WO2022065475A1 - アクリル樹脂繊維用処理剤、及びアクリル樹脂繊維 - Google Patents
アクリル樹脂繊維用処理剤、及びアクリル樹脂繊維 Download PDFInfo
- Publication number
- WO2022065475A1 WO2022065475A1 PCT/JP2021/035329 JP2021035329W WO2022065475A1 WO 2022065475 A1 WO2022065475 A1 WO 2022065475A1 JP 2021035329 W JP2021035329 W JP 2021035329W WO 2022065475 A1 WO2022065475 A1 WO 2022065475A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acrylic resin
- treatment agent
- fiber
- carboxylic acid
- fibers
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
- D06M13/224—Esters of carboxylic acids; Esters of carbonic acid
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/53—Polyethers
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/643—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/18—Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/26—Polymers or copolymers of unsaturated carboxylic acids or derivatives thereof
- D06M2101/28—Acrylonitrile; Methacrylonitrile
Definitions
- the present invention relates to a treatment agent for acrylic resin fibers and acrylic resin fibers.
- carbon fiber is produced by a spinning process of spinning an acrylic resin or the like, a dry densification step of drying and densifying the spun fiber, and a drawing of the dried and densified fiber to produce a carbon fiber precursor which is a synthetic fiber. It is produced by performing a stretching step, a flame-resistant treatment step of making the carbon fiber precursor flame-resistant, and a carbonization treatment step of carbonizing the flame-resistant fiber.
- a treatment agent for synthetic fibers may be used in order to suppress fluff in the synthetic fiber manufacturing process.
- Patent Document 1 discloses an acrylic fiber oil agent for producing carbon fiber, which contains a modified silicone having a modifying group containing a nitrogen atom and a branched fatty acid.
- Patent Document 2 discloses an amino-modified silicone oil composition containing an amino-modified polysiloxane-containing silicone oil, a dicarboxylic acid monoester, an emulsifier, and an aminocarboxylic acid substance.
- the treatment agent for acrylic resin fibers is required to further improve the performance of the effect of suppressing fluff in the manufacturing process of acrylic resin fibers.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a treatment agent for acrylic resin fibers having a suitable effect of suppressing fluff in the manufacturing process of acrylic resin fibers. Another object of the present invention is to provide an acrylic resin fiber to which the processing agent for the acrylic resin fiber is attached.
- the gist of the treatment agent for acrylic resin fibers for solving the above problems is that it contains a carboxylic acid compound having an acid value of 60 mgKOH / g or less.
- the carboxylic acid compound is a compound having an ester bond in the molecule.
- the carboxylic acid compound is a compound having two or more ester bonds in the molecule.
- the carboxylic acid compound is a compound having a hydroxy group in the molecule.
- the acid value of the carboxylic acid compound is preferably 10 to 50 mgKOH / g.
- the treatment agent for acrylic resin fibers further contains a smoothing agent.
- the smoothing agent contains amino-modified silicone.
- the kinematic viscosity of the amino-modified silicone at 25 ° C. is preferably 50 to 7000 mm 2 / s.
- the treatment agent for acrylic resin fibers preferably further contains a nonionic surfactant.
- the content ratio of the carboxylic acid compound is 0. It is preferably 1 to 15% by mass.
- the acrylic resin fibers are carbon fiber precursors.
- the gist of the acrylic resin fiber for solving the above-mentioned problem is that the above-mentioned treatment agent for acrylic resin fiber is attached.
- the treatment agent of this embodiment contains a carboxylic acid compound having an acid value of 60 mgKOH / g or less.
- the fluff suppressing effect of the treatment agent can be improved.
- carboxylic acid compound examples include, for example, a pentameric condensate of 12-hydroxystearic acid, a hexamer condensate of castor oil fatty acid, a 13-mer condensate of 12-hydroxystearic acid, and 12-hydroxy.
- Examples thereof include an ester compound obtained by reacting a 15-mol ethylene oxide adduct with adipic acid in a 1: 1 molar ratio, polyoxyethylene (25 mol) lauryl ether acetic acid, and the like.
- the above carboxylic acid compound may be used alone or in combination of two or more.
- the carboxylic acid compound may be a commercially available product or may be produced by a known method. When it is produced by a known method, it can be produced, for example, by a dehydration condensation reaction between a hydroxy group and a carboxyl group contained in a raw material.
- carboxylic acid compound may form a salt with other basic components such as amines and metals in the treatment agent.
- the acid value of the carboxylic acid compound is preferably 10 to 50 mgKOH / g.
- the fluff suppressing effect of the treatment agent can be further improved.
- the acid value of the carboxylic acid compound can be measured according to JIS K0070.
- the carboxylic acid compound is a compound having an ester bond in the molecule.
- the number of ester bonds in the molecule of the carboxylic acid compound is not particularly limited, and for example, it is preferable to have two or more ester bonds in the molecule.
- the number of ester bonds can be calculated by the following formula.
- the saponification value can be measured according to JIS K0070.
- carboxylic acid compound is preferably a compound having a hydroxy group in the molecule.
- the treatment agent of the present embodiment preferably contains a smoothing agent.
- Examples of the smoothing agent include silicone, ester and the like.
- the silicone used as a smoothing agent is not particularly limited, and is, for example, dimethyl silicone, phenyl-modified silicone, amino-modified silicone, amide-modified silicone, polyether-modified silicone, aminopolyether-modified silicone, alkyl-modified silicone, and alkyl-aralkyl-modified. Examples thereof include silicone, alkyl polyether-modified silicone, ester-modified silicone, epoxy-modified silicone, carbinol-modified silicone, and mercapto-modified silicone.
- the ester used as a smoothing agent is not particularly limited, and examples thereof include (1) aliphatic monoalcohols and aliphatic monocarboxylic acids such as octyl palmitate, oleyl laurate, oleyl oleate, and isotetracosyl oleate. Ester compounds of (2) 1,6-hexanediol didecanate, glycerin triolate, trimethyl propantrilaurate, pentaerythritol tetraoctanate and other esters of aliphatic polyvalent alcohols and aliphatic monocarboxylic acids.
- Ester compounds of aliphatic monoalcohols and aliphatic polyvalent carboxylic acids such as diorail azelate, diorail thiodipropionate, diisocetyl thiodipropionate, diisostearyl thiodipropionate, (4).
- Ester compounds of aromatic monoalcohol and aliphatic monocarboxylic acid such as benzyl oleate and benzyl laurate
- aromatic polyvalent alcohol such as bisphenol A dilaurate and dilaurate of alkylene oxide adduct of bisphenol A.
- Complete ester compound with aliphatic monocarboxylic acid (6)
- Complete ester compound of aliphatic monoalcohol and aromatic polyvalent carboxylic acid such as bis2-ethylhexylphthalate, diisostearylisophthalate, trioctyl remeritate, etc.
- Examples thereof include natural fats and oils such as coconut oil, rapeseed oil, sunflower oil, soybean oil, sunflower oil, sesame oil, fish oil and beef fat.
- a known smoothing agent or the like used as a treatment agent for synthetic fibers may be used.
- the smoothing agent include amino-modified silicone having a kinematic viscosity at 25 ° C. of 650 mm 2 / s and an amino equivalent of 1800 g / mol, and a kinematic viscosity at 25 ° C. of 90 mm 2 / s and an amino equivalent of 5000 g / mol.
- An amino-modified silicone an amino-modified silicone having a kinematic viscosity at 25 ° C. of 4500 mm 2 / s and an amino equivalent of 1200 g / mol
- the smoothing agent preferably contains a modified silicone, and more preferably contains an amino-modified silicone. Further, the kinematic viscosity of the amino-modified silicone at 25 ° C. is preferably 50 to 7000 mm 2 / s.
- the smoothing agent may be used alone or in combination of two or more.
- the treatment agent of the present embodiment preferably contains a nonionic surfactant.
- the nonionic surfactant contained in the treatment agent of the present embodiment is not particularly limited, and is, for example, an alcohol or a carboxylic acid to which an alkylene oxide is added, an ester compound of a carboxylic acid and a polyhydric alcohol, and the like.
- examples thereof include an ether ester compound obtained by adding an alkylene oxide to an ester compound of a carboxylic acid and a polyhydric alcohol.
- alcohols used as raw materials for nonionic surfactants include (1) methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, and tetradeca.
- Branched alkenyl alcohols such as senol and isooctadecenol, (5) cyclic alkyl alcohols such as cyclopentanol and cyclohexanol, (6) phenols, nonylphenols, benzyl alcohols, monostyrene phenols, distyrene phenols, tristyrenes.
- cyclic alkyl alcohols such as cyclopentanol and cyclohexanol
- phenols nonylphenols
- benzyl alcohols monostyrene phenols
- distyrene phenols tristyrenes.
