA circuit DA1 on the display substrate, a left GOA circuit DA1 , a plurality of pixels P located in the display area AA, and a right GOA circuit DA2 are provided.
  • the left GOA circuit DA1 and the right GOA circuit DA2 are respectively electrically connected to the display IC through signal lines, and the supply of the GOA signal is controlled by the display IC.
  • the left GOA circuit DA1 and the right GOA circuit DA2 are also electrically connected to the respective pixels through signal lines (eg, scan signal lines GL), respectively, to supply driving signals to the respective pixels.
  • FIG. 3 is a partial enlarged view of a display substrate at part I in FIG. 2 according to some embodiments of the present disclosure.
  • the figure exemplarily shows that the shape of the orthographic projection of the sub-pixel on the base substrate is a rounded rectangle.
  • the embodiments of the present disclosure are not limited to this.
  • the sub-pixel is on the base substrate.
  • the shape of the orthographic projection on it can be a rectangle, a hexagon, a pentagon, a square, a circle, or other shapes.
  • the arrangement of the three sub-pixels in one pixel unit is not limited to that shown in Fig. 3 .
  • each pixel unit PX may include a plurality of sub-pixels, eg, a first sub-pixel SP1 , a second sub-pixel SP2 and a third sub-pixel SP3 .
  • the first sub-pixel SP1, the second sub-pixel SP2 and the third sub-pixel SP3 may be described as a red sub-pixel, a green sub-pixel and a blue sub-pixel respectively, however, the embodiments of the present disclosure are not limited thereto .
  • the plurality of sub-pixels are arranged on the base substrate 1 in an array along the row direction X and the column direction Y. It should be noted that, although the row direction X and the column direction Y are perpendicular to each other in the illustrated embodiment, the embodiments of the present disclosure are not limited thereto.
  • each sub-pixel includes a pixel driving circuit and a light emitting device.
  • the light-emitting device may be an OLED light-emitting device, including a stacked anode, an organic light-emitting layer, and a cathode.
  • the pixel driving circuit may include a plurality of thin film transistors and at least one storage capacitor.
  • the structure of the pixel driving circuit is described in detail by taking the 7T1C pixel driving circuit as an example.
  • the embodiments of the present disclosure are not limited to the 7T1C pixel driving circuit. Any driving circuit structure can be applied to the embodiments of the present disclosure.
  • the pixel driving circuit may include: a plurality of thin film transistors and a storage capacitor Cst.
  • the pixel driving circuit is used for driving organic light emitting diodes (ie OLEDs).
  • the plurality of thin film transistors include a first transistor T1, a second transistor T2, a third transistor T3, a fourth transistor T4, a fifth transistor T5, a sixth transistor T6, and a seventh transistor T7.
  • Each transistor includes a gate, a source and a drain.
  • the display substrate may further include a plurality of signal lines, for example, the plurality of signal lines include: a scan signal line 61 for transmitting the scan signal Sn, and a line for transmitting the reset control signal RESET (that is, the scan signal of the previous row).
  • Reset signal line 62 light emission control line 63 for transmitting light emission control signal En
  • data line 64 for transmitting data signal Dm
  • driving voltage line 65 for transmitting driving voltage VDD
  • initialization voltage for transmitting initialization voltage Vint line 66 initialization voltage for transmitting initialization voltage Vint line 66
  • power line 67 for carrying the VSS voltage.
  • the gate G1 of the first transistor T1 is electrically connected to the reset signal line 62 , and the source S1 of the first transistor T1 is electrically connected to the initialization voltage line 66 .
  • the drain D1 of the first transistor T1 is electrically connected to one end Cst1 of the storage capacitor Cst, the drain D2 of the second transistor T2 and the gate G3 of the third transistor T3.
  • the drain of the first transistor T1 D1, one end Cst1 of the storage capacitor Cst, the drain D2 of the second transistor T2, and the gate G3 of the third transistor T3 are electrically connected to the node N1.
  • the first transistor T1 is turned on according to the reset control signal RESET transmitted through the reset signal line 62 to transmit the initialization voltage Vint to the gate G1 of the third transistor T3, thereby performing an initialization operation to switch the gate G3 of the third transistor T3 to the gate G1. Voltage initialization. That is, the first transistor T1 is also referred to as an initialization transistor.
  • the gate G2 of the second transistor T2 is electrically connected to the scan signal line 61, the source S2 of the second transistor T2 is electrically connected to the node N3, and the drain D2 of the second transistor T2 is electrically connected to the node N1.
  • the second transistor T2 is turned on according to the scan signal Sn transmitted through the scan signal line 61 to electrically connect the gate G3 and the drain D3 of the third transistor T3 to each other, thereby performing diode connection of the third transistor T3.
  • the gate G3 of the third transistor T3 is electrically connected to the node N1, the source S3 of the third transistor T3 is electrically connected to the node N2, and the drain D3 of the third transistor T3 is electrically connected to the node N3.
  • the third transistor T3 receives the data signal Dm according to the switching operation of the fourth transistor T4 to supply the driving current Id to the OLED. That is, the third transistor T3 is also referred to as a driving transistor.
  • the gate G4 of the fourth transistor T4 is electrically connected to the scan signal line 61, the source S4 of the fourth transistor T4 is electrically connected to the data line 64, and the drain D4 of the fourth transistor T4 is electrically connected to the node N2, that is, electrically connected to the first The source S3 of the three transistors T3.
  • the fourth transistor T4 is turned on according to the scan signal Sn transmitted through the scan signal line 61 to perform a switching operation to transmit the data signal Dm to the source S3 of the third transistor T3.
  • the gate G5 of the fifth transistor T5 is electrically connected to the light emission control line 63 , and the source S5 of the fifth transistor T5 is electrically connected to the driving voltage line 65 . And the drain D5 of the fifth transistor T5 is electrically connected to the node N2.
  • the gate G6 of the sixth transistor T6 is electrically connected to the light emission control line 63, the source S6 of the sixth transistor T6 is electrically connected to the node N3, and the drain D6 of the sixth transistor T6 is electrically connected to the node N4, that is, electrically connected to the OLED the anode.
  • the fifth transistor T5 and the sixth transistor T6 are turned on concurrently (eg, simultaneously) according to the light emission control signal En transmitted through the light emission control line 63 to transmit the driving voltage VDD to the OLED, thereby allowing the driving current Id to flow into the OLED.
  • the gate G7 of the seventh transistor T7 is electrically connected to the reset signal line 62 , the source S7 of the seventh transistor T7 is electrically connected to the node N4 , and the drain D7 of the seventh transistor T7 is electrically connected to the initialization voltage line 66 .
  • One end (hereinafter referred to as a first capacitance electrode) Cst1 of the storage capacitor Cst is electrically connected to the node N1 , and the other end (hereinafter referred to as a second capacitance electrode) Cst2 is electrically connected to the driving voltage line 65 .
  • the anode of the OLED is electrically connected to the node N4, and the cathode is electrically connected to the power line 67 to receive the common voltage VSS. Accordingly, the OLED receives the driving current Id from the third transistor T3 to emit light, thereby displaying an image.
  • each of the thin film transistors T1, T2, T3, T4, T5, T6 and T7 is a p-channel field effect transistor, however, the embodiments of the present disclosure are not limited thereto, the thin film transistors T1, T2 At least some of , T3, T4, T5, T6, and T7 may be n-channel field effect transistors.
  • the reset control signal RESET having a low level is supplied through the reset signal line 62 .
  • the first transistor T1 is turned on based on the low level of the reset control signal RESET, and the initialization voltage Vint from the initialization voltage line 66 is transferred to the gate G1 of the third transistor T3 through the first transistor T1. Therefore, the third transistor T3 is initialized due to the initialization voltage Vint.
  • the scan signal Sn having a low level is supplied through the scan signal line 61 .
  • the fourth transistor T4 and the second transistor T2 are turned on based on the low level of the scan signal Sn. Therefore, the third transistor T3 is placed in a diode-connected state and biased in the forward direction by the turned-on second transistor T2.
  • a compensation voltage Dm+Vth (eg, Vth is a negative value) obtained by subtracting the threshold voltage Vth of the third transistor T3 from the data signal Dm supplied via the data line 64 is applied to the gate G3 of the third transistor T3.
  • the driving voltage VDD and the compensation voltage Dm+Vth are applied to both terminals of the storage capacitor Cst, so that charges corresponding to the voltage difference between the respective terminals are stored in the storage capacitor Cst.
  • the light emission control signal En from the light emission control line 63 changes from high level to low level. Subsequently, in the light emission stage, the fifth transistor T5 and the sixth transistor T6 are turned on based on the low level of the light emission control signal En.
  • a driving current is generated based on the difference between the voltage of the gate G3 of the third transistor T3 and the driving voltage VDD.
  • the driving current Id corresponding to the difference between the driving current and the bypass current is supplied to the OLED through the sixth transistor T6.
  • the gate-source voltage of the third transistor T3 is maintained at (Dm+Vth)-VDD due to the storage capacitor Cst.
  • the drive current Id is proportional to (Dm-VDD) 2 . Therefore, the driving current Id may not be affected by the fluctuation of the threshold voltage Vth of the third transistor T3.
  • FIG. 5 is a schematic diagram illustrating a planar structure of a pixel driving circuit of one sub-pixel of a display substrate according to some exemplary embodiments of the present disclosure.
  • FIG. 6 is a schematic diagram showing a planar structure of a first semiconductor layer of the pixel driving circuit shown in FIG. 5 .
  • FIG. 7 is a schematic diagram showing a planar structure of a combination of a first semiconductor layer and a first conductive layer of the pixel driving circuit shown in FIG. 5 .
  • FIG. 8 is a schematic diagram showing a planar structure of a combination of a first semiconductor layer, a first conductive layer, and a second conductive layer of the pixel driving circuit shown in FIG. 5 .
  • FIG. 9 is a schematic diagram illustrating a planar structure of a combination of a first semiconductor layer, a first conductive layer, a second conductive layer, and a second semiconductor layer of the pixel driving circuit shown in FIG. 5 .
  • 10 is a schematic diagram illustrating a planar structure of a combination of a first semiconductor layer, a first conductive layer, a second conductive layer, a second semiconductor layer, and a third conductive layer of the pixel driving circuit shown in FIG. 5 .
  • 11 is a schematic diagram illustrating a planar structure of a combination of a first semiconductor layer, a first conductive layer, a second conductive layer, a second semiconductor layer, a third conductive layer, and a fourth conductive layer of the pixel driving circuit shown in FIG. 5 .
  • FIG. 12 is a schematic diagram illustrating a cross-sectional structure of a display substrate taken along lines AA' and BB' in FIG. 5 according to some exemplary embodiments of the present disclosure, and for convenience of description, it will be taken along line AA' in FIG. 5 .
  • the cross-sectional structure taken along the line BB' is shown in the same schematic diagram.
  • the display substrate includes a base substrate 10 and a plurality of film layers disposed on the base substrate 10 .
  • the plurality of film layers shown include at least a first semiconductor layer 20 , a first conductive layer 30 , a second conductive layer 40 , a second semiconductor layer 50 , a third conductive layer 60 and a fourth conductive layer 70 .
  • the first semiconductor layer 20 , the first conductive layer 30 , the second conductive layer 40 , the second semiconductor layer 50 , the third conductive layer 60 and the fourth conductive layer 70 are disposed away from the base substrate 10 in sequence.
  • the first semiconductor layer 20 may be formed of a semiconductor material such as low temperature polysilicon, and its film thickness may be in the range of 400-800 angstroms, for example, 500 angstroms.
  • the second semiconductor layer 50 may be formed of an oxide semiconductor material, such as a polysilicon oxide semiconductor material such as IGZO, and its film thickness may be in the range of 300-600 angstroms, for example, 400 angstroms.
  • the first conductive layer 30 may be formed of a conductive material forming the gate of the thin film transistor, for example, the conductive material may be Mo, and the film thickness thereof may be in the range of 2000-3000 angstroms, such as 2500 angstroms.
  • the second conductive layer 40 may be formed of a conductive material forming the source and drain electrodes of the thin film transistor, for example, the conductive material may include Ti, Al, etc., and the second conductive layer 40 may have a stacked layer structure formed of Ti/Al/Ti , the film thickness can be in the range of 7000-9000 angstroms.
  • the thickness of each layer of Ti/Al/Ti may be about 500 angstroms, 5500 angstroms and 500 angstroms, respectively.
  • the third conductive layer 60 may be formed of a conductive material forming the gate of the thin film transistor, for example, the conductive material may be Mo, and the thickness of the film may be in the range of 2000-3000 angstroms, such as 2500 angstroms.
  • the fourth conductive layer 70 may be formed of a conductive material forming the source and drain electrodes of the thin film transistor, for example, the conductive material may include Ti, Al, etc., and the fourth conductive layer 70 may have a stacked layer structure formed of Ti/Al/Ti , the film thickness can be in the range of 7000-9000 angstroms.
  • the thickness of each layer of Ti/Al/Ti may be about 500 angstroms, 5500 angstroms and 300 angstroms, respectively.
  • the display substrate includes scan signal lines 61, reset signal lines 62, light emission control lines 63, and initialization voltages arranged along the row direction to apply the scan signal Sn, the reset control signal RESET, the light emission control signal En, and the initialization voltage Vint to the sub-pixels, respectively.
  • Voltage lines 66 The display substrate may further include a data line 64 and a driving voltage line 65 crossing the scan signal line 61, the reset signal line 62, the light emission control line 63 and the initialization voltage line 66 to apply the data signal Dm and the driving voltage VDD to the sub-pixels, respectively. .
  • the pixel driving circuit of the display substrate may include: a first transistor T1 , a second transistor T2 , a third transistor T3 , a fourth transistor T4 , a fifth transistor T5 , a sixth transistor T6 and The seventh transistor T7, and the storage capacitor Cst.
  • the first transistor T1 and the second transistor T2 may be formed along the second semiconductor layer as shown in FIG. 9 .
  • the third transistor T3 , the fourth transistor T4 , the fifth transistor T5 , the sixth transistor T6 and the seventh transistor T7 may be formed along the first semiconductor layer 20 as shown in FIG. 6 .
  • the first semiconductor layer 20 may have a bent or bent shape, and may include a third active layer 20c corresponding to the third transistor T3, a fourth active layer 20d corresponding to the fourth transistor T4, The fifth active layer 20e corresponding to the fifth transistor T5, the sixth active layer 20f corresponding to the sixth transistor T6, and the seventh active layer 20g corresponding to the seventh transistor T7.
  • the first semiconductor layer 20 may include polysilicon, such as a low temperature polysilicon material.
  • the active layer of each transistor may include a channel region, a source region and a drain region.
  • the channel region may be undoped or of a different type of doping than the source and drain regions, and thus have semiconductor properties.
