WO2021259337A1 - 一类特高至超高分子量聚乙烯制造用催化剂 - Google Patents

一类特高至超高分子量聚乙烯制造用催化剂 Download PDF

Info

Publication number
WO2021259337A1
WO2021259337A1 PCT/CN2021/101907 CN2021101907W WO2021259337A1 WO 2021259337 A1 WO2021259337 A1 WO 2021259337A1 CN 2021101907 W CN2021101907 W CN 2021101907W WO 2021259337 A1 WO2021259337 A1 WO 2021259337A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
molecular weight
ultra
high molecular
weight polyethylene
Prior art date
Application number
PCT/CN2021/101907
Other languages
English (en)
French (fr)
Other versions
WO2021259337A9 (zh
Inventor
朱本虎
苏玮
周姣龙
唐勇
谭凯
李军方
彭爱青
孙秀丽
Original Assignee
中国科学院上海有机化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010583913.6A external-priority patent/CN113912758B/zh
Priority claimed from CN202010585258.8A external-priority patent/CN113912759B/zh
Priority claimed from CN202010585230.4A external-priority patent/CN113831436B/zh
Application filed by 中国科学院上海有机化学研究所 filed Critical 中国科学院上海有机化学研究所
Publication of WO2021259337A1 publication Critical patent/WO2021259337A1/zh
Publication of WO2021259337A9 publication Critical patent/WO2021259337A9/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic

Definitions

  • the invention relates to a type of catalyst suitable for producing ultra-high/ultra-high molecular weight polyethylene fibers and lithium battery separators for ultra-high to ultra-high molecular weight polyethylene particles. More specifically, it relates to a kind of catalyst for producing unbranched, high crystallinity, viscosity average molecular weight of 5-10 million, and particle size distribution of (d50) of 40 ⁇ m ⁇ d50 ⁇ 80 ⁇ m polyethylene particles, its preparation method and use of the catalyst Catalytic ethylene polymerization method.
  • Ultra-high/ultra-high molecular weight polyethylene is a kind of thermoplastic engineering plastic with high impact resistance, high wear resistance, high corrosion resistance, self-lubricity, environmental stress crack resistance, safety and health, etc. It is widely used Used in textiles, papermaking, transportation, packaging, machinery, chemicals, mining, petroleum, agriculture, medical treatment, fine filtration, battery separators and many other fields.
  • the catalysts used in the production of ultra-high/ultra-high molecular weight polyethylene mainly include Ziegler-Natta type, chromium series, metallocene, non-metallocene, etc., but the most widely used and the most mature technology is still the Z-N catalyst.
  • this type of catalyst generally uses a chemical method to control the particle size of the magnesium chloride carrier, and thus to control the particle size of the catalyst, so as to obtain a controllable polymer particle size.
  • ultra-high/ultra-high molecular weight polyethylene catalysts There have been many reports on the patents of ultra-high/ultra-high molecular weight polyethylene catalysts.
  • the existing technologies mainly focus on improving the activity of the catalyst, the molecular weight of the polymer and the bulk density of the polymer, as well as the use of additives and operating steps in the catalyst preparation process.
  • the particle size of the catalyst prepared by this type of method is usually above 5 microns (D0.5), and the particle size range (D50) of the produced ultra-high/ultra-high molecular weight polymers is mainly concentrated in the range of 120 microns to For coarse particles between 200 microns or more than 600 microns, the catalyst prepared by the above-mentioned method cannot obtain a polymer with a finer particle size.
  • Patent CN200580039390.2 discloses ethylene polymer particles and a catalyst for their production.
  • the polymer needs to remove the cumbersome steps of inorganic impurities, and more disadvantageously, the preparation process of the catalyst reported in this patent method must use the regulated solvent toluene as the solvent to obtain a homogeneous solution of the compound.
  • the art still lacks an ultra-fine ultra-high/ultra-high molecular weight polyethylene catalyst with an environmentally friendly preparation process and high catalytic activity.