- aromatic alcohols such as phenol chemicals.
- carboxylic acids used as raw materials for nonionic surfactants include (1) octyl acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, and hexadecanoic acid.
- Linear alkylcarboxylic acids such as heptadecanoic acid, octadecanoic acid, nonadecanoic acid, eicosanoic acid, heneicosanoic acid, docosanoic acid, (2) 2-ethylhexanoic acid, isododecanoic acid, isotridecanic acid, isotetradecanoic acid, isohexadecanoic acid, isooctadecane.
- Examples thereof include branched alkyl carboxylic acids such as acids, linear alkenyl carboxylic acids such as (3) octadecenoic acid, octadecadienoic acid and octadecatorienic acid, and (4) aromatic carboxylic acids such as benzoic acid.
- alkylene oxide used as a raw material for the nonionic surfactant examples include ethylene oxide and propylene oxide.
- the number of moles of alkylene oxide added is appropriately set, but is preferably 0.1 to 60 mol, more preferably 1 to 40 mol, and even more preferably 2 to 30 mol.
- the number of moles of alkylene oxide added indicates the number of moles of alkylene oxide with respect to 1 mole of alcohols or carboxylic acids in the raw material to be charged.
- polyhydric alcohol used as a raw material for a nonionic surfactant examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, and 1,4.
- nonionic surfactant examples include, for example, 10 mol of ethylene oxide adduct of isodecyl alcohol, 5 mol adduct of ethylene oxide of isooctadecyl alcohol, 5 mol adduct of ethylene oxide of hexyl alcohol, and ethylene of tetradecyl alcohol. Examples thereof include an 8 mol adduct of ethylene oxide.
- nonionic surfactant one type may be used alone, or two or more types may be used in combination.
- the content of the carboxylic acid compound, smoothing agent, and nonionic surfactant there is no limit to the content of the carboxylic acid compound, smoothing agent, and nonionic surfactant. Assuming that the total content of the carboxylic acid compound, the smoothing agent, and the nonionic surfactant in the treatment agent is 100% by mass, the content of the carboxylic acid compound is preferably 0.1 to 15% by mass, and 0. It is more preferably 3 to 13% by mass. By specifying such a blending ratio, the fluff suppressing effect of the treatment agent can be further improved.
- the treatment agent of the first embodiment is attached to the acrylic resin fiber of the present embodiment.
- the acrylic resin fiber are not particularly limited, and examples thereof include polyacrylic fibers such as polyacrylic acid and modacrylic acid.
- the acrylic resin fiber a resin-made carbon fiber precursor that becomes a carbon fiber by undergoing a carbonization treatment step described later is preferable.
- the resin constituting the carbon fiber precursor include acrylic resin.
- the amount of the treatment agent of the first embodiment attached to the acrylic resin fiber is not particularly limited, but the treatment agent (without solvent) is attached so as to be 0.1 to 2% by mass with respect to the acrylic resin fiber. Is preferable, and it is more preferable to attach the fibers so that the content is 0.3 to 1.2% by mass.
- Examples of the form of the treatment agent for adhering the treatment agent of the first embodiment to the fiber include an organic solvent solution and an aqueous solution.
- a method for adhering the treatment agent to the acrylic resin fiber for example, a known method, for example, a dipping method or a spray method, using the treatment agent of the first embodiment and an aqueous solution containing water or a further diluted aqueous solution.
- a method of adhering by a roller method, a guide lubrication method using a measuring pump, or the like can be applied.
- the method for producing carbon fiber goes through the following steps 1 to 3.
- Step 1 A silk-reeling process in which the treatment agent of the first embodiment is attached to an acrylic resin fiber to make a silk reel.
- Step 2 A flame-resistant treatment step of converting the acrylic resin fiber obtained in the above step 1 into a flame-resistant fiber in an oxidizing atmosphere at 200 to 300 ° C, preferably 230 to 270 ° C.
- Step 3 A carbonization treatment step in which the flame-resistant fiber obtained in the above step 2 is further carbonized in an inert atmosphere at 300 to 2000 ° C, preferably 300 to 1300 ° C.
- the yarn-making step further includes a wet spinning step in which the resin is dissolved in a solvent and spun, a dry densification step in which the wet-spun acrylic resin fiber is dried and densified, and a drawing in which the dry and densified acrylic resin fiber is stretched. It is preferable to have a process.
- the temperature of the drying and densifying step is not particularly limited, but it is preferable to heat the acrylic resin fiber that has undergone the wet spinning step at, for example, 70 to 200 ° C.
- the timing at which the treatment agent is attached to the acrylic resin fiber is not particularly limited, but it is preferably between the wet spinning step and the dry densification step.
- the oxidizing atmosphere in the flameproofing treatment step is not particularly limited, and for example, an air atmosphere can be adopted.
- the inert atmosphere in the carbonization treatment step is not particularly limited, and for example, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or the like can be adopted.
- the treatment agent of the present embodiment contains a carboxylic acid compound having a predetermined acid value. Therefore, the fluff of the acrylic resin fiber can be suppressed. Further, since the heat resistance of the treatment agent can be improved, the effect of suppressing the fusion of the fibers in the flame-resistant treatment step of the acrylic resin fiber (the effect of suppressing fusion) can be improved.
- the treatment agent is attached to the acrylic resin fiber between the wet spinning process and the dry densification process. Since it is possible to improve the focusing property of the acrylic resin fiber that has undergone the drying and densifying step and the stretching step, and to improve the focusing property of the flame-resistant fiber that has undergone the flame-resistant treatment step, it is possible to improve the focusing property of the flame-resistant fiber during the carbon fiber manufacturing process. It is possible to suppress the winding of fibers and the generation of fluff. Therefore, the appearance of the carbon fiber can be improved and the strength of the carbon fiber can be improved.
- the treatment agent is attached to the acrylic resin fiber between the wet spinning step and the dry densification step, but the present invention is not limited to this embodiment.
- the treatment agent may be attached to the acrylic resin fiber between the drying densification step and the stretching step, or the treatment agent may be attached to the acrylic resin fiber between the stretching step and the flameproofing treatment step.
- the treatment agent for acrylic resin fibers contains a modified silicone and a nonionic surfactant, but the present invention is not limited to this embodiment. At least one of the modified silicone and the nonionic surfactant may be omitted.
- the acrylic resin fiber may be a fiber that undergoes a flame resistance treatment step but does not perform a carbonization treatment step.
- the treatment agent of the first embodiment may be attached to synthetic fibers other than acrylic resin fibers. That is, the treatment agent of the first embodiment does not necessarily have to be for acrylic resin fibers, and may be for synthetic fibers other than acrylic resin fibers.
- Specific examples of synthetic fibers other than acrylic resin fibers include (1) polyester fibers such as polyethylene terephthalate, polypropylene terephthalate, and polylactic acid ester, (2) polyamide fibers such as nylon 6 and nylon 66, and (3) polyethylene. , Polyethylene-based fibers, (4) cellulose-based fibers, (5) lignin-based fibers, and the like.
- synthetic fibers that can become carbon fibers through the carbonization treatment step for example, fibers made of resins such as polyethylene resin, phenol resin, cellulose resin, lignin resin, and pitch are preferable.
- the treatment agent or aqueous liquid of the present embodiment includes stabilizers, antistatic agents, antistatic agents, binders, etc. for maintaining the quality of the treatment agent or aqueous liquid, as long as the effects of the present invention are not impaired.
- Ingredients used in ordinary treatment agents such as antioxidants and ultraviolet absorbers or aqueous liquids may be further added.
- Test Category 1 (Preparation of Acrylic Resin Fiber Treatment Agent) (Example 1) Using each component shown in Table 1, the carboxylic acid compound (A-1) is 5%, the smoothing agent (B-1) is 60%, the smoothing agent (B-6) is 20%, and the nonionic surfactant. (C-1) was added to the beaker so as to have a blending ratio of 15%. These were stirred and mixed well. A 25% aqueous solution of the treatment agent for acrylic resin fibers of Example 1 was prepared by gradually adding ion-exchanged water so that the solid content concentration became 25% while continuing stirring.
- Examples 2 to 19 and Comparative Examples 1 to 4 The treatment agents for acrylic resin fibers of Examples 2 to 19 and Comparative Examples 1 to 4 were prepared by the same method as in Example 1 using each component shown in Table 1.
- the type and content of the carboxylic acid compound, the type and content of the smoothing agent, and the type and content of the surfactant in the treatment agent of each example are described in the “(A) Carboxylic acid compound” column of Table 1. As shown in the “(B) smoothing agent” column and the “(C) nonionic surfactant” column, respectively.