  • the source region and the drain region are located on both sides of the channel region, respectively, and are doped with impurities and thus have conductivity. Impurities may vary depending on whether the TFT is an N-type or P-type transistor.
  • the third transistor T3 includes a third active layer 20c and a third gate G3.
  • the third active layer 20c includes a third source region 203c, a third drain region 205c, and a third channel region 201c connecting the third source region 203c and the third drain region 205c.
  • the third source region 203c and the third drain region 205c extend in opposite directions with respect to the third channel region 201c.
  • the fourth transistor T4 includes a fourth active layer 20d and a fourth gate G4.
  • the fourth active layer 20d includes a fourth source region 203d, a fourth drain region 205d, and a fourth channel region 201d connecting the fourth source region 203d and the fourth drain region 205d.
  • the fourth source region 203d and the fourth drain region 205d extend in opposite directions with respect to the fourth channel region 201d.
  • the fifth transistor T5 includes a fifth active layer 20e and a fifth gate G5.
  • the fifth active layer 20e includes a fifth source region 203e, a fifth drain region 205e, and a fifth channel region 201e connecting the fifth source region 203e and the fifth drain region 205e.
  • the fifth source region 203e and the fifth drain region 205e extend in opposite two directions with respect to the fifth channel region 201e.
  • the sixth transistor T6 includes a sixth active layer 20f and a sixth gate G6.
  • the sixth active layer 20f includes a sixth source region 203f, a sixth drain region 205f, and a sixth channel region 201f connecting the sixth source region 203f and the sixth drain region 205f.
  • the sixth source region 203f and the sixth drain region 205f extend in opposite directions with respect to the sixth channel region 201f.
  • the seventh transistor T7 includes a seventh active layer 20g and a seventh gate G7.
  • the seventh active layer 20g includes a seventh source region 203g, a seventh drain region 205g, and a seventh channel region 201g connecting the seventh source region 203g and the seventh drain region 205g.
  • the seventh source region 203g and the seventh drain region 205g extend in opposite two directions with respect to the seventh channel region 201g.
  • the scan signal line 61 , the reset signal line 62 and the light emission control line 63 are all located in the first conductive layer 30 .
  • the gate structure CG1 is also located in the first conductive layer 30 .
  • the portion of the gate structure CG1 overlapping with the first semiconductor layer 20 forms the third gate G3 of the third transistor T3.
  • the portion of the scan signal line 61 overlapping the first semiconductor layer 20 forms the fourth gate G4 of the fourth transistor T4.
  • a portion of the light emission control line 63 overlapping with the first semiconductor layer 20 forms the fifth gate G5 of the fifth transistor T5.
  • Another portion of the light emission control line 63 overlapping with the first semiconductor layer 20 forms the sixth gate G6 of the sixth transistor T6.
  • the portion of the reset signal line 62 overlapping the first semiconductor layer 20 forms the seventh gate G7 of the seventh transistor T7.
  • the gate structure CG1 also forms one terminal of the storage capacitor Cst, eg the first capacitive electrode Cst1. That is, the gate structure CG1 simultaneously serves as the gate of the third transistor T3 and one electrode of the storage capacitor Cst.
  • the data lines 64 and the driving voltage lines 65 are both located in the second conductive layer 40 .
  • the first bottom gate structure BG1 and the second bottom gate structure BG2 are also located in the second conductive layer 40 .
  • the data line 64 is electrically connected to the source region 203d of the fourth transistor T4 through the via hole VAH1 to apply the data signal Dm to the source of the fourth transistor T4. That is, the portion of the data line 64 overlapping the source region 203d of the fourth transistor T4 constitutes the source of the fourth transistor T4.
  • a portion of the second conductive layer 40 overlapping with the gate structure CG1 forms another electrode of the storage capacitor Cst, eg, a second capacitance electrode Cst2.
  • the second capacitance electrode Cst2 is electrically connected to the driving voltage line 65 .
  • the second capacitance electrode Cst2 and the driving voltage line 65 are connected integrally.
  • the driving voltage line 65 is electrically connected to the source region 203e of the fifth transistor T5 through the via hole VAH12.
  • the portion of the driving voltage line 65 overlapping with the source region 203e of the fifth transistor T5 constitutes the source of the fifth transistor T5.
  • the first capacitor electrode Cst1 and the second capacitor electrode Cst2 have a larger overlapping area, which can increase the capacitance value of the storage capacitor Cst, thereby improving the performance of the display panel and reducing the power consumption of the display panel.
  • the second conductive layer 40 includes a through hole 40H that exposes a portion of the gate structure CG1 to facilitate electrical connection of the third gate G3 of the third transistor T3 with other components.
  • the second conductive layer 40 further includes a first conductive member 401 , a second conductive member 402 and a third conductive member 403 .
  • the first conductive member 401 is electrically connected to the drain region 205g of the seventh transistor T7 through the via hole VAH5.
  • the second conductive member 402 is electrically connected to the drain region 205c of the third transistor T3 through the via hole VAH11.
  • the third conductive member 403 is electrically connected to the drain region 205f of the sixth transistor T6 and the source region 203g of the seventh transistor T7 through the via hole VAH13.
  • the second semiconductor layer 50 includes a first active layer 20a corresponding to the first transistor T1 and a second active layer 20b corresponding to the second transistor T2.
  • the first active layer 20a of the first transistor T1 and the second active layer 20b of the second transistor T2 extend in the same direction as the data line, that is, both extend in the up-down direction in the figure.
  • the second semiconductor layer 50 may include an oxide semiconductor material, such as a low temperature polysilicon oxide semiconductor material (abbreviated as LTPO).
  • the active layer of each transistor may include a channel region, a source region and a drain region.
  • the channel region may be undoped or of a different type of doping than the source and drain regions, and thus have semiconductor properties.
  • the source region and the drain region are located on both sides of the channel region, respectively, and are doped with impurities and thus have conductivity. Impurities may vary depending on whether the TFT is an N-type or P-type transistor.
  • the first active layer 20a of the first transistor T1 includes a first source region 203a, a first drain region 205a, and a first channel region 201a connecting the first source region 203a and the first drain region 205a.
  • the first source region 203a and the first drain region 205a extend in opposite directions with respect to the first channel region 201a.
  • the second active layer 20b of the second transistor T2 includes a second source region 203b, a second drain region 205b, and a second channel region 201b connecting the second source region 203b and the second drain region 205b.
  • the second source region 203b and the second drain region 205b extend in opposite directions with respect to the second channel region 201b.
  • the orthographic projection of the first active layer 20a on the base substrate 10 at least partially overlaps with the orthographic projection of the first bottom gate structure BG1 on the base substrate 10, and the first bottom gate structure BG1 overlaps with the first active layer 20a.
  • Part of the first bottom gate G11 of the first transistor T1 is formed.
  • the orthographic projection of the second active layer 20b on the base substrate 10 and the orthographic projection of the second bottom gate structure BG2 on the base substrate 10 at least partially overlap, and the second bottom gate structure BG2 overlaps with the second active layer 20b.
  • Part of the second bottom gate G21 of the second transistor T2 is formed.
  • the first bottom gate structure BG1 includes a first bottom gate body part BG11 and a first bottom gate extension part BG12 .
  • the orthographic projection of the first bottom gate body portion BG11 on the base substrate 10 is rectangular.
  • the orthographic projection of the first bottom gate body portion BG11 on the base substrate 10 at least partially overlaps with the orthographic projection of the active layer of the first transistor T1 on the base substrate 10
  • the first The bottom gate G11 includes a portion where the first bottom gate body portion BG11 overlaps with the active layer of the first transistor T1.
  • the second bottom gate structure BG2 includes a second bottom gate body portion BG21 and a second bottom gate extension portion BG22.
  • the orthographic projection of the second bottom gate body portion BG21 on the base substrate 10 has a rectangular shape.
  • the orthographic projection of the second bottom gate body portion BG21 on the base substrate 10 at least partially overlaps with the orthographic projection of the active layer of the second transistor T2 on the base substrate 10, and the second The bottom gate G21 includes a portion where the second bottom gate body portion BG21 overlaps with the active layer of the second transistor T2.
  • At least one of the first bottom gate extension part BG12 and the second bottom gate extension part BG22 is the same as the extension direction of the data line, that is, both are along the line in the figure Extend up and down.
  • the third conductive layer 60 includes a first top gate structure TG1 and a second top gate structure TG2.
  • the initialization voltage lines 66 are also located in the third conductive layer 60 .
  • the overlapping portion of the first top gate structure TG1 and the first active layer 20a constitutes the first top gate G12 of the first transistor. 12 , in a direction perpendicular to the upper surface of the base substrate 10 (ie, along the vertical direction shown in FIG. 12 ), the first active layer 20 a is located between the first bottom gate G11 and the first top gate G12 between. In this way, the first transistor T1 has a double gate structure.
  • the first top gate structure TG1 extends along the horizontal direction in FIG. 10 .
  • the first top gate structure TG1 may include a first widened portion TG11, and the size of the first widened portion TG11 in the vertical direction is larger than that of the rest of the first top gate structure TG1 in the vertical direction. size.
  • the orthographic projection of the first widened portion TG11 on the base substrate 10 at least partially overlaps with the orthographic projection of the active layer 20a of the first transistor T1 on the base substrate 10
  • the first The top gate G12 includes a portion where the first widened portion TG11 overlaps with the active layer 20a of the first transistor T1.
  • the first widened portion TG11 is directed along the first direction (ie, the vertical direction shown in FIG. 10 ) relative to the rest of the first top gate structure TG1 Both sides stand out.
  • the first widened portion TG11 may only protrude to one side relative to the rest of the first top gate structure TG1 along the first direction (ie, the vertical direction shown in FIG. 10 ), For example, only protrude up or only down.
  • each of the second active layer 20 b and the second bottom gate structure BG2 on the base substrate 10 at least partially overlaps with the orthographic projection of the second top gate structure TG2 on the base substrate 10 .
  • the overlapping portion of the second top gate structure TG2 and the second active layer 20b constitutes the second top gate G22 of the second transistor. 12 , in a direction perpendicular to the upper surface of the base substrate 10 (ie, along the vertical direction shown in FIG. 12 ), the second active layer 20 b is located between the second bottom gate G21 and the second top gate G22 between. In this way, the second transistor T2 has a double gate structure.
  • the second top gate structure TG2 extends along the horizontal direction in FIG. 10 .
  • the second top gate structure TG2 may include a second widened portion TG21, and the size of the second widened portion TG21 in the vertical direction is larger than that of the rest of the second top gate structure TG2 in the vertical direction. size.
  • the orthographic projection of the second widening portion TG21 on the base substrate 10 at least partially overlaps with the orthographic projection of the active layer 20b of the second transistor T2 on the base substrate 10, and the second The top gate G22 includes a portion where the second widened portion TG21 overlaps with the active layer 20b of the second transistor T2.
  • the second widening portion TG21 is directed along the first direction (ie, the vertical direction shown in FIG. 10 ) relative to the rest of the second top gate structure TG2 Both sides stand out.
  • the second widening portion TG21 may only protrude to one side relative to the rest of the second top gate structure TG2 along the first direction (ie, the vertical direction shown in FIG. 10 ), For example, only protrude up or only down.
  • the fourth conductive layer 70 includes a first conductive part 701 , a second conductive part 702 , a third conductive part 703 and a fourth conductive part 704 .
  • One end of the first conductive member 701 is electrically connected to the source region 203a of the first transistor T1 through the via hole VAH2.
  • a portion of the first conductive member 701 is also electrically connected to the initialization voltage line 66 through the via hole VAH3.
  • the other end of the first conductive part 701 is electrically connected to the first conductive member 401 through the via hole VAH4.
  • the source of the first transistor T1 and the drain of the seventh transistor T7 are electrically connected, and both are electrically connected to the initialization voltage line 66 .
  • the initialization voltage Vint may be applied to the source of the first transistor T1 and the drain of the seventh transistor T7.
  • One end of the second conductive member 702 is electrically connected to the drain region 205b of the second transistor T2 through the via hole VAH7, and the other end of the second conductive member 702 is electrically connected to the drain region 203a of the first transistor T1 and the third conductive member through the via hole VAH6
  • Components 703 are electrically connected.
  • One end of the third conductive member 703 is electrically connected to the second conductive member 702 through the via hole VAH6, and the other end of the third conductive member 703 is electrically connected to the gate G1 of the third transistor T3 and the first capacitor electrode Cst1 through the via hole VAH8.
  • the drain of the first transistor T1, the drain of the second transistor T2, the gate of the third transistor T3 and the first capacitor electrode Cst1 can be electrically connected to each other. Referring to FIG. 4, they are all electrically connected to the node N1. .
  • One end of the fourth conductive part 704 is electrically connected to the source region 203b of the second transistor T2 through the via hole VAH9, and the other end of the fourth conductive part 704 is electrically connected to the second conductive member 402 through the via hole VAH10. In this way, an electrical connection between the source of the second transistor T2 and the source of the sixth transistor T6 can be achieved.
  • the active layers of the first transistor T1 and the second transistor T2 are both formed of an oxide semiconductor material such as LTPO, which can improve the voltage at the node N1 (as shown in FIG. 4 ) in the pixel driving circuit. voltage stability, thereby improving the display performance of the display panel.
  • both the first transistor T1 and the second transistor T2 have a double gate structure, so that the stability of the first transistor T1 and the second transistor T2 and the uniformity of the threshold voltage (Vth) are improved, so that the display panel can be further improved. performance.
  • the bottom gates G11 and G21 of the transistors T1 and T2 not only function as bottom gates, but also function as light shielding layers, which can prevent external light from affecting the transistors T1 and T2.
  • the interference of the source layers 20a and 20b is beneficial to further improve the performance of the transistor.
  • the bottom gates G11 and G21 of the transistors T1 and T2 and the sources and drains of the transistors T3, T4, T5, T6, and T7 are located in the same layer, that is, they are all located in the second conductive layer 40, and the transistors T1, T1, T1, T1, T1 can be formed by the same patterning process.
  • the bottom gates G11 and G21 of T2 and the sources and drains of the transistors T3, T4, T5, T6 and T7 are beneficial to save the number of patterning processes and reduce the number of masks.
  • FIG. 13 is a schematic diagram illustrating a plan structure of a display substrate according to some exemplary embodiments of the present disclosure, wherein a plan structure of a first electrode of a light emitting device is schematically shown.
  • FIG. 14 is a schematic diagram illustrating a planar structure of a display substrate according to some exemplary embodiments of the present disclosure, in which an opening of a pixel definition layer is schematically illustrated.
  • FIG. 15 is a schematic diagram illustrating a planar structure of a display substrate according to some exemplary embodiments of the present disclosure, wherein the planar structure of a spacer is schematically illustrated.
