WO2022062944A1 - 一类低堆密度超高分子量聚乙烯微粉 - Google Patents
一类低堆密度超高分子量聚乙烯微粉 Download PDFInfo
- Publication number
- WO2022062944A1 WO2022062944A1 PCT/CN2021/118059 CN2021118059W WO2022062944A1 WO 2022062944 A1 WO2022062944 A1 WO 2022062944A1 CN 2021118059 W CN2021118059 W CN 2021118059W WO 2022062944 A1 WO2022062944 A1 WO 2022062944A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- alkyl
- group
- molecular weight
- ultra
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1638—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being particulate
- B01D39/1653—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being particulate of synthetic origin
- B01D39/1661—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being particulate of synthetic origin sintered or bonded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1669—Cellular material
- B01D39/1676—Cellular material of synthetic origin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/04—Polymerisation in solution
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/02—Carriers therefor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/642—Component covered by group C08F4/64 with an organo-aluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/65—Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
- C08F4/652—Pretreating with metals or metal-containing compounds
- C08F4/655—Pretreating with metals or metal-containing compounds with aluminium or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/70—Iron group metals, platinum group metals or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0014—Use of organic additives
- C08J9/0023—Use of organic additives containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/24—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by surface fusion and bonding of particles to form voids, e.g. sintering
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
- C08K5/098—Metal salts of carboxylic acids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a kind of ultra-high molecular weight polyethylene particles suitable for manufacturing microporous filter equipment. More specifically, it relates to a class of unbranched polyethylene particles with a viscosity-average molecular weight of 1.5-8 million g/mol, a particle size distribution where (d50) is 80 ⁇ m ⁇ d50 ⁇ 110 ⁇ m, and a bulk density of 0.20-0.30 g/cm 3 .
- Ultra-high molecular weight polyethylene is a linear polyethylene product with a viscosity average relative molecular weight of more than 1.5 million. It has high impact resistance, extremely high wear resistance, high corrosion resistance, self-lubrication, and environmental stress cracking resistance.
- Thermoplastic engineering plastics with advantages such as ability, safety and health can be processed into various types of sheets, pipes, fibers, films and other products, mainly used in military such as bulletproof vests, bulletproof helmets, bulletproof armor, cut-resistant gloves, aerospace, and marine equipment , rail transit, medical stents, fine filtration and high-end fields such as lithium battery separators.
- UHMWPE microporous filter material refers to a material that uses UHMWPE as the organic matrix.
- the method for preparing UHMWPE microporous materials mainly includes sintering.
- Different molding methods often have a great influence on important parameters such as pore size, distribution and porosity of microporous materials. It also has a direct effect on its microstructure; on the other hand, the particle size of UHMWPE also has a significant impact on the performance of microporous filtration products.
- the sintering process is used to prepare microporous filter materials, heat gradually enters from the surface of the powder particles.
- the larger the particle the longer the time from the surface softening of the particle to the melting inside the particle, the easier it is to form a porous structure, resulting in a large open porosity, but the microporous structure tends to become irregular, and the distribution of micropores also changes.
- the particles are not uniform, the strength will decrease; the finer the particles, the shorter the melting time, the easier it is to stick, and the more difficult it is to form a porous structure, the finer and more uniform the microporous structure, although the open porosity decreases, but the strength increases;
- the size of the particle size and the morphology of the particles almost determine the size of the pore size of the prepared product.
- the particles of UHMWPE are stacked with each other, and the gap between the particles constitutes the source of the pores.
- the polymer particle size range (D50) is mainly concentrated between 120 microns to 200 microns, or coarse particles above 600 microns.
- Mitsui Chemicals also produces a very fine particle size UHMWPE powder with a registered trademark of MIPELON TM . This product has very fine particles with an average particle size ranging from 25 ⁇ m to 30 ⁇ m, but its bulk density is as high as 0.44g/cm 3 .
- Patent CN200580039390.2 discloses ethylene-based polymer particles and catalysts for their manufacture. At least 95% by weight of the polymer particles passes through a 37-micron mesh sieve, and the median diameter (d50) measured by the laser diffraction scattering method is 3 ⁇ m ⁇ d50 ⁇ 25 ⁇ m, the bulk density of the particles prepared by this technology is not listed, and the polymer requires tedious steps to remove inorganic impurities, and the preparation process of the catalyst reported in this patent method must use regulated toluene as a solvent .
- the present invention provides a kind of non-branched, non-branched, viscosity-average molecular weight 1.5-8,000,000 g/mol, and the average particle size range is slightly smaller than that of general commercial types, and the particle size distribution is concentrated in (d50 ) is 80 ⁇ m ⁇ d50 ⁇ 110 ⁇ m, and the bulk density is 0.20-0.30g/cm 3 ultra-high molecular weight polyethylene particles.
- the first aspect of the present invention provides a kind of ultra-high molecular weight polyethylene particles, and the particles have the following characteristics:
- (b) ⁇ 85wt% can pass through a 100-mesh mesh sieve, and the median particle diameter (d50) is 80 ⁇ m ⁇ d50 ⁇ 110 ⁇ m.
- the viscosity-average molecular weight of the microparticles is 1.5-4 million g/mol.
- the d50 of the particles is 90 ⁇ m ⁇ d50 ⁇ 100 ⁇ m.
- the powder bulk density of the particles is 0.20-0.30 g/cm 3 .
- the bulk density of the particles is 0.22-0.28 g/cm 3 ; more preferably 0.22-0.26 g/cm 3 .
- the number of alkane branches on the polymer chain is ⁇ 1/100,000C (that is, the number of alkane branches in 100,000 carbon atoms is ⁇ 1).
- the second aspect of the present invention provides a method for preparing polyethylene particles according to the first aspect of the present invention, the method comprising the steps of: contacting ethylene with a catalyst and a co-catalyst to carry out a catalytic polymerization reaction, thereby obtaining the of ultra-high molecular weight polyethylene particles;
- the catalyst is catalyst particles, or a catalyst slurry including the catalyst particles;
- the silicon content of the catalyst is 20-40 parts by weight
- the magnesium content is 10-30 parts by weight
- the aluminum content is 2-4 parts by weight parts
- the titanium content is 3-5 parts by weight
- the chlorine content is 20-60 parts by weight.
- the solid concentration of catalyst particles in the catalyst feed liquid is 200-250 g/L.
- the method includes the steps:
- step (3) removing the solvent from the slurry obtained in step (2);
- stripping needs to be added between the step (3) and the step (4), that is, the wet material obtained in the step (3) is stripped to deeply remove the organic solvent contained in the powder. .
- the catalyst is prepared by the following method:
- step (b) using the precursor slurry P-I obtained in step (a) to contact aluminum alkyl at a temperature lower than -30°C, and then heating to 60-120°C for 2-6 hours to obtain precursor slurry P-II;
- step (c) use the precursor slurry P-II obtained in step (b) to cool down to below -30°C, contact with the inert hydrocarbon solution of titanium compound for 0.5-3h, then heat up to 60-120°C for 2-6h to obtain a catalyst Slurry C-III;
- step (d) filtering the catalyst slurry C-III obtained in step (c) to obtain a catalyst.
- the magnesium source is magnesium chloride, preferably anhydrous magnesium chloride.
- the method includes:
- anhydrous magnesium chloride is added to the mixed solution of inert hydrocarbon solvent and ⁇ 2 equivalents of C1-C10 alcohols of magnesium chloride (preferably 2-6 equivalents of C1-C10 alcohols) to contact, React at 60-120°C to form a homogeneous solution, add nano silica gel to prepare a composite carrier, and then cool down to below -30°C to obtain precursor slurry PI; the cooling rate is preferably 1-10°C/min; more preferably 1- 5°C/min, most preferably 1°C/min; in the above reaction, the amount of anhydrous magnesium chloride is taken as 1 equivalent;
- step (b) The precursor slurry PI obtained in step (a) is contacted with alkyl aluminum for at least 1 hour at a temperature lower than -30 °C, and then the temperature is raised to 60-120 °C for 2-6 hours to obtain the precursor slurry P-II; wherein The heating rate is preferably 1-10°C/min;
- step (c) cooling the precursor slurry P-II obtained in step (b) to below -30°C, contacting with the inert hydrocarbon solution of titanium compound for 0.5-3h, heating to 60-120°C for 2-6h to obtain a catalyst Slurry C-III; wherein the cooling rate is preferably 1-10°C/min, and the heating rate is preferably 1-10°C/min;
- step (d) filtering the catalyst slurry C-III obtained in step (c) to obtain a catalyst.
- the mass ratio of the nano silica gel to magnesium chloride is 1-3:1.
- the nano silica gel has a white powder appearance, a bulk density ⁇ 0.15 g/cm 3 , and a particle size range of 15-100 nm, preferably 30-50 nm.
- the preparation method of the catalyst further comprises the steps of: (e) drying the catalyst obtained in step (d) to obtain catalyst powder.
- the C1-C10 alcohol in step (a) is selected from the following group: methanol, ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, 2-ethylhexanol, n-octanol, or a combination thereof.
- the alkylaluminum in step (b) is selected from the following group: dichloroethylaluminum, diethylaluminum chloride, triethylaluminum, triisobutyl Aluminum, ethyl aluminum sesquichloride, or butyl aluminum sesquichloride.
- the molar ratio of the titanium compound to the magnesium chloride in step (c) may be 0.3-0.8:1, preferably 0.4-0.6:1, and most preferably 0.5:1.
- toluene, halogenated hydrocarbons or aromatic hydrocarbons are not used in the preparation step of the catalyst.
- the titanium compound is selected from the following group: TiCl 4 , TiR 4 , or an alkyl complex represented by structural formula I-IV; wherein R is a C1-C6 alkyl group, an allyl group, Benzyl, NMe 2 , the alkyl group is preferably methyl, ethyl, propyl or butyl.
- X is SR 5 or P(R 5 ) 2 ;
- R 1 , R 2 , R 3 , R 4 , R 5 are each independently a substituted or unsubstituted group selected from the group consisting of C1-C6 alkyl, C2-C6 alkenyl, C3-C8 cycloalkyl, C6-C10 aryl, halogenated C3-C8 cycloalkyl, 5-7 membered heteroaryl;
- R 3 and R 4 and the carbon atoms connected to them together form a 5-7 membered saturated, partially unsaturated or aromatic carbocyclic or heterocyclic ring;
- R 6 is selected from the group consisting of C1-C6 alkyl, NH 2 , N(C1-C6 alkyl) 2 , allyl, benzyl, C1-C6 silyl; the alkyl is preferably methyl , ethyl, propyl or butyl;
- R is selected from the group consisting of C1 - C6 alkyl, C2-C6 alkenyl or C3-C8 cycloalkyl;
- the skeleton of the described heteroaryl group has 1-3 heteroatoms selected from the following group: N, S(O), P or O;
- substituted refers to being substituted by one or more (eg, 2, 3, 4, etc.) substituents selected from the group consisting of halogen, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy, halogenated C1-C6 alkoxy.