  • the present invention provides a class of unbranched, high crystallinity, viscosity average molecular weight of 500,000 to 10 million, and particle size distribution concentrated in (d50) of 40 ⁇ m ⁇ d50 ⁇ 80 ⁇ m polyethylene particles. At the same time, it provides corresponding catalyst technology.
  • the technology catalyzes the polymerization of ethylene with high efficiency, and the activity can be as high as 200Kg PE/g Cat.
  • a catalyst which is characterized in that the catalyst is used for preparing ultra-high to ultra-high molecular weight polyethylene particles; and in the catalyst, the magnesium content is 10-30 wt%, and the aluminum The content is 2-4wt%, the titanium content is 5-10wt%, and the chlorine content is 30-70wt%; wherein the magnesium content is preferably 12-18wt%, the aluminum content is preferably 2.5-3.5wt%, and the titanium content is preferably 6-8wt%.
  • the catalyst is prepared by the following steps:
  • step (b) The precursor slurry I obtained in step (a) is contacted with aluminum alkyl for 1-2 hours at a temperature lower than -30°C, and then maintained at 60-120°C for 2-6 hours to obtain the precursor slurry P-II;
  • step (c) The precursor slurry II obtained in step (b) is in contact with the inert hydrocarbon solution of the titanium compound at a temperature below -30°C for 0.5-1h, and then the temperature is raised and maintained at 60-120°C for 2-6h to obtain a catalyst slurry C-III;
  • the heating rate is preferably 1-10°C/min;
  • step (d) filtering the catalyst slurry C-III obtained in step (c);
  • step (d) drying the catalyst slurry obtained in step (d) to obtain catalyst powder.
  • toluene, halogenated hydrocarbons or aromatic hydrocarbons are not used in the preparation step of the catalyst.
  • the titanium compound is TiCl 4 or TiR 4 , wherein R is a C1-C6 alkyl, allyl, benzyl or NMe 2 ; the alkyl is preferably methyl or ethyl , Propyl or butyl.
  • the titanium compound has a structure shown in one or more of the following formulas I-IV:
  • X is SR 5 or P(R 5 ) 2 ;
  • R 1 , R 2 , R 3 , R 4 , and R 5 are each independently a substituted or unsubstituted group selected from the following group: C1-C6 alkyl, C2-C6 alkenyl, C3-C8 cycloalkyl, C6-C10 aryl, halogenated C3-C8 cycloalkyl, 5-7 membered heteroaryl;
  • R 3 and R 4 and the carbon atoms connected to them together form a 5-7 membered saturated, partially unsaturated or aromatic carbocyclic or heterocyclic ring;
  • R 6 is selected from the following group: C1-C6 alkyl, allyl, benzyl, C1-C6 silyl; the alkyl is preferably methyl, ethyl, propyl or butyl;
  • R 7 is selected from the group consisting of C1-C6 alkyl, C2-C6 alkenyl or C3-C8 cycloalkyl;
  • the skeleton of the heteroaryl group has 1-3 heteroatoms selected from the group consisting of N, S(O), P or O;
  • substituted refers to being substituted by one or more (for example, 2, 3, 4, etc.) substituents selected from the following group: halogen, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy, halogenated C1-C6 alkoxy.
  • the titanium compound is selected from the following group:
  • the catalyst particle diameter d 50 of 0.5 ⁇ m ⁇ d 50 ⁇ 1 ⁇ m.
  • the second aspect of the present invention provides a method for preparing the catalyst according to the first aspect of the present invention, and the method includes the steps:
  • step (b) The precursor slurry I obtained in step (a) is contacted with aluminum alkyl for 1-2 hours at a temperature lower than -30°C, and then maintained at 60-120°C for 2-6 hours to obtain the precursor slurry P-II;
  • step (c) The precursor slurry II obtained in step (b) is in contact with the inert hydrocarbon solution of the titanium compound at a temperature below -30°C for 0.5-1h, and then the temperature is raised and maintained at 60-120°C for 2-6h to obtain a catalyst slurry C-III;
  • the heating rate is preferably 1-10°C/min;
  • step (d) filtering the catalyst slurry C-III obtained in step (c);
  • step (d) drying the catalyst slurry obtained in step (d) to obtain catalyst powder.