  • FIG. 16 is a schematic diagram illustrating a cross-sectional structure of a display substrate according to some exemplary embodiments of the present disclosure.
  • the light-emitting device may be an organic light-emitting diode, which may include a first electrode, an organic light-emitting layer and a second electrode disposed on the base substrate 10, wherein the first electrode may be one of an anode and a cathode, and the first electrode may be one of an anode and a cathode.
  • the second electrode may be the other of the anode and the cathode.
  • the first electrode, the organic light-emitting layer, and the second electrode may be disposed away from the base substrate 10 in sequence.
  • the first electrode 80 may include an electrode main body part 801 and an electrode connection part 802 .
  • the electrode body portion 801 may have a substantially rectangular shape, that is, the orthographic projection of the electrode body portion 801 on the base substrate 10 is substantially rectangular.
  • the electrode body part 801 may have any suitable shape, for example, a hexagon, an octagon, and the like.
  • the electrode main body portion 801 and the electrode connection portion 802 may be connected integrally.
  • the electrode connection portion 802 is electrically connected to one end of the third conductive member 403 through the via hole VAH14.
  • the other end of the third conductive member 403 is electrically connected to the drain electrode of the sixth transistor T6 and the source electrode of the seventh transistor T7 through the via hole VAH13.
  • the first electrode 80 is electrically connected to the drain of the sixth transistor T6 and the source of the seventh transistor T7.
  • the orthographic projection of the first electrode 80 on the base substrate 10 at least covers the orthographic projection of the active layer 20a of the first transistor T1 on the base substrate 10 .
  • the orthographic projection of the first electrode 80 on the base substrate 10 is spaced apart from the orthographic projection of the active layer 20b of the second transistor T2 on the base substrate 10 .
  • the display substrate further includes a pixel defining layer PDL disposed on the side of the first electrode 80 away from the base substrate 10 , the pixel defining layer PDL includes an opening 803 , and the opening 803 exposes at least a portion of the first electrode 80 part.
  • the opening 803 has a hexagonal shape, that is, the orthographic projection of the opening 803 on the base substrate 10 has a hexagonal shape.
  • the opening 803 may have any suitable shape, for example, a rectangle, an octagon, and the like.
  • the display substrate further includes a spacer PS disposed on the side of the pixel defining layer PDL away from the base substrate 10 .
  • the spacer PS has a rectangular shape, that is, the orthographic projection of the spacer PS on the base substrate 10 has a rectangular shape.
  • the spacer PS may have any suitable shape, for example, a circle and the like.
  • the orthographic projection of the spacer PS on the base substrate 10 at least partially overlaps with the orthographic projection of the active layer 20b of the second transistor T2 on the base substrate 10 .
  • the display substrate may be a flexible display substrate.
  • FIG. 17 is a schematic diagram of the flexible display substrate in a folded state according to an exemplary embodiment of the present disclosure
  • FIG. 18 is a cross-sectional view of the flexible display substrate in FIG. 17 along the X direction.
  • the flexible display substrate includes a display area (AA), a pad area 130 and a bending area 140 between the display area and the pad area 130 , the pad area 130 and the bending area 140
  • the folding areas 140 are all located in the non-display area (NA) outside the display area.
  • the above-mentioned base substrate 10 may be, for example, polyimide (PI), polyethylene terephthalate (PET), polycarbonate, polyethylene Organic flexible substrates formed of ethylene, polyacrylate, polyetherimide, polyethersulfone, etc.
  • the substrate substrate 10 may include a first substrate, a first barrier layer, and a second substrate, and the first barrier layer is disposed between the first substrate and the second substrate.
  • the first substrate may be formed of polyimide (PI) with a thickness of about 10 microns.
  • the first barrier layer may be formed of silicon oxide with a thickness of about 6000 angstroms; alternatively, the first barrier layer may be formed of amorphous silicon with a thickness of about 40 angstroms.
  • the second substrate may be formed of polyimide (PI) with a thickness of about 6 microns.
  • the bend zone 140 in FIG. 17 may bend about the bend axis (BX). It should be noted that, in this document, the expression "bending axis" is a virtual axis around which the bending region 140 can be bent, rather than a physical bending axis provided in the flexible display substrate.
  • the bending area 140 is disposed on the non-display area side of the flexible display substrate along the X direction.
  • a gate driver circuit can be bound on the non-display area side of the flexible display substrate along the Y direction, or a GOA circuit (Gate Driver On Array) can be directly formed on the flexible substrate substrate.
  • a trace 105 is provided in the bending region 140 for electrically connecting the GOA circuit to the above-mentioned pixel driving circuit.
  • the traces 105 may be various conductive traces extending from the display area AA to the non-display area NA and used for transmitting electrical signals, such as data lines, VSS power lines, VDD power lines, and the like.
  • the pad area 130 can be bent until the back of the display area overlaps with the display area, thereby realizing a display device with a narrow frame or even a frameless frame.
  • the display substrate includes traces 105 disposed in the bending region 140 , and the traces 105 may be located in the fourth conductive layer 70 .
  • the display substrate may include a second barrier layer 161 disposed on the base substrate 10 ; and a first buffer layer 162 disposed on a side of the second barrier layer 161 away from the base substrate 10 .
  • the second barrier layer 161 may be formed of silicon oxide and have a thickness of about 5500 angstroms.
  • the first buffer layer 162 may be formed of silicon nitride with a thickness of about 1000 angstroms; alternatively, the first buffer layer 162 may be formed of silicon oxide with a thickness of about 3000 angstroms.
  • the display substrate may include a first gate insulating layer GI1 disposed between the first semiconductor layer 20 and the first conductive layer 30 .
  • the first gate insulating layer GI1 may be formed of silicon oxide and have a thickness of about 1000 ⁇ 2000 angstroms.
  • the display substrate may include a first interlayer insulating layer ILD1 disposed between the first conductive layer 30 and the second conductive layer 40 .
  • the first interlayer insulating layer ILD1 may be formed of silicon nitride and have a thickness of about 1000 ⁇ 2000 angstroms.
  • the display substrate may include a second buffer layer 163 disposed between the second conductive layer 40 and the second semiconductor layer 50 .
  • the second buffer layer 163 may be formed of silicon oxide and have a thickness of about 3000 ⁇ 6000 angstroms.
  • the display substrate may include a second gate insulating layer GI2 disposed between the second semiconductor layer 50 and the third conductive layer 60 .
  • the second gate insulating layer GI2 may be formed of silicon oxide and have a thickness of about 1300 angstroms.
  • the display substrate may include a second interlayer insulating layer ILD2 disposed between the third conductive layer 60 and the fourth conductive layer 70 .
  • the second interlayer insulating layer ILD2 may be formed of silicon oxide and have a thickness of about 3000 ⁇ 6000 angstroms.
  • the display substrate may include a passivation layer PVX disposed on a side of the fourth conductive layer 70 away from the base substrate 10 and a planarization layer PLN disposed on a side of the passivation layer PVX away from the base substrate 10 .
  • the passivation layer PVX may be formed of silicon oxide and have a thickness of about 2000-3500 angstroms.
  • the planarization layer PLN may be formed of polyimide (PI) with a thickness of about 1.5 microns.
  • the display substrate includes a groove 165 located in the bending area 140.
  • the groove 165 is a stepped groove, that is, it includes a first groove portion 1651 and a second groove portion 1652.
  • the orthographic projection of the second groove portion 1652 on the base substrate 10 covers the orthographic projection of the first groove portion 1651 on the base substrate 10 , and the area of the orthographic projection of the second groove portion 1652 on the base substrate 10 is larger than The area of the orthographic projection of the first groove portion 1651 on the base substrate 10 .
  • the first groove portion 1651 penetrates at least the first interlayer insulating layer ILD1 , the first gate insulating layer GI1 and the first buffer layer 162 to expose a portion of the base substrate 10 in the bending region 140 .
  • the second groove portion 1652 penetrates at least the second buffer layer 163 , the second gate insulating layer GI2 , the second interlayer insulating layer ILD2 and the passivation layer PVX.
  • a portion of the planarization layer PLN is filled in the groove 165 .
  • the base substrate 10 and the planarization layer PLN are mainly formed at the bending region 140 , which is beneficial to improve the bending performance of the display substrate at the bending region.
  • the trace 105 is located at the bottom of the groove 165 .
  • a portion of the passivation layer PVX covers the traces 105 to protect the traces 105 .
  • FIG. 19 is a flowchart of a method of manufacturing a display substrate according to some exemplary embodiments of the present disclosure.
  • FIG. 20 to FIG. 23 and FIG. 16 are respectively schematic diagrams of cross-sectional structures of the display substrate formed after some steps in the manufacturing method shown in FIG. 19 are performed. Referring to FIG. 16 and FIGS. 19 to 23 in combination, the manufacturing method of the display substrate may be performed according to the following steps.
  • the base substrate 10 is prepared.
  • the base substrate 10 may be, for example, polyimide (PI), polyethylene terephthalate (PET), polycarbonate, polyethylene, polyacrylate, polyetherimide, polyether Organic flexible substrates formed from sulfones, etc.
  • the base substrate 10 may have a single-layer structure or a double-layer structure.
  • the substrate substrate 10 may include a first substrate, a first barrier layer, and a second substrate, and the first barrier layer is disposed between the first substrate and the second substrate.
  • the thickness of the base substrate 10 is approximately in the range of 5-20 microns.
  • the second barrier layer 161 and the first buffer layer 162 are sequentially prepared on the base substrate 10 .
  • a polycrystalline silicon semiconductor silicon island layer ie, the first semiconductor layer 20 , is prepared on the first buffer layer 162 by a patterning process.
  • a first gate insulating layer GI1 is formed over the first semiconductor layer 20, a first conductive material layer is deposited, and a patterning process is used to form the gates of the third transistor T3 to the seventh transistor T7 in the first conductive material layer, and the memory
  • the first capacitance electrode of the capacitor Cst forms the above-mentioned first conductive layer 30 .
  • a first interlayer insulating layer ILD1 is formed over the first conductive layer 30, and the source electrodes of the active layers of the third transistor T3 to the seventh transistor T7 are etched in the first interlayer insulating layer ILD1 by an etching process. multiple vias in the drain region.
  • a second conductive material layer is deposited over the first interlayer insulating layer ILD1, and a patterning process is used to form the source and drain electrodes of the third transistor T3 to the seventh transistor T7, the second capacitance electrode of the storage capacitor Cst, and The bottom gates of the first transistor T1 and the second transistor T2 form the second conductive layer 40 .
  • the source and drain electrodes of the third transistor T3 to the seventh transistor T7, the second capacitance electrode of the storage capacitor Cst, and the bottom gates of the first transistor T1 and the second transistor T2 are formed by one patterning process. It is beneficial to reduce the number of patterning processes and the number of masks.
  • step S192 a second buffer layer 163 is formed over the second conductive layer 40 .
  • An oxide semiconductor silicon island layer, ie, the second semiconductor layer 50, is prepared on the second buffer layer 163 by a patterning process.
  • a second gate insulating layer GI2 is formed over the second semiconductor layer 50, a third conductive material layer is deposited, and a patterning process is used to form the top gates of the first transistor T1 and the second transistor T2 in the third conductive material layer, that is, to form The above-mentioned third conductive layer 60 .
  • a second interlayer insulating layer ILD2 is formed over the third conductive layer 60, and a patterning process is used to form a plurality of via holes in the second interlayer insulating layer ILD2, the plurality of via holes exposing the third transistor T3 to the seventh transistor
  • the source and drain electrodes of T7, and the source and drain regions of the active layers of the first and second transistors T1 and T2 are exposed; and, the patterning process may also be formed in the second interlayer insulating layer ILD2 The first groove portion 1651 .
  • the first groove portion 1651 is located in the bending region 140 , and the first groove portion 1651 penetrates at least the first interlayer insulating layer ILD1 , the first gate insulating layer GI1 and the first buffer layer 162 to expose the base substrate 10 in the bending region. A portion of fold area 140 .
  • a second groove portion 1652 is formed in the bending region 140 through an etching process.
  • the second groove portion 1652 penetrates at least the second buffer layer 163 and the second interlayer insulating layer ILD2.
  • the orthographic projection of the second groove portion 1652 on the base substrate 10 covers the orthographic projection of the first groove portion 1651 on the base substrate 10 , and the area of the orthographic projection of the second groove portion 1652 on the base substrate 10 It is larger than the area of the orthographic projection of the first groove portion 1651 on the base substrate 10 . In this way, a stepped groove 165 is formed in the bending region 140 .
  • a fourth conductive material layer is formed above the second interlayer insulating layer ILD2 and at the bottom of the groove 165, and the above-mentioned fourth conductive material layer is formed in the fourth conductive material layer by a patterning process 70.
  • the fourth conductive layer 70 includes a first conductive part 701, a second conductive part 702, a third conductive part 703 and a fourth conductive part 704, and also includes a trace 105 at the bottom of the groove 165.
  • a passivation layer PVX is deposited, and the passivation layer PVX covers the above-mentioned fourth conductive layer 70 .
  • a planarization layer PLN is coated over the passivation layer PVX.
  • step S195 the first electrode 80 , the pixel defining layer PDL and the spacer PS are sequentially prepared above the planarization layer PLN.
  • At least some embodiments of the present disclosure also provide a display panel including the display substrate as described above.
  • the display panel may be an OLED display panel.
  • the display device may include the display substrate as described above.
  • the display device may include any device or product having a display function.
  • the display device may be a smartphone, mobile phone, e-book reader, desktop computer (PC), laptop PC, netbook PC, personal digital assistant (PDA), portable multimedia player (PMP), digital audio Players, mobile medical devices, cameras, wearable devices (such as head-mounted devices, electronic clothing, electronic wristbands, electronic necklaces, electronic accessories, electronic tattoos, or smart watches), TV sets, etc.
  • the display panel and the display device according to the embodiments of the present disclosure have all the features and advantages of the above-mentioned display substrate. For details, reference may be made to the above description, which will not be repeated here.