- (Carboxylic acid compound) A-1 12-Hydroxystearic acid pentamer condensate A-2: Himasi oil fatty acid hexamer condensate A-3: 12-Hydroxystearic acid 13-mer condensate A-4: 12-hydroxy Carboxylic acid tetramer condensate A-5: 12-Hydroxystearic acid 30-mer condensate A-6: A 10 mol adduct of ethylene oxide of bisphenol A was reacted with adipic acid in a molar ratio of 3: 4.
- Ester compound A-7 Ester compound obtained by reacting 15 mol of ethylene oxide adduct of bisphenol A with adipic acid at a molar ratio of 1: 1
- A-8 Polyoxyethylene (25 mol) Lauryl ether acetate rA-1: Himashi Oil fatty acid rA-2: 12 mol of ethylene oxide adduct of nonylphenol and monoester of succinic acid rA-3: Isostearic acid
- (Smoothing agent) B-1 Amino-modified silicone having a kinematic viscosity at 25 ° C. of 650 mm 2 / s and an amino equivalent of 1800 g / mol
- B-2 Amino having a kinematic viscosity at 25 ° C. of 90 mm 2 / s and an amino equivalent of 5000 g / mol
- Modified Silicone B-3 Amino-modified silicone with a kinematic viscosity at 25 ° C. of 4500 mm 2 / s and an amino equivalent of 1200 g / mol
- B-4 Amino-modified silicone with a kinematic viscosity at 25 ° C.
- the acrylic resin was wet-spun. Specifically, a copolymer having an extreme viscosity of 1.80 consisting of 95% by mass of acrylonitrile, 3.5% by mass of methyl acrylate, and 1.5% by mass of methacrylic acid is dissolved in dimethylacetamide (DMAC) to have a polymer concentration. A spinning stock solution having a viscosity of 21.0% by mass and a viscosity at 60 ° C. of 500 poise was prepared. The undiluted spinning solution was discharged into a coagulation bath of a 70% by mass aqueous solution of DMAC kept at a spinning bath temperature of 35 ° C. from a spinning cap having a pore diameter (inner diameter) of 0.075 mm and a hole number of 12,000 at a draft ratio of 0.8.
- DMAC dimethylacetamide
- Acrylic fiber strands (raw material fibers) in a water-swelled state were prepared by stretching the coagulated yarn 5 times in a water washing tank at the same time as removing the solvent.
- the acrylic resin fiber treatment agent prepared in Test Category 1 was lubricated with respect to the acrylic fiber strand so that the amount of solid content adhered was 1% by mass (without solvent).
- the refueling of the acrylic resin fiber treatment agent was carried out by a dipping method using a 4% ion exchange aqueous solution of the acrylic resin fiber treatment agent.
- the acrylic fiber strands are dried and densified with a heating roller at 130 ° C., further stretched 1.7 times between the heating rollers at 170 ° C., and then wound around a yarn tube using a winding device. I took it.
- step 2 the yarn is unwound from the wound acrylic resin fiber, treated in a flame-resistant furnace having a temperature gradient of 230 to 270 ° C. for 1 hour under an air atmosphere, and then wound on a yarn tube.
- a flame-resistant yarn flame-resistant fiber
- step 3 the yarn is unwound from the wound flame-resistant yarn, fired in a carbonization furnace having a temperature gradient of 300 to 1300 ° C. in a nitrogen atmosphere, converted into carbon fibers, and then made into a yarn tube. Carbon fiber was obtained by winding.
- Test category 3 evaluation
- the presence or absence of fluff of the acrylic resin fiber, the fiber bundling property of the flame-resistant fiber, and the fiber fusion of the flame-resistant fiber were evaluated.
- the procedure for each test is shown below.
- step 1 of the test category 2 the number of fluffs per hour measured by the fluff counting device installed immediately before the winding device for winding the acrylic resin fiber was evaluated according to the following criteria. The results are shown in the "fluff" column of Table 1.
- the present invention also includes the following aspects.
- a treatment agent for synthetic fibers which comprises a carboxylic acid compound having an acid value of 60 mgKOH / g or less.
- Appendix 2 The treatment agent for synthetic fibers according to Appendix 1, wherein the carboxylic acid compound is a compound having an ester bond in the molecule.
- Appendix 3 The treatment agent for synthetic fibers according to Appendix 1 or 2, wherein the carboxylic acid compound is a compound having two or more ester bonds in the molecule.
