CN107383247A - 超高分子量聚乙烯催化剂及其制备方法 - Google Patents

超高分子量聚乙烯催化剂及其制备方法 Download PDF

Info

Publication number
CN107383247A
CN107383247A CN201610324041.5A CN201610324041A CN107383247A CN 107383247 A CN107383247 A CN 107383247A CN 201610324041 A CN201610324041 A CN 201610324041A CN 107383247 A CN107383247 A CN 107383247A
Authority
CN
China
Prior art keywords
molecular weight
weight polyethylene
ultra
catalyst
high molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610324041.5A
Other languages
English (en)
Other versions
CN107383247B (zh
Inventor
王健
崔月
冯文元
张利仁
王博
张利粉
张光辉
崔勇
王大明
郭洪元
王永年
刘志军
徐丽艳
王俊荣
焦金华
孙辉宇
王永帮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Co Ltd
Original Assignee
Petrochina Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrochina Co Ltd filed Critical Petrochina Co Ltd
Priority to CN201610324041.5A priority Critical patent/CN107383247B/zh
Publication of CN107383247A publication Critical patent/CN107383247A/zh
Application granted granted Critical
Publication of CN107383247B publication Critical patent/CN107383247B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/645Component covered by group C08F4/64 with a metal or compound covered by group C08F4/44, not provided for in a single group of groups C08F4/642 - C08F4/643
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6493Catalysts containing a specific non-metal or metal-free compound organic containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6494Catalysts containing a specific non-metal or metal-free compound organic containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/651Pretreating with non-metals or metal-free compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/655Pretreating with metals or metal-containing compounds with aluminium or compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本发明涉及一种新型超高分子量聚乙烯催化剂,以求达到按需调节超高分子量聚乙烯分子量的目的。当催化剂的主体组分钛化合物的含量确定后,调节烷氧基铝化合物的含量,可有效的调控超高分子量聚乙烯产品的分子量大小,聚合产品的分子量的大小为200~600万。采用该方法制备的催化剂催化活性高、颗粒均匀,无大颗粒及结块生成。该催化剂制备方法具有简单易行,安全环保,可操作性强,利于工业化应用等特点。