Abstract

一种显示基板、显示面板(110)和显示装置(1000)。显示基板包括:衬底基板(10);设置于衬底基板(10)的第一半导体层(20);和设置于第一半导体层(20)远离衬底基板(10)一侧的第二半导体层(50),其中,显示基板还包括设置于衬底基板(10)的多个薄膜晶体管(T1,T2,T3,T4,T5,T6,T7),多个薄膜晶体管(T1,T2,T3,T4,T5,T6,T7)至少包括第一晶体管(T1)、第二晶体管(T2)和第三晶体管(T3),多个薄膜晶体管(T1,T2,T3,T4,T5,T6,T7)中的每一个都包括有源层,第一晶体管(T1)和第二晶体管(T2)中的至少一个的有源层(20a,20b)包括氧化物半导体材料,第三晶体管(T3)的有源层(20c)包括多晶硅半导体材料,第三晶体管(T3)的有源层(20c)位于第一半导体层(20),第一晶体管(T1)和第二晶体管(T2)中的至少一个的有源层(20a,20b)位于第二半导体层(50);以及第一晶体管(T1)和第二晶体管(T2)中的至少一个具有双栅结构。

Description

显示基板、显示面板和显示装置 技术领域
本公开涉及显示技术领域,并且具体地涉及一种显示基板、显示面板和显示装置。
背景技术
有机发光二极管(缩写为OLED)显示装置是一类使用发光的OLED来显示图像等信息的显示装置。OLED显示装置具有诸如低功耗、高亮度和高响应速度的特性。低温多晶硅氧化物薄膜晶体管(Low Temperature Poly-Oxide TFT,以下简称LTPO TFT)技术是近年来新兴的薄膜晶体管技术。从理论上讲,LTPO TFT相比传统的低温多晶硅薄膜晶体管(Low Temperature Poly-Silicon TFT,以下简称LTPS TFT)技术而言,可以节省5-15%的电量,让整块显示屏幕的功耗更低。
在本部分中公开的以上信息仅用于对本公开的技术构思的背景的理解,因此,以上信息可包含不构成现有技术的信息。
发明内容
在一个方面,提供一种显示基板,其中,所述显示基板包括:
衬底基板;
设置于所述衬底基板的第一半导体层;和
设置于所述第一半导体层远离所述衬底基板一侧的第二半导体层,
其中,所述显示基板还包括设置于所述衬底基板的多个薄膜晶体管,所述多个薄膜晶体管至少包括第一晶体管和第三晶体管,
所述多个薄膜晶体管中的每一个都包括有源层,所述第一晶体管的有源层包括氧化物半导体材料,所述第三晶体管的有源层包括多晶硅半导体材料,所述第三晶体管的有源层位于所述第一半导体层,所述第一晶体管的有源层位于所述第二半导体层;
所述第一晶体管包括第一底栅和第一顶栅,所述第一底栅位于所述衬底基板与所述第一晶体管的有源层之间,所述第一顶栅位于所述第一晶体管的有源层远离所述衬底基板的一侧,所述第一晶体管的有源层、所述第一底栅和所述第一顶栅中的任意两 个在所述衬底基板上的正投影彼此至少部分重叠;
所述显示基板包括设置于所述衬底基板的第一导电层和第二导电层,所述第一导电层位于所述第一半导体层远离所述衬底基板的一侧,所述第二导电层位于所述第一导电层与所述第二半导体层之间;
所述第三晶体管包括栅极、源极和漏极,所述第三晶体管的栅极位于所述第一导电层,所述第三晶体管的源极和所述第三晶体管的漏极位于所述第二导电层;以及
所述第一底栅位于所述第二导电层。
根据一些示例性的实施例,所述显示基板还包括第二晶体管,所述第二晶体管包括第二底栅和第二顶栅,所述第二底栅位于所述衬底基板与所述第二晶体管的有源层之间,所述第二顶栅位于所述第二晶体管的有源层远离所述衬底基板的一侧,所述第二晶体管的有源层、所述第二底栅和所述第二顶栅中的任意两个在所述衬底基板上的正投影彼此至少部分重叠。所述第二晶体管中的有源层包括氧化物半导体材料,所述第二晶体管中的有源层位于所述第二半导体层,所述第二底栅位于所述第二导电层。
根据一些示例性的实施例,所述显示基板包括存储电容器,所述存储电容器包括设置于所述衬底基板的第一电容电极和第二电容电极,所述第一电容电极在所述衬底基板上的正投影与所述第二电容电极在所述衬底基板上的正投影至少部分重叠;以及所述第二电容电极位于所述第二导电层,所述第一电容电极位于所述第一导电层。
根据一些示例性的实施例,所述显示基板包括位于所述第二导电层的第一底栅结构,所述第一底栅结构包括第一底栅主体部和第一底栅延伸部,所述第一底栅主体部在所述衬底基板上的正投影与所述第一晶体管的有源层在所述衬底基板上的正投影至少部分重叠,所述第一底栅包括所述第一底栅主体部与所述第一晶体管的有源层重叠的部分;和/或,所述显示基板包括位于所述第二导电层的第二底栅结构,所述第二底栅结构包括第二底栅主体部和第二底栅延伸部,所述第二底栅主体部在所述衬底基板上的正投影与所述第二晶体管的有源层在所述衬底基板上的正投影至少部分重叠,所述第二底栅包括所述第二底栅主体部与所述第二晶体管的有源层重叠的部分。
根据一些示例性的实施例,所述显示基板还包括用于传输数据信号的数据线,所述数据线在所述衬底基板上沿第一方向延伸,所述第一底栅延伸部和所述第二底栅延伸部中的至少一个沿所述第一方向延伸;所述第一晶体管的有源层和所述第二晶体管的有源层中的至少一个沿所述第一方向延伸。
根据一些示例性的实施例,所述显示基板包括第三导电层,所述第三导电层位于所述第二半导体层远离所述衬底基板的一侧,
所述显示基板包括位于所述第三导电层中的第一顶栅结构,所述第一顶栅结构沿第二方向延伸,所述第二方向与所述第一方向相交;
所述第一顶栅结构包括第一加宽部,所述第一加宽部沿所述第一方向的尺寸大于所述第一顶栅结构的其余部分沿所述第一方向的尺寸;以及
所述第一加宽部在所述衬底基板上的正投影与所述第一晶体管的有源层在所述衬底基板上的正投影至少部分重叠,所述第一顶栅包括所述第一加宽部与所述第一晶体管的有源层重叠的部分。
根据一些示例性的实施例,所述显示基板包括位于所述第三导电层中的第二顶栅结构,所述第二顶栅结构沿所述第二方向延伸;
所述第二顶栅结构包括第二加宽部,所述第二加宽部沿所述第一方向的尺寸大于所述第二顶栅结构的其余部分沿所述第一方向的尺寸;以及
所述第二加宽部在所述衬底基板上的正投影与所述第二晶体管的有源层在所述衬底基板上的正投影至少部分重叠,所述第二顶栅包括所述第二加宽部与所述第二晶体管的有源层重叠的部分。
根据一些示例性的实施例,所述第一加宽部沿所述第一方向相对于所述第一顶栅结构的其余部分向两侧分别突出;和/或,所述第二加宽部沿所述第一方向相对于所述第二顶栅结构的其余部分向两侧分别突出。
根据一些示例性的实施例,所述显示基板包括第四导电层,所述第四导电层位于所述第三导电层远离所述衬底基板的一侧;所述第一晶体管包括第一源极和第一漏极,所述第二晶体管包括第二源极和第二漏极,所述第一源极、第一漏极、第二源极和第二漏极均位于所述第四导电层。
根据一些示例性的实施例,所述显示基板包括位于所述第三导电层的初始化电压线,所述初始化电压线用于传输初始化电压信号;以及所述显示基板还包括位于所述第四导电层的第一导电部件,所述第一导电部件的一端通过第一过孔与所述第一晶体管的有源层电连接,所述第一导电部件的一部分还通过第二过孔与所述初始化电压线电连接。
根据一些示例性的实施例,所述显示基板还包括位于所述第四导电层的第二导电 部件和第三导电部件,所述第二导电部件的一端通过第三过孔与所述第二晶体管的有源层电连接,所述第二导电部件的另一端通过第四过孔与所述第一晶体管的有源层和所述第三导电部件的一端电连接;以及所述第三导电部件的另一端通过第五过孔与所述第三晶体管的栅极和所述第一电容电极电连接。
根据一些示例性的实施例,所述显示基板还包括设置于所述衬底基板的发光器件,所述发光器件至少包括第一电极,所述第一电极位于所述第四导电层远离所述衬底基板的一侧;以及所述第一电极在所述衬底基板上的正投影与所述第一晶体管的有源层在所述衬底基板上的正投影至少部分重叠。
根据一些示例性的实施例,所述第一电极在所述衬底基板上的正投影与所述第二晶体管的有源层在所述衬底基板上的正投影间隔设置。
根据一些示例性的实施例,所述显示基板还包括设置于所述衬底基板的像素界定层和隔垫物,所述像素界定层包括开口,所述开口暴露所述第一电极的至少一部分,所述隔垫物位于所述像素界定层远离所述衬底基板的一侧;以及所述隔垫物在所述衬底基板上的正投影与所述第二晶体管的有源层在所述衬底基板上的正投影至少部分重叠。
根据一些示例性的实施例,所述显示基板包括位于所述衬底基板与所述第一半导体层之间的第一缓冲层,所述第一缓冲层包括氧化硅或氮化硅;和/或,
所述显示基板包括位于所述第一半导体层与所述第一导电层之间的第一栅绝缘层,所述第一栅绝缘层包括氧化硅;和/或,
所述显示基板包括位于所述第二导电层与所述第二半导体层之间的第二缓冲层,所述第二缓冲层包括氧化硅;和/或,
所述显示基板包括位于所述第二半导体层与所述第三导电层之间的第二栅绝缘层,所述第二栅绝缘层包括氧化硅。
根据一些示例性的实施例,所述显示基板为可弯折的柔性显示基板,所述柔性显示基板包括显示区和弯折区;以及所述显示基板还包括位于所述弯折区的凹槽,所述凹槽暴露所述衬底基板位于所述弯折区的至少一部分。
根据一些示例性的实施例,所述显示基板还包括位于所述弯折区的走线,所述走线位于所述第四导电层,且所述走线位于所述凹槽的底部。
根据一些示例性的实施例,所述显示基板还包括钝化层,所述钝化层位于所述第 四导电层远离所述衬底基板的一侧,所述钝化层的一部分至少覆盖所述走线;以及所述显示基板还包括平坦化层,所述平坦化层位于所述钝化层远离所述衬底基板的一侧,所述平坦化层填充于所述凹槽内。
在另一方面,提供一种显示面板,包括如上所述的显示基板。
在又一方面,提供一种显示装置,包括如上所述的显示基板或如上所述的显示面板。
附图说明
通过参照附图详细描述本公开的示例性实施例,本公开的特征及优点将变得更加明显。
图1是根据本公开的一些实施例的显示装置的平面示意图;
图2是根据本公开的一些实施例的显示装置包括的显示基板的平面示意图;
图3是根据本公开的一些实施例的显示基板在图2中的部分I处的局部放大图;
图4是根据本公开的一些示例性实施例的显示基板的一个像素驱动电路的等效电路图;
图5是示出根据本公开的一些示例性实施例的显示基板的一个子像素的像素驱动电路的平面结构的示意图;
图6是示出图5所示的像素驱动电路的第一半导体层的平面结构的示意图;
图7是示出图5所示的像素驱动电路的第一半导体层和第一导电层的组合的平面结构的示意图;
图8是示出图5所示的像素驱动电路的第一半导体层、第一导电层和第二导电层的组合的平面结构的示意图;
图9是示出图5所示的像素驱动电路的第一半导体层、第一导电层、第二导电层和第二半导体层的组合的平面结构的示意图;
图10是示出图5所示的像素驱动电路的第一半导体层、第一导电层、第二导电层、第二半导体层和第三导电层的组合的平面结构的示意图;
图11是示出图5所示的像素驱动电路的第一半导体层、第一导电层、第二导电层、第二半导体层、第三导电层和第四导电层的组合的平面结构的示意图;
图12是示出根据本公开的一些示例性实施例的显示基板的沿图5中的线AA’和线 BB’截取的截面结构的示意图,为了便于描述,将沿图5中的线AA’和线BB’截取的截面结构放在同一张示意图中示出;
图13是示出根据本公开的一些示例性实施例的显示基板的平面结构的示意图,其中示意性示出了发光器件的第一电极的平面结构;
图14是示出根据本公开的一些示例性实施例的显示基板的平面结构的示意图,其中示意性示出了像素界定层的开口;
图15是示出根据本公开的一些示例性实施例的显示基板的平面结构的示意图,其中示意性示出了隔垫物的平面结构;
图16是示出根据本公开的一些示例性实施例的显示基板的截面结构的示意图;
图17为根据本公开的示例性实施例的柔性显示基板处于折叠状态的示意图;
图18示出了图17中的柔性显示基板处沿X方向的剖视图;
图19是根据本公开的一些示例性实施例的显示基板的制造方法的流程图;以及
图20至图23分别是图19所示的制造方法中的一些步骤被执行后形成的显示基板的截面结构的示意图。
具体实施例
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开的保护范围。
需要说明的是,在附图中,为了清楚和/或描述的目的,可以放大元件的尺寸和相对尺寸。如此,各个元件的尺寸和相对尺寸不必限于图中所示的尺寸和相对尺寸。在说明书和附图中,相同或相似的附图标号指示相同或相似的部件。
当元件被描述为“在”另一元件“上”、“连接到”另一元件或“结合到”另一元件时,所述元件可以直接在所述另一元件上、直接连接到所述另一元件或直接结合到所述另一元件,或者可以存在中间元件。然而,当元件被描述为“直接在”另一元件“上”、“直接连接到”另一元件或“直接结合到”另一元件时,不存在中间元件。用于描述元件之间的关系的其他术语和/或表述应当以类似的方式解释,例如,“在......之间”对“直接在......之间”、“相邻”对“直接相邻”或“在......上”对“直接在......上”等。此外,术语“连接”可 指的是物理连接、电连接、通信连接和/或流体连接。此外,X轴、Y轴和Z轴不限于直角坐标系的三个轴,并且可以以更广泛的含义解释。例如,X轴、Y轴和Z轴可彼此垂直,或者可代表彼此不垂直的不同方向。出于本公开的目的,“X、Y和Z中的至少一个”和“从由X、Y和Z构成的组中选择的至少一个”可以被解释为仅X、仅Y、仅Z、或者诸如XYZ、XYY、YZ和ZZ的X、Y和Z中的两个或更多个的任何组合。如文中所使用的,术语“和/或”包括所列相关项中的一个或多个的任何组合和所有组合。
需要说明的是,虽然术语“第一”、“第二”等可以在此用于描述各种部件、构件、元件、区域、层和/或部分,但是这些部件、构件、元件、区域、层和/或部分不应受到这些术语限制。而是,这些术语用于将一个部件、构件、元件、区域、层和/或部分与另一个相区分。因而,例如,下面讨论的第一部件、第一构件、第一元件、第一区域、第一层和/或第一部分可以被称为第二部件、第二构件、第二元件、第二区域、第二层和/或第二部分,而不背离本公开的教导。
为了便于描述,空间关系术语,例如,“上”、“下”、“左”、“右”等可以在此被使用,来描述一个元件或特征与另一元件或特征如图中所示的关系。应理解,空间关系术语意在涵盖除了图中描述的取向外,装置在使用或操作中的其它不同取向。例如,如果图中的装置被颠倒,则被描述为“在”其它元件或特征“之下”或“下面”的元件将取向为“在”其它元件或特征“之上”或“上面”。