- Appendix 7 The treatment agent for synthetic fibers according to Appendix 6, wherein the smoothing agent contains an amino-modified silicone.
- Appendix 8 The treatment agent for synthetic fibers according to Appendix 7, wherein the amino-modified silicone has a kinematic viscosity of 50 to 7000 mm 2 / s at 25 ° C.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
アクリル樹脂繊維の毛羽を抑制することを課題とする。アクリル樹脂繊維用処理剤は、酸価が60mgKOH/g以下のカルボン酸化合物を含有する。
Description
本発明は、アクリル樹脂繊維用処理剤、及びアクリル樹脂繊維に関する。
例えば、炭素繊維は、アクリル樹脂等を紡糸する紡糸工程、紡糸された繊維を乾燥して緻密化する乾燥緻密化工程、乾燥緻密化した繊維を延伸して合成繊維である炭素繊維前駆体を製造する延伸工程、炭素繊維前駆体を耐炎化する耐炎化処理工程、及び耐炎化繊維を炭素化する炭素化処理工程を行なうことにより製造される。
合成繊維には、合成繊維の製造工程において毛羽を抑制するために、合成繊維用処理剤が用いられることがある。
特許文献1には、窒素原子を含む変性基を持つ変性シリコーンと分岐脂肪酸を含有する炭素繊維製造用アクリル繊維油剤が開示されている。特許文献2には、アミノ変性ポリシロキサンを含有するシリコーン油剤と、ジカルボン酸のモノエステルと、乳化剤と、アミノカルボン酸物質を含むアミノ変性シリコーン油剤組成物が開示されている。
ところで、アクリル樹脂繊維用処理剤には、アクリル樹脂繊維の製造工程における毛羽を抑制する効果のさらなる性能向上が求められている。
本発明は、こうした実情に鑑みてなされたものであり、その目的は、アクリル樹脂繊維の製造工程における毛羽の抑制効果が好適に向上したアクリル樹脂繊維用処理剤を提供することにある。また、このアクリル樹脂繊維用処理剤が付着したアクリル樹脂繊維を提供することにある。
上記課題を解決するためのアクリル樹脂繊維用処理剤は、酸価が60mgKOH/g以下のカルボン酸化合物を含有することを要旨とする。
上記アクリル樹脂繊維用処理剤について、前記カルボン酸化合物が、分子中にエステル結合を有する化合物であることが好ましい。
上記アクリル樹脂繊維用処理剤について、前記カルボン酸化合物が、分子中にエステル結合を2個以上有する化合物であることが好ましい。
上記アクリル樹脂繊維用処理剤について、前記カルボン酸化合物が、分子中にヒドロキシ基を有する化合物であることが好ましい。
上記アクリル樹脂繊維用処理剤について、前記カルボン酸化合物の酸価が、10~50mgKOH/gであることが好ましい。
上記アクリル樹脂繊維用処理剤は、更に、平滑剤を含有することが好ましい。
上記アクリル樹脂繊維用処理剤について、前記平滑剤が、アミノ変性シリコーンを含有することが好ましい。
上記アクリル樹脂繊維用処理剤について、前記アミノ変性シリコーンの25℃での動粘度が、50~7000mm2/sであることが好ましい。
上記アクリル樹脂繊維用処理剤は、更に、非イオン界面活性剤を含有することが好ましい。
その場合、上記アクリル樹脂繊維用処理剤中の前記カルボン酸化合物、前記平滑剤、及び前記非イオン界面活性剤の含有割合の合計を100質量%とすると、前記カルボン酸化合物の含有割合が0.1~15質量%であることが好ましい。
上記アクリル樹脂繊維用処理剤について、前記アクリル樹脂繊維が、炭素繊維前駆体であることが好ましい。
上記課題を解決するためのアクリル樹脂繊維は、上記アクリル樹脂繊維用処理剤が付着していることを要旨とする。
本発明によると、アクリル樹脂繊維の毛羽を抑制することができる。
(第1実施形態)
本発明に係るアクリル樹脂繊維用処理剤(以下、単に処理剤ともいう。)を具体化した第1実施形態について説明する。
本発明に係るアクリル樹脂繊維用処理剤(以下、単に処理剤ともいう。)を具体化した第1実施形態について説明する。
本実施形態の処理剤は、酸価が60mgKOH/g以下のカルボン酸化合物を含有する。
上記カルボン酸化合物を含有することにより、処理剤の毛羽抑制効果を向上させることができる。
上記のカルボン酸化合物の具体例としては、例えば、12-ヒドロキシステアリン酸の5量体縮合物、ヒマシ油脂肪酸の6量体縮合物、12-ヒドロキシステアリン酸の13量体縮合物、12-ヒドロキシステアリン酸の4量体縮合物、12-ヒドロキシステアリン酸の30量体縮合物、ビスフェノールAのエチレンオキサイド10モル付加物とアジピン酸を3:4のモル比で反応させたエステル化合物、ビスフェノールAのエチレンオキサイド15モル付加物とアジピン酸を1:1のモル比で反応させたエステル化合物、ポリオキシエチレン(25モル)ラウリルエーテル酢酸等が挙げられる。
上記のカルボン酸化合物は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
上記カルボン酸化合物は、市販品であってもよいし、公知の方法により製造したものであってもよい。公知の方法により製造する場合は、例えば、原料物質に含まれるヒドロキシ基とカルボキシル基との脱水縮合反応により製造することができる。
また、上記カルボン酸化合物は、処理剤中で他のアミンや金属等の塩基性成分と塩を形成していてもよい。
上記カルボン酸化合物の酸価は、10~50mgKOH/gであることが好ましい。
カルボン酸化合物の酸価が上記数値範囲であることにより、処理剤の毛羽抑制効果をより向上させることができる。
カルボン酸化合物の酸価は、JISK0070に準拠して測定することができる。
また、カルボン酸化合物が、分子中にエステル結合を有する化合物であることが好ましい。
カルボン酸化合物における分子中のエステル結合の数は特に限定されず、例えば、分子中にエステル結合を2個以上有することが好ましい。
エステル結合の数は、下記の式によって算出することができる。
エステル結合の数=(ケン化価-酸価)/(酸価)
上記ケン化価は、JISK0070に準拠して測定することができる。
上記ケン化価は、JISK0070に準拠して測定することができる。
また、カルボン酸化合物は、分子中にヒドロキシ基を有する化合物であることが好ましい。
また、本実施形態の処理剤は、平滑剤を含有することが好ましい。
平滑剤としては、例えば、シリコーン、エステル等が挙げられる。
平滑剤として使用されるシリコーンとしては、特に制限はなく、例えば、ジメチルシリコーン、フェニル変性シリコーン、アミノ変性シリコーン、アミド変性シリコーン、ポリエーテル変性シリコーン、アミノポリエーテル変性シリコーン、アルキル変性シリコーン、アルキルアラルキル変性シリコーン、アルキルポリエーテル変性シリコーン、エステル変性シリコーン、エポキシ変性シリコーン、カルビノール変性シリコーン、メルカプト変性シリコーン等が挙げられる。
平滑剤として使用されるエステルとしては、特に制限はなく、例えば、(1)オクチルパルミテート、オレイルラウレート、オレイルオレート、イソテトラコシルオレート等の、脂肪族モノアルコールと脂肪族モノカルボン酸とのエステル化合物、(2)1,6-ヘキサンジオールジデカネート、グリセリントリオレート、トリメチロールプロパントリラウレート、ペンタエリスリトールテトラオクタネート等の、脂肪族多価アルコールと脂肪族モノカルボン酸とのエステル化合物、(3)ジオレイルアゼレート、チオジプロピオン酸ジオレイル、チオジプロピオン酸ジイソセチル、チオジプロピオン酸ジイソステアリル等の、脂肪族モノアルコールと脂肪族多価カルボン酸とのエステル化合物、(4)ベンジルオレート、ベンジルラウレート等の、芳香族モノアルコールと脂肪族モノカルボン酸とのエステル化合物、(5)ビスフェノールAジラウレート、ビスフェノールAのアルキレンオキサイド付加物のジラウレート等の、芳香族多価アルコールと脂肪族モノカルボン酸との完全エステル化合物、(6)ビス2-エチルヘキシルフタレート、ジイソステアリルイソフタレート、トリオクチルトリメリテート等の、脂肪族モノアルコールと芳香族多価カルボン酸との完全エステル化合物、(7)ヤシ油、ナタネ油、ヒマワリ油、大豆油、ヒマシ油、ゴマ油、魚油及び牛脂等の天然油脂等が挙げられる。その他、合成繊維用処理剤に採用されている公知の平滑剤等を使用してもよい。
平滑剤の具体例としては、例えば25℃における動粘度が650mm2/s、アミノ当量が1800g/molであるアミノ変性シリコーン、25℃における動粘度が90mm2/s、アミノ当量が5000g/molであるアミノ変性シリコーン、25℃における動粘度が4500mm2/s、アミノ当量が1200g/molであるアミノ変性シリコーン、25℃における動粘度が40mm2/s、アミノ当量が1800g/molであるアミノ変性シリコーン、25℃における動粘度が8000mm2/s、アミノ当量が1000g/molであるアミノ変性シリコーン、25℃における動粘度が1700mm2/s、シリコーン主鎖/ポリエーテル側鎖=20/80(質量比)、エチレンオキサイド/プロピレンオキサイド=50/50(モル比)のポリエーテル変性シリコーン、25℃における動粘度が17000mm2/s、エポキシ当量:3800g/molであるエポキシ変性シリコーン、ビスフェノールAのエチレンオキサイド2モル付加物のジラウリルエステル等が挙げられる。