- the titanium complex is the following structural molecule:
- a microporous filter article prepared by using the ultra-high molecular weight polyethylene particles according to the first aspect of the present invention.
- the porosity of the microporous filter product is greater than or equal to 40%.
- the filtration precision of the microporous filter product may be at least 0.45 microns.
- the solid insoluble filtration efficiency of the microporous filtration product is greater than 99.8%.
- the water penetration amount of the microporous filter product can reach 20m 3 /h.
- the fourth aspect of the present invention provides a method for preparing the product according to the third aspect of the present invention, the method comprising the steps of:
- the mass ratio of the ultra-high molecular weight polyethylene particles: polyethylene wax: calcium stearate is 250-350: 2-8: 0.8-1.2.
- the sintering temperature is 180-220°C.
- the sintering time is 10-20 min.
- the cooling is water cooling.
- Figure 1 is a report on the particle size distribution of a representative polymer (Example 3); wherein, the particle specific surface area is 0.0622 m 2 /g, the surface area average particle size D is 96.414 ⁇ m, and the volume average particle size D is 105.722 ⁇ m;
- Fig. 2 and Fig. 3 are representative polymer (Example 3) SEM electron microscope pictures;
- Figure 4 is a picture of ultra-high molecular weight polyethylene sintered microporous filter tube.
- the inventors After long-term and in-depth research, the inventors have prepared ultra-high molecular weight polyethylene particles suitable for manufacturing microporous filter equipment, and the prepared polyethylene chains are unbranched and have a viscosity average molecular weight of 1.5-8 million g/m At least 85% of the molar to weight ratio passes through a 100-mesh mesh sieve, the particle size distribution is concentrated in (d50) 80 ⁇ m ⁇ d50 ⁇ 110 ⁇ m, and the bulk density is 0.20-0.30g/ cm3 polyethylene particles. Based on the above findings, the inventors have completed the present invention.
- the present invention provides a class of ultra-high molecular weight polyethylene particles, the particles at least meet the following characteristics: (a) the viscosity average molecular weight is in the range of 1.5 million to 8 million; (b) at least 85% by weight passes through a 100-mesh mesh sieve ; The particle diameter (d50) is 80 ⁇ m ⁇ d50 ⁇ 110 ⁇ m; (c) The powder bulk density is 0.20-0.30g/cm 3 .
- the polymer molecular structure can also satisfy (d) the number of alkane branches on the polymer chain ⁇ 1/100,000C (measured by melting 13C NMR).
- the molecular weight of the ultra-high molecular weight polyethylene particles of the present invention can be conveniently controlled by the polymerization conditions, that is, in the presence of a catalyst and a co-catalyst, catalyze the polymerization of ethylene at 40-80° C. and an ethylene pressure of 0.2-2.0 MPa, thereby obtaining The above-mentioned ultra-high molecular weight polyethylene powder.
- at least 85% by weight of the obtained polyethylene particles pass through a 100-mesh mesh sieve, and 80 ⁇ m ⁇ d50 ⁇ 110 ⁇ m.
- the preparation method of the ultra-high molecular weight polyethylene particles of the present invention is as follows:
- the heterogeneous catalytic system composed of a main catalyst and an alkyl aluminum compound as a co-catalyst is contacted with ethylene, and is obtained by reacting for 1-18 hours at an ethylene partial pressure of 0.2 to 2.0 Mpa and a temperature of 0 to 100 °C.
- the molar ratio of catalyst to co-catalyst is 1:1-5000, and it can generally be polymerized for 2-6 hours at 1:10-2000 in order to maintain the catalytic activity, polymer properties and production cost in a good range, preferably 1:1: 20 to 500.
- the polymerization is generally carried out in inert organic solvents, such as hydrocarbons, cyclic hydrocarbons or aromatic hydrocarbons, and can also be carried out in halogenated solvents, such as dichloroethane, chlorobenzene, in order to facilitate the operation of the reactor, inert organic solvents can be used Hydrocarbons of less than 12 carbons.
- inert organic solvents can be used Hydrocarbons of less than 12 carbons.
- Hydrocarbons of less than 12 carbons for example, but not limited to, propane, isobutane, n-pentane, 2-methylbutane, n-hexane, cyclohexane, toluene, chlorobenzene, dichloroethane, and mixtures thereof.
- the polymerization temperature is maintained at 0 to 100°C, and can be maintained at 40 to 80°C in order to achieve good catalytic activity and productivity.
- the cocatalyst is an alkylaluminum compound, an alkylaluminoxane or a weakly coordinating anion;
- the alkylaluminum compound is preferably AlEt 3 , AlMe 3 or Al(i-Bu) 3 , AlEt 2 Cl, alkylaluminum oxide
- the alkane is preferably methylaluminoxane, MMAO (modified methylaluminoxane), etc.
- the weakly coordinating anion is preferably [B(3,5-(CF 3 ) 2 C 6 H 3 ) 4 ]-, -OSO 2 CF 3 or ((3,5-(CF 3 ) 2 )C 6 H 3 ) 4 B-.
- the catalyst and cocatalyst can be added to the system in any order to effect the polymerization, preferably AlEt 3 .
- the ratio of catalyst and co-catalyst used in the polymerization is variable. Generally, the polymerization time is 1-18 hours, and the molar ratio of catalyst and co-catalyst is 1:1-5000. Generally, the polymerization can be carried out at 1:10-2000. -6 hours in order to keep the catalytic activity, polymer properties and production costs in a good range, preferably 1:20-500.
- the catalyst catalyzes the polymerization of ethylene at 40-80° C. and an ethylene pressure of 0.2-0.8 MPa to obtain ultra-high molecular weight polyethylene particles, and the weight ratio of the powder obtained by polymerization is at least 85%.
- the mesh sieve of purpose, the median diameter (d50) measured by the laser diffraction scattering method is 80 ⁇ m ⁇ d50 ⁇ 110 ⁇ m, the better one is 90 ⁇ m ⁇ d50 ⁇ 100 ⁇ m, the polyethylene viscosity average molecular weight is 1.5-8 million; The viscosity average molecular weight of ethylene is 2-4 million.
- the ultra-high molecular weight polyethylene particles created by the invention have a powder bulk density of 0.20-0.30 g/cm 3 , and a more preferred bulk density of 0.22-0.28 g/cm 3 , and can be used for preparing microporous filter materials.
- the unbranched, low bulk density ultra-high molecular weight polyethylene particles of the present invention are prepared by a titanium-based catalyst containing nano-silica gel and magnesium chloride as a composite carrier.
- the catalyst is catalyst particles, or a catalyst slurry including the catalyst particles;
- the silicon content of the catalyst is 20-40 parts by weight
- the magnesium content is 10-30 parts by weight
- the aluminum content is 2-4 parts by weight parts
- the titanium content is 3-5 parts by weight
- the chlorine content is 20-60 parts by weight.
- the catalyst particle concentration in the catalyst feed liquid is 200-250 g/L.
- the catalyst is prepared by the following method:
- anhydrous magnesium chloride is added to the mixed solution of inert hydrocarbon solvent and ⁇ 2 equivalents of C1-C10 alcohols of magnesium chloride (preferably 2-6 equivalents of C1-C10 alcohols) to contact, React at 60-120°C to form a homogeneous solution, add 1-3 equivalents of nano-silica gel for loading to prepare a composite carrier, and then cool down to below -30°C to obtain precursor slurry PI; the cooling rate is preferably 1-10 °C/min; more preferably 1-5 °C/min, most preferably 1 °C/min; in the above reaction, the amount of anhydrous magnesium chloride is taken as 1 equivalent;
- step (b) The precursor slurry PI obtained in step (a) is contacted with alkyl aluminum for at least 1 hour at a temperature lower than -30 °C, and then the temperature is raised to 60-120 °C for 2-6 hours to obtain the precursor slurry P-II; wherein The heating rate is preferably 1-10°C/min;
- step (c) cooling the precursor slurry P-II obtained in step (b) to below -30°C, contacting with the inert hydrocarbon solution of titanium compound for 0.5-3h, heating to 60-120°C for 2-6h to obtain a catalyst Slurry C-III; wherein the cooling rate is preferably 1-10°C/min, and the heating rate is preferably 1-10°C/min;
- step (d) filtering the catalyst slurry C-III obtained in step (c) to obtain a catalyst.
- the preparation method of the catalyst further comprises the steps of: (e) drying the catalyst obtained in step (d) to obtain catalyst powder.
- the C1-C10 alcohol in step (a) is preferably methanol, ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, 2-ethyl alcohol Hexanol or n-octanol.
- the mass ratio of the nano silica gel and magnesium chloride described in step (a) can be selected as 1-3:1, preferably 2-3:1, most preferably 3:1,
- the nano-silica gel has an amorphous white powder appearance, a flocculent and reticular quasi-particle structure, a bulk density ⁇ 0.15g/cm 3 , and a particle size range of 15-100 nm, preferably 30-50 nm.
- the alkylaluminum in step (b) is selected from the following group: dichloroethylaluminum, diethylaluminum chloride, triethylaluminum, triisobutyl Aluminum, ethyl aluminum sesquichloride or butyl aluminum sesquichloride.
- the molar ratio of the titanium compound to the magnesium chloride in step (c) may be 0.3-0.8:1, preferably 0.4-0.6:1, and most preferably 0.5:1.
- toluene, halogenated hydrocarbons or aromatic hydrocarbons are not used in the preparation step of the catalyst.
- the titanium compound is TiCl 4 or TiR 4 , or an alkyl complex represented by structural formula I-IV; wherein R is a C1-C6 alkyl group, an allyl group, a benzyl group, NMe 2.
- the alkyl group is preferably methyl, ethyl, propyl or butyl.