在本文中,术语“基本上”、“大约”、“近似”、“大致”和其它类似的术语用作近似的术语而不是用作程度的术语,并且它们意图解释将由本领域普通技术人员认识到的测量值或计算值的固有偏差。考虑到工艺波动、测量问题和与特定量的测量有关的误差(即,测量系统的局限性)等因素,如这里所使用的“大约”或“近似”包括所陈述的值,并表示对于本领域普通技术人员所确定的特定值在可接受的偏差范围内。例如,“大约”可以表示在一个或更多个标准偏差内,或者在所陈述的值的±30%、±20%、±10%、±5%内。
需要说明的是,在本文中,表示“同一层”指的是采用同一成膜工艺形成用于形成特定图形的膜层,然后利用同一掩模板通过一次构图工艺对该膜层图案化所形成的层结构。根据特定图形的不同,一次构图工艺可能包括多次曝光、显影或刻蚀工艺,而形成的层结构中的特定图形可以是连续的也可以是不连续的。即,位于“同一层”的多个元件、部件、结构和/或部分由相同的材料构成,并且通过同一次构图工艺形成, 通常,位于“同一层”的多个元件、部件、结构和/或部分具有大致相同的厚度。
本领域技术人员应该理解,在本文中,除非另有说明,表述“高度”或“厚度”指的是沿垂直于显示基板设置的各个膜层的表面的尺寸,即沿显示基板的出光方向的尺寸,或称为沿显示装置的法线方向的尺寸。
本公开的实施例至少提供一种显示基板。所述显示基板包括:衬底基板;设置于所述衬底基板的第一半导体层;和设置于所述第一半导体层远离所述衬底基板一侧的第二半导体层,其中,所述显示基板还包括设置于所述衬底基板的多个薄膜晶体管,所述多个薄膜晶体管至少包括第一晶体管、第二晶体管和第三晶体管,其中,所述多个薄膜晶体管中的每一个都包括有源层,所述第一晶体管和所述第二晶体管中的至少一个的有源层包括氧化物半导体材料,所述第三晶体管的有源层包括多晶硅半导体材料,所述第三晶体管的有源层位于所述第一半导体层,所述第一晶体管和所述第二晶体管中的至少一个的有源层位于所述第二半导体层;以及所述第一晶体管和所述第二晶体管中的至少一个具有双栅结构。在本公开的实施例中,第一晶体管和第二晶体管中的至少一个的有源层采用诸如LTPO的氧化物半导体材料形成,并且采用双栅结构,从而能够改善显示面板的显示性能。
图1是根据本公开的一些实施例的显示装置的平面示意图。例如,所述显示装置可以是OLED显示装置。参照图1,显示装置1000可以包括显示面板110、栅极驱动器120、数据驱动器130、控制器140和电压发生器150。例如,该显示装置1000可以是OLED显示装置。显示面板110可以包括阵列基板100和多个像素PX,阵列基板100可以包括显示区AA和非显示区NA,多个像素PX以阵列形式排布在显示区AA中。栅极驱动器120产生的信号可以通过例如扫描信号线GL的信号线施加给像素PX,数据驱动器130产生的信号可以通过例如数据线DL的信号线施加给像素PX。例如VDD的第一电压和例如VSS的第二电压可以被施加至像素PX。例如VDD的第一电压可以高于例如VSS的第二电压。可选地,例如VDD的第一电压可以施加至发光器件(例如OLED)的阳极,并且例如VSS的第二电压可以施加至发光器件的阴极,使得发光器件可以发光。
例如,每一个像素PX可以包括多个子像素,例如,红色子像素、绿色子像素和蓝色子像素,或者可以包括白色子像素、红色子像素、绿色子像素和蓝色子像素。
图2是根据本公开的一些实施例的显示装置包括的显示基板的平面示意图。例如, 所述显示基板可以是用于OLED显示面板的阵列基板。
参照图2,所述显示基板可以包括显示区域AA和非显示区域NA。例如,所述显示区域AA与所述非显示区域NA可以包括多个边界,如图2中所示的AAS1、AAS2、AAS3和AAS4。所述显示基板还可以包括位于所述非显示区域NA内的驱动器。例如,该驱动器可以位于显示区域AA的至少一侧。在图2所示的实施例中,驱动电路分别位于显示区域AA的左侧和右侧。需要说明的是,其中的左侧和右侧可以为在显示时,人眼观看的显示基板(屏幕)的左侧和右侧。所述驱动器可以用于驱动显示基板中的各个像素进行显示。例如,所述驱动器可以包括上述栅极驱动器120和数据驱动器130。数据驱动器130用于依据时钟信号定时将输入的数据顺序锁存并将锁存的数据转换成模拟信号后输入到显示基板的各条数据线上。栅极驱动器120通常由移位寄存器实现,移位寄存器将时钟信号转换成开启/关断电压,分别输出到显示基板的各条扫描信号线上。
需要说明的是,虽然图2中示出驱动器位于显示区域AA的左侧和右侧,但是,本公开的实施例不局限于此,驱动电路可以位于非显示区域NA任何合适的位置。
例如,所述驱动器可以采用GOA技术,即Gate Driver on Array。在GOA技术中,将栅极驱动电路直接设置于阵列基板上,以代替外接驱动芯片。每个GOA单元作为一级移位寄存器,每级移位寄存器与一条栅线连接,通过各级移位寄存器依序轮流输出开启电压,实现像素的逐行扫描。在一些实施例中,每级移位寄存器也可以与多条栅线连接。这样,可以适应显示基板高分辨率、窄边框的发展趋势。
参照图2,在所述显示基板上,设置有左侧GOA电路DA1、位于显示区域AA中的多个像素P、右侧GOA电路DA2。左侧GOA电路DA1和右侧GOA电路DA2分别通过信号线电连接到显示IC上,由显示IC控制GOA信号的供给,显示IC例如设置在显示基板的下侧(人眼观看的方向)。左侧GOA电路DA1和右侧GOA电路DA2还分别通过信号线(例如扫描信号线GL)电连接到各个像素,以供应驱动信号给各个像素。
图3是根据本公开的一些实施例的显示基板在图2中的部分I处的局部放大图。需要说明的是,图中示例性的示出了子像素在衬底基板上的正投影的形状为圆角矩形,但是,本公开的实施例不局限于此,例如,子像素在衬底基板上的正投影的形状可以为矩形、六边形、五边形、正方形、圆形等其他形状。而且,一个像素单元中的3个 子像素的排列方式也不局限于图3中所示的方式。
结合参照图1、图2和图3,每一个像素单元PX可以包括多个子像素,例如,第一子像素SP1、第二子像素SP2和第三子像素SP3。为了方便理解,可以将第一子像素SP1、第二子像素SP2和第三子像素SP3分别描述为红色子像素、绿色子像素和蓝色子像素,但是,本公开的实施例不局限于此。
所述多个子像素沿行方向X和列方向Y成阵列地设置于衬底基板1上。需要说明的是,虽然在图示的实施例中,行方向X和列方向Y相互垂直,但是,本公开的实施例不局限于此。
应该理解,在本公开的实施例中,每一个子像素包括像素驱动电路和发光器件。例如,所述发光器件可以为OLED发光器件,包括层叠设置的阳极、有机发光层和阴极。所述像素驱动电路可以包括多个薄膜晶体管和至少一个存储电容器。
下面,以7T1C像素驱动电路为例,对所述像素驱动电路的结构进行详细描述,但是,本公开的实施例并不局限于7T1C像素驱动电路,在不冲突的情况下,其它已知的像素驱动电路结构都可以应用于本公开的实施例中。
图4是根据本公开的一些示例性实施例的显示基板的一个像素驱动电路的等效电路图。如图4所示,所述像素驱动电路可以包括:多个薄膜晶体管以及一个存储电容器Cst。所述像素驱动电路用于驱动有机发光二极管(即OLED)。多个薄膜晶体管包括第一晶体管T1、第二晶体管T2、第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6和第七晶体管T7。每一个晶体管均包括栅极、源极和漏极。
所述显示基板还可以包括多根信号线,例如,所述多根信号线包括:用于传输扫描信号Sn的扫描信号线61,用于传输复位控制信号RESET(即前一行的扫描信号)的复位信号线62,用于传输发光控制信号En的发光控制线63,用于传输数据信号Dm的数据线64,用于传输驱动电压VDD的驱动电压线65,用于传输初始化电压Vint的初始化电压线66,以及用于传输VSS电压的电源线67。
第一晶体管T1的栅极G1电连接至复位信号线62,第一晶体管T1的源极S1电连接至初始化电压线66。并且第一晶体管T1的漏极D1与存储电容器Cst的一端Cst1、第二晶体管T2的漏极D2以及第三晶体管T3的栅极G3电连接,如图4所示,第一晶体管T1的漏极D1、存储电容器Cst的一端Cst1、第二晶体管T2的漏极D2以及第三晶体管T3的栅极G3电连接于节点N1处。第一晶体管T1根据通过复位信号线62 传输的复位控制信号RESET导通,以将初始化电压Vint传输至第三晶体管T3的栅极G1,从而执行初始化操作来将第三晶体管T3的栅极G3的电压初始化。即,第一晶体管T1也称为初始化晶体管。
第二晶体管T2的栅极G2电连接至扫描信号线61,第二晶体管T2的源极S2电连接于节点N3,并且第二晶体管T2的漏极D2电连接于节点N1。第二晶体管T2根据通过扫描信号线61传输的扫描信号Sn导通,以将第三晶体管T3的栅极G3和漏极D3彼此电连接,从而执行第三晶体管T3的二极管连接。
第三晶体管T3的栅极G3电连接至节点N1,第三晶体管T3的源极S3电连接至节点N2,第三晶体管T3的漏极D3电连接至节点N3。第三晶体管T3根据第四晶体管T4的开关操作接收数据信号Dm,以向OLED供应驱动电流Id。即,第三晶体管T3也称为驱动晶体管。
第四晶体管T4的栅极G4电连接至扫描信号线61,第四晶体管T4的源极S4电连接至数据线64,第四晶体管T4的漏极D4电连接至节点N2,即电连接至第三晶体管T3的源极S3。第四晶体管T4根据通过扫描信号线61传输的扫描信号Sn导通,以执行开关操作来将数据信号Dm传输至第三晶体管T3的源极S3。
第五晶体管T5的栅极G5电连接至发光控制线63,第五晶体管T5的源极S5电连接至驱动电压线65。并且第五晶体管T5的漏极D5电连接至节点N2。
第六晶体管T6的栅极G6电连接至发光控制线63,第六晶体管T6的源极S6电连接至节点N3,并且第六晶体管T6的漏极D6电连接至节点N4,即电连接至OLED的阳极。第五晶体管T5和第六晶体管T6根据通过发光控制线63传输的发光控制信号En并发(例如同时)导通,以将驱动电压VDD传输至OLED,从而允许驱动电流Id流进OLED中。
第七晶体管T7的栅极G7电连接至复位信号线62,第七晶体管T7的源极S7电连接至节点N4,并且第七晶体管T7的漏极D7电连接至初始化电压线66。
存储电容器Cst的一端(下文称为第一电容电极)Cst1电连接至节点N1,另一端(下文称为第二电容电极)Cst2电连接至驱动电压线65。
OLED的阳极电连接至节点N4,阴极电连接至电源线67,以接收公共电压VSS。相应地,OLED从第三晶体管T3接收驱动电流Id来发光,从而显示图像。
需要说明的是,在图4中,各个薄膜晶体管T1、T2、T3、T4、T5、T6和T7是p 沟道场效应晶体管,但是,本公开的实施例不局限于此,薄膜晶体管T1、T2、T3、T4、T5、T6和T7中的至少一些可以是n沟道场效应晶体管。
在操作中,在初始化阶段,具有低电平的复位控制信号RESET通过复位信号线62供应。随后,第一晶体管T1基于复位控制信号RESET的低电平导通,并且来自初始化电压线66的初始化电压Vint通过第一晶体管T1传送至第三晶体管T3的栅极G1。因此,第三晶体管T3由于初始化电压Vint而被初始化。
在数据编程阶段,具有低电平的扫描信号Sn通过扫描信号线61供应。随后,第四晶体管T4和第二晶体管T2基于扫描信号Sn的低电平导通。因此,第三晶体管T3通过导通的第二晶体管T2被置于二极管连接状态并且在正方向上偏置。
随后,通过从经由数据线64供应的数据信号Dm中减去第三晶体管T3的阈值电压Vth获得的补偿电压Dm+Vth(例如,Vth是负值)施加至第三晶体管T3的栅极G3。随后,驱动电压VDD和补偿电压Dm+Vth施加至存储电容器Cst的两个端子,使得与相应端子之间的电压差对应的电荷存储在存储电容器Cst中。
在发光阶段,来自发光控制线63的发光控制信号En从高电平变为低电平。随后,在发光阶段,第五晶体管T5和第六晶体管T6基于发光控制信号En的低电平导通。
随后,基于第三晶体管T3的栅极G3的电压与驱动电压VDD之间的差生成驱动电流。与驱动电流和旁路电流之间的差对应的驱动电流Id通过第六晶体管T6供应给OLED。
在发光阶段,基于第三晶体管T3的电流-电压关系,第三晶体管T3的栅源电压由于存储电容器Cst而保持在(Dm+Vth)-VDD处。驱动电流Id与(Dm-VDD) 2成比例。因此,驱动电流Id可以不受第三晶体管T3的阈值电压Vth变动的影响。
图5是示出根据本公开的一些示例性实施例的显示基板的一个子像素的像素驱动电路的平面结构的示意图。图6是示出图5所示的像素驱动电路的第一半导体层的平面结构的示意图。图7是示出图5所示的像素驱动电路的第一半导体层和第一导电层的组合的平面结构的示意图。图8是示出图5所示的像素驱动电路的第一半导体层、第一导电层和第二导电层的组合的平面结构的示意图。图9是示出图5所示的像素驱动电路的第一半导体层、第一导电层、第二导电层和第二半导体层的组合的平面结构的示意图。图10是示出图5所示的像素驱动电路的第一半导体层、第一导电层、第二导电层、第二半导体层和第三导电层的组合的平面结构的示意图。图11是示出图5所 示的像素驱动电路的第一半导体层、第一导电层、第二导电层、第二半导体层、第三导电层和第四导电层的组合的平面结构的示意图。图12是示出根据本公开的一些示例性实施例的显示基板的沿图5中的线AA’和线BB’截取的截面结构的示意图,为了便于描述,将沿图5中的线AA’和线BB’截取的截面结构放在同一张示意图中示出。
结合参照图5至图12,所述显示基板包括衬底基板10以及设置于所述衬底基板10上的多个膜层。在一些实施例中,所示多个膜层至少包括第一半导体层20、第一导电层30、第二导电层40、第二半导体层50、第三导电层60和第四导电层70。第一半导体层20、第一导电层30、第二导电层40、第二半导体层50、第三导电层60和第四导电层70依次远离衬底基板10设置。
例如,第一半导体层20可以由诸如低温多晶硅的半导体材料形成,其膜层厚度可以在400~800埃的范围内,例如500埃。第二半导体层50可以由氧化物半导体材料形成,例如IGZO等多晶硅氧化物半导体材料,其膜层厚度可以在300~600埃的范围内,例如400埃。第一导电层30可以由形成薄膜晶体管的栅极的导电材料形成,例如该导电材料可以为Mo,其膜层厚度可以在2000~3000埃的范围内,例如2500埃。第二导电层40可以由形成薄膜晶体管的源极和漏极的导电材料形成,例如该导电材料可以包括Ti、Al等,第二导电层40可以具有由Ti/Al/Ti形成的叠层结构,其膜层厚度可以在7000~9000埃的范围内。例如,在第二导电层40具有由Ti/Al/Ti形成的叠层结构的情况下,Ti/Al/Ti每一层的厚度可以分别为约500埃、5500埃和500埃。第三导电层60可以由形成薄膜晶体管的栅极的导电材料形成,例如该导电材料可以为Mo,其膜层厚度可以在2000~3000埃的范围内,例如2500埃。第四导电层70可以由形成薄膜晶体管的源极和漏极的导电材料形成,例如该导电材料可以包括Ti、Al等,第四导电层70可以具有由Ti/Al/Ti形成的叠层结构,其膜层厚度可以在7000~9000埃的范围内。例如,在第四导电层70具有由Ti/Al/Ti形成的叠层结构的情况下,Ti/Al/Ti每一层的厚度可以分别为约500埃、5500埃和300埃。