  • the inert hydrocarbon solvent is selected from the following group: C5-C30 alkanes, cycloalkanes or mixed alkanes, preferably C5-C8 alkanes, cycloalkanes or mixed alkanes, preferably hexane, heptane , Octane, nonane, decane, most preferably hexane, decane.
  • the C1-C10 alcohol in step (a) is preferably methanol, ethanol, n-propanol, n-butanol, n-pentanol, n-hexanol, 2-ethyl Hexanol or n-octanol.
  • the stirring speed is between 50-150 rpm, and the high-gravity reactor speed is between 10000-50000 rpm; preferably, the stirring speed is 80-150 rpm, and the high-gravity reaction
  • the speed of the reactor is 3000-45000 rpm, more preferably the speed of stirring is 80-100 rpm, and the speed of the supergravity reactor is 3000-40000 rpm.
  • the aluminum alkyl in step (b) is selected from the following group: ethyl aluminum dichloride, aluminum diethyl chloride, triethyl aluminum, triisobutyl Aluminum, ethyl aluminum sesquichloride or butyl aluminum sesquichloride.
  • the molar ratio of the titanium compound to the magnesium chloride in step (c) may be 0.3-0.8:1, preferably 0.4-0.6:1, most preferably 0.5:1.
  • the third aspect of the present invention provides a method for preparing polyolefins, the method comprising: catalyzing the polymerization of olefins with the catalyst according to the first aspect of the present invention to obtain the polyolefins.
  • the olefin is ethylene
  • the polyolefin is ultra-high to ultra-high molecular weight polyethylene particles; preferably, in the particles, the number of alkane branches on the polymer chain is less than 1/100,000C (ie, The alkane branch chain in 100,000 carbon atoms is ⁇ 1).
  • an ultra-high molecular weight polyethylene microparticle which is characterized in that the microparticle has the following characteristics:
  • the viscosity-average molecular weight is 500,000-1.5 million g/mol; more preferably, the viscosity-average molecular weight of ultra-high molecular weight polyethylene is 800,000-1.5 million g/mol;
  • (b) ⁇ 95wt% can pass through a 100-micron mesh sieve, and d 50 is 40 ⁇ m ⁇ d 50 ⁇ 80 ⁇ m; more preferably, d 50 is 40 ⁇ m ⁇ d 50 ⁇ 60 ⁇ m.
  • the number of alkane branches on the polymer chain is less than 1/100,000C (that is, the alkane branches in 100,000 carbon atoms are less than 1).
  • the primary crystallinity of the particles is> 70%, and the secondary crystallinity is> 55%; wherein, the primary crystallinity refers to the crystallinity of the first heating test, and the secondary crystallinity is Refers to the crystallinity of the second heating test.
  • the ultra-high molecular weight polyethylene particles are obtained by catalyzing ethylene polymerization by a catalyst and a co-catalyst at 40-80° C. and 0.2-2.0 MPa ethylene pressure.
  • the ethylene pressure is 0.2-1.5Mpa.
  • the ultra-high molecular weight polyethylene particles are obtained by catalyzing ethylene polymerization by a catalyst and a co-catalyst at 40-80°C, an ethylene partial pressure of 0.2-1.5 MPa, and a hydrogen partial pressure of 0.01-0.2 MPa. ;
  • the ratio of the partial pressure of hydrogen to the partial pressure of ethylene is preferably 1:3-50, more preferably 1:5-30.
  • the particles ⁇ 95 wt% can pass through a 100 micron mesh sieve, and the d 50 is 40 ⁇ m ⁇ d 50 ⁇ 60 ⁇ m.