Description

超高分子量聚乙烯催化剂及其制备方法
技术领域
本发明涉及一种可调节分子量的超高分子量聚乙烯催化剂及其制备方法。
背景技术
超高分子量聚乙烯(UHMWPE)是指相对分子量在150万以上的聚乙烯产品,是一种具有优异综合性能的热塑性工程塑料。具有无法比拟的耐冲击性、耐磨损性、耐低温性、质轻(其单位管长比重仅为钢管重量的八分之一)、安全卫生及自润滑性等综合性能。由于UHMWPE具有其他工程塑料无法比拟的优越性能,广泛地应用于纺织、采矿、化工、包装、机械、建筑、电气、医疗、体育、军工、航天等领域。
众所周知,UHMWPE分子量的大小、颗粒形态和粒度分布是影响其加工性能和机械性能的主要因素。超高分子量聚乙烯的性能主要取决于所用的催化剂。目前,超高分子量聚乙烯催化剂的研究仍是以齐格勒-纳塔催化剂为主,通过改变催化剂的配方及制备方法进而可以对超高分子量聚乙烯的分子量进行调节,控制其颗粒形态及粒度分布范围。
CN1076456A公开了一种以共研磨-反应法制备的可调节分子量的超高分子量聚乙烯催化剂,其主催化剂为钛化合物,促进剂为硅化合物和酯,负荷载体为MgCl2和ZnCl2,助催化剂为AlR3,通过调节ZnCl2的含量可有效的调节超高分子量聚乙烯产品的分子量。虽然聚合产物粒度分布良好,无结块,极少有微粒粉尘。采用该研磨方法制得的催化剂中组分的含量控制困难,逐渐被反应法取代。通过实施例可知专利中并未给出超高分子量聚乙烯的颗粒形态及粒度分布范围,且该催化剂的制备过程较为复杂,不利于工业化生产。
CN94105011公开了二烷基镁与卤化剂反应形成主要由通式Mg-X2构成的反应物,再与钛化合物在供电子体作用下反应,所述供电子体选择羧酸酯、醚、酮、酰胺或含氧的磷或硫化物。可以制备粒度分布窄、颗粒粒径小的超高分子量聚乙烯。虽然聚合物的粒径分布较为理想,但催化剂的聚合活性不高。
发明内容
本发明的目的是针对生产超高分子量聚乙烯使用的催化剂存在不足之处,提供一种新型超高分子量聚乙烯催化剂,以求达到按需调节超高分子量聚乙烯分子量的目的。现有生产超高分子量聚乙烯使用的催化剂主要存在以下不足:(1)由于现行使用的催化剂活性较低,通过在催化剂制备过程中一次或多次加入一种或多种助剂,从而达到提高催化剂活性的目的;(2)改善催化剂的颗粒形态;(3)提高催化剂颗粒的均一性;(4)制得的超高分子量聚乙烯产品的分子量按需可调。
针对上述不足,本发明公开一种超高分子量聚乙烯催化剂的制备方法,包括如下步骤:
(1)在惰性气体环境下,将无水乙氧基镁分散于C6~C16的直链烷烃中,搅拌,得到乙氧基镁溶液;
(2)向步骤(1)所得乙氧基镁溶液中加入卤代环烷烃,反应15~60min后,继续加入醚化合物和烷氧基铝化合物的混合物,保持反应体系的温度为50~200℃,反应30~120min;
(3)向反应体系中滴加四氯化钛溶液,保持反应体系的温度为60~120℃,继续反应60~180min后,自然冷却至室温,经正己烷洗涤、抽真空干燥,得到主催化剂;
(4)将所述主催化剂与助催化剂在无水有机溶剂中混合,得到超高分子量聚乙烯催化剂;
其中,
所述乙氧基镁与所述C6-C16的直链烷烃的摩尔比为0.05~0.2:1;
所述卤代环烷烃与所述醚化合物的摩尔比为1~10:1;
所述乙氧基镁与所述卤代环烷烃的摩尔比为2~3:1;
所述乙氧基镁与所述烷氧基铝的摩尔比为10~50:1;
所述助催化剂为三乙基铝;
所述主催化剂中的Ti原子与所述助催化剂中的Al原子的摩尔比为1:1~25。
本发明所述的超高分子量聚乙烯催化剂的制备方法,其中,所述惰性气体优选为氮气。
本发明所述的超高分子量聚乙烯催化剂的制备方法,其中,所述C6~C16的直链烷烃优选选自由正己烷、正庚烷、正辛烷、正壬烷和正癸烷所组成的群组中的至少一种。
本发明所述的超高分子量聚乙烯催化剂的制备方法,其中,所述醚化合物优选选自由乙醚、四氢呋喃、1,4-二氧六环和乙二醇二甲醚所组成的群组中的至少一种。
本发明所述的超高分子量聚乙烯催化剂的制备方法,其中,所述卤代环烷烃优选选自由氯代环己烷和/或溴代环己烷。
本发明所述的超高分子量聚乙烯催化剂的制备方法,其中,所述烷氧基铝化合物中的烷氧基优选为碳原子数小于或等于6的烷氧基。
一种超高分子量聚乙烯催化剂,其是由本发明所述的超高分子量聚乙烯催化剂的制备方法制得的超高分子量聚乙烯催化剂。
本发明所述的超高分子量聚乙烯催化剂优选在淤浆法乙烯均聚反应或淤浆法乙烯与α-烯烃的共聚反应中的应用。
本发明所述的超高分子量聚乙烯催化剂优选在淤浆法乙烯均聚反应或淤浆法乙烯与α-烯烃的共聚反应中的应用。
本发明具备如下有益效果:
由本发明所述的超高分子量聚乙烯催化剂的制备方法制得的超高分子量聚乙烯催化剂,当催化剂的主体组分钛化合物的含量确定后,通过调节烷氧基铝化合物的含量,可有效的调控超高分子量聚乙烯产品的分子量大小,使得聚合产品的分子量的大小为200~600万。采用本发明所述的超高分子量聚乙烯催化剂的制备方法制备的超高分子量聚乙烯催化剂具有催化活性高、颗粒均匀,且无大颗粒及结块生成等优点。此外,本发明所述的超高分子量聚乙烯催化剂的制备方法还具有简单易行、安全环保、可操作性强、利于工业化应用等优点。
具体实施方式
以下对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和过程,但本发明的保护范围不限于下述的实施例,下列实施例中未注明具体条件的工艺参数,通常按照常规条件。
乙氧基镁与C6~C16的直链烷烃的摩尔比:
在本发明中,对乙氧基镁与C6~C16的直链烷烃的摩尔比并无特别限定,通常乙氧基镁与C6~C16的直链烷烃的摩尔比为0.05~0.2:1:如果乙氧基镁与C6~C16的直链烷烃的摩尔比小于0.05:1,则载体在溶剂中的分散浓度太低,不利于形成络合物;如果乙氧基镁与C6~C16的直链烷烃的摩尔比大于0.2:1,则载体在溶剂中的分散浓度太高,亦不利于形成络合物。