所述显示基板包括沿着行方向布置以向子像素分别施加扫描信号Sn、复位控制信号RESET、发光控制信号En和初始化电压Vint的扫描信号线61、复位信号线62、发光控制线63和初始化电压线66。所述显示基板还可以包括与扫描信号线61、复位信号线62、发光控制线63和初始化电压线66交叉以向子像素分别施加数据信号Dm和驱动电压VDD的数据线64以及驱动电压线65。
结合上文针对图4的描述,所述显示基板的像素驱动电路可以包括:第一晶体管T1、第二晶体管T2、第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6和第七晶体管T7、以及存储电容器Cst。
第一晶体管T1和第二晶体管T2可沿着如图9中所示的第二半导体层形成。第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6和第七晶体管T7可沿着如图6中所示的第一半导体层20形成。
如图6所示,第一半导体层20可具有弯曲或弯折形状,并且可包括对应于第三晶体管T3的第三有源层20c、对应于第四晶体管T4的第四有源层20d、对应于第五晶体管T5的第五有源层20e、对应于第六晶体管T6的第六有源层20f和对应于第七晶体管T7的第七有源层20g。
例如,第一半导体层20可以包括多晶硅,诸如低温多晶硅材料。每一个晶体管的有源层可以包括沟道区、源极区和漏极区。沟道区可不进行掺杂或掺杂类型与源极区、漏极区不同,并因此具有半导体特性。源极区和漏极区分别位于沟道区的两侧,并且掺杂有杂质,并因此具有导电性。杂质可根据TFT是N型还是P型晶体管而变化。
第三晶体管T3包括第三有源层20c和第三栅极G3。第三有源层20c包括第三源极区203c、第三漏极区205c以及连接第三源极区203c和第三漏极区205c的第三沟道区201c。第三源极区203c和第三漏极区205c相对于第三沟道区201c在相对的两个方向上延伸。
第四晶体管T4包括第四有源层20d和第四栅极G4。第四有源层20d包括第四源极区203d、第四漏极区205d以及连接第四源极区203d和第四漏极区205d的第四沟道区201d。第四源极区203d和第四漏极区205d相对于第四沟道区201d在相对的两个方向上延伸。
第五晶体管T5包括第五有源层20e和第五栅极G5。第五有源层20e包括第五源极区203e、第五漏极区205e以及连接第五源极区203e和第五漏极区205e的第五沟道区201e。第五源极区203e和第五漏极区205e相对于第五沟道区201e在相对的两个方向上延伸。
第六晶体管T6包括第六有源层20f和第六栅极G6。第六有源层20f包括第六源极区203f、第六漏极区205f以及连接第六源极区203f和第六漏极区205f的第六沟道区201f。第六源极区203f和第六漏极区205f相对于第六沟道区201f在相对的两个方 向上延伸。
第七晶体管T7包括第七有源层20g和第七栅极G7。第七有源层20g包括第七源极区203g、第七漏极区205g以及连接第七源极区203g和第七漏极区205g的第七沟道区201g。第七源极区203g和第七漏极区205g相对于第七沟道区201g在相对的两个方向上延伸。
如图7所示,扫描信号线61、复位信号线62和发光控制线63均位于第一导电层30中。栅极结构CG1也位于第一导电层30中。栅极结构CG1与第一半导体层20重叠的部分形成第三晶体管T3的第三栅极G3。扫描信号线61与第一半导体层20重叠的部分形成第四晶体管T4的第四栅极G4。发光控制线63与第一半导体层20重叠的一部分形成第五晶体管T5的第五栅极G5。发光控制线63与第一半导体层20重叠的另一部分形成第六晶体管T6的第六栅极G6。复位信号线62与第一半导体层20重叠的部分形成第七晶体管T7的第七栅极G7。栅极结构CG1也形成存储电容器Cst的一个端子,例如第一电容电极Cst1。即,栅极结构CG1同时用作第三晶体管T3的栅极和存储电容器Cst的一个电极。
如图8所示,数据线64和驱动电压线65均位于第二导电层40中。第一底栅结构BG1和第二底栅结构BG2也位于第二导电层40中。数据线64通过过孔VAH1与第四晶体管T4的源极区203d电连接,以将数据信号Dm施加给第四晶体管T4的源极。即,数据线64与第四晶体管T4的源极区203d重叠的部分构成第四晶体管T4的源极。第二导电层40与栅极结构CG1重叠的部分形成存储电容器Cst的另一个电极,例如第二电容电极Cst2。第二电容电极Cst2与驱动电压线65电连接,例如,在图8中,第二电容电极Cst2与驱动电压线65连接成一体。驱动电压线65通过过孔VAH12与第五晶体管T5的源极区203e电连接。驱动电压线65与第五晶体管T5的源极区203e重叠的部分构成第五晶体管T5的源极。
通过这样的设计,第一电容电极Cst1和第二电容电极Cst2具有较大的交叠面积,能够提高存储电容器Cst的电容值,从而能够提高显示面板的性能,降低显示面板的功耗。
继续参照图8,第二导电层40包括通孔40H,通孔40H暴露栅极结构CG1的一部分,以有利于第三晶体管T3的第三栅极G3与其他部件的电连接。
第二导电层40还包括第一导电构件401、第二导电构件402和第三导电构件403。 第一导电构件401通过过孔VAH5与第七晶体管T7的漏极区205g电连接。第二导电构件402通过过孔VAH11与第三晶体管T3的漏极区205c电连接。第三导电构件403通过过孔VAH13与第六晶体管T6的漏极区205f和第七晶体管T7的源极区203g电连接。
如图9所示,第二半导体层50包括对应于第一晶体管T1的第一有源层20a和对应于第二晶体管T2的第二有源层20b。例如,第一晶体管T1的第一有源层20a和第二晶体管T2的第二有源层20b与所述数据线的延伸方向相同,即,都沿图中的上下方向延伸。
例如,第二半导体层50可以包括氧化物半导体材料,诸如低温多晶硅氧化物半导体材料(缩写为LTPO)。每一个晶体管的有源层可以包括沟道区、源极区和漏极区。沟道区可不进行掺杂或掺杂类型与源极区、漏极区不同,并因此具有半导体特性。源极区和漏极区分别位于沟道区的两侧,并且掺杂有杂质,并因此具有导电性。杂质可根据TFT是N型还是P型晶体管而变化。
第一晶体管T1的第一有源层20a包括第一源极区203a、第一漏极区205a以及连接第一源极区203a和第一漏极区205a的第一沟道区201a。第一源极区203a和第一漏极区205a相对于第一沟道区201a在相对的两个方向上延伸。
第二晶体管T2的第二有源层20b包括第二源极区203b、第二漏极区205b以及连接第二源极区203b和第二漏极区205b的第二沟道区201b。第二源极区203b和第二漏极区205b相对于第二沟道区201b在相对的两个方向上延伸。
第一有源层20a在衬底基板10上的正投影与第一底栅结构BG1在衬底基板10上的正投影至少部分重叠,第一底栅结构BG1与第一有源层20a重叠的部分构成第一晶体管T1的第一底栅G11。
第二有源层20b在衬底基板10上的正投影与第二底栅结构BG2在衬底基板10上的正投影至少部分重叠,第二底栅结构BG2与第二有源层20b重叠的部分构成第二晶体管T2的第二底栅G21。
例如,继续参照图8和图9,所述第一底栅结构BG1包括第一底栅主体部BG11和第一底栅延伸部BG12。所述第一底栅主体部BG11在所述衬底基板10上的正投影呈矩形形状。所述第一底栅主体部BG11在所述衬底基板10上的正投影与所述第一晶体管T1的有源层在所述衬底基板10上的正投影至少部分重叠,所述第一底栅G11包 括所述第一底栅主体部BG11与所述第一晶体管T1的有源层重叠的部分。
所述第二底栅结构BG2包括第二底栅主体部BG21和第二底栅延伸部BG22。所述第二底栅主体部BG21在所述衬底基板10上的正投影呈矩形形状。所述第二底栅主体部BG21在所述衬底基板10上的正投影与所述第二晶体管T2的有源层在所述衬底基板10上的正投影至少部分重叠,所述第二底栅G21包括所述第二底栅主体部BG21与所述第二晶体管T2的有源层重叠的部分。
在图中所述的实施例中,所述第一底栅延伸部BG12和所述第二底栅延伸部BG22中的至少一个与所述数据线的延伸方向相同,即,都沿图中的上下方向延伸。
如图10所示,第三导电层60包括第一顶栅结构TG1和第二顶栅结构TG2。初始化电压线66也位于第三导电层60中。
第一有源层20a和第一底栅结构BG1中的每一个在衬底基板10上的正投影与第一顶栅结构TG1在衬底基板10上的正投影均至少部分重叠。第一顶栅结构TG1与第一有源层20a重叠的部分构成第一晶体管的第一顶栅G12。结合参照图12,在垂直于衬底基板10的上表面的方向上(即沿图12所示的竖直方向),第一有源层20a位于第一底栅G11与第一顶栅G12之间。这样,第一晶体管T1具有双栅结构。
继续参照图10,所述第一顶栅结构TG1沿图10中的水平方向延伸。所述第一顶栅结构TG1可以包括第一加宽部TG11,所述第一加宽部TG11沿竖直方向的尺寸大于所述第一顶栅结构TG1的其余部分沿所述竖直方向的尺寸。所述第一加宽部TG11在所述衬底基板10上的正投影与所述第一晶体管T1的有源层20a在所述衬底基板10上的正投影至少部分重叠,所述第一顶栅G12包括所述第一加宽部TG11与所述第一晶体管T1的有源层20a重叠的部分。
在图10所示的实施例中,所述第一加宽部TG11沿所述第一方向(即图10中所示的竖直方向)相对于所述第一顶栅结构TG1的其余部分向两侧分别突出。可选地,所述第一加宽部TG11沿所述第一方向(即图10中所示的竖直方向)相对于所述第一顶栅结构TG1的其余部分可以仅向一侧突出,例如,仅向上突出或仅向下突出。
第二有源层20b和第二底栅结构BG2中的每一个在衬底基板10上的正投影与第二顶栅结构TG2在衬底基板10上的正投影均至少部分重叠。第二顶栅结构TG2与第二有源层20b重叠的部分构成第二晶体管的第二顶栅G22。结合参照图12,在垂直于衬底基板10的上表面的方向上(即沿图12所示的竖直方向),第二有源层20b位于第 二底栅G21与第二顶栅G22之间。这样,第二晶体管T2具有双栅结构。
继续参照图10,所述第二顶栅结构TG2沿图10中的水平方向延伸。所述第二顶栅结构TG2可以包括第二加宽部TG21,所述第二加宽部TG21沿竖直方向的尺寸大于所述第二顶栅结构TG2的其余部分沿所述竖直方向的尺寸。所述第二加宽部TG21在所述衬底基板10上的正投影与所述第二晶体管T2的有源层20b在所述衬底基板10上的正投影至少部分重叠,所述第二顶栅G22包括所述第二加宽部TG21与所述第二晶体管T2的有源层20b重叠的部分。
在图10所示的实施例中,所述第二加宽部TG21沿所述第一方向(即图10中所示的竖直方向)相对于所述第二顶栅结构TG2的其余部分向两侧分别突出。可选地,所述第二加宽部TG21沿所述第一方向(即图10中所示的竖直方向)相对于所述第二顶栅结构TG2的其余部分可以仅向一侧突出,例如,仅向上突出或仅向下突出。
如图11所示,第四导电层70包括第一导电部件701、第二导电部件702、第三导电部件703和第四导电部件704。第一导电部件701的一端通过过孔VAH2与第一晶体管T1的源极区203a电连接。第一导电部件701的一部分还通过过孔VAH3与初始化电压线66电连接。第一导电部件701的另一端通过过孔VAH4与第一导电构件401电连接。通过这样的方式,第一晶体管T1的源极与第七晶体管T7的漏极电连接,并且二者均电连接至初始化电压线66。这样,初始化电压Vint可以施加给第一晶体管T1的源极与第七晶体管T7的漏极。
第二导电部件702的一端通过过孔VAH7与第二晶体管T2的漏极区205b电连接,第二导电部件702的另一端通过过孔VAH6与第一晶体管T1的漏极区203a以及第三导电部件703电连接。第三导电部件703的一端通过过孔VAH6与第二导电部件702电连接,第三导电部件703的另一端通过过孔VAH8与第三晶体管T3的栅极G1和第一电容电极Cst1电连接。这样,可以实现第一晶体管T1的漏极、第二晶体管T2的漏极、第三晶体管T3的栅极以及第一电容电极Cst1相互之间的电连接,参照图4,均电连接于节点N1。
第四导电部件704的一端通过过孔VAH9与第二晶体管T2的源极区203b电连接,第四导电部件704的另一端通过过孔VAH10与第二导电构件402电连接。这样,可以实现第二晶体管T2的源极与第六晶体管T6的源极之间的电连接。
在本公开的实施例中,第一晶体管T1和第二晶体管T2的有源层均采用诸如LTPO 的氧化物半导体材料形成,能够提高像素驱动电路中的节点N1(如图4所示)处的电压稳定性,从而改善显示面板的显示性能。并且,第一晶体管T1和第二晶体管T2均具有双栅结构,使得第一晶体管T1和第二晶体管T2的稳定性和阈值电压(Vth)的均一性都得到提升,从而能够进一步提升显示面板的性能。
还需要说明的是,在本公开的实施例中,晶体管T1、T2的底栅G11、G21既起到底栅的作用,还起到遮光层的作用,可以避免外界光对晶体管T1、T2的有源层20a、20b的干扰,有利于进一步改善晶体管的性能。晶体管T1、T2的底栅G11、G21和晶体管T3、T4、T5、T6、T7的源极和漏极位于同一层,即都位于第二导电层40中,可以通过同一构图工艺形成晶体管T1、T2的底栅G11、G21和晶体管T3、T4、T5、T6、T7的源极和漏极,有利于节省构图工艺的次数,减少掩模板的数量。
图13是示出根据本公开的一些示例性实施例的显示基板的平面结构的示意图,其中示意性示出了发光器件的第一电极的平面结构。图14是示出根据本公开的一些示例性实施例的显示基板的平面结构的示意图,其中示意性示出了像素界定层的开口。图15是示出根据本公开的一些示例性实施例的显示基板的平面结构的示意图,其中示意性示出了隔垫物的平面结构。图16是示出根据本公开的一些示例性实施例的显示基板的截面结构的示意图。
例如,所述发光器件可以是有机发光二极管,它可以包括设置于衬底基板10上的第一电极、有机发光层和第二电极,其中,第一电极可以是阳极和阴极中的一个,第二电极可以是阳极和阴极中的另一个。第一电极、有机发光层和第二电极可以依次远离衬底基板10设置。