  • the d 90 of the particles is 90 ⁇ m ⁇ d 90 ⁇ 100 ⁇ m.
  • the fifth aspect of the present invention provides the ultra-high molecular weight polyethylene microparticles according to the fourth aspect of the present invention, characterized in that the preparation method of the ultra-high molecular weight polyethylene microparticles includes the steps of: using a catalyst and an auxiliary The catalyst is contacted with ethylene to carry out a catalytic polymerization reaction, thereby obtaining said ultra-high molecular weight polyethylene particles;
  • the catalyst is catalyst particles, or a catalyst slurry including the catalyst particles;
  • the particle size d 50 of the catalyst particles is 0.5 ⁇ m ⁇ d 50 ⁇ 1 ⁇ m
  • the magnesium content of the catalyst is 10-30 Parts by weight
  • the aluminum content is 2-4 parts by weight
  • the titanium content is 5-10) parts by weight
  • the chlorine content is 30-70 parts by weight.
  • the catalyst activity is higher than 50 kg polymer/g catalyst.
  • the concentration of catalyst particles in the catalyst feed liquid is 100-150 g/L.
  • the catalyst is prepared by the following method:
  • step (b) The precursor slurry PI obtained in step (a) is contacted with aluminum alkyl for at least 1 hour at a temperature lower than -30°C, and then heated to 60-120°C for 2-6 hours to obtain the precursor slurry P-II; wherein The heating rate is preferably 1-10°C/min;
  • step (c) The precursor slurry P-II obtained in step (b) is cooled to below -30°C, and after contacting with the inert hydrocarbon solution of the titanium compound for 0.5-3h, the temperature is raised to 60-120°C for 2-6h to obtain a catalyst Slurry C-III; wherein the cooling rate is preferably 1-10°C/min, and the heating rate is preferably 1-10°C/min;
  • step (d) Filter the catalyst slurry C-III obtained in step (c) to obtain a catalyst.
  • the method for preparing the catalyst further includes the step: (e) drying the catalyst obtained in step (d) to obtain catalyst powder.
  • the sixth aspect of the present invention provides a kind of ultra-high molecular weight polyethylene microparticles.
  • the microparticles have the following characteristics:
  • the viscosity-average molecular weight is 500,000-1.5 million g/mol; more preferably, the viscosity-average molecular weight of ultra-high molecular weight polyethylene is 800,000-1.5 million g/mol;
  • (b) ⁇ 95wt% can pass through a 100-micron mesh sieve, and d 50 is 40 ⁇ m ⁇ d 50 ⁇ 80 ⁇ m; more preferably, d 50 is 40 ⁇ m ⁇ d 50 ⁇ 60 ⁇ m.
  • the number of alkane branches on the polymer chain is less than 1/100,000C (that is, the alkane branches in 100,000 carbon atoms are less than 1).
  • the primary crystallinity of the particles is> 70%, and the secondary crystallinity is> 55%; wherein, the primary crystallinity refers to the crystallinity of the first heating test, and the secondary crystallinity is Refers to the crystallinity of the second heating test.
  • the ultra-high molecular weight polyethylene particles are obtained by catalyzing ethylene polymerization by a catalyst and a co-catalyst at 40-80° C. and 0.2-2.0 MPa ethylene pressure.
  • the ethylene pressure is 0.2-1.5Mpa.
  • the ultra-high molecular weight polyethylene particles are obtained by catalyzing ethylene polymerization by a catalyst and a co-catalyst at 40-80°C, an ethylene partial pressure of 0.2-1.5 MPa, and a hydrogen partial pressure of 0.01-0.2 MPa. ;
  • the ratio of the partial pressure of hydrogen to the partial pressure of ethylene is preferably 1:3-50, more preferably 1:5-30.
  • the particles ⁇ 95 wt% can pass through a 100 micron mesh sieve, and the d 50 is 40 ⁇ m ⁇ d 50 ⁇ 60 ⁇ m.