- X is SR 5 or P(R 5 ) 2 ;
- R 1 , R 2 , R 3 , R 4 , R 5 are each independently a substituted or unsubstituted group selected from the group consisting of C1-C6 alkyl, C2-C6 alkenyl, C3-C8 cycloalkyl, C6-C10 aryl, halogenated C3-C8 cycloalkyl, 5-7 membered heteroaryl;
- R 3 and R 4 and the carbon atoms connected to them together form a 5-7 membered saturated, partially unsaturated or aromatic carbocyclic or heterocyclic ring;
- R 6 is selected from the group consisting of C1-C6 alkyl, NH 2 , N(C1-C6 alkyl) 2 , allyl, benzyl, C1-C6 silyl; the alkyl is preferably methyl , ethyl, propyl or butyl;
- R is selected from the group consisting of C1 - C6 alkyl, C2-C6 alkenyl or C3-C8 cycloalkyl;
- the skeleton of the heteroaryl group has 1-3 heteroatoms selected from the following group: N, S(O), P or O.
- substituted refers to being substituted by one or more (eg, 2, 3, 4, etc.) substituents selected from the group consisting of halogen, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy, halogenated C1-C6 alkoxy.
- the titanium complex is the following structural molecule:
- the unbranched, irregular morphology and low bulk density ultra-high molecular weight polyethylene particles can be used for preparing microporous filter materials.
- the present invention uses polyethylene wax and calcium stearate as composite additives, and is mixed with the ultra-high molecular weight polyethylene particles in a certain proportion for processing.
- the ultra-high molecular weight polyethylene particles polyethylene wax: calcium stearate The ratio is 300:5:1. After mixing evenly, it is put into the mold and pressureless sintering is carried out on the molding machine. filter products.
- the ultra-high molecular weight polyethylene microporous filtration product has a porosity of 40-60%, uniform micropore distribution, a minimum filtration precision of 0.45 microns, a solid insoluble filtration efficiency greater than 99.8%, and excellent permeability. Under the condition of hydraulic pressure, the water penetration can reach 20m 3 /h.
- the particle size distribution of polyethylene particles was measured by a Malvern S-type particle size analyzer, and n-hexane or ethanol was used as a dispersant.
- the viscosity-average molecular weight of polyethylene particles is measured by a high-temperature viscometer. Generally, 2.5-2.8 mg of samples are weighed and dissolved in 15 mL of decalin. The calculation formula is as follows:
- Polyethylene branch content measurement is obtained by using melt 13C-NMR spectrum (reference: JOURNAL OF POLYMER SCIENCE: Polymeo Physics Edition VOL. 11, 275-287, 1973) polymer 13C-NMR spectrum in Agilent DD2 600MHz solid system with high temperature bandwidth On the magic angle rotating attachment of the cavity, the measurement is carried out at 140 °C, and the cumulative measurement time of each sample is more than 16 hours to meet the measurement accuracy of more than 1 branch/100,000 carbons.
- the filter cake was prepared into a slurry with alkane to obtain 10L slurry type ultra-high activity catalyst CAT-1, and 100mL of the slurry catalyst was dried to obtain a solid catalyst with a mass of 21.1g. Therefore, the concentration of the slurry catalyst was calibrated to 211g/L, and the titanium content was determined. is 3.0 wt%, the silicon content is 38.0 wt%, the magnesium content is 12.0 wt%, the aluminum content is 3.3 wt%, and the chlorine content is 33.2 wt%.
- the filter cake was made into a slurry with alkane to obtain 10L slurry type ultra-high activity catalyst CAT-2, and 100mL of the slurry catalyst was dried to obtain a solid catalyst with a mass of 23.2g, so the concentration of the slurry catalyst was calibrated to 232g/L, and the titanium content was determined. is 4.3 wt%, the silicon content is 36.0 wt%, the magnesium content is 11.6 wt%, the aluminum content is 2.8 wt%, and the chlorine content is 34.9 wt%.
- 10L slurry type ultra-high activity catalyst CAT-3 was obtained by mixing alkane into slurry, and 100mL of the slurry catalyst was dried to obtain a solid catalyst with a mass of 22.6g, so the concentration of the slurry catalyst was calibrated to 226g/L, and the titanium content was determined to be 4.5wt %, the silicon content is 36.6 wt%, the magnesium content is 11.9 wt%, the aluminum content is 3.4 wt%, and the chlorine content is 36.1 wt%.
- Slurry type ultra-high activity catalyst CAT-4 taking 100mL of the slurry catalyst and drying it to obtain a solid catalyst mass of 20.6g, so the concentration of the slurry catalyst was calibrated to be 206g/L, the measured titanium content was 3.0wt%, and the silicon content was 39.6wt% , the magnesium content is 13.0wt%, the aluminum content is 3.7wt%, and the chlorine content is 34.8wt%.
- Type ultra-high activity catalyst CAT-5 100 mL of the slurry catalyst was dried to obtain a solid catalyst mass of 21.1 g, so the concentration of the slurry catalyst was calibrated to 211 g/L, the titanium content was determined to be 3.2 wt%, and the silicon content was 38.3 wt%.
- the magnesium content was 12.3 wt%, the aluminum content was 3.8 wt%, and the chlorine content was 35.2 wt%.
- the 30L stainless steel stirring polymerization kettle was successively replaced with N , and 8kg hexane was used to add AlEt 3 ( 10mL) into the kettle under 0.4MPa nitrogen, and the stirring speed was controlled at 250rpm, and the temperature in the kettle was preheated to about 60° C. Then, 0.4MPa was used. Under nitrogen pressure, 30mg CAT-1 was flushed into the polymerization kettle with 2kg of hexane, activated for 10min, then the nitrogen pressure in the kettle was removed, and ethylene gas was introduced to make the pressure in the kettle reach 0.2MPa, and the temperature in the kettle was controlled to be 70 °C.
- the 30L stainless steel stirring polymerization kettle was successively replaced with N , and 8kg hexane was used to add AlEt 3 ( 10mL) into the kettle under 0.4MPa nitrogen, and the stirring speed was controlled at 250rpm, and the temperature in the kettle was preheated to about 60° C. Then, 0.4MPa was used. Under nitrogen pressure, 30mg CAT-1 was flushed into the polymerization kettle with 2kg of hexane, activated for 10min, then the nitrogen pressure in the kettle was removed, and ethylene gas was introduced to make the pressure in the kettle reach 0.4MPa, and the temperature in the kettle was controlled to be 70 °C.
- the 30L stainless steel stirring polymerization kettle was successively replaced with N , and 8kg hexane was used to add AlEt 3 ( 10mL) into the kettle under 0.4MPa nitrogen, and the stirring speed was controlled at 250rpm, and the temperature in the kettle was preheated to about 60° C. Then, 0.4MPa was used. Under nitrogen pressure, 2kg hexane was used to flush 30mg CAT-1 into the polymerization kettle, activated for 10min, then the nitrogen pressure in the kettle was removed, and ethylene gas was introduced to make the pressure in the kettle reach 0.6MPa, and the temperature in the kettle was controlled to be 70 °C.
- the 30L stainless steel stirring polymerization kettle was successively replaced with N , and 8kg hexane was used to add AlEt 3 ( 10mL) into the kettle under 0.4MPa nitrogen, and the stirring speed was controlled at 250rpm, and the temperature in the kettle was preheated to about 60° C. Then, 0.4MPa was used. Under nitrogen pressure, 2kg hexane was used to flush 30mg CAT-1 into the polymerization kettle, activated for 10min, then the nitrogen pressure in the kettle was removed, and ethylene gas was introduced to make the pressure in the kettle reach 0.8MPa, and the temperature in the kettle was controlled to be 70 °C.
- the 30L stainless steel stirring polymerization kettle was successively replaced with N , and 8kg hexane was used to add AlEt 3 ( 10mL) into the kettle under 0.4MPa nitrogen, and the stirring speed was controlled at 250rpm, and the temperature in the kettle was preheated to about 60° C. Then, 0.4MPa was used. Under nitrogen pressure conditions, 2kg hexane was used to flush 30mg CAT-1 into the polymerization kettle, activated for 10min, then the nitrogen pressure in the kettle was removed, and then ethylene gas was introduced to make the pressure in the kettle reach 0.4MPa, and the temperature in the kettle was controlled to be 80 °C.
- the 30L stainless steel stirred polymerization kettle was replaced with N successively, and 8kg hexane was used to add AlEt 3 ( 10mL) into the kettle under 0.4MPa nitrogen, and the stirring speed was controlled at 250rpm, and the temperature in the kettle was preheated to about 50° C. Then, 0.4MPa was used. Under nitrogen pressure, 30mg of CAT-1 was flushed into the polymerization kettle with 2kg of hexane, activated for 10min, then the nitrogen pressure in the kettle was removed, and ethylene gas was introduced to make the pressure in the kettle reach 0.4MPa, and the temperature in the kettle was controlled to be 60 °C.
- the 30L stainless steel stirring polymerization kettle was replaced with N successively, and 8kg hexane was used to add AlEt ( 10mL) into the kettle under 0.4MPa nitrogen, and the stirring speed was controlled at 250rpm, and the temperature in the kettle was preheated to about 30°C, and then, 0.4MPa was used. Under nitrogen pressure, 2kg hexane was used to flush 30mg CAT-1 into the polymerization kettle, activated for 10min, then the nitrogen pressure in the kettle was removed, and ethylene gas was introduced to make the pressure in the kettle reach 0.4MPa, and the temperature in the kettle was controlled to be 40 °C.
- the 32m 3 stainless steel stirring polymerization kettle was replaced three times with N , and ethylene was replaced twice, 10 tons of hexane were added, 150 kg of Et 3 Al hexane solution with a mass concentration of 1% was added, and the catalyst CAT-1 330 mL ( About 70g solid catalyst) is pressed into the reaction kettle, unloading the nitrogen pressure in the kettle and then feeding ethylene and gradually increasing the ethylene reaction pressure to 0.4MPa, and controlling the polymerization reaction temperature fluctuation range between 69.5 °C-70.5 °C; after 5.5 hours of polymerization , stop feeding ethylene, discharge the material to the filter kettle, add oil and wash in the filter kettle, vacuum dry for about 3 hours, discharge the material and pack to obtain the product polyethylene particles, the specific results are shown in the following table.
- the ultra-high molecular weight polyethylene particles of Example 8 Batch 1 were used to prepare the microporous filter material. Weigh 30g of ultra-high molecular weight polyethylene particles, 0.5g of polyethylene wax, and 0.1g of calcium stearate into a beaker, stir and mix evenly, put into a mold and perform pressureless sintering on a molding machine, and the sintering temperature is 180-220 °C , the sintering time is 10-20min, and finally the ultra-high molecular weight polyethylene microporous filter product is obtained by cooling with water (Figure 4). The throughput of pure water reaches 17-20m 3 /h, and the performance test of microporous filter products is as follows:
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Emergency Medicine (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
本发明提供了一类超高分子量聚乙烯微粒,微粒粒径小于常规市售的超高分子量聚乙烯,且颗粒堆密度小,具体地,本发明提供了具有如下所示特性的微粒:(a)粘均分子量为150-800万范围;(b)重量比至少85%以上通过100目的网状筛;粒中径(d50)为80μm≤d50≤110μm;(c)粉料堆密度为0.20-0.30g/cm 3;(d)骨架碳原子支链含量<1/100,000C。本发明提供的超高分子量聚乙烯微粒适用于生产微孔过滤材料。
Description
本发明涉及一类适用于制造微孔过滤器材的超高分子量聚乙烯微粒。更具体地涉及一类无支化、粘均分子量150-800万克/摩尔、粒径分布集中在(d50)为80μm≤d50≤110μm,堆密度为0.20-0.30g/cm
3聚乙烯微粒。
超高分子量聚乙烯(UHMWPE)是一类粘均相对分子量150万以上的线性聚乙烯产品,具有高抗冲击性,极高的耐磨性,高耐腐蚀性,自润滑性,耐环境应力开裂能力,安全卫生等优点的热塑性工程塑料,可通过加工形成各类板材、管材、纤维、薄膜等制品,主要应用于军事如防弹衣、防弹头盔、防弹装甲、防割手套以及航空航天、航海装备、轨道交通、医用支架、精细过滤以及锂电池隔膜等高端领域。
近年来,聚合物微粒的开发也有了一定的进展,各种类型的聚合物专用料被广泛地应用于不同的生产领域,材质涉及丙烯酸系列树脂类、苯乙烯树脂类、密胺树脂类以及聚烯烃树脂类,特别是超高分子量聚乙烯树脂微粒,由于其优异的性能被更多的考虑应用于各种新材料和新用途,利用其制备微孔材料用于过滤与分离过程就成为了一个超高分子量聚乙烯的新的应用方向。UHMWPE微孔滤材是指以UHMWPE为有机基体,成型过程中在基体上产生大量厚度方向的微观连通孔洞,从而可以满足各种处理过程需要的材料,目前制备UHMWPE微孔材料的方法主要有烧结法、颗粒填充法、核径迹法、熔融挤压拉伸法、TIPS法、TIPS-S法等,成型方法的不同往往对微孔材料的孔径、分布和孔隙率等重要参数影响很大,还会对其微观结构产生直接的作用;另一方面,UHMWPE颗粒粒径对微孔过滤产品性能也有着明显的影响,应用烧结工艺制备微孔过滤材料时,热量从粉体颗粒的表面逐渐进入颗粒的内部,颗粒越大,从颗粒表面软化到颗粒内部熔融的时间也就越长,就更容易形成多孔结构导致开孔率大,但微孔结构容易变得不规则,微孔分布也变得不均匀,强度随之下降;颗粒越细,熔融时间就会缩短,易粘连,就越难形成多孔结构,微孔结构越细密均匀,开孔率虽有降低,但强度有所升高;同时,粒径的大小和微粒的形貌几乎决定着所制备的制品 孔径的大小,根据烧结法成孔机理,UHMWPE的颗粒互相堆砌,颗粒与颗粒之间的间隙就构成了孔的来源,故UHMWPE颗粒粒径越大,颗粒形貌越无规则,颗粒之间堆积的间隙就越大,导致产品的孔径也就越大。
目前,针对应用于微孔过滤材料的、差异化的、专用的超高分子量聚乙烯树脂微粒开发进展仍然较少,高堆密度(0.40-0.50g/cm
3)的通用料仍然在市场占据主导,聚合物微粒树脂粒径范围(D50)主要集中在120微米到200微米之间,或600微米以上的粗大粒子。另外,三井化学公司还生产一种粒径极细的UHMWPE粉末,注册商标为MIPELON
TM,该产品颗粒极细,平均粒径范围在25μm-30μm,但其堆密度高达0.44g/cm
3。专利CN200580039390.2公开了乙烯类聚合物微粒及其制造用催化剂,其聚合物微粒重量比至少95%以上通过37微米的网状筛,以激光衍射散射法测定的中径(d50)为3μm≤d50≤25μm,该技术所制备的粒子的堆密度并未列出,且聚合物需要脱除无机物杂质的繁琐步骤,而且该专利方法报道的催化剂的制备过程必须要使用受到管制的甲苯作为溶剂。
综上所述,本领域尚缺乏一种低堆密度、粒径细、适用于制造微孔过滤器材的超高分子量聚乙烯专用树脂粉料。
发明内容
本发明提供了一类能够适用于制造微孔过滤器材的,无支化,粘均分子量150-800万克/摩尔,平均粒径范围略小于通用市售类型的,粒径分布集中在(d50)为80μm≤d50≤110μm,堆密度为0.20-0.30g/cm
3超高分子量聚乙烯微粒。
本发明的第一方面,提供了一种超高分子量聚乙烯微粒,所述的微粒具有如下特征:
(a)粘均分子量为150-800万克/摩尔;
(b)≥85wt%可通过100目的网状筛,且粒中径(d50)为80μm≤d50≤110μm。
在另一优选例中,所述微粒的粘均分子量为150-400万克/摩尔。
在另一优选例中,所述微粒的d50为90μm≤d50≤100μm。
在另一优选例中,所述的微粒的粉料堆密度为0.20-0.30g/cm
3。
在另一优选例中,所述的微粒的堆密度为0.22-0.28g/cm
3;更佳地为0.22-0.26g/cm
3。
在另一优选例中,所述的微粒中,高分子链上的烷烃支链数<1/100,000C(即,100,000个碳原子中具有的烷烃支链<1)。
本发明的第二方面,提供了一种如本发明第一方面所述的聚乙烯微粒的制备方法,所述方法包括步骤:用催化剂及助催化剂与乙烯接触进行催化聚合反应,从而得到所述的超高分子量聚乙烯微粒;
其中,所述的催化剂为催化剂微粒,或包括所述的催化剂微粒的催化剂浆液;所述催化剂的硅含量为20-40重量份,镁含量为10-30重量份,铝含量为2-4重量份,钛含量为3-5重量份,氯含量20-60重量份。
在另一优选例中,所述催化剂料液中的催化剂微粒固体浓度为200-250g/L。
在另一优选例中,所述的方法包括步骤:
(1)在惰性溶剂中,在预先加入了催化剂和助催化剂的反应釜中通入乙烯气体,使釜内压力达到0.2-1.5MPa,在40-80℃下进行聚合反应1-3h后停止通入乙烯;
(2)使釜内温度降至50℃以下;
(3)将步骤(2)得到的浆液移除溶剂;
(4)负压干燥后得到如权利要求1中所述的聚乙烯微粒。
在另一优选例中,在所述的步骤(3)和步骤(4)之间还需要增加汽提,即步骤(3)得到的湿料经过汽提,深度去除粉料中包含的有机溶剂。
在另一优选例中,所述的催化剂是通过以下方法制备的:
(a)用镁源与C1-C10醇接触并在60-120℃下反应,然后加入纳米硅胶,降温至-30℃以下得到前体浆液P-I;
(b)用步骤(a)得到的前体浆液P-I在低于-30℃的条件下与烷基铝接触,随后升温至60-120℃保持2-6h得到前体浆液P-II;
(c)用步骤(b)得到的前体浆液P-II降温至-30℃以下,与钛化合物的惰性烃类溶液接触0.5-3h后,升温至60-120℃保持2-6h,得到催化剂浆液C-III;
(d)将步骤(c)得到的催化剂浆液C-III过滤,得到催化剂。
在另一优选例中,所述的镁源为氯化镁,较佳地为无水氯化镁。
在另一优选例中,所述的方法包括:
(a)惰性气体保护条件下,将无水氯化镁加入到惰性烃类溶剂和≥2当量氯 化镁的C1-C10的醇(优选2-6当量的C1-C10的醇)的混合液中进行接触,在60-120℃下反应形成均一溶液,加入纳米硅胶进行制备复合载体,然后降温至-30℃以下得到前体浆液P-I;其中所述的降温速度优选1-10℃/min;更优选1-5℃/min,最优选1℃/min;上述反应中,以无水氯化镁的用量作为1当量;
(b)步骤(a)得到的前体浆液P-I在低于-30℃的条件下与烷基铝接触至少1h,随后升温至60-120℃保持2-6h得到前体浆液P-II;其中所述的升温速度优选1-10℃/min;
(c)将步骤(b)得到的前体浆液P-II降温至-30℃以下,与钛化合物的惰性烃类溶液接触0.5-3h后,升温至60-120℃保持2-6h,得到催化剂浆液C-III;其中所述的降温速度优选1-10℃/min,所述的升温速度优选1-10℃/min;
(d)将步骤(c)得到的催化剂浆液C-III过滤,得到催化剂。
在另一优选例中,所述的纳米硅胶与氯化镁的质量比为1-3:1。
在另一优选例中,所述的纳米硅胶外观为白色粉末,堆积密度<0.15g/cm
3,粒子尺寸范围可以在15~100nm,优选30-50nm。
在另一优选例中,所述的催化剂的制备方法还包括步骤:(e)将步骤(d)得到的催化剂干燥,得到催化剂粉末。
在另一优选例中,所述的催化剂制备中,步骤(a)所述的C1-C10的醇选自下组:甲醇、乙醇、正丙醇、正丁醇、正戊醇、正己醇、2-乙基己醇、正辛醇,或其组合。
在另一优选例中,所述的催化剂制备中,步骤(b)中的烷基铝选自下组:二氯乙基铝、二乙基氯化铝、三乙基铝、三异丁基铝、倍半氯化乙基铝、或倍半氯化丁基铝。
在另一优选例中,所述的催化剂制备中,步骤(c)中钛化合物与氯化镁的摩尔比可以为0.3-0.8:1,优选0.4-0.6:1,最优选0.5:1。
在另一优选例中,所述催化剂的制备步骤中不使用甲苯、卤代烃或芳香烃。
在另一优选例中,所述的钛化合物选自下组:TiCl
4、TiR
4,或结构式I-IV所示的烷基配合物;其中R是C1-C6的烷基、烯丙基、苄基、NMe
2,所述的烷基优选甲基、乙基、丙基或丁基。
其中,X为SR
5或P(R
5)
2;
R
1、R
2、R
3、R
4、R
5各自独立地为取代或未取代的选自下组的基团:C1-C6烷基、C2-C6烯基、C3-C8环烷基、C6-C10芳基、卤代的C3-C8环烷基、5-7元杂芳基;
或R
3和R
4,以及与其相连的碳原子共同形成5-7元的饱和、部分不饱和或芳香性的碳环或杂环;
R
6选自下组:C1-C6的烷基、NH
2、N(C1-C6的烷基)
2、烯丙基、苄基、C1-C6的硅烷基;所述的烷基优选甲基、乙基、丙基或丁基;
R
7选自下组:C1-C6烷基、C2-C6烯基或C3-C8环烷基;
其中,所述的杂芳基的骨架上具有1-3个选自下组的杂原子:N、S(O)、P或O;
除非特别说明,所述的“取代”是指被选自下组的一个或多个(例如2个、3个、4个等)取代基所取代:卤素、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基、卤代的C1-C6烷氧基。
在另一优选例中,钛配合物为如下结构分子:
本发明的第三方面,提供了一种微孔过滤制品,所述的制品是用如本发明第一方面所述的超高分子量聚乙烯微粒制备的。
在另一优选例中,所述的微孔过滤制品的孔隙率≥40%。
在另一优选例中,所述的微孔过滤制品的过滤精度最小可以等于0.45微米。
在另一优选例中,所述的微孔过滤制品的固体不溶物过滤效率大于99.8%。
在另一优选例中,在0.2MPa水压条件下,所述的微孔过滤制品的水渗透量可以达到20m
3/h。
本发明的第四方面,提供了一种如本发明第三方面所述的制品的制备方法,所述方法包括步骤:
(i)用聚乙烯蜡和硬脂酸钙作为复合添加剂,与本发明第一方面所述的超高分子量聚乙烯微粒混合均匀,得到混合物料;
(ii)将所述的装入模具进行无压烧结;
(iii)冷却降温,得到超高分子量聚乙烯微孔过滤制品。
在另一优选例中,所述的超高分子量聚乙烯微粒:聚乙烯蜡:硬脂酸钙的质量配比为250-350:2-8:0.8-1.2。
在另一优选例中,所述的烧结温度为180-220℃。
在另一优选例中,所述的烧结时间为10-20min。
在另一优选例中,所述的降温为通水冷却降温。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
图1是代表性聚合物(实施例3)粒度分布报告;其中,颗粒比表面积为 0.0622m
2/g,表面积平均粒径D为96.414μm,体积平均粒径D为105.722μm;
图2和图3是代表性聚合物(实施例3)SEM电镜图片;
图4是超高分子量聚乙烯烧结微孔过滤管图片。
本发明人经过长期而深入的研究,制备得到了一种适用于制造微孔过滤器材的超高分子量聚乙烯微粒,且制备得到的聚乙烯链无支化、粘均分子量150-800万克/摩尔、重量比至少85%以上通过100目的网状筛,粒径分布集中在(d50)为80μm≤d50≤110μm,堆密度为0.20-0.30g/cm
3聚乙烯微粒。基于上述发现,发明人完成了本发明。
无支化、低堆密度的超高分子量聚乙烯微粒及其制备
本发明提供了一类超高分子量聚乙烯微粒,所述的微粒至少满足以下特征:(a)粘均分子量为150-800万范围;(b)重量比至少85%以上通过100目的网状筛;粒中径(d50)为80μm≤d50≤110μm;(c)粉料堆密度为0.20-0.30g/cm
3。
此外,聚合物分子结构还可以满足(d)高分子链上烷烃支链数<1/100,000C(通过熔融13C NMR测定)。
本发明所述的超高分子量聚乙烯微粒的分子量可以方便地通过聚合条件控制,即:在催化剂和助催化剂存在下,在40-80℃、0.2-2.0MPa乙烯压力下催化乙烯聚合,从而得到上述的超高分子量聚乙烯粉料。在本申请的优选实施例中,得到聚乙烯微粒重量比至少85%以上通过100目的网状筛,且80μm≤d50≤110μm。
本发明所述的超高分子量聚乙烯微粒的制备方法如下:
以主催化剂和烷基铝化合物为助催化剂组成的非均相催化体系与乙烯接触,在乙烯分压为0.2至2.0Mpa、0至100℃范围内反应1-18小时获得。催化剂与助催化剂的摩尔比是1:1-5000,一般可在1:10-2000时聚合2-6小时以便使催化活性、聚合物性质与生产成本均维持在较好的范围,优选1:20~500。
聚合一般在惰性有机溶剂中进行,例如烃类、环烃类或芳烃类,也可以在卤代溶剂中进行,如二氯乙烷、氯苯,为有利于反应器操作,惰性有机溶剂可使用 小于12个碳的烃类。例如但并不仅限于,丙烷、异丁烷、正戊烷、2-甲基丁烷、正己烷、环己烷、甲苯、氯苯、二氯乙烷及其混合物。
聚合温度维持在0至100℃,为达到好的催化活性与生产能力,可维持在40至80℃。
聚合乙烯分压为0.2至1.5Mpa内操作可获得较好的反应器操作参数与聚合物。
助催化剂是烷基铝化合物,烷基铝氧烷或弱配位阴离子;所述的烷基铝化合物优选于AlEt
3,AlMe
3或Al(i-Bu)
3,AlEt
2Cl,烷基铝氧烷优选甲基铝氧烷,MMAO(修饰的甲基铝氧烷)等;弱配位阴离子优选于[B(3,5-(CF
3)
2C
6H
3)
4]-、-OSO
2CF
3或((3,5-(CF
3)
2)C
6H
3)
4B-。催化剂与助催化剂可以任何顺序加入体系使聚合进行,优选AlEt
3。聚合所使用的催化剂与助催化剂的比例可变,通常所述的聚合时间为1-18小时,催化剂与助催化剂的摩尔比是1:1-5000,一般可在1:10-2000时聚合2-6小时以便使催化活性、聚合物性质与生产成本均维持在较好的范围,优选1:20-500。
在本发明的优选实施方式中,所述的催化剂在40-80℃、0.2-0.8MPa乙烯压力下催化乙烯聚合得到超高分子量聚乙烯微粒,聚合得到的粉料重量比至少85%以上通过100目的网状筛,以激光衍射散射法测定的中径(d50)为80μm≤d50≤110μm,更优的,为90μm≤d50≤100μm,聚乙烯粘均分子量150-800万;更优的,聚乙烯粘均分子量200-400万。
利用熔融
13C NMR可以分析其支化结构。分析结果证实,本发明提供的超高分子量聚乙烯,聚合物中每100,000个骨架碳原子中含有支链数目小于1个。
本发明创制的超高分子量聚乙烯微粒,粉料堆密度为0.20-0.30g/cm
3,更优选的堆密度为0.22-0.28g/cm
3,可用于制备微孔过滤材料。
聚乙烯催化剂及其制备
本发明的无支化、低堆密度的超高分子量聚乙烯微粒是通过一种含有纳米硅胶和氯化镁复合载体化的钛系催化剂制备的。
其中,所述的催化剂为催化剂微粒,或包括所述的催化剂微粒的催化剂浆液;所述催化剂的硅含量为20-40重量份,镁含量为10-30重量份,铝含量为 2-4重量份,钛含量为3-5重量份,氯含量20-60重量份。
在另一优选例中,所述催化剂料液中的催化剂微粒浓度为200-250g/L。
在另一优选例中,所述的催化剂是通过以下方法制备的:
(a)惰性气体保护条件下,将无水氯化镁加入到惰性烃类溶剂和≥2当量氯化镁的C1-C10的醇(优选2-6当量的C1-C10的醇)的混合液中进行接触,在60-120℃下反应形成均一溶液,加入1-3当量的纳米硅胶进行负载化制备复合载体,然后降温至-30℃以下,得到前体浆液P-I;其中所述的降温速度优选1-10℃/min;更优选1-5℃/min,最优选1℃/min;上述反应中,以无水氯化镁的用量作为1当量;
(b)步骤(a)得到的前体浆液P-I在低于-30℃的条件下与烷基铝接触至少1h,随后升温至60-120℃保持2-6h得到前体浆液P-II;其中所述的升温速度优选1-10℃/min;
(c)将步骤(b)得到的前体浆液P-II降温至-30℃以下,与钛化合物的惰性烃类溶液接触0.5-3h后,升温至60-120℃保持2-6h,得到催化剂浆液C-III;其中所述的降温速度优选1-10℃/min,所述的升温速度优选1-10℃/min;
(d)将步骤(c)得到的催化剂浆液C-III过滤,得到催化剂。
在另一优选例中,所述的催化剂的制备方法还包括步骤:(e)将步骤(d)得到的催化剂干燥,得到催化剂粉末。
在另一优选例中,所述的催化剂制备中,步骤(a)所述的C1-C10的醇优选甲醇、乙醇、正丙醇、正丁醇、正戊醇、正己醇、2-乙基己醇或正辛醇。
在另一优选例中,所述的催化剂制备中,步骤(a)所述的纳米硅胶与氯化镁的质量比可以选为1-3:1,优选2-3:1,最优选3:1,所述的纳米硅胶外观为无定形白色粉末,微结构呈絮状和网状的准颗粒结构,堆积密度<0.15g/cm
3,粒子尺寸范围可以在15~100nm,优选30-50nm。
在另一优选例中,所述的催化剂制备中,步骤(b)中的烷基铝选自下组:二氯乙基铝、二乙基氯化铝、三乙基铝、三异丁基铝、倍半氯化乙基铝或倍半氯化丁基铝。
在另一优选例中,所述的催化剂制备中,步骤(c)中钛化合物与氯化镁的摩尔比可以为0.3-0.8:1,优选0.4-0.6:1,最优选0.5:1。
在另一优选例中,所述催化剂的制备步骤中不使用甲苯、卤代烃或芳香烃。
在另一优选例中,所述的钛化合物是TiCl
4或TiR
4,或结构式I-IV所示的烷基配合物;其中R是C1-C6的烷基、烯丙基、苄基、NMe
2,所述的烷基优选甲基、乙基、丙基或丁基。
其中,X为SR
5或P(R
5)
2;
R
1、R
2、R
3、R
4、R
5各自独立地为取代或未取代的选自下组的基团:C1-C6烷基、C2-C6烯基、C3-C8环烷基、C6-C10芳基、卤代的C3-C8环烷基、5-7元杂芳基;
或R
3和R
4,以及与其相连的碳原子共同形成5-7元的饱和、部分不饱和或芳香性的碳环或杂环;
R
6选自下组:C1-C6的烷基、NH
2、N(C1-C6的烷基)
2、烯丙基、苄基、C1-C6的硅烷基;所述的烷基优选甲基、乙基、丙基或丁基;
R
7选自下组:C1-C6烷基、C2-C6烯基或C3-C8环烷基;
其中,所述的杂芳基的骨架上具有1-3个选自下组的杂原子:N、S(O)、P或O。
除非特别说明,所述的“取代”是指被选自下组的一个或多个(例如2个、3个、4个等)取代基所取代:卤素、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基、卤代的C1-C6烷氧基。
在另一优选例中,钛配合物为如下结构分子:
超高分子量聚乙烯微孔过滤制品
所述的无支化、形貌无规则、低堆密度的超高分子量聚乙烯微粒,可用于制备微孔过滤材料。本发明采用聚乙烯蜡和硬脂酸钙作为复合添加剂,按照一定比例同所述的超高分子量聚乙烯微粒混合进行加工,超高分子量聚乙烯微粒:聚乙烯蜡:硬脂酸钙的质量配比为300:5:1,混合均匀后装入模具并在模压机上进行无压烧结,烧结温度为180-220℃,烧结时间10-20min,最后通水冷却降温得到超高分子量聚乙烯微孔过滤制品。
所述的超高分子量聚乙烯微孔过滤制品的孔隙率到达40-60%,微孔分布均匀,过滤精度最小可以等于0.45微米,固体不溶物过滤效率大于99.8%,渗透性能优异,在0.2Mpa水压条件下,水渗透量可以达到20m
3/h。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。
以下实施例显示了本发明的不同侧面,所给出的实施例包括聚乙烯微粒,制备聚乙烯微粒的聚合方法,微孔过滤制品方法及其性能。
聚乙烯微粒的粒度分布采用Malvern S型粒度分析仪测定,使用正己烷或者乙醇中做分散剂。
聚乙烯微粒的粘均分子量采用高温粘度仪进行测定,一般称取2.5-2.8mg样品,使用15mL十氢萘溶解,其计算公式如下:
ηsp=t-t0/t0
ηr=t/t0
c=100*m(g)*ρ135℃/V(ml)*ρ25℃
η1=(ηsp+5Inηr)/6c
η2=【2(ηsp-ηr)】0.5/c
【η】=(η1+η2)/2
Mv=4.55×104×【η】1.37
聚乙烯支链含量测量是利用熔融13C-NMR谱得到的(参考文献:JOURNAL OF POLYMER SCIENCE:Polymeo Physics Edition VOL.11,275-287,1973)聚合物13C-NMR谱在Agilent DD2 600MHz solid system带高温宽腔魔角旋转附件上,140℃下测定,每个样品测量累加时间大于16小时,以满足测量精度大于1个支链/100000个碳。
实施例1