卤代环烷烃与醚化合物的摩尔比:
在本发明中,对卤代环烷烃与醚化合物的摩尔比并无特别限定,通常卤代环烷烃与醚化合物的摩尔比为1~10:1:如果卤代环烷烃与醚化合物的摩尔比小于1:1,则催化剂中间产物无法生成;如果卤代环烷烃与醚化合物的摩尔比大于10:1,则催化剂中间产物亦无法生成。
乙氧基镁与卤代环烷烃的摩尔比:
在本发明中,对乙氧基镁与卤代环烷烃的摩尔比并无特别限定,通常乙氧基镁与卤代环烷烃的摩尔比为2~3:1:如果乙氧基镁与卤代环烷烃的摩尔比小于2:1,由于卤代环烷烃的毒性较强,卤代环烷烃的用量过大会对环境危害较大,而且浪费原料资源;如果乙氧基镁与卤代环烷烃的摩尔比大于3:1,则乙氧基镁用量过大,原料浪费。
乙氧基镁与烷氧基铝的摩尔比:
在本发明中,对乙氧基镁与烷氧基铝的摩尔比并无特别限定,通常乙氧基镁与烷氧基铝的摩尔比为10~50:1:如果乙氧基镁与烷氧基铝的摩尔比小于10:1,则烷基铝浓度太高,不利于催化剂合成;如果乙氧基镁与烷氧基铝的摩尔比大于50:1,则分散体系中乙氧基镁含量过高,不利于催化剂合成。
主催化剂中的Ti原子与助催化剂中的Al原子的摩尔比:
在本发明中,对主催化剂中的Ti原子与助催化剂中的Al原子的摩尔比并无特别限定,通常主催化剂中的Ti原子与助催化剂中的Al原子的摩尔比为1:1~25:如果主催化剂中的Ti原子与助催化剂中的Al原子的摩尔比小于1:25,则催化剂中铝含量过高,不利于后期聚合产物生成;如果主催化剂中的Ti原子与助催化剂中的Al原子的摩尔比大于1:1,则催化剂中钛含量过高,不利于后期聚合产物生成。
实施例1
催化剂制备:
将载体乙氧基镁5g分散于溶剂正癸烷120ml中,在150℃温度下,搅拌转数300rpm,充分分散后将系统温度降至80℃,加入溴代环己烷2ml、反应30min后加入乙二醇二甲醚0.5ml和三异丙氧基铝0.3g的混合物,保持系统温度为80℃反应60min,然后滴加过渡金属化合物四氯化钛25ml,继续反应120min,完成后,自然冷却至室温后用200ml正己烷洗涤五次、抽真空干燥得到流动性好的淡黄色固体粉末。经分析,钛含量为3.0%。
聚合试验:
用氮气将2L聚合釜置换三次,加入1L己烷,启动搅拌系统,加热系统,加入催化剂10mg,助催化剂三乙基铝0.6ml;聚合釜温度升至50℃时,打开乙烯进料阀,连续通入乙烯;反应温度控制在60℃,反应压力控制在0.50Mpa;反应2小时,得到聚合产物385g。产品的堆积密度为0.41g/cm3,分子量为567万,催化剂活性为38500gPE/gCat。
实施例2
将三异丙氧基铝用量改为0.4g,其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
实施例3
将三异丙氧基铝用量改为0.5g,其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
实施例4
将三异丙氧基铝用量改为0.6g,其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
实施例5
将三异丙氧基铝用量改为0.7g,其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
实施例6
将三异丙氧基铝用量改为0.8g,其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
实施例7
将乙氧基镁用量改为3.5g,其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
实施例8
将乙氧基镁用量改为14.2g,其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
实施例9
将溴代环己烷用量改为2.7ml,其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
实施例10
将溴代环己烷用量改为1.8ml,其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
实施例11
将三异丙氧基铝用量改为0.89g,其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
实施例12
将三异丙氧基铝用量改为0.18g,其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
实施例13
将实施例1中加入卤代烷烃后反应时间为15min。其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
实施例14
将实施例1中加入卤代烷烃后反应时间为60min。其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
实施例15
将加入醚化合物和烷氧基铝的反应温度和反应时间分别改为50℃和30min。其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
实施例16
加入醚化合物和烷氧基铝的反应温度和反应时间分别改为200℃和120min。其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
实施例17
将加入四氯化钛后的反应温度和反应时间分别改为60℃和60min,其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
实施例18
将加入四氯化钛后的反应温度和反应时间分别改为120℃和180min,其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
对比例1
不加三异丙氧基铝,其余同实施例1。
聚合试验同实施例1。聚合试验结果见表1。
表1