  • the d 90 of the particles is 90 ⁇ m ⁇ d 90 ⁇ 100 ⁇ m.
  • the seventh aspect of the present invention provides the ultra-high molecular weight polyethylene microparticles according to the sixth aspect of the present invention.
  • the preparation method of the ultra-high molecular weight polyethylene microparticles includes the step of contacting ethylene with a catalyst and a co-catalyst Carry out a catalytic polymerization reaction to obtain said ultra-high molecular weight polyethylene particles;
  • the catalyst is catalyst particles, or a catalyst slurry including the catalyst particles;
  • the particle size d 50 of the catalyst particles is 0.5 ⁇ m ⁇ d 50 ⁇ 1 ⁇ m
  • the magnesium content of the catalyst is 10-30 Parts by weight
  • the aluminum content is 2-4 parts by weight
  • the titanium content is 5-10 parts by weight
  • the chlorine content is 30-70 parts by weight.
  • the catalyst activity is higher than 50 kg polymer/g catalyst.
  • the concentration of catalyst particles in the catalyst feed liquid is 100-150 g/L.
  • the catalyst is prepared by the following method:
  • step (b) The precursor slurry PI obtained in step (a) is contacted with aluminum alkyl for at least 1 hour at a temperature lower than -30°C, and then heated to 60-120°C for 2-6 hours to obtain the precursor slurry P-II; wherein The heating rate is preferably 1-10°C/min;
  • step (c) The precursor slurry P-II obtained in step (b) is cooled to below -30°C, and after contacting with the inert hydrocarbon solution of the titanium compound for 0.5-3h, the temperature is raised to 60-120°C for 2-6h to obtain a catalyst Slurry C-III; wherein the cooling rate is preferably 1-10°C/min, and the heating rate is preferably 1-10°C/min;
  • step (d) Filter the catalyst slurry C-III obtained in step (c) to obtain a catalyst.
  • the method for preparing the catalyst further includes the step: (e) drying the catalyst obtained in step (d) to obtain catalyst powder.
  • Figure 1 is a representative polymer particle size distribution report with a viscosity average molecular weight of 1.5-10 million;
  • Figure 2 is a representative polymer particle size distribution report with a viscosity average molecular weight of 500,000 to 1.5 million;
  • FIG. 3 The high temperature carbon spectrum of the ultra-low branching ultra-high molecular weight polyethylene P1 (Example 16, batch 1) produced by the ultra-high activity polyethylene catalyst, where the number of branches in 100,000 carbons is less than 1;
  • Figure 5 The high-temperature carbon spectrum of commercially available ultra-high molecular weight polyethylene P3 (produced by Yanshan Petrochemical GK03), the number of branches is 12 per 100,000 carbons;
  • Figure 6 is the DSC spectrum of the ultra-low branching ultra-high molecular weight polyethylene P1 (Example 16, batch 1) produced by the ultra-high activity polyethylene catalyst, with a primary crystallinity of 77.0% and a secondary crystallinity of 63.4 %;
  • Figure 9 is an SEM electron micrograph of an ultra-low branched ultra-high molecular weight polyethylene P1 (Example 16, batch 1) produced by the polyethylene catalyst;
  • Figure 10 is a photo of the cast sheet of Example 21;
  • FIG. 11 is a graph of the tensile strain test results of the product obtained in Example 20.
  • FIG. 11 is a graph of the tensile strain test results of the product obtained in Example 20.
  • the inventors After long-term and in-depth research, the inventors have prepared a catalyst suitable for preparing ultra-high molecular weight polyethylene with reduced particle size.
  • the preparation of this type of catalyst does not require the use of toxic and harmful solvents such as toluene, and the prepared polyethylene is unbranched, high crystallinity, viscosity average molecular weight 500,000-10 million, uniform particle size distribution (focused on (d50) is 40 ⁇ m ⁇ d50 ⁇ 80 ⁇ m) and ⁇ 95wt% can pass through a 150-micron mesh sieve.