平滑剤は、変性シリコーンを含有することが好ましく、アミノ変性シリコーンを含有することがより好ましい。さらに、アミノ変性シリコーンの25℃での動粘度が、50~7000mm2/sであることが好ましい。
平滑剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
また、本実施形態の処理剤は、非イオン界面活性剤を含有することが好ましい。
本実施形態の処理剤に含有される非イオン界面活性剤としては、特に制限はなく、例えば、アルコール類又はカルボン酸類にアルキレンオキサイドを付加させたもの、カルボン酸類と多価アルコールとのエステル化合物、カルボン酸類と多価アルコールとのエステル化合物にアルキレンオキサイドを付加させたエーテル・エステル化合物等が挙げられる。
非イオン界面活性剤の原料として用いられるアルコール類の具体例としては、例えば、(1)メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ヘキサデカノール、ヘプタデカノール、オクタデカノール、ノナデカノール、エイコサノール、ヘンエイコサノール、ドコサノール、トリコサノール、テトラコサノール、ペンタコサノール、ヘキサコサノール、ヘプタコサノール、オクタコサノール、ノナコサノール、トリアコンタノール等の直鎖アルキルアルコール、(2)イソプロパノール、イソブタノール、イソヘキサノール、2-エチルヘキサノール、イソノナノール、イソデカノール、イソドデカノール、イソトリデカノール、イソテトラデカノール、イソトリアコンタノール、イソヘキサデカノール、イソヘプタデカノール、イソオクタデカノール、イソノナデカノール、イソエイコサノール、イソヘンエイコサノール、イソドコサノール、イソトリコサノール、イソテトラコサノール、イソペンタコサノール、イソヘキサコサノール、イソヘプタコサノール、イソオクタコサノール、イソノナコサノール、イソペンタデカノール等の分岐アルキルアルコール、(3)テトラデセノール、ヘキサデセノール、ヘプタデセノール、オクタデセノール、ノナデセノール等の直鎖アルケニルアルコール、(4)イソヘキサデセノール、イソオクタデセノール等の分岐アルケニルアルコール、(5)シクロペンタノール、シクロヘキサノール等の環状アルキルアルコール、(6)フェノール、ノニルフェノール、ベンジルアルコール、モノスチレン化フェノール、ジスチレン化フェノール、トリスチレン化フェノール等の芳香族系アルコール等が挙げられる。
非イオン界面活性剤の原料として用いられるカルボン酸類の具体例としては、例えば、(1)オクチル酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、エイコサン酸、ヘンエイコサン酸、ドコサン酸等の直鎖アルキルカルボン酸、(2)2-エチルヘキサン酸、イソドデカン酸、イソトリデカン酸、イソテトラデカン酸、イソヘキサデカン酸、イソオクタデカン酸等の分岐アルキルカルボン酸、(3)オクタデセン酸、オクタデカジエン酸、オクタデカトリエン酸等の直鎖アルケニルカルボン酸、(4)安息香酸等の芳香族系カルボン酸等が挙げられる。
非イオン界面活性剤の原料として用いられるアルキレンオキサイドの具体例としては、例えばエチレンオキサイド、プロピレンオキサイド等が挙げられる。アルキレンオキサイドの付加モル数は、適宜設定されるが、好ましくは0.1~60モル、より好ましくは1~40モル、さらに好ましくは2~30モルである。なお、アルキレンオキサイドの付加モル数は、仕込み原料中におけるアルコール類又はカルボン酸類1モルに対するアルキレンオキサイドのモル数を示す。
非イオン界面活性剤の原料として用いられる多価アルコールの具体例としては、例えばエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,4-ブタンジオール、2-メチル-1,2-プロパンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、2-メチル-2,4-ペンタンジオール、2,3-ジメチル-2,3-ブタンジオール、グリセリン、2-メチル-2-ヒドロキシメチル-1,3-プロパンジオール、2-エチル-2-ヒドロキシメチル-1,3-プロパンジオール、トリメチロールプロパン、ソルビタン、ペンタエリスリトール、ソルビトール等が挙げられる。
非イオン界面活性剤の具体例としては、例えばイソデシルアルコールのエチレンオキサイド10モル付加物、イソオクタデシルアルコールのエチレンオキサイド5モル付加物、へキシルアルコールのエチレンオキサイド5モル付加物、テトラデシルアルコールのエチレンオキサイド8モル付加物等が挙げられる。
非イオン界面活性剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
上記カルボン酸化合物、平滑剤、非イオン界面活性剤の含有量に制限はない。処理剤中のカルボン酸化合物、平滑剤、非イオン界面活性剤の含有割合の合計を100質量%とすると、カルボン酸化合物の含有割合が0.1~15質量%であることが好ましく、0.3~13質量%であることがより好ましい。かかる配合割合に規定することにより、処理剤の毛羽抑制効果をより向上させることができる。
(第2実施形態)
本発明に係るアクリル樹脂繊維を具体化した第2実施形態について説明する。本実施形態のアクリル樹脂繊維には、第1実施形態の処理剤が付着している。アクリル樹脂繊維の具体例としては、特に制限はなく、例えばポリアクリル、モダアクリル等のポリアクリル系繊維が挙げられる。アクリル樹脂繊維としては、後述する炭素化処理工程を経ることにより炭素繊維となる樹脂製の炭素繊維前駆体が好ましい。炭素繊維前駆体を構成する樹脂としては、アクリル樹脂を挙げることができる。
本発明に係るアクリル樹脂繊維を具体化した第2実施形態について説明する。本実施形態のアクリル樹脂繊維には、第1実施形態の処理剤が付着している。アクリル樹脂繊維の具体例としては、特に制限はなく、例えばポリアクリル、モダアクリル等のポリアクリル系繊維が挙げられる。アクリル樹脂繊維としては、後述する炭素化処理工程を経ることにより炭素繊維となる樹脂製の炭素繊維前駆体が好ましい。炭素繊維前駆体を構成する樹脂としては、アクリル樹脂を挙げることができる。
第1実施形態の処理剤をアクリル樹脂繊維に付着させる量に特に制限はないが、処理剤(溶媒を含まない)をアクリル樹脂繊維に対し0.1~2質量%となるように付着させることが好ましく、0.3~1.2質量%となるように付着させることがより好ましい。
第1実施形態の処理剤を繊維に付着させる際の処理剤の形態としては、例えば有機溶媒溶液、水性液等が挙げられる。
処理剤をアクリル樹脂繊維に付着させる方法としては、例えば、第1実施形態の処理剤、及び水を含有する水性液又はさらに希釈した水溶液を用いて、公知の方法、例えば浸漬法、スプレー法、ローラー法、計量ポンプを用いたガイド給油法等によって付着させる方法を適用できる。
本発明に係る処理剤、及びこの処理剤が付着したアクリル樹脂繊維を用いた炭素繊維の製造方法について説明する。
炭素繊維の製造方法は、下記の工程1~3を経ることが好ましい。
工程1:第1実施形態の処理剤をアクリル樹脂繊維に付着させて製糸する製糸工程。
工程2:前記工程1で得られたアクリル樹脂繊維を200~300℃、好ましくは230~270℃の酸化性雰囲気中で耐炎化繊維に転換する耐炎化処理工程。
工程3:前記工程2で得られた耐炎化繊維をさらに300~2000℃、好ましくは300~1300℃の不活性雰囲気中で炭化させる炭素化処理工程。
製糸工程は、さらに、樹脂を溶媒に溶解して紡糸する湿式紡糸工程、湿式紡糸されたアクリル樹脂繊維を乾燥して緻密化する乾燥緻密化工程、及び乾燥緻密化したアクリル樹脂繊維を延伸する延伸工程を有していることが好ましい。
乾燥緻密化工程の温度は特に限定されないが、湿式紡糸工程を経たアクリル樹脂繊維を、例えば、70~200℃で加熱することが好ましい。処理剤をアクリル樹脂繊維に付着させるタイミングは特に限定されないが、湿式紡糸工程と乾燥緻密化工程の間であることが好ましい。
耐炎化処理工程における酸化性雰囲気は、特に限定されず、例えば、空気雰囲気を採用することができる。
炭素化処理工程における不活性雰囲気は、特に限定されず、例えば、窒素雰囲気、アルゴン雰囲気、真空雰囲気等を採用することができる。
本実施形態の処理剤、及びアクリル樹脂繊維によれば、以下のような効果を得ることができる。
(1)本実施形態の処理剤は、所定の酸価を有するカルボン酸化合物を含有している。したがって、アクリル樹脂繊維の毛羽を抑制することができる。また、処理剤の耐熱性を向上させることができるため、アクリル樹脂繊維の耐炎化処理工程における繊維同士の融着を抑制する効果(融着抑制効果)を向上させることができる。
(2)湿式紡糸工程と乾燥緻密化工程の間において、処理剤をアクリル樹脂繊維に付着させている。乾燥緻密化工程、及び延伸工程を経たアクリル樹脂繊維の集束性を向上させたり、耐炎化処理工程を経た耐炎化繊維の集束性を向上させたりすることができるため、炭素繊維の製造工程中の繊維の巻き付けや、毛羽の発生を抑制することができる。したがって、炭素繊維の外観を良好にしたり、炭素繊維の強度を向上させたりすることができる。
上記実施形態は、以下のように変更して実施できる。上記実施形態、及び、以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施できる。