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;加入1050g纳米硅胶进行负载化制备复合载体,搅拌负载2h,开始设定降温速度为1℃/min降温至-30℃以下,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加653g第四副族金属钛的烷基配合物3的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷将滤饼配成浆液,即得到10L浆液型超高活性催化剂CAT-1,取100mL该浆液催化剂经干燥得到固体催化剂质量为21.1g,故标定该浆液催化剂浓度为211g/L,测定钛含量为3.0wt%,硅含量为38.0wt%,镁含量为12.0wt%,铝含量为3.3wt%,氯含量为33.2wt%。
实施例2
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;加入1050g纳米硅胶进行负载化制备复合载体,搅拌负载2h,开始设定降温速度为1℃/min降温至-30℃以下,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加1361g第四副族金属钛的烷基配合物5的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷将滤饼配成浆液,即得到10L浆液型超高活性催化剂CAT-2,取100mL该浆液催化剂经干燥得到固体催化剂质量为23.2g,故标定该浆液催化剂浓度为232g/L,测定钛含量为4.3wt%,硅含量为36.0wt%,镁含量为11.6wt%,铝含量为2.8wt%,氯含量为34.9wt%。
实施例3
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;加入1050g纳米硅胶进行负载化制备复合载体,搅拌负载2h,开始设定降温速度为1℃/min降温至-30℃以下,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一 氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加1358g第四副族金属钛的烷基配合物7的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷配成浆液,即得到10L浆液型超高活性催化剂CAT-3,取100mL该浆液催化剂经干燥得到固体催化剂质量为22.6g,故标定该浆液催化剂浓度为226g/L,测定钛含量为4.5wt%,硅含量为36.6wt%,镁含量为11.9wt%,铝含量为3.4wt%,氯含量为36.1wt%。
实施例4
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;加入1050g纳米硅胶进行负载化制备复合载体,搅拌负载2h,开始设定降温速度为1℃/min降温至-30℃以下,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加1000g四氯化钛的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷配成浆液,即得到10L浆液型超高活性催化剂CAT-4,取100mL该浆液催化剂经干燥得到固体催化剂质量为20.6g,故标定该浆液催化剂浓度为206g/L,测定钛含量为3.0wt%,硅含量为39.6wt%,镁含量为13.0wt%,铝含量为3.7wt%,氯含量为34.8wt%。
实施例5
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100 rpm,反应2h至澄清均一溶液;加入1050g纳米硅胶进行负载化制备复合载体,搅拌负载2h,开始设定降温速度为1℃/min降温至-30℃以下,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加760g TiBn
4的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷配成浆液,即得到10L浆液型超高活性催化剂CAT-5,取100mL该浆液催化剂经干燥得到固体催化剂质量为21.1g,故标定该浆液催化剂浓度为211g/L,测定钛含量为3.2wt%,硅含量为38.3wt%,镁含量为12.3wt%,铝含量为3.8wt%,氯含量为35.2wt%。
实施例6
将30L不锈钢搅拌聚合釜先后用N
2置换,0.4MPa氮气下利用8kg己烷把AlEt
3(10mL)加入釜内,控制搅拌转速250rpm,釜内温度预热到60℃左右,然后,使用0.4MPa氮气压力条件下利用2kg己烷把30mg CAT-1冲进聚合釜内,活化10min,然后卸去釜内氮气压力,再通入乙烯气体,使釜内压力达到0.2MPa,控制釜内温度为70℃,聚合2h后停止通入乙烯,用循环恒温油浴使釜内温度降至50℃以下,放空体系中的气体并出料,干燥后得到颗粒状聚合物1.26kg,粘均分子量为230万,100目的网状筛过筛率为重量比88%,d
50=84μm,粉料堆密度为0.21g/cm
3,利用熔融
13C-NMR谱在Agilent DD2 600MHz solid system带高温宽腔魔角旋转附件得到的聚乙烯支链含量<1/100,000C。
实施例7
将30L不锈钢搅拌聚合釜先后用N
2置换,0.4MPa氮气下利用8kg己烷把AlEt
3(10mL)加入釜内,控制搅拌转速250rpm,釜内温度预热到60℃左右,然后,使用0.4MPa氮气压力条件下利用2kg己烷把30mg CAT-1冲进聚合釜内,活化10min,然后卸去釜内氮气压力,再通入乙烯气体,使釜内压力达到0.4MPa,控制釜内温度为70℃,聚合2h后停止通入乙烯,用循环恒温油浴使釜内温度降至50℃以下,放空体系中的气体并出料,干燥后得到颗粒状聚合物 2.37kg,粘均分子量为243万,100目的网状筛过筛率为重量比89%,d
50=86μm,粉料堆密度为0.22g/cm
3,利用熔融
13C-NMR谱在Agilent DD2 600MHz solid system带高温宽腔魔角旋转附件得到的聚乙烯支链含量<1/100,000C。
实施例8
将30L不锈钢搅拌聚合釜先后用N
2置换,0.4MPa氮气下利用8kg己烷把AlEt
3(10mL)加入釜内,控制搅拌转速250rpm,釜内温度预热到60℃左右,然后,使用0.4MPa氮气压力条件下利用2kg己烷把30mg CAT-1冲进聚合釜内,活化10min,然后卸去釜内氮气压力,再通入乙烯气体,使釜内压力达到0.6MPa,控制釜内温度为70℃,聚合2h后停止通入乙烯,用循环恒温油浴使釜内温度降至50℃以下,放空体系中的气体并出料,干燥后得到颗粒状聚合物3.26kg,粘均分子量为328万,100目的网状筛过筛率为重量比86%,d
50=101μm,粉料堆密度为0.26g/cm
3,利用熔融
13C-NMR谱在Agilent DD2 600MHz solid system带高温宽腔魔角旋转附件得到的聚乙烯支链含量<1/100,000C。
实施例9
将30L不锈钢搅拌聚合釜先后用N
2置换,0.4MPa氮气下利用8kg己烷把AlEt
3(10mL)加入釜内,控制搅拌转速250rpm,釜内温度预热到60℃左右,然后,使用0.4MPa氮气压力条件下利用2kg己烷把30mg CAT-1冲进聚合釜内,活化10min,然后卸去釜内氮气压力,再通入乙烯气体,使釜内压力达到0.8MPa,控制釜内温度为70℃,聚合2h后停止通入乙烯,用循环恒温油浴使釜内温度降至50℃以下,放空体系中的气体并出料,干燥后得到颗粒状聚合物4.06kg,粘均分子量为450万,100目的网状筛过筛率为重量比85%,d
50=110μm,粉料堆密度为0.25g/cm
3,利用熔融
13C-NMR谱在Agilent DD2 600MHz solid system带高温宽腔魔角旋转附件得到的聚乙烯支链含量<1/100,000C。
实施例10
将30L不锈钢搅拌聚合釜先后用N
2置换,0.4MPa氮气下利用8kg己烷把AlEt
3(10mL)加入釜内,控制搅拌转速250rpm,釜内温度预热到60℃左右,然 后,使用0.4MPa氮气压力条件下利用2kg己烷把30mg CAT-1冲进聚合釜内,活化10min,然后卸去釜内氮气压力,再通入乙烯气体,使釜内压力达到0.4MPa,控制釜内温度为80℃,聚合2h后停止通入乙烯,用循环恒温油浴使釜内温度降至50℃以下,放空体系中的气体并出料,干燥后得到颗粒状聚合物0.86kg,粘均分子量为150万,100目的网状筛过筛率为重量比90%,d
50=80μm,粉料堆密度为0.20g/cm
3,利用熔融
13C-NMR谱在Agilent DD2 600MHz solid system带高温宽腔魔角旋转附件得到的聚乙烯支链含量<1/100,000C。
实施例11
将30L不锈钢搅拌聚合釜先后用N
2置换,0.4MPa氮气下利用8kg己烷把AlEt
3(10mL)加入釜内,控制搅拌转速250rpm,釜内温度预热到50℃左右,然后,使用0.4MPa氮气压力条件下利用2kg己烷把30mg CAT-1冲进聚合釜内,活化10min,然后卸去釜内氮气压力,再通入乙烯气体,使釜内压力达到0.4MPa,控制釜内温度为60℃,聚合2h后停止通入乙烯,用循环恒温油浴使釜内温度降至50℃以下,放空体系中的气体并出料,干燥后得到颗粒状聚合物3.66kg,粘均分子量为580万,100目的网状筛过筛率为重量比90%,d
50=100μm,粉料堆密度为0.30g/cm
3,利用熔融
13C-NMR谱在Agilent DD2 600MHz solid system带高温宽腔魔角旋转附件得到的聚乙烯支链含量<1/100,000C。
实施例12
将30L不锈钢搅拌聚合釜先后用N
2置换,0.4MPa氮气下利用8kg己烷把AlEt
3(10mL)加入釜内,控制搅拌转速250rpm,釜内温度预热到30℃左右,然后,使用0.4MPa氮气压力条件下利用2kg己烷把30mg CAT-1冲进聚合釜内,活化10min,然后卸去釜内氮气压力,再通入乙烯气体,使釜内压力达到0.4MPa,控制釜内温度为40℃,聚合2h后停止通入乙烯,放空体系中的气体并出料,干燥后得到颗粒状聚合物1.06kg,粘均分子量为830万,100目的网状筛过筛率为重量比92%,d
50=99μm,粉料堆密度为0.28g/cm
3,利用熔融
13C-NMR谱在Agilent DD2 600MHz solid system带高温宽腔魔角旋转附件得到的聚乙烯支链含量<1/100,000C。
实施例13 工业化生产装置试生产实验
将32m
3不锈钢搅拌聚合釜用N
2置换三次,乙烯置换两次,加入10吨己烷,加入质量浓度1%的Et
3Al己烷溶液150kg,再用氮气一次性将催化剂CAT-1 330mL(约含70g固体催化剂)压入反应釜,卸去釜内氮气压力再通入乙烯并逐渐提高乙烯反应压力到0.4MPa,控制聚合反应温度波动区间69.5℃-70.5℃之间;聚合反应5.5小时后,停止通入乙烯,放料至过滤釜,在过滤釜中加油洗操作后,真空干燥约3h,放料包装得到产品聚乙烯微粒,具体结果见下表。
实施例14 超高分子量聚乙烯微粒制备微孔过滤制品
将实施例8批次1的超高分子量聚乙烯微粒用于制备微孔过滤材料。称取超高分子量聚乙烯微粒30g,聚乙烯蜡0.5g,硬脂酸钙0.1g置于烧杯中,搅拌混合均匀,装入模具并在模压机上进行无压烧结,烧结温度为180-220℃,烧结时间10-20min,最后通水冷却降温得到超高分子量聚乙烯微孔过滤制品(图4),固体不溶物过滤效率大于99.8%,渗透性能优异,控制过滤器前后压差小于0.2MPa,纯水通过量达到17-20m
3/h,微孔过滤制品的性能检测如下:
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
Claims (10)
- 一种超高分子量聚乙烯微粒,其特征在于,所述的微粒具有如下特征:(a)粘均分子量为150-800万克/摩尔;(b)≥85wt%可通过100目的网状筛,且粒中径(d50)为80μm≤d50≤110μm。
- 如权利要求1所述的聚乙烯微粒,其特征在于,所述微粒的粘均分子量为150-400万克/摩尔。
- 如权利要求1所述的聚乙烯微粒,其特征在于,所述微粒的d50为90μm≤d50≤100μm;和/或所述的微粒的粉料堆密度为0.20-0.30g/cm 3;和/或所述的微粒的堆密度为0.22-0.28g/cm 3;更佳地为0.22-0.26g/cm 3;和/或所述的微粒中,高分子链上的烷烃支链数<1/100,000C(即,100,000个碳原子中具有的烷烃支链<1)。
- 如权利要求1所述的聚乙烯微粒的制备方法,其特征在于,包括步骤:用催化剂及助催化剂与乙烯接触进行催化聚合反应,从而得到所述的超高分子量聚乙烯微粒。
- 如权利要求4所述的方法,其特征在于,所述的催化剂是通过以下方法制备的:(a)用镁源与C1-C10醇接触并在60-120℃下反应,然后加入纳米硅胶,降温至-30℃以下得到前体浆液P-I;(b)用步骤(a)得到的前体浆液P-I在低于-30℃的条件下与烷基铝接触,随后升温至60-120℃保持2-6h得到前体浆液P-II;(c)用步骤(b)得到的前体浆液P-II降温至-30℃以下,与钛化合物的惰性烃类溶液接触0.5-3h后,升温至60-120℃保持2-6h,得到催化剂浆液C-III;(d)将步骤(c)得到的催化剂浆液C-III过滤,得到催化剂。
- 如权利要求4所述的方法,其特征在于,所述的方法包括:(a)惰性气体保护条件下,将无水氯化镁加入到惰性烃类溶剂和≥2当量氯化镁的C1-C10的醇(优选2-6当量的C1-C10的醇)的混合液中进行接触,在60-120℃下反应形成均一溶液,加入纳米硅胶进行制备复合载体,然后降温至-30℃以下得到前体浆液P-I;其中所述的降温速度优选1-10℃/min;更优选1-5℃ /min,最优选1℃/min;上述反应中,以无水氯化镁的用量作为1当量;(b)步骤(a)得到的前体浆液P-I在低于-30℃的条件下与烷基铝接触至少1h,随后升温至60-120℃保持2-6h得到前体浆液P-II;其中所述的升温速度优选1-10℃/min;(c)将步骤(b)得到的前体浆液P-II降温至-30℃以下,与钛化合物的惰性烃类溶液接触0.5-3h后,升温至60-120℃保持2-6h,得到催化剂浆液C-III;其中所述的降温速度优选1-10℃/min,所述的升温速度优选1-10℃/min;(d)将步骤(c)得到的催化剂浆液C-III过滤,得到催化剂;较佳地,所述的催化剂的制备方法还包括步骤:(e)将步骤(d)得到的催化剂干燥,得到催化剂粉末。
- 如权利要求6所述的方法,其特征在于,所述的催化剂制备中,步骤(a)所述的C1-C10的醇选自下组:甲醇、乙醇、正丙醇、正丁醇、正戊醇、正己醇、2-乙基己醇、正辛醇,或其组合;和/或所述的催化剂制备中,步骤(b)中的烷基铝选自下组:二氯乙基铝、二乙基氯化铝、三乙基铝、三异丁基铝、倍半氯化乙基铝、或倍半氯化丁基铝;和/或所述的催化剂制备中,步骤(c)中钛化合物与氯化镁的摩尔比可以为0.3-0.8:1,优选0.4-0.6:1,最优选0.5:1。
- 如权利要求6所述的方法,其特征在于,所述的钛化合物选自下组:TiCl 4、TiR 4,或结构式I-IV所示的烷基配合物;其中R是C1-C6的烷基、烯丙基、苄基、NMe 2,所述的烷基优选甲基、乙基、丙基或丁基:其中,X为SR 5或P(R 5) 2;R 1、R 2、R 3、R 4、R 5各自独立地为取代或未取代的选自下组的基团:C1-C6烷基、C2-C6烯基、C3-C8环烷基、C6-C10芳基、卤代的C3-C8环烷基、5-7元杂芳基;或R 3和R 4,以及与其相连的碳原子共同形成5-7元的饱和、部分不饱和或 芳香性的碳环或杂环;R 6选自下组:C1-C6的烷基、NH 2、N(C1-C6的烷基) 2、烯丙基、苄基、C1-C6的硅烷基;所述的烷基优选甲基、乙基、丙基或丁基;R 7选自下组:C1-C6烷基、C2-C6烯基或C3-C8环烷基;其中,所述的杂芳基的骨架上具有1-3个选自下组的杂原子:N、S(O)、P或O;除非特别说明,所述的“取代”是指被选自下组的一个或多个(例如2个、3个、4个等)取代基所取代:卤素、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基、卤代的C1-C6烷氧基。
- 一种微孔过滤制品,其特征在于,所述的制品是用如权利要求1-3任一所述的超高分子量聚乙烯微粒制备的。
- 如权利要求9所述的制品的制备方法,其特征在于,包括步骤:(i)用聚乙烯蜡和硬脂酸钙作为复合添加剂,与权利要求1-3所述的超高分子量聚乙烯微粒混合均匀,得到混合物料;(ii)将所述的装入模具进行无压烧结;(iii)冷却降温,得到超高分子量聚乙烯微孔过滤制品。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011019681.8 | 2020-09-24 | ||
CN202011019681.8A CN114249851B (zh) | 2020-09-24 | 2020-09-24 | 一类低堆密度超高分子量聚乙烯微粉 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022062944A1 true WO2022062944A1 (zh) | 2022-03-31 |
Family
ID=80790181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/118059 WO2022062944A1 (zh) | 2020-09-24 | 2021-09-13 | 一类低堆密度超高分子量聚乙烯微粉 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114249851B (zh) |
WO (1) | WO2022062944A1 (zh) |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1070199A (zh) * | 1991-07-15 | 1993-03-24 | 希蒙特公司 | 乙烯聚合反应的催化剂和组分 |
CN1480469A (zh) * | 2002-09-03 | 2004-03-10 | 中国石油化工股份有限公司 | 负载于纳米级载体的烯烃聚合用催化剂组分及制备方法和应用 |
CN101654492A (zh) * | 2008-08-21 | 2010-02-24 | 中国石化扬子石油化工有限公司 | 超高分子量聚乙烯、其制备方法及其应用 |
JP2010235926A (ja) * | 2009-03-06 | 2010-10-21 | Asahi Kasei Chemicals Corp | 超高分子量ポリエチレンパウダー及びその製造方法 |
CN102219870A (zh) * | 2010-09-14 | 2011-10-19 | 中国科学院上海有机化学研究所 | 一类烯烃聚合催化剂及超低支化度超高分子量聚乙烯 |
JP2012229417A (ja) * | 2011-04-14 | 2012-11-22 | Asahi Kasei Chemicals Corp | 超高分子量ポリエチレン粒子の製造方法、およびそれを用いた成形体 |
CN103429310A (zh) * | 2011-03-10 | 2013-12-04 | 3M创新有限公司 | 过滤介质 |
JP2015081335A (ja) * | 2013-10-24 | 2015-04-27 | 東ソー株式会社 | 超高分子量ポリエチレン粒子及びそれよりなる成形体 |
CN105658682A (zh) * | 2013-10-25 | 2016-06-08 | 帝斯曼知识产权资产管理有限公司 | 超高分子量乙烯共聚物的制备 |
JP2017141312A (ja) * | 2016-02-08 | 2017-08-17 | 東ソー株式会社 | 超高分子量ポリエチレン粒子およびその製造方法 |
CN107383247A (zh) * | 2016-05-16 | 2017-11-24 | 中国石油天然气股份有限公司 | 超高分子量聚乙烯催化剂及其制备方法 |
CN109306029A (zh) * | 2018-09-21 | 2019-02-05 | 上海化工研究院有限公司 | 制备超高分子量聚乙烯高端树脂用单活性中心催化剂及制法和应用 |
CN110637039A (zh) * | 2018-04-24 | 2019-12-31 | 旭化成株式会社 | 聚乙烯粉末、成型体和微孔膜 |
CN111333755A (zh) * | 2020-04-29 | 2020-06-26 | 江苏扬农化工集团有限公司 | 一种用于制备超高分子量聚乙烯的催化剂及其制备方法和应用 |
CN111499777A (zh) * | 2020-04-29 | 2020-08-07 | 江苏扬农化工集团有限公司 | 一种超高分子量聚乙烯催化剂及其制备方法和应用 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0717709B2 (ja) * | 1987-11-13 | 1995-03-01 | 日本石油株式会社 | 超高分子量ポリエチレンの製造方法 |
IT1251462B (it) * | 1991-07-12 | 1995-05-15 | Enichem Polimeri | Componente solido di catalizzatore per la (co)polimerizzazione dell'etilene e delle alfa olefine. |
WO2009127410A1 (en) * | 2008-04-17 | 2009-10-22 | Saudi Basic Industries Corporation | Process for the production of ultra high molecular weight polyethylene |
RU2011133202A (ru) * | 2009-01-09 | 2013-02-20 | Тейджин Арамид Б.В. | Полиэтилен со сверхвысокой молекулярной массой, содержащий упрочняющие частицы |
US20130012375A1 (en) * | 2011-07-04 | 2013-01-10 | Liuzhong Li | Ultra high molecular weight polyethylene catalysts and processes for the preparation thereof |
CN102952222B (zh) * | 2011-08-30 | 2015-02-25 | 中国石油化工股份有限公司 | 超高分子量聚乙烯树脂及其制备方法 |