如图13所示,第一电极80可以包括电极主体部801和电极连接部802。在图13所示的实施例中,电极主体部801可以具有大致矩形形状,即,电极主体部801在衬底基板10上的正投影呈大致矩形。但是,本公开的实施例不限于此,电极主体部801可以具有任何合适的形状,例如,六边形、八边形等。
电极主体部801和电极连接部802可以连接成一体。电极连接部802通过过孔VAH14与第三导电构件403的一端电连接。如上所述,第三导电构件403的另一端通过过孔VAH13与第六晶体管T6的漏极和第七晶体管T7的源极电连接。这样,第一电极80与第六晶体管T6的漏极和第七晶体管T7的源极电连接。
例如,所述第一电极80在所述衬底基板10上的正投影至少覆盖所述第一晶体管 T1的有源层20a在所述衬底基板10上的正投影。所述第一电极80在所述衬底基板10上的正投影与所述第二晶体管T2的有源层20b在所述衬底基板10上的正投影间隔设置。
结合参照图14和图16,所述显示基板还包括设置于第一电极80远离衬底基板10一侧的像素界定层PDL,像素界定层PDL包括开口803,开口803暴露第一电极80的至少一部分。例如,在图14所示的实施例中,开口803具有六边形的形状,即,开口803在衬底基板10上的正投影呈六边形形状。但是,本公开的实施例不限于此,开口803可以具有任何合适的形状,例如,矩形、八边形等。
结合参照图15和图16,所述显示基板还包括设置于像素界定层PDL远离衬底基板10一侧的隔垫物PS。例如,在图15所示的实施例中,隔垫物PS具有矩形的形状,即,隔垫物PS在衬底基板10上的正投影呈矩形形状。但是,本公开的实施例不限于此,隔垫物PS可以具有任何合适的形状,例如,圆形等。
例如,所述隔垫物PS在所述衬底基板10上的正投影与所述第二晶体管T2的有源层20b在所述衬底基板10上的正投影至少部分重叠。
在本公开的一些实施例中,所述显示基板可以是柔性显示基板。
图17为根据本公开的示例性实施例的柔性显示基板处于折叠状态的示意图,图18示出了图17中的柔性显示基板处沿X方向的剖视图。请一并参阅图17和图18,该柔性显示基板包括显示区(AA)、焊盘区130以及位于该显示区和该焊盘区130之间的弯折区140,焊盘区130和弯折区140均位于该显示区以外的非显示区(NA)。
例如,在所述显示基板为柔性显示基板的情况下,上述衬底基板10可以为例如聚酰亚胺(PI)、聚乙烯对苯二甲酸乙二醇酯(PET)、聚碳酸酯、聚乙烯、聚丙烯酸酯、聚醚酰亚胺、聚醚砜等形成的有机柔性衬底。
例如,衬底基板10可以包括第一衬底、第一阻挡层、第二衬底,第一阻挡层设置在第一衬底和第二衬底之间。第一衬底可以由聚酰亚胺(PI)形成,具有约10微米的厚度。第一阻挡层可以由氧化硅形成,具有约6000埃的厚度;或者,第一阻挡层可以由非晶硅形成,具有约40埃的厚度。第二衬底可以由聚酰亚胺(PI)形成,具有约6微米的厚度。
图17中的弯折区140可以围绕弯曲轴(BX)弯曲。需要说明的是,在本文中,表述“弯曲轴”是一条虚拟轴线,弯折区140可以围绕该虚拟轴线弯曲,而不是指所述柔性显示基板中设置有一条实体的弯曲轴线。
例如,为了方便布线,弯折区140设置于该柔性显示基板沿X方向的非显示区侧。这样可以在柔性显示基板沿Y方向的非显示区侧绑定栅极驱动电路,或者在柔性衬底基板上直接形成GOA电路(Gate Driver On Array)。在弯折区140中设置有走线105,用于电连接GOA电路至上述像素驱动电路。在本公开的实施例中,走线105可以是从显示区AA延伸至非显示区NA且用于传输电信号的各种导电走线,例如数据线、VSS电源线、VDD电源线等。
在本公开的实施例中,通过设置弯折区,可以将焊盘区130弯折至显示区的背面与显示区重叠,从而实现窄边框甚至无边框显示装置。
结合参照图16至图18,所述显示基板包括设置于弯折区140中的走线105,所述走线105可以位于第四导电层70中。
下面,将结合图12和图16描述根据本公开实施例的显示基板的其他膜层(例如绝缘层)。
在示例性的实施例中,所述显示基板可以包括设置在衬底基板10上的第二阻挡层161;以及设置在第二阻挡层161远离衬底基板10一侧的第一缓冲层162。
例如,第二阻挡层161可以由氧化硅形成,具有约5500埃的厚度。第一缓冲层162可以由氮化硅形成,具有约1000埃的厚度;或者,第一缓冲层162可以由氧化硅形成,具有约3000埃的厚度。
所述显示基板可以包括设置在第一半导体层20与第一导电层30之间的第一栅绝缘层GI1。例如,第一栅绝缘层GI1可以由氧化硅形成,具有约1000~2000埃的厚度。
所述显示基板可以包括设置在第一导电层30与第二导电层40之间的第一层间绝缘层ILD1。例如,第一层间绝缘层ILD1可以由氮化硅形成,具有约1000~2000埃的厚度。
所述显示基板可以包括设置在第二导电层40与第二半导体层50之间的第二缓冲层163。例如,第二缓冲层163可以由氧化硅形成,具有约3000~6000埃的厚度。
所述显示基板可以包括设置在第二半导体层50与第三导电层60之间的第二栅绝缘层GI2。例如,第二栅绝缘层GI2可以由氧化硅形成,具有约1300埃的厚度。
所述显示基板可以包括设置在第三导电层60与第四导电层70之间的第二层间绝缘层ILD2。例如,第二层间绝缘层ILD2可以由氧化硅形成,具有约3000~6000埃的厚度。
所述显示基板可以包括设置在第四导电层70远离衬底基板10一侧的钝化层PVX和设置在钝化层PVX远离衬底基板10一侧的平坦化层PLN。例如,钝化层PVX可以由氧化硅形成,具有约2000~3500埃的厚度。平坦化层PLN可以由聚酰亚胺(PI)形成,具有约1.5微米的厚度。
如图16所示,所述显示基板包括位于弯折区140中的凹槽165,凹槽165为阶梯形凹槽,即,它包括第一凹槽部1651和第二凹槽部1652,第二凹槽部1652在衬底基板10上的正投影覆盖第一凹槽部1651在衬底基板10上的正投影,且第二凹槽部1652在衬底基板10上的正投影的面积大于第一凹槽部1651在衬底基板10上的正投影的面积。
第一凹槽部1651至少贯穿第一层间绝缘层ILD1、第一栅绝缘层GI1和第一缓冲层162,以暴露衬底基板10在弯折区140中的一部分。第二凹槽部1652至少贯穿第二缓冲层163、第二栅绝缘层GI2、第二层间绝缘层ILD2和钝化层PVX。
平坦化层PLN的一部分填充于凹槽165中。这样,在弯折区140处主要形成衬底基板10和平坦化层PLN,从而有利于提高显示基板在该弯折区处的弯折性能。
参照图16,走线105位于凹槽165的底部。在本公开的实施例中,钝化层PVX的一部分覆盖所述走线105,以保护走线105。
图19是根据本公开的一些示例性实施例的显示基板的制造方法的流程图。图20至图23以及图16分别是图19所示的制造方法中的一些步骤被执行后形成的显示基板的截面结构的示意图。结合参照图16以及图19至图23,所述显示基板的制造方法可以按照以下步骤执行。
参照图20,在步骤S191中,制备衬底基板10。例如,衬底基板10可以为例如聚酰亚胺(PI)、聚乙烯对苯二甲酸乙二醇酯(PET)、聚碳酸酯、聚乙烯、聚丙烯酸酯、聚醚酰亚胺、聚醚砜等形成的有机柔性衬底。衬底基板10可以为单层结构,也可以为双层结构。例如,衬底基板10可以包括第一衬底、第一阻挡层、第二衬底,第一阻挡层设置在第一衬底和第二衬底之间。所述衬底基板10的厚度大约是在5~20微米的范围内。在衬底基板10上依次制备第二阻挡层161和第一缓冲层162。
然后,利用构图工艺在第一缓冲层162上制备多晶硅半导体硅岛层,即第一半导体层20。
在第一半导体层20上方形成第一栅绝缘层GI1,并沉积第一导电材料层,利用构图工艺在第一导电材料层中形成上述第三晶体管T3至第七晶体管T7的栅极,以及存储电容器Cst的第一电容电极,即形成上述第一导电层30。
在第一导电层30上方形成第一层间绝缘层ILD1,利用刻蚀工艺在第一层间绝缘层ILD1中刻蚀出暴露上述第三晶体管T3至第七晶体管T7的有源层的源极区和漏极区的多个过孔。
接着,在第一层间绝缘层ILD1上方沉积第二导电材料层,利用构图工艺,形成上述第三晶体管T3至第七晶体管T7的源极和漏极,存储电容器Cst的第二电容电极,以及上述第一晶体管T1和第二晶体管T2的底栅,即形成上述第二导电层40。由此可见,第三晶体管T3至第七晶体管T7的源极和漏极,存储电容器Cst的第二电容电极,以及第一晶体管T1和第二晶体管T2的底栅,通过一次构图工艺形成,有利于减少构图工艺的次数,减少掩模板的数量。
参照图21,在步骤S192中,在第二导电层40上方形成第二缓冲层163。
利用构图工艺在第二缓冲层163上制备氧化物半导体硅岛层,即第二半导体层50。在第二半导体层50上方形成第二栅绝缘层GI2,并沉积第三导电材料层,利用构图工艺在第三导电材料层中形成上述第一晶体管T1和第二晶体管T2的顶栅,即形成上述第三导电层60。
在第三导电层60上方形成第二层间绝缘层ILD2,利用构图工艺在第二层间绝缘层ILD2中形成多个过孔,所述多个过孔暴露上述第三晶体管T3至第七晶体管T7的源极和漏极,以及暴露上述第一晶体管T1和第二晶体管T2的有源层的源极区和漏极区;并且,该构图工艺还可以在第二层间绝缘层ILD2中形成第一凹槽部1651。第一凹槽部1651位于弯折区140中,第一凹槽部1651至少贯穿第一层间绝缘层ILD1、第一栅绝缘层GI1和第一缓冲层162,以暴露衬底基板10在弯折区140中的一部分。
参照图22,在步骤S193中,通过刻蚀工艺在弯折区140中形成第二凹槽部1652。第二凹槽部1652至少贯穿第二缓冲层163和第二层间绝缘层ILD2。第二凹槽部1652在衬底基板10上的正投影覆盖第一凹槽部1651在衬底基板10上的正投影,且第二凹槽部1652在衬底基板10上的正投影的面积大于第一凹槽部1651在衬底基板10上的 正投影的面积。这样,在弯折区140形成阶梯形的凹槽165。
参照图23,在步骤S194中,在第二层间绝缘层ILD2上方以及在凹槽165的底部形成第四导电材料层,利用构图工艺在所述第四导电材料层中形成上述第四导电层70,例如,该第四导电层70包括第一导电部件701、第二导电部件702、第三导电部件703和第四导电部件704,并且还包括位于凹槽165的底部的走线105。
然后,沉积钝化层PVX,所述钝化层PVX覆盖上述第四导电层70。在钝化层PVX上方涂覆平坦化层PLN。
参照图16,在步骤S195中,在平坦化层PLN上方依次制备第一电极80、像素界定层PDL及隔垫物PS。
本公开的至少一些实施例还提供一种显示面板,所述显示面板包括如上所述的显示基板。例如,所述显示面板可以是OLED显示面板。
参照图1,本公开的至少一些实施例还提供一种显示装置。该显示装置可以包括如上所述的显示基板。
所述显示装置可以包括任何具有显示功能的设备或产品。例如,所述显示装置可以是智能电话、移动电话、电子书阅读器、台式电脑(PC)、膝上型PC、上网本PC、个人数字助理(PDA)、便携式多媒体播放器(PMP)、数字音频播放器、移动医疗设备、相机、可穿戴设备(例如头戴式设备、电子服饰、电子手环、电子项链、电子配饰、电子纹身、或智能手表)、电视机等。
应该理解,根据本公开实施例的显示面板和显示装置具有上述显示基板的所有特点和优点,具体可以参见上文的描述,在此不再赘述。
虽然本公开的总体技术构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离所述总体技术构思的原则和精神的情况下,可对这些实施例做出改变,本公开的范围以权利要求和它们的等同物限定。

Claims (20)

  1. 一种显示基板,其中,所述显示基板包括:
    衬底基板;
    设置于所述衬底基板的第一半导体层;和
    设置于所述第一半导体层远离所述衬底基板一侧的第二半导体层,
    其中,所述显示基板还包括设置于所述衬底基板的多个薄膜晶体管,所述多个薄膜晶体管至少包括第一晶体管和第三晶体管,
    所述多个薄膜晶体管中的每一个都包括有源层,所述第一晶体管的有源层包括氧化物半导体材料,所述第三晶体管的有源层包括多晶硅半导体材料,所述第三晶体管的有源层位于所述第一半导体层,所述第一晶体管的有源层位于所述第二半导体层;
    所述第一晶体管包括第一底栅和第一顶栅,所述第一底栅位于所述衬底基板与所述第一晶体管的有源层之间,所述第一顶栅位于所述第一晶体管的有源层远离所述衬底基板的一侧,所述第一晶体管的有源层、所述第一底栅和所述第一顶栅中的任意两个在所述衬底基板上的正投影彼此至少部分重叠;
    所述显示基板包括设置于所述衬底基板的第一导电层和第二导电层,所述第一导电层位于所述第一半导体层远离所述衬底基板的一侧,所述第二导电层位于所述第一导电层与所述第二半导体层之间;
    所述第三晶体管包括栅极、源极和漏极,所述第三晶体管的栅极位于所述第一导电层,所述第三晶体管的源极和所述第三晶体管的漏极位于所述第二导电层;以及
    所述第一底栅位于所述第二导电层。
  2. 根据权利要求1所述的显示基板,其中,
    所述显示基板还包括第二晶体管,所述第二晶体管包括第二底栅和第二顶栅,所述第二底栅位于所述衬底基板与所述第二晶体管的有源层之间,所述第二顶栅位于所述第二晶体管的有源层远离所述衬底基板的一侧,所述第二晶体管的有源层、所述第二底栅和所述第二顶栅中的任意两个在所述衬底基板上的正投影彼此至少部分重叠,
    所述第二晶体管中的有源层包括氧化物半导体材料,所述第二晶体管中的有源层位于所述第二半导体层,所述第二底栅位于所述第二导电层。
  3. 根据权利要求1所述的显示基板,其中,所述显示基板包括存储电容器,所述存储电容器包括设置于所述衬底基板的第一电容电极和第二电容电极,所述第一电容电极在所述衬底基板上的正投影与所述第二电容电极在所述衬底基板上的正投影至少部分重叠;以及
    所述第二电容电极位于所述第二导电层,所述第一电容电极位于所述第一导电层。
  4. 根据权利要求1-3任一所述的显示基板,其中,所述显示基板包括位于所述第二导电层的第一底栅结构,所述第一底栅结构包括第一底栅主体部和第一底栅延伸部,所述第一底栅主体部在所述衬底基板上的正投影与所述第一晶体管的有源层在所述衬底基板上的正投影至少部分重叠,所述第一底栅包括所述第一底栅主体部与所述第一晶体管的有源层重叠的部分;和/或,
    所述显示基板包括位于所述第二导电层的第二底栅结构,所述第二底栅结构包括第二底栅主体部和第二底栅延伸部,所述第二底栅主体部在所述衬底基板上的正投影与所述第二晶体管的有源层在所述衬底基板上的正投影至少部分重叠,所述第二底栅包括所述第二底栅主体部与所述第二晶体管的有源层重叠的部分。
  5. 根据权利要求1-3任一所述的显示基板,其中,所述显示基板还包括用于传输数据信号的数据线,所述数据线在所述衬底基板上沿第一方向延伸,所述第一底栅延伸部和所述第二底栅延伸部中的至少一个沿所述第一方向延伸;所述第一晶体管的有源层和所述第二晶体管的有源层中的至少一个沿所述第一方向延伸。
  6. 根据权利要求1-5中任一项所述的显示基板,其中,所述显示基板包括第三导电层,所述第三导电层位于所述第二半导体层远离所述衬底基板的一侧,
    所述显示基板包括位于所述第三导电层中的第一顶栅结构,所述第一顶栅结构沿第二方向延伸,所述第二方向与所述第一方向相交;
    所述第一顶栅结构包括第一加宽部,所述第一加宽部沿所述第一方向的尺寸大于所述第一顶栅结构的其余部分沿所述第一方向的尺寸;以及
    所述第一加宽部在所述衬底基板上的正投影与所述第一晶体管的有源层在所述衬底基板上的正投影至少部分重叠,所述第一顶栅包括所述第一加宽部与所述第一晶体管的有源层重叠的部分。
  7. 根据权利要求6所述的显示基板,其中,所述显示基板包括位于所述第三导电层中的第二顶栅结构,所述第二顶栅结构沿所述第二方向延伸;
    所述第二顶栅结构包括第二加宽部,所述第二加宽部沿所述第一方向的尺寸大于所述第二顶栅结构的其余部分沿所述第一方向的尺寸;以及
    所述第二加宽部在所述衬底基板上的正投影与所述第二晶体管的有源层在所述衬底基板上的正投影至少部分重叠,所述第二顶栅包括所述第二加宽部与所述第二晶体管的有源层重叠的部分。
  8. 根据权利要求7所述的显示基板,其中,所述第一加宽部沿所述第一方向相对于所述第一顶栅结构的其余部分向两侧分别突出;和/或,
    所述第二加宽部沿所述第一方向相对于所述第二顶栅结构的其余部分向两侧分别突出。
  9. 根据权利要求6-8任一所述的显示基板,其中,所述显示基板包括第四导电层,所述第四导电层位于所述第三导电层远离所述衬底基板的一侧;
    所述第一晶体管包括第一源极和第一漏极,所述第二晶体管包括第二源极和第二漏极,所述第一源极、第一漏极、第二源极和第二漏极均位于所述第四导电层。
  10. 根据权利要求9所述的显示基板,其中,所述显示基板包括位于所述第三导电层的初始化电压线,所述初始化电压线用于传输初始化电压信号;以及
    所述显示基板还包括位于所述第四导电层的第一导电部件,所述第一导电部件的一端通过第一过孔与所述第一晶体管的有源层电连接,所述第一导电部件的一部分还通过第二过孔与所述初始化电压线电连接。
  11. 根据权利要求10所述的显示基板,其中,所述显示基板还包括位于所述第四导电层的第二导电部件和第三导电部件,所述第二导电部件的一端通过第三过孔与所述第二晶体管的有源层电连接,所述第二导电部件的另一端通过第四过孔与所述第一晶体管的有源层和所述第三导电部件的一端电连接;以及
    所述第三导电部件的另一端通过第五过孔与所述第三晶体管的栅极和所述第一电 容电极电连接。
  12. 根据权利要求11所述的显示基板,其中,所述显示基板还包括设置于所述衬底基板的发光器件,所述发光器件至少包括第一电极,所述第一电极位于所述第四导电层远离所述衬底基板的一侧;以及
    所述第一电极在所述衬底基板上的正投影与所述第一晶体管的有源层在所述衬底基板上的正投影至少部分重叠。
  13. 根据权利要求12所述的显示基板,其中,所述第一电极在所述衬底基板上的正投影与所述第二晶体管的有源层在所述衬底基板上的正投影间隔设置。
  14. 根据权利要求13所述的显示基板,其中,所述显示基板还包括设置于所述衬底基板的像素界定层和隔垫物,所述像素界定层包括开口,所述开口暴露所述第一电极的至少一部分,所述隔垫物位于所述像素界定层远离所述衬底基板的一侧;以及
    所述隔垫物在所述衬底基板上的正投影与所述第二晶体管的有源层在所述衬底基板上的正投影至少部分重叠。
  15. 根据权利要求14所述的显示基板,其中,所述显示基板包括位于所述衬底基板与所述第一半导体层之间的第一缓冲层,所述第一缓冲层包括氧化硅或氮化硅;和/或,
    所述显示基板包括位于所述第一半导体层与所述第一导电层之间的第一栅绝缘层,所述第一栅绝缘层包括氧化硅;和/或,
    所述显示基板包括位于所述第二导电层与所述第二半导体层之间的第二缓冲层,所述第二缓冲层包括氧化硅;和/或,
    所述显示基板包括位于所述第二半导体层与所述第三导电层之间的第二栅绝缘层,所述第二栅绝缘层包括氧化硅。
  16. 根据权利要求15所述的显示基板,其中,所述显示基板为可弯折的柔性显示基板,所述柔性显示基板包括显示区和弯折区;以及
    所述显示基板还包括位于所述弯折区的凹槽,所述凹槽暴露所述衬底基板位于所 述弯折区的至少一部分。
  17. 根据权利要求16所述的显示基板,其中,所述显示基板还包括位于所述弯折区的走线,所述走线位于所述第四导电层,且所述走线位于所述凹槽的底部。
  18. 根据权利要求17所述的显示基板,其中,所述显示基板还包括钝化层,所述钝化层位于所述第四导电层远离所述衬底基板的一侧,所述钝化层的一部分至少覆盖所述走线;以及
    所述显示基板还包括平坦化层,所述平坦化层位于所述钝化层远离所述衬底基板的一侧,所述平坦化层填充于所述凹槽内。
  19. 一种显示面板,包括根据权利要求1-18中任一项所述的显示基板。
  20. 一种显示装置,包括根据权利要求1-18中任一项所述的显示基板或根据权利要求19所述的显示面板。
PCT/CN2020/119347 2020-09-30 2020-09-30 显示基板、显示面板和显示装置 WO2022067648A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/310,401 US20220320227A1 (en) 2020-09-30 2020-09-30 Display substrate, display panel, and display device
CN202080002200.4A CN114930536A (zh) 2020-09-30 2020-09-30 显示基板、显示面板和显示装置
PCT/CN2020/119347 WO2022067648A1 (zh) 2020-09-30 2020-09-30 显示基板、显示面板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119347 WO2022067648A1 (zh) 2020-09-30 2020-09-30 显示基板、显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2022067648A1 true WO2022067648A1 (zh) 2022-04-07

Family

ID=80951119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119347 WO2022067648A1 (zh) 2020-09-30 2020-09-30 显示基板、显示面板和显示装置

Country Status (3)

Country Link
US (1) US20220320227A1 (zh)
CN (1) CN114930536A (zh)
WO (1) WO2022067648A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4280848A1 (en) * 2022-05-17 2023-11-22 Samsung Display Co., Ltd. Display apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11756948B2 (en) * 2019-05-01 2023-09-12 Intel Corporation In situ package integrated thin film capacitors for power delivery
KR20230089635A (ko) * 2021-12-13 2023-06-21 삼성디스플레이 주식회사 화소 및 이를 포함하는 표시 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140080729A (ko) * 2012-12-14 2014-07-01 엘지디스플레이 주식회사 Oled 표시 장치 및 그의 구동 방법
CN105612608A (zh) * 2013-10-09 2016-05-25 夏普株式会社 半导体装置及其制造方法
CN106504699A (zh) * 2016-10-14 2017-03-15 深圳市华星光电技术有限公司 Amoled像素驱动电路及驱动方法
CN107919378A (zh) * 2016-10-11 2018-04-17 三星显示有限公司 具有发射层的显示装置
CN110491887A (zh) * 2019-08-23 2019-11-22 上海中航光电子有限公司 一种阵列基板、显示面板及阵列基板的制作方法
CN110649044A (zh) * 2019-09-30 2020-01-03 厦门天马微电子有限公司 阵列基板及其制作方法、显示面板和显示装置
CN110707098A (zh) * 2019-09-27 2020-01-17 上海天马微电子有限公司 阵列基板、显示面板、显示装置及阵列基板的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101022652B1 (ko) * 2009-04-02 2011-03-22 삼성모바일디스플레이주식회사 박막 트랜지스터 기판 제조방법 및 유기 발광 디스플레이 장치 제조방법
US9397124B2 (en) * 2014-12-03 2016-07-19 Apple Inc. Organic light-emitting diode display with double gate transistors
US9911762B2 (en) * 2015-12-03 2018-03-06 Innolux Corporation Display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140080729A (ko) * 2012-12-14 2014-07-01 엘지디스플레이 주식회사 Oled 표시 장치 및 그의 구동 방법
CN105612608A (zh) * 2013-10-09 2016-05-25 夏普株式会社 半导体装置及其制造方法
CN107919378A (zh) * 2016-10-11 2018-04-17 三星显示有限公司 具有发射层的显示装置
CN106504699A (zh) * 2016-10-14 2017-03-15 深圳市华星光电技术有限公司 Amoled像素驱动电路及驱动方法
CN110491887A (zh) * 2019-08-23 2019-11-22 上海中航光电子有限公司 一种阵列基板、显示面板及阵列基板的制作方法
CN110707098A (zh) * 2019-09-27 2020-01-17 上海天马微电子有限公司 阵列基板、显示面板、显示装置及阵列基板的制备方法
CN110649044A (zh) * 2019-09-30 2020-01-03 厦门天马微电子有限公司 阵列基板及其制作方法、显示面板和显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4280848A1 (en) * 2022-05-17 2023-11-22 Samsung Display Co., Ltd. Display apparatus

Also Published As

Publication number Publication date
CN114930536A (zh) 2022-08-19
US20220320227A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
WO2021196530A1 (zh) 显示基板及显示装置
WO2022067648A1 (zh) 显示基板、显示面板和显示装置
JP2021524926A (ja) 表示パネルおよび表示装置
CN113674693B (zh) 显示基板和显示装置
WO2022011582A1 (zh) 显示基板、显示面板和显示装置
WO2021103010A1 (zh) 显示基板及显示装置
WO2021102999A1 (zh) 显示基板及显示装置
WO2022095665A1 (zh) 显示基板和显示装置
WO2021258318A1 (zh) 显示基板及其制作方法、显示装置
CN114093299B (zh) 显示面板和显示装置
CN217134377U (zh) 显示基板、显示面板和显示装置
WO2022160491A1 (zh) 显示基板及其制备方法、显示装置
WO2021238486A1 (zh) 显示基板及显示装置
WO2022099610A1 (zh) 显示基板、显示面板和显示装置
CN214505498U (zh) 显示基板和显示装置
WO2021035416A1 (zh) 显示装置及其制备方法
WO2022067698A1 (zh) 显示基板、显示面板和显示装置
WO2022165806A1 (zh) 显示基板、显示面板和显示装置
WO2021035417A1 (zh) 显示装置及其制备方法
WO2021184307A1 (zh) 显示基板及显示装置
CN114361185A (zh) 显示面板及其制备方法、显示装置
WO2023051109A1 (zh) 显示基板、显示面板和显示装置
TWI829365B (zh) 顯示裝置、電源供應裝置以及像素
WO2024000472A1 (zh) 显示基板和显示装置
WO2022165807A1 (zh) 显示基板、显示面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955673

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.07.2023)