・本実施形態では、湿式紡糸工程と乾燥緻密化工程の間において、処理剤をアクリル樹脂繊維に付着させていたが、この態様に限定されない。乾燥緻密化工程と延伸工程の間において処理剤をアクリル樹脂繊維に付着させても良いし、延伸工程と耐炎化処理工程の間において処理剤をアクリル樹脂繊維に付着させても良い。
・本実施形態において、アクリル樹脂繊維用処理剤は、変性シリコーンと非イオン界面活性剤とを含有していたが、この態様に限定されない。変性シリコーンと非イオン界面活性剤の少なくともいずれか一方が省略されていてもよい。
・本実施形態において、例えば、アクリル樹脂繊維が、耐炎化処理工程を行なうものの、炭素化処理工程までは行わない繊維であってもよい。
・第1実施形態の処理剤は、アクリル樹脂繊維以外の合成繊維に付着させてもよい。すなわち、第1実施形態の処理剤は、必ずしもアクリル樹脂繊維用でなくてもよく、アクリル樹脂繊維以外の合成繊維用であってもよい。アクリル樹脂繊維以外の合成繊維の具体例としては、例えば(1)ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリ乳酸エステル等のポリエステル系繊維、(2)ナイロン6、ナイロン66等のポリアミド系繊維、(3)ポリエチレン、ポリプロピレン等のポリオレフィン系繊維、(4)セルロース系繊維、(5)リグニン系繊維等が挙げられる。中でも、炭素化処理工程を経ることにより炭素繊維となりうる合成繊維、例えば、ポリエチレン樹脂、フェノール樹脂、セルロース樹脂、リグニン樹脂、ピッチ等の樹脂からなる繊維が好ましい。
・本実施形態の処理剤又は水性液には、本発明の効果を阻害しない範囲内において、処理剤又は水性液の品質保持のための安定化剤や制電剤、帯電防止剤、つなぎ剤、酸化防止剤、紫外線吸収剤等の通常処理剤又は水性液に用いられる成分をさらに配合してもよい。
以下、本発明の構成及び効果をより具体的に説明するために実施例等を挙げるが、本発明がこれらの実施例に限定されるというものではない。尚、以下の実施例及び比較例の説明において、%は質量%を意味する。
試験区分1(アクリル樹脂繊維用処理剤の調製)
(実施例1)
表1に示される各成分を使用し、カルボン酸化合物(A-1)が5%、平滑剤(B-1)が60%、平滑剤(B-6)が20%、非イオン界面活性剤(C-1)が15%の配合割合となるようにビーカーに加えた。これらを撹拌してよく混合した。撹拌を続けながら固形分濃度が25%となるようにイオン交換水を徐々に添加することで実施例1のアクリル樹脂繊維用処理剤の25%水性液を調製した。
(実施例1)
表1に示される各成分を使用し、カルボン酸化合物(A-1)が5%、平滑剤(B-1)が60%、平滑剤(B-6)が20%、非イオン界面活性剤(C-1)が15%の配合割合となるようにビーカーに加えた。これらを撹拌してよく混合した。撹拌を続けながら固形分濃度が25%となるようにイオン交換水を徐々に添加することで実施例1のアクリル樹脂繊維用処理剤の25%水性液を調製した。
(実施例2~19及び比較例1~4)
実施例2~19及び比較例1~4の各アクリル樹脂繊維用処理剤は、表1に示される各成分を使用し、実施例1と同様の方法にて調製した。
実施例2~19及び比較例1~4の各アクリル樹脂繊維用処理剤は、表1に示される各成分を使用し、実施例1と同様の方法にて調製した。
なお、各例の処理剤中におけるカルボン酸化合物の種類と含有量、平滑剤の種類と含有量、及び界面活性剤の種類と含有量は、表1の「(A)カルボン酸化合物」欄、「(B)平滑剤」欄、及び「(C)非イオン界面活性剤」欄にそれぞれ示すとおりである。
表1の記号欄に記載するA-1~A-8、rA1~rA-3、B-1~B-8、C-1~C-4の各成分の詳細は以下のとおりである。
(カルボン酸化合物)
A-1:12-ヒドロキシステアリン酸の5量体縮合物
A-2:ヒマシ油脂肪酸の6量体縮合物
A-3:12-ヒドロキシステアリン酸の13量体縮合物
A-4:12-ヒドロキシステアリン酸の4量体縮合物
A-5:12-ヒドロキシステアリン酸の30量体縮合物
A-6:ビスフェノールAのエチレンオキサイド10モル付加物とアジピン酸を3:4のモル比で反応させたエステル化合物
A-7:ビスフェノールAのエチレンオキサイド15モル付加物とアジピン酸を1:1のモル比で反応させたエステル化合物
A-8:ポリオキシエチレン(25モル)ラウリルエーテル酢酸
rA-1:ヒマシ油脂肪酸
rA-2:ノニルフェノールのエチレンオキサイド12モル付加物とコハク酸のモノエステル
rA-3:イソステアリン酸
上記カルボン酸化合物に用いられるカルボン酸化合物の種類、酸価、ケン化価、及び分子中のエステル結合の数について、表2の「(A)カルボン酸化合物」欄、「酸価(mgKOH/g)」欄、「ケン化価(mgKOH/g)」欄、及び「分子中のエステル結合の数」欄にそれぞれ示す。
A-1:12-ヒドロキシステアリン酸の5量体縮合物
A-2:ヒマシ油脂肪酸の6量体縮合物
A-3:12-ヒドロキシステアリン酸の13量体縮合物
A-4:12-ヒドロキシステアリン酸の4量体縮合物
A-5:12-ヒドロキシステアリン酸の30量体縮合物
A-6:ビスフェノールAのエチレンオキサイド10モル付加物とアジピン酸を3:4のモル比で反応させたエステル化合物
A-7:ビスフェノールAのエチレンオキサイド15モル付加物とアジピン酸を1:1のモル比で反応させたエステル化合物
A-8:ポリオキシエチレン(25モル)ラウリルエーテル酢酸
rA-1:ヒマシ油脂肪酸
rA-2:ノニルフェノールのエチレンオキサイド12モル付加物とコハク酸のモノエステル
rA-3:イソステアリン酸
上記カルボン酸化合物に用いられるカルボン酸化合物の種類、酸価、ケン化価、及び分子中のエステル結合の数について、表2の「(A)カルボン酸化合物」欄、「酸価(mgKOH/g)」欄、「ケン化価(mgKOH/g)」欄、及び「分子中のエステル結合の数」欄にそれぞれ示す。
(平滑剤)
B-1:25℃における動粘度が650mm2/s、アミノ当量が1800g/molであるアミノ変性シリコーン
B-2:25℃における動粘度が90mm2/s、アミノ当量が5000g/molであるアミノ変性シリコーン
B-3:25℃における動粘度が4500mm2/s、アミノ当量が1200g/molであるアミノ変性シリコーン
B-4:25℃における動粘度が40mm2/s、アミノ当量が1800g/molであるアミノ変性シリコーン
B-5:25℃における動粘度が8000mm2/s、アミノ当量が1000g/molであるアミノ変性シリコーン
B-6:25℃における動粘度が1700mm2/s、シリコーン主鎖/ポリエーテル側鎖=20/80(質量比)、エチレンオキサイド/プロピレンオキサイド=50/50(モル比)のポリエーテル変性シリコーン
B-7:25℃における動粘度が17000mm2/s、エポキシ当量:3800g/molであるエポキシ変性シリコーン
B-8:ビスフェノールAのエチレンオキサイド2モル付加物のジラウリルエステル
(非イオン界面活性剤)
C-1:イソデシルアルコールのエチレンオキサイド10モル付加物
C-2:イソオクタデシルアルコールのエチレンオキサイド5モル付加物
C-3:へキシルアルコールのエチレンオキサイド5モル付加物
C-4:テトラデシルアルコールのエチレンオキサイド8モル付加物
試験区分2(アクリル樹脂繊維、及び炭素繊維の製造)
試験区分1で調製したアクリル樹脂繊維用処理剤を用いて、アクリル樹脂繊維、及び炭素繊維を製造した。
B-1:25℃における動粘度が650mm2/s、アミノ当量が1800g/molであるアミノ変性シリコーン
B-2:25℃における動粘度が90mm2/s、アミノ当量が5000g/molであるアミノ変性シリコーン
B-3:25℃における動粘度が4500mm2/s、アミノ当量が1200g/molであるアミノ変性シリコーン
B-4:25℃における動粘度が40mm2/s、アミノ当量が1800g/molであるアミノ変性シリコーン
B-5:25℃における動粘度が8000mm2/s、アミノ当量が1000g/molであるアミノ変性シリコーン
B-6:25℃における動粘度が1700mm2/s、シリコーン主鎖/ポリエーテル側鎖=20/80(質量比)、エチレンオキサイド/プロピレンオキサイド=50/50(モル比)のポリエーテル変性シリコーン
B-7:25℃における動粘度が17000mm2/s、エポキシ当量:3800g/molであるエポキシ変性シリコーン
B-8:ビスフェノールAのエチレンオキサイド2モル付加物のジラウリルエステル
(非イオン界面活性剤)
C-1:イソデシルアルコールのエチレンオキサイド10モル付加物
C-2:イソオクタデシルアルコールのエチレンオキサイド5モル付加物
C-3:へキシルアルコールのエチレンオキサイド5モル付加物
C-4:テトラデシルアルコールのエチレンオキサイド8モル付加物
試験区分2(アクリル樹脂繊維、及び炭素繊維の製造)
試験区分1で調製したアクリル樹脂繊維用処理剤を用いて、アクリル樹脂繊維、及び炭素繊維を製造した。
まず、工程1として、アクリル樹脂を湿式紡糸した。具体的には、アクリロニトリル95質量%、アクリル酸メチル3.5質量%、メタクリル酸1.5質量%からなる極限粘度1.80の共重合体を、ジメチルアセトアミド(DMAC)に溶解してポリマー濃度が21.0質量%、60℃における粘度が500ポイズの紡糸原液を作成した。紡糸原液は、紡浴温度35℃に保たれたDMACの70質量%水溶液の凝固浴中に孔径(内径)0.075mm、ホール数12,000の紡糸口金よりドラフト比0.8で吐出した。
凝固糸を水洗槽の中で脱溶媒と同時に5倍に延伸して水膨潤状態のアクリル繊維ストランド(原料繊維)を作成した。このアクリル繊維ストランドに対して、固形分付着量が1質量%(溶媒を含まない)となるように、試験区分1で調製したアクリル樹脂繊維用処理剤を給油した。アクリル樹脂繊維用処理剤の給油は、アクリル樹脂繊維用処理剤の4%イオン交換水溶液を用いた浸漬法により実施した。その後、アクリル繊維ストランドに対して、130℃の加熱ローラーで乾燥緻密化処理を行い、更に170℃の加熱ローラー間で1.7倍の延伸を施した後に巻き取り装置を用いて糸管に巻き取った。
次に、工程2として、巻き取られたアクリル樹脂繊維から糸を解舒し、230~270℃の温度勾配を有する耐炎化炉で空気雰囲気下1時間、耐炎化処理した後に糸管に巻き取ることで耐炎化糸(耐炎化繊維)を得た。
次に、工程3として、巻き取られた耐炎化糸から糸を解舒し、窒素雰囲気下で300~1300℃の温度勾配を有する炭素化炉で焼成して炭素繊維に転換後、糸管に巻き取ることで炭素繊維を得た。
試験区分3(評価)
実施例1~19及び比較例1~4の処理剤について、アクリル樹脂繊維の毛羽の有無、耐炎化繊維の繊維集束性、及び耐炎化繊維の繊維融着を評価した。各試験の手順について以下に示す。
実施例1~19及び比較例1~4の処理剤について、アクリル樹脂繊維の毛羽の有無、耐炎化繊維の繊維集束性、及び耐炎化繊維の繊維融着を評価した。各試験の手順について以下に示す。
(毛羽)
試験区分2の工程1において、アクリル樹脂繊維を巻き取る巻き取り装置の直前に設置した毛羽計数装置により測定した1時間当たりの毛羽数を以下の基準で評価した。その結果を表1の“毛羽”欄に示す。
試験区分2の工程1において、アクリル樹脂繊維を巻き取る巻き取り装置の直前に設置した毛羽計数装置により測定した1時間当たりの毛羽数を以下の基準で評価した。その結果を表1の“毛羽”欄に示す。
・毛羽の評価基準
◎(良好):毛羽数が0~5個
〇(可):毛羽数が6~10個
×(不良):毛羽数が11個以上
(耐炎化集束性)
試験区分2の工程2において耐炎化処理を行った耐炎化繊維に対して、巻き取り前の耐炎化糸の集束状態を目視で観察して、以下の基準で耐炎化集束性の評価を行った。その結果を表1の“耐炎化集束性”欄に示す。
◎(良好):毛羽数が0~5個
〇(可):毛羽数が6~10個
×(不良):毛羽数が11個以上
(耐炎化集束性)
試験区分2の工程2において耐炎化処理を行った耐炎化繊維に対して、巻き取り前の耐炎化糸の集束状態を目視で観察して、以下の基準で耐炎化集束性の評価を行った。その結果を表1の“耐炎化集束性”欄に示す。
・耐炎化集束性の評価基準
◎(良好):集束しており、トウ幅が一定である場合
〇(可):集束しているが、トウ幅が一定ではない場合
×(不良):繊維束中に空間があり、集束していない場合
(耐炎化融着)
試験区分2の工程2において耐炎化処理を行った耐炎化繊維を長さ10mmに切断し、ポリオキシエチレン(10)ラウリルエーテルの水溶液中に分散させた。10分間撹拌した後、繊維の分散状態を目視し、以下の基準で評価した。その結果を表1の“耐炎化融着”欄に示す。
◎(良好):集束しており、トウ幅が一定である場合
〇(可):集束しているが、トウ幅が一定ではない場合
×(不良):繊維束中に空間があり、集束していない場合
(耐炎化融着)
試験区分2の工程2において耐炎化処理を行った耐炎化繊維を長さ10mmに切断し、ポリオキシエチレン(10)ラウリルエーテルの水溶液中に分散させた。10分間撹拌した後、繊維の分散状態を目視し、以下の基準で評価した。その結果を表1の“耐炎化融着”欄に示す。
・耐炎化融着の評価基準
◎(良好):繊維が完全に均一に分散しており、短繊維束が存在しない場合
〇(可):繊維が概ね均一に分散しているが、短繊維束が存在している場合
×(不良):繊維の分散状態が不均一で、多数の短繊維束が存在している場合
表1の結果から、本発明によれば、アクリル樹脂繊維用処理剤の耐熱性を向上させて、繊維同士の融着抑制効果を向上させることができる。また、耐炎化繊維の繊維集束性を向上させることができる。また、アクリル樹脂繊維の毛羽の発生を抑制することができる。
◎(良好):繊維が完全に均一に分散しており、短繊維束が存在しない場合
〇(可):繊維が概ね均一に分散しているが、短繊維束が存在している場合
×(不良):繊維の分散状態が不均一で、多数の短繊維束が存在している場合
表1の結果から、本発明によれば、アクリル樹脂繊維用処理剤の耐熱性を向上させて、繊維同士の融着抑制効果を向上させることができる。また、耐炎化繊維の繊維集束性を向上させることができる。また、アクリル樹脂繊維の毛羽の発生を抑制することができる。
本発明は以下の態様も包含する。
(付記1)
酸価が60mgKOH/g以下のカルボン酸化合物を含有することを特徴とする合成繊維用処理剤。
酸価が60mgKOH/g以下のカルボン酸化合物を含有することを特徴とする合成繊維用処理剤。
(付記2)
前記カルボン酸化合物が、分子中にエステル結合を有する化合物である付記1に記載の合成繊維用処理剤。
前記カルボン酸化合物が、分子中にエステル結合を有する化合物である付記1に記載の合成繊維用処理剤。
(付記3)
前記カルボン酸化合物が、分子中にエステル結合を2個以上有する化合物である付記1又は2に記載の合成繊維用処理剤。
前記カルボン酸化合物が、分子中にエステル結合を2個以上有する化合物である付記1又は2に記載の合成繊維用処理剤。
(付記4)
前記カルボン酸化合物が、分子中にヒドロキシ基を有する化合物である付記1~3のいずれか一つに記載の合成繊維用処理剤。
前記カルボン酸化合物が、分子中にヒドロキシ基を有する化合物である付記1~3のいずれか一つに記載の合成繊維用処理剤。
(付記5)
前記カルボン酸化合物の酸価が、10~50mgKOH/gである付記1~4のいずれか一つに記載の合成繊維用処理剤。
前記カルボン酸化合物の酸価が、10~50mgKOH/gである付記1~4のいずれか一つに記載の合成繊維用処理剤。
(付記6)
更に、平滑剤を含有する付記1~5のいずれか一つに記載の合成繊維用処理剤。
更に、平滑剤を含有する付記1~5のいずれか一つに記載の合成繊維用処理剤。
(付記7)
前記平滑剤が、アミノ変性シリコーンを含有する付記6に記載の合成繊維用処理剤。
前記平滑剤が、アミノ変性シリコーンを含有する付記6に記載の合成繊維用処理剤。
(付記8)
前記アミノ変性シリコーンの25℃での動粘度が、50~7000mm2/sである付記7に記載の合成繊維用処理剤。
前記アミノ変性シリコーンの25℃での動粘度が、50~7000mm2/sである付記7に記載の合成繊維用処理剤。
(付記9)
更に、非イオン界面活性剤を含有する付記1~8のいずれか一つに記載の合成繊維用処理剤。
更に、非イオン界面活性剤を含有する付記1~8のいずれか一つに記載の合成繊維用処理剤。
(付記10)
更に、非イオン界面活性剤を含有し、
前記カルボン酸化合物、前記平滑剤、及び前記非イオン界面活性剤の含有割合の合計を100質量%とすると、前記カルボン酸化合物の含有割合が0.1~15質量%である付記6~8のいずれか一つに記載の合成繊維用処理剤。
更に、非イオン界面活性剤を含有し、
前記カルボン酸化合物、前記平滑剤、及び前記非イオン界面活性剤の含有割合の合計を100質量%とすると、前記カルボン酸化合物の含有割合が0.1~15質量%である付記6~8のいずれか一つに記載の合成繊維用処理剤。
(付記11)
前記合成繊維が、炭素繊維前駆体である付記1~10のいずれか一つに記載の合成繊維用処理剤。
前記合成繊維が、炭素繊維前駆体である付記1~10のいずれか一つに記載の合成繊維用処理剤。
(付記12)
付記1~10のいずれか一つに記載の合成繊維用処理剤が付着していることを特徴とする合成繊維。
付記1~10のいずれか一つに記載の合成繊維用処理剤が付着していることを特徴とする合成繊維。
Claims (12)
- 酸価が60mgKOH/g以下のカルボン酸化合物を含有することを特徴とするアクリル樹脂繊維用処理剤。
- 前記カルボン酸化合物が、分子中にエステル結合を有する化合物である請求項1に記載のアクリル樹脂繊維用処理剤。
- 前記カルボン酸化合物が、分子中にエステル結合を2個以上有する化合物である請求項1又は2に記載のアクリル樹脂繊維用処理剤。
- 前記カルボン酸化合物が、分子中にヒドロキシ基を有する化合物である請求項1~3のいずれか一項に記載のアクリル樹脂繊維用処理剤。
- 前記カルボン酸化合物の酸価が、10~50mgKOH/gである請求項1~4のいずれか一項に記載のアクリル樹脂繊維用処理剤。
- 更に、平滑剤を含有する請求項1~5のいずれか一項に記載のアクリル樹脂繊維用処理剤。
- 前記平滑剤が、アミノ変性シリコーンを含有する請求項6に記載のアクリル樹脂繊維用処理剤。
- 前記アミノ変性シリコーンの25℃での動粘度が、50~7000mm2/sである請求項7に記載のアクリル樹脂繊維用処理剤。
- 更に、非イオン界面活性剤を含有する請求項1~8のいずれか一項に記載のアクリル樹脂繊維用処理剤。
- 更に、非イオン界面活性剤を含有し、
前記カルボン酸化合物、前記平滑剤、及び前記非イオン界面活性剤の含有割合の合計を100質量%とすると、前記カルボン酸化合物の含有割合が0.1~15質量%である請求項6~8のいずれか一項に記載のアクリル樹脂繊維用処理剤。 - 前記アクリル樹脂繊維が、炭素繊維前駆体である請求項1~10のいずれか一項に記載のアクリル樹脂繊維用処理剤。
- 請求項1~10のいずれか一項に記載のアクリル樹脂繊維用処理剤が付着していることを特徴とするアクリル樹脂繊維。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180065334.5A CN116234956B (zh) | 2020-09-28 | 2021-09-27 | 丙烯酸类树脂纤维用处理剂以及丙烯酸类树脂纤维 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-161860 | 2020-09-28 | ||
JP2020161860A JP6877797B1 (ja) | 2020-09-28 | 2020-09-28 | アクリル樹脂繊維用処理剤、及びアクリル樹脂繊維 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022065475A1 true WO2022065475A1 (ja) | 2022-03-31 |
Family
ID=75961569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/035329 WO2022065475A1 (ja) | 2020-09-28 | 2021-09-27 | アクリル樹脂繊維用処理剤、及びアクリル樹脂繊維 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6877797B1 (ja) |
CN (1) | CN116234956B (ja) |
WO (1) | WO2022065475A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7098210B1 (ja) * | 2022-04-15 | 2022-07-11 | 竹本油脂株式会社 | 炭素繊維前駆体用処理剤及び炭素繊維前駆体 |
JP7542287B1 (ja) | 2024-01-04 | 2024-08-30 | 竹本油脂株式会社 | 繊維用集束剤および繊維 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997009474A1 (fr) * | 1995-09-06 | 1997-03-13 | Matsumoto Yushi-Seiyaku Co., Ltd. | Composition d'huile precurseur pour fibre de carbone |
WO2012169551A1 (ja) * | 2011-06-06 | 2012-12-13 | 三菱レイヨン株式会社 | 炭素繊維前駆体アクリル繊維用油剤、炭素繊維前駆体アクリル繊維用油剤組成物、炭素繊維前駆体アクリル繊維用油剤処理液、および炭素繊維前駆体アクリル繊維束とそれを用いた炭素繊維束の製造方法 |
WO2016039478A1 (ja) * | 2014-09-11 | 2016-03-17 | 三菱レイヨン株式会社 | 炭素繊維前駆体アクリル繊維用油剤、炭素繊維前駆体アクリル繊維用油剤組成物、炭素繊維前駆体アクリル繊維用油剤処理液、および炭素繊維前駆体アクリル繊維束 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2700292B2 (ja) * | 1992-12-04 | 1998-01-19 | 三洋化成工業株式会社 | 繊維用柔軟平滑剤 |
JP4046605B2 (ja) * | 2002-12-19 | 2008-02-13 | 竹本油脂株式会社 | 炭素繊維製造用合成繊維処理剤及び炭素繊維製造用合成繊維の処理方法 |
JP4090036B2 (ja) * | 2003-03-26 | 2008-05-28 | 竹本油脂株式会社 | 合成繊維処理剤及び合成繊維の処理方法 |
JP5661464B2 (ja) * | 2008-03-18 | 2015-01-28 | 関西ペイント株式会社 | 水性塗料組成物及び複層塗膜形成方法 |
JP5731908B2 (ja) * | 2011-06-06 | 2015-06-10 | 三菱レイヨン株式会社 | 炭素繊維前駆体アクリル繊維用油剤、炭素繊維前駆体アクリル繊維用油剤組成物、および炭素繊維前駆体アクリル繊維用油剤処理液 |
KR102095920B1 (ko) * | 2013-03-29 | 2020-04-01 | 마쓰모토유시세이야쿠 가부시키가이샤 | 합성 섬유용 처리제 및 그 이용 |
WO2015186545A1 (ja) * | 2014-06-06 | 2015-12-10 | 松本油脂製薬株式会社 | 合成繊維用処理剤及びその利用 |
JP6752075B2 (ja) * | 2016-08-01 | 2020-09-09 | 松本油脂製薬株式会社 | アクリル繊維処理剤及びその用途 |
JP6083919B1 (ja) * | 2016-09-07 | 2017-02-22 | 竹本油脂株式会社 | 炭素繊維用サイジング剤、炭素繊維用サイジング剤の調製方法及び炭素繊維用サイジング剤の水性液 |
JP6401229B2 (ja) * | 2016-12-12 | 2018-10-10 | 竹本油脂株式会社 | 合成繊維用処理剤及び延伸糸の製造方法 |
JP2020105685A (ja) * | 2018-12-26 | 2020-07-09 | 三洋化成工業株式会社 | 合成繊維用処理剤及び合成繊維 |
-
2020
- 2020-09-28 JP JP2020161860A patent/JP6877797B1/ja active Active
-
2021
- 2021-09-27 WO PCT/JP2021/035329 patent/WO2022065475A1/ja active Application Filing
- 2021-09-27 CN CN202180065334.5A patent/CN116234956B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997009474A1 (fr) * | 1995-09-06 | 1997-03-13 | Matsumoto Yushi-Seiyaku Co., Ltd. | Composition d'huile precurseur pour fibre de carbone |
WO2012169551A1 (ja) * | 2011-06-06 | 2012-12-13 | 三菱レイヨン株式会社 | 炭素繊維前駆体アクリル繊維用油剤、炭素繊維前駆体アクリル繊維用油剤組成物、炭素繊維前駆体アクリル繊維用油剤処理液、および炭素繊維前駆体アクリル繊維束とそれを用いた炭素繊維束の製造方法 |
WO2016039478A1 (ja) * | 2014-09-11 | 2016-03-17 | 三菱レイヨン株式会社 | 炭素繊維前駆体アクリル繊維用油剤、炭素繊維前駆体アクリル繊維用油剤組成物、炭素繊維前駆体アクリル繊維用油剤処理液、および炭素繊維前駆体アクリル繊維束 |
Also Published As
Publication number | Publication date |
---|---|
JP2022054691A (ja) | 2022-04-07 |
CN116234956B (zh) | 2024-05-17 |
JP6877797B1 (ja) | 2021-05-26 |
CN116234956A (zh) | 2023-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111676700B (zh) | 碳纤维前体用处理剂以及碳纤维前体 | |
WO2022065475A1 (ja) | アクリル樹脂繊維用処理剤、及びアクリル樹脂繊維 | |
JP6587272B1 (ja) | 炭素繊維前駆体用処理剤、及び炭素繊維前駆体 | |
WO2022065476A1 (ja) | 合成繊維用処理剤、及び合成繊維 | |
JP7511948B2 (ja) | 炭素繊維前駆体用処理剤及び炭素繊維前駆体 | |
KR20210018456A (ko) | 탄소 섬유 전구체용 처리제 및 탄소 섬유 전구체 | |
WO2022270526A1 (ja) | 炭素繊維前駆体用処理剤及び炭素繊維前駆体 | |
JP6973837B1 (ja) | 炭素繊維前駆体用処理剤、及び炭素繊維前駆体 | |
JP6795237B1 (ja) | 合成繊維用処理剤、及び合成繊維 | |
JP6798734B1 (ja) | 炭素繊維前駆体用処理剤、炭素繊維前駆体、及び耐炎化繊維の製造方法 | |
JP6795239B1 (ja) | 合成繊維用処理剤、及び合成繊維 | |
WO2021251236A1 (ja) | 炭素繊維前駆体用処理剤、炭素繊維前駆体用処理剤の水性液、炭素繊維前駆体、及び炭素繊維の製造方法 | |
JP6587273B1 (ja) | 炭素繊維前駆体用処理剤、及び炭素繊維前駆体 | |
JP7418886B1 (ja) | 炭素繊維前駆体用処理剤及び炭素繊維前駆体 | |
JP6795238B1 (ja) | 合成繊維用処理剤の製造方法、合成繊維用処理剤、合成繊維、及び合成繊維の製造方法 | |
JP7098210B1 (ja) | 炭素繊維前駆体用処理剤及び炭素繊維前駆体 | |
JP7500104B1 (ja) | 炭素繊維含有不織布製造用の処理剤、炭素繊維含有不織布、及び炭素繊維含有不織布の製造方法 | |
CN114269983A (zh) | 处理剂、耐燃化纤维无纺布、碳纤维无纺布以及它们的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21872602 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21872602 Country of ref document: EP Kind code of ref document: A1 |