ES2642369T3 (es) * | 2011-12-12 | 2017-11-16 | Saudi Basic Industries Corporation (Sabic) | Sistema catalítico y proceso para la producción de polietileno de peso molecular ultraelevado en presencia de este sistema catalítico |
CN103772560B (zh) * | 2012-10-22 | 2017-03-01 | 中国石油化工股份有限公司 | 一种纤维用超高分子量聚乙烯树脂及其制备方法 |
CN105482016A (zh) * | 2014-09-16 | 2016-04-13 | 中国科学院上海有机化学研究所 | 聚乙烯粉料、组合物、交联聚乙烯管材及制备方法 |
CN106317273B (zh) * | 2016-08-19 | 2019-06-04 | 中国科学院化学研究所 | 超高分子量超细聚乙烯粉体及其制备方法 |
WO2018032744A1 (zh) * | 2016-08-19 | 2018-02-22 | 中国科学院化学研究所 | 一种超高分子量超细粒径聚乙烯及其制备方法和应用 |
US10731011B2 (en) * | 2017-12-07 | 2020-08-04 | Asahi Kasei Kabushiki Kaisha | Ultra-high molecular weight polyethylene powder and ultra-high molecular weight polyethylene fiber |
JP7461334B2 (ja) * | 2019-02-20 | 2024-04-03 | 旭化成株式会社 | ポリエチレンパウダー |
-
2020
- 2020-09-24 CN CN202011019681.8A patent/CN114249851B/zh active Active
-
2021
- 2021-09-13 WO PCT/CN2021/118059 patent/WO2022062944A1/zh active Application Filing
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1070199A (zh) * | 1991-07-15 | 1993-03-24 | 希蒙特公司 | 乙烯聚合反应的催化剂和组分 |
CN1480469A (zh) * | 2002-09-03 | 2004-03-10 | 中国石油化工股份有限公司 | 负载于纳米级载体的烯烃聚合用催化剂组分及制备方法和应用 |
CN101654492A (zh) * | 2008-08-21 | 2010-02-24 | 中国石化扬子石油化工有限公司 | 超高分子量聚乙烯、其制备方法及其应用 |
JP2010235926A (ja) * | 2009-03-06 | 2010-10-21 | Asahi Kasei Chemicals Corp | 超高分子量ポリエチレンパウダー及びその製造方法 |
CN102219870A (zh) * | 2010-09-14 | 2011-10-19 | 中国科学院上海有机化学研究所 | 一类烯烃聚合催化剂及超低支化度超高分子量聚乙烯 |
CN103429310A (zh) * | 2011-03-10 | 2013-12-04 | 3M创新有限公司 | 过滤介质 |
JP2012229417A (ja) * | 2011-04-14 | 2012-11-22 | Asahi Kasei Chemicals Corp | 超高分子量ポリエチレン粒子の製造方法、およびそれを用いた成形体 |
JP2015081335A (ja) * | 2013-10-24 | 2015-04-27 | 東ソー株式会社 | 超高分子量ポリエチレン粒子及びそれよりなる成形体 |
CN105658682A (zh) * | 2013-10-25 | 2016-06-08 | 帝斯曼知识产权资产管理有限公司 | 超高分子量乙烯共聚物的制备 |
JP2017141312A (ja) * | 2016-02-08 | 2017-08-17 | 東ソー株式会社 | 超高分子量ポリエチレン粒子およびその製造方法 |
CN107383247A (zh) * | 2016-05-16 | 2017-11-24 | 中国石油天然气股份有限公司 | 超高分子量聚乙烯催化剂及其制备方法 |
CN110637039A (zh) * | 2018-04-24 | 2019-12-31 | 旭化成株式会社 | 聚乙烯粉末、成型体和微孔膜 |
CN109306029A (zh) * | 2018-09-21 | 2019-02-05 | 上海化工研究院有限公司 | 制备超高分子量聚乙烯高端树脂用单活性中心催化剂及制法和应用 |
CN111333755A (zh) * | 2020-04-29 | 2020-06-26 | 江苏扬农化工集团有限公司 | 一种用于制备超高分子量聚乙烯的催化剂及其制备方法和应用 |
CN111499777A (zh) * | 2020-04-29 | 2020-08-07 | 江苏扬农化工集团有限公司 | 一种超高分子量聚乙烯催化剂及其制备方法和应用 |
Non-Patent Citations (2)
Title |
---|
DANIEL C. H. OAKES , BRIAN S. KIMBERLEY , VERNON C. GIBSON *, DAVID J. JONES , ANDREW J. P. WHITE , DAVID J. WILLIAMS: "The surprisingly beneficial effect of soft donors on the performance of early transition metal olefin polymerization catalysts", CHEMICAL COMMUNICATIONS, no. 19, 1 January 2004 (2004-01-01), UK , pages 2174 - 2175, XP008060901, ISSN: 1359-7345, DOI: 10.1039/b409870f * |
WANG XINKE, SIT MET-MET, SUN JIEA, TANG YONG, XIE ZUOWEI: "Synthesis, Structure and Ethylene Polymerization Behavior of Group 4 Metal Complexes Bearing Salicylaldaminato Ligands with Appended Donor Functionality", ACTA CHIMICA SINICA, vol. 70, no. 18, 1 January 2012 (2012-01-01), CN , pages 1909 - 1916, XP055913947, ISSN: 0567-7351, DOI: 10.6023/A12060342 * |
Also Published As
Publication number | Publication date |
---|---|
CN114249851B (zh) | 2023-03-14 |
CN114249851A (zh) | 2022-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Patel et al. | Ultrahigh molecular weight polyethylene: Catalysis, structure, properties, processing and applications | |
JP2889205B2 (ja) | オレフイン重合用固体触媒およびそれを用いるオレフイン重合体の製造方法 | |
JP2618384B2 (ja) | オレフイン重合用固体触媒およびその製法 | |
CA2606411A1 (en) | Molding composition comprising polyethylene for preparing films and process for preparing the molding composition in the presence of a mixed catalyst | |
CN106317273B (zh) | 超高分子量超细聚乙烯粉体及其制备方法 | |
CN113831436B (zh) | 一类特高至超高分子量聚乙烯制造用催化剂 | |
TW201041905A (en) | Polyolefin gas phase polymerization with 3-substituted C4-10 alkene | |
CN113845613B (zh) | 一种高纯度超高分子量聚乙烯树脂及其生产工艺 | |
WO2022062944A1 (zh) | 一类低堆密度超高分子量聚乙烯微粉 | |
JP2000509426A (ja) | 三元重合 | |
CN113912759B (zh) | 一类特高分子量聚乙烯及其制备 | |
CN113912758B (zh) | 一类超高分子量聚乙烯及其制备 | |
JP7171354B2 (ja) | ポリエチレン系重合体パウダー及びリチウムイオン2次電池セパレータ | |
WO2021259337A1 (zh) | 一类特高至超高分子量聚乙烯制造用催化剂 | |
JP2022080251A (ja) | 二次電池セパレータ用ポリエチレン樹脂、その製造方法、及びそれを適用したセパレータ | |
CN116535551A (zh) | 一类细粒径、低堆密度超高分子量聚乙烯微粉 | |
JP6867187B2 (ja) | ポリエチレン粒子及び成形体 | |
CN107602737B (zh) | 一种铬系金属有机骨架材料在烯烃聚合中的应用 | |
CN113024701A (zh) | 用于乙烯聚合的催化剂的制备方法 | |
JP2002527584A (ja) | オレフィン重合用高活性坦持チーグラー−ナッタ触媒系、その製造方法及びその使用 | |
CN113817083B (zh) | 一种温度敏感型超高分子量聚乙烯催化剂、制备方法及其应用 | |
CN115490794B (zh) | 一种超高分子量聚乙烯粉料及其制备方法 | |
CN116462787A (zh) | 一种医用外科植入级超高分子量聚乙烯粉体及其制备方法 | |
US12071502B2 (en) | Method of making an ethylene-propylene copolymer | |
US20180244812A1 (en) | Spherical Supported Transition Metal Catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21871315 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21871315 Country of ref document: EP Kind code of ref document: A1 |