Claims (8)

1.一种超高分子量聚乙烯催化剂的制备方法,包括如下步骤:
(1)在惰性气体环境下,将无水乙氧基镁分散于C6~C16的直链烷烃中,搅拌,得到乙氧基镁溶液;
(2)向步骤(1)所得乙氧基镁溶液中加入卤代环烷烃,反应15~60min后,继续加入醚化合物和烷氧基铝化合物的混合物,保持反应体系的温度为50~200℃,反应30~120min;
(3)向反应体系中滴加四氯化钛溶液,保持反应体系的温度为60~120℃,继续反应60~180min后,自然冷却至室温,经正己烷洗涤、抽真空干燥,得到主催化剂;
(4)将所述主催化剂与助催化剂在无水有机溶剂中混合,得到超高分子量聚乙烯催化剂;
其中,
所述乙氧基镁与所述C6~C16的直链烷烃的摩尔比为0.05~0.2:1;
所述卤代环烷烃与所述醚化合物的摩尔比为1~10:1;
所述乙氧基镁与所述卤代环烷烃的摩尔比为2~3:1;
所述乙氧基镁与所述烷氧基铝的摩尔比为10~50:1;
所述助催化剂为三乙基铝;
所述主催化剂中的Ti原子与所述助催化剂中的Al原子的摩尔比为1:1~25。
2.如权利要求1所述的超高分子量聚乙烯催化剂的制备方法,其特征在于,所述惰性气体为氮气。
3.如权利要求1所述的超高分子量聚乙烯催化剂的制备方法,其特征在于,所述C6~C16的直链烷烃选自由正己烷、正庚烷、正辛烷、正壬烷和正癸烷所组成的群组中的至少一种。
4.如权利要求1所述的超高分子量聚乙烯催化剂的制备方法,其特征在于,所述醚化合物选自由乙醚、四氢呋喃、1,4-二氧六环和乙二醇二甲醚所组成的群组中的至少一种。
5.如权利要求1所述的超高分子量聚乙烯催化剂的制备方法,其特征在于,所述卤代环烷烃选自由氯代环己烷和/或溴代环己烷。
6.如权利要求1所述的超高分子量聚乙烯催化剂的制备方法,其特征在于,所述烷氧基铝化合物中的烷氧基为碳原子数小于或等于6的烷氧基。
7.一种超高分子量聚乙烯催化剂,其是由权利要求1~6中任意一项所述的超高分子量聚乙烯催化剂的制备方法制得的超高分子量聚乙烯催化剂。
8.权利要求7所述的超高分子量聚乙烯催化剂在淤浆法乙烯均聚反应或淤浆法乙烯与α-烯烃的共聚反应中的应用。
CN201610324041.5A 2016-05-16 2016-05-16 超高分子量聚乙烯催化剂及其制备方法 Active CN107383247B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610324041.5A CN107383247B (zh) 2016-05-16 2016-05-16 超高分子量聚乙烯催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610324041.5A CN107383247B (zh) 2016-05-16 2016-05-16 超高分子量聚乙烯催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN107383247A true CN107383247A (zh) 2017-11-24
CN107383247B CN107383247B (zh) 2020-01-03