  • the present invention provides a high-activity special catalyst that can be applied to produce the above-mentioned ultra-high to ultra-high molecular weight polyethylene.
  • the preparation of the catalyst includes steps (a)-(d), and optional step (e):
  • step (b) The precursor slurry I obtained in step (a) is contacted with aluminum alkyl for 1-2 hours at a temperature lower than -30°C, and then maintained at 60-120°C for 2-6 hours to obtain the precursor slurry P-II;
  • step (c) The precursor slurry II obtained in step (b) is in contact with the hydrocarbon solution of the titanium compound at a temperature below -30°C for 0.5-1h and then heated up and maintained at 60-120°C for 2-6h to obtain a catalyst slurry C-III;
  • the speed is preferably 1-10°C/min;
  • step (d) filtering the catalyst slurry C-III obtained in step (c);
  • step (e) drying the catalyst slurry obtained in step (d);
  • the hydrocarbon solvent can be C5-C30 alkanes, cycloalkanes or mixed alkanes, preferably C5-C8 alkanes, cycloalkanes or mixed alkanes, preferably hexane, heptane, octane , Nonane, decane, most preferably hexane, decane.
  • the alcohol refers to a C1-C10 monohydric or polyhydric alcohol, and its type can be one or more of aliphatic alcohol, alicyclic alcohol or aromatic alcohol, preferably aliphatic alcohol, the alcohol can be any C1-C10 The alkyl group, C1-C10 alkoxy group or halogen atom substitution.
  • the fatty alcohol can be methanol, ethanol, propanol, 2-propanol, butanol, pentanol, 2-methylpentanol, 2-ethylpentanol, hexanol, etc., among which ethanol and butanol are preferred.
  • the aromatic alcohol can be benzyl alcohol, phenethyl alcohol, methyl benzyl alcohol, etc., among which phenethyl alcohol is preferred;
  • Said alicyclic alcohols such as cyclohexanol, cyclopentanol and cyclooctanol, etc., of which cyclohexanol is preferred;
  • alkyl-substituted alcohols such as methylcyclopentanol, ethylcyclopentanol, propylcyclopentanol, methylcyclohexanol, ethylcyclohexanol, propylcyclohexanol, methylcyclooctanol , Ethyl cyclooctanol, etc., among which methyl cyclohexanol is preferred;
  • the halogen atom substitution means that one or more hydrogen atoms on the carbon chain of the alcohol are replaced by halogen atoms.
  • Typical examples are trichloromethanol, trichloroethanol and trichlorohexanol, among which trichloromethanol is preferred.
  • the alkoxy substitution refers to the substitution of one or more hydrogen atoms on the carbon chain of the alcohol by an alkoxy group.
  • Typical examples are ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether and 1-butoxy Among them, ethylene glycol monoethyl ether is preferred.
  • These alcohols can be used singly or in combination; wherein the molar ratio of magnesium chloride to alcohol can be 1:2-6, preferably 1:4-5.
  • the temperature of the contact reaction in the step (a) is 60-120°C, preferably 80-100°C.
  • the cooling rate is 1-10°C/min, preferably 1-5°C/min, and most preferably 1°C/min.
  • control the stirring speed to be between 50-150rpm, the supergravity reactor speed is between 10000-50000rpm, preferably the stirring speed is 50rpm, the supergravity reactor speed is 45000rpm, more preferably the stirring speed is 80rpm, the supergravity reactor The rotation speed is 40,000 rpm, most preferably the stirring rotation speed is 100 rpm, and the supergravity reactor rotation speed is 38,000 rpm.
  • the aluminum alkyl can be ethyl aluminum dichloro, diethyl aluminum chloride, triethyl aluminum, triisobutyl aluminum, ethyl aluminum sesquichloride, Hemichloride butyl aluminum, MAO, MMAO, preferably diethyl aluminum chloride, triethyl aluminum, triisobutyl aluminum, most preferably diethyl aluminum chloride, wherein the molar ratio of aluminum alkyl to magnesium chloride can be It is 1-10:1, preferably 2-5:1, most preferably 2-3:1; in the process of the aluminum alkyl contact reaction, the rate of temperature rise of the reaction needs to be controlled, and the rate of temperature rise is 1-10°C/min, preferably 1-5°C/min, most preferably 1°C/min; the temperature of the final alkyl aluminum contact reaction is controlled at 60-120°C, preferably 80-100°C, and the reaction time at the preferred temperature is controlled at 2-6h, preferably 4- 5h.
  • the catalyst of the present invention is characterized in that the titanium compound must be soluble in a hydrocarbon solvent, for example, TiCl 4 or Ti(R) 4 , where R is a C1-C6 alkyl, allyl, Benzyl or NMe 2 ;
  • the alkyl group is preferably methyl, ethyl, propyl or butyl; it can also be any compound or a mixture of several compounds having the structure of the following formula I-IV:
  • X is SR 5 or P(R 5 ) 2 ;
  • R 1 , R 2 , R 3 , R 4 , and R 5 are each independently a substituted or unsubstituted group selected from the following group: C1-C6 alkyl, C2-C6 alkenyl, C3-C8 cycloalkyl, C6-C10 aryl, halogenated C3-C8 cycloalkyl, 5-7 membered heteroaryl;
  • R 3 and R 4 and the carbon atoms connected to them together form a 5-7 membered saturated, partially unsaturated or aromatic carbocyclic or heterocyclic ring;
  • R 6 is selected from the following group: C1-C6 alkyl, allyl, benzyl, C1-C6 silyl; the alkyl is preferably methyl, ethyl, propyl or butyl;
  • R 7 is selected from the group consisting of C1-C6 alkyl, C2-C6 alkenyl, C3-C8 cycloalkyl;
  • the skeleton of the heteroaryl group has 1-3 heteroatoms selected from the group consisting of N, S(O), P and O.
  • substituted refers to being substituted by one or more (for example, 2, 3, 4, etc.) substituents selected from the following group: halogen, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy, halogenated C1-C6 alkoxy.
  • the titanium compound is selected from the following group:
  • titanium compound No matter which titanium compound is used, it will not affect the particle size distribution and molecular weight control of the polymer, but the choice of different titanium compound or the amount of titanium compound has a certain influence on the polymerization activity. Among them, TiCl 4 , TiBn 4 , Ti(NMe 2 ) 4 , compound 3, 4, 8, 14, 16, 17, 18, 20, 22, 24, 25 or 27 are preferred, and 17, 18 is most preferred.
  • the molar ratio of titanium complex to magnesium chloride can be 0.3-0.8:1, preferably 0.4-0.6:1, and most preferably 0.5:1; during the complexation reaction of the alkyl complex of the fourth subgroup metal titanium with titanium, It is necessary to control the rate of reaction temperature rise, the rate of temperature rise is 1-10°C/min, preferably 1-5°C/min, most preferably 1°C/min; finally the temperature of the titanium-loaded contact reaction is controlled at 60-120°C, preferably 80-100 °C, the reaction time is controlled at 2-6h, preferably 4-5h at the preferred temperature.
  • the catalyst of the present invention does not require the use of aromatic hydrocarbons or halogenated hydrocarbon solvents in the preparation process.
  • the aromatic hydrocarbon solvents are used in accordance with the "Regulations on the Safety Management of Hazardous Chemicals” and “Regulations on the Management of Precursor Chemicals". It is also very harmful to the environment.
  • the catalyst of the present invention can be prepared in hydrocarbons that are more environmentally friendly.
  • the hydrocarbon solvent is C5-C30 alkanes, cycloalkanes or mixed alkanes, preferably C5-C8 alkanes, cycloalkanes Or mixed alkanes, preferably hexane, heptane, octane, nonane, decane, most preferably hexane, decane; the hydrocarbon solvents can be recovered and reused, so the preparation process is more environmentally friendly.
  • the catalyst of the present invention is characterized in that, in the process of filtering the reaction liquid and adding a hydrocarbon solvent to wash the filter cake, the hydrocarbon solvent can be a C5-C30 alkane, a cycloalkane or a mixed alkane, preferably a C5- C8 alkanes, cycloalkanes or mixed alkanes, preferably hexane, heptane, octane, nonane, decane, most preferably hexane, the number of filtering and washing can be 3-6 times, preferably 4-5 times;
  • the catalyst of the present invention can be used directly after step (d) is completed, provided that the filter cake formed by filtering the catalyst slurry C-III obtained in step (c) is mixed with an inert hydrocarbon solvent to form a slurry catalyst with a certain concentration
  • the inert hydrocarbon solvent can be C5-C30 alkanes, cycloalkanes or mixed alkanes, preferably C5-C8 alkanes, cycloalkanes or mixed alkanes, preferably hexane, heptane, octane, nonane, decane, Hexane is most preferred.
  • the catalyst of the present invention can also be used after step (e) is completed, provided that the filter cake formed by filtering the catalyst slurry C-III obtained in step (c) is vacuum dried to obtain a powdered catalyst.
  • the vacuum degree is greater than -100Pa, and the drying time is controlled at 4-6h.
  • the present invention provides a type of ultra-high to ultra-high molecular weight polyethylene microparticles.
  • the microparticles meet at least the following characteristics: (a) the viscosity average molecular weight is in the range of 500,000 to 10 million; (b) the weight ratio is at least 95% and passes through 150 microns The meshed sieve, the median diameter (d 50 ) measured by laser diffraction scattering method is 40 ⁇ m ⁇ d 50 ⁇ 80 ⁇ m;
  • the polymer molecular structure can satisfy (c) the number of alkane branches on the polymer chain ⁇ 1/100,000C (determined by melting 13 C NMR); further, it also satisfies the condition (d) determined by differential scanning calorimetry
  • the primary crystallinity is >70%, and the secondary crystallinity is >55%.
  • the primary crystallinity refers to the crystallinity result of the first heating test in the differential scanning calorimetry
  • the second refers to the crystallinity result of the second heating test.
  • ultra-high molecular weight polyethylene polymer particles with a viscosity average molecular weight of 1.5-10 million g/mol are called ultra-high molecular weight polyethylene, and polymer particles with 500,000-1.5 million g/mol are called ultra-high molecular weight polyethylene.
  • the molecular weight of the ultra-high to ultra-high molecular weight polyethylene particles of the present invention can be conveniently controlled by polymerization conditions, namely:
  • the polymerization of ethylene is catalyzed at 40-80° C. and 0.2-2.0 MPa ethylene pressure to obtain the above-mentioned ultra-high molecular weight polyethylene powder.
  • at least 95% of the weight ratio of the ultra-high polyethylene particles obtained passes through a 150-micron mesh sieve, and 50 ⁇ m ⁇ d50 ⁇ 70 ⁇ m.
  • the partial pressure of ethylene is 0.2-1.5MPa
  • the partial pressure of hydrogen is 0.01-
  • the ratio of hydrogen partial pressure to ethylene partial pressure is preferably 1:3-50, more preferably 1:5-30.
  • ultra-high molecular weight polyethylene particles obtained by polymerization at least 95% by weight passes through a 100 micron mesh sieve, 40 ⁇ m ⁇ d50 ⁇ 60 ⁇ m, and polyethylene viscosity average molecular weight is 500,000 to 1.5 million; more preferably, poly The viscosity average molecular weight of ethylene is 800-1.5 million.
  • the catalytic activity of the catalyst is preferably higher than 100 kg polymer/g catalyst; wherein the content of magnesium in the catalyst component is 10-30% by weight, the content of aluminum is 