Family

ID=60337822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610324041.5A Active CN107383247B (zh) 2016-05-16 2016-05-16 超高分子量聚乙烯催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN107383247B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022062944A1 (zh) * 2020-09-24 2022-03-31 中国科学院上海有机化学研究所 一类低堆密度超高分子量聚乙烯微粉

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023057822A1 (en) * 2021-10-10 2023-04-13 Seifali Abbas Abadi Mehrdad Synthesizing polyethylene using an activated ziegler-natta catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87106693A (zh) * 1986-09-01 1988-03-30 三井石油化学工业株式会社 N-烯烃的聚合方法
CN1066075A (zh) * 1991-02-22 1992-11-11 日本石油株式会社 聚烯烃制备方法
CN1258681A (zh) * 1998-12-30 2000-07-05 三星综合化学株式会社 一种烯烃聚合或共聚催化剂
CN101831015A (zh) * 2009-03-10 2010-09-15 中国石油天然气股份有限公司 一种制备超高分子量聚乙烯的催化剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87106693A (zh) * 1986-09-01 1988-03-30 三井石油化学工业株式会社 N-烯烃的聚合方法
CN1066075A (zh) * 1991-02-22 1992-11-11 日本石油株式会社 聚烯烃制备方法
CN1258681A (zh) * 1998-12-30 2000-07-05 三星综合化学株式会社 一种烯烃聚合或共聚催化剂
CN101831015A (zh) * 2009-03-10 2010-09-15 中国石油天然气股份有限公司 一种制备超高分子量聚乙烯的催化剂

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022062944A1 (zh) * 2020-09-24 2022-03-31 中国科学院上海有机化学研究所 一类低堆密度超高分子量聚乙烯微粉

Also Published As

Publication number Publication date
CN107383247B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
JP2011522060A (ja) 超高分子量ポリエチレンの製造プロセス
EP3109261B1 (en) Process for producing lldpe resins
SG176162A1 (en) Catalyst support used for olefinic polymerization and preparing method and application thereof
EA034591B1 (ru) Каталитическая композиция для полимеризации олефинов
JP5670753B2 (ja) 触媒系およびこの触媒系の存在下でポリエチレンを製造するプロセス
CN103987736A (zh) 催化剂体系以及在该催化剂体系存在下生产超高分子量聚乙烯的方法
CN107383247B (zh) 超高分子量聚乙烯催化剂及其制备方法
CN103360527B (zh) 一种高性能抗冲聚丙烯的制备方法和设备
KR20170134534A (ko) 지에글러-나타 촉매 조성물의 입자 크기 분포 조종 공정
JP2011513560A5 (zh)
CN101245116A (zh) 一种用于制备超高分子量聚乙烯的催化体系
EP2796478A1 (en) Alumina-supported catalyst for use in olefin polymerization and method for preparing same
JP5764125B2 (ja) ポリエチレンを製造するための触媒系およびプロセス
EP2838922A1 (en) Catalyst for the polymerisation of olefins, process for its production and use
CN111019023B (zh) 烯烃聚合用催化剂及其制备方法、烯烃聚合用催化剂组合物及其应用
JP5921571B2 (ja) 混合触媒系を使用した樹脂分子量分布の制御
KR102259312B1 (ko) 에틸렌 중합용 촉매의 제조 방법
JP4316885B2 (ja) オレフィン重合のための触媒組成物およびその調製方法
US20210189026A1 (en) Preparation Method Of Catalyst For Ethylene Polymerization
CN111040057B (zh) 一种烯烃聚合反应催化剂、制备方法及复合催化剂
KR102487347B1 (ko) 초고분자량 폴리에틸렌의 분자량분포 조절을 위한 지글러-나타 촉매의 제조방법
KR102487346B1 (ko) 초고분자량 폴리에틸렌의 분자량분포 조절을 위한 지글러-나타 촉매의 제조방법
CN113912756B (zh) 一种提高聚乙烯熔体流动性的催化剂体系及其应用
KR20140136239A (ko) 입도 조절이 가능한 에틸렌 중합 및 공중합용 촉매의 제조 방법
CN103788261A (zh) 一种具有高熔体流动速率丙烯均聚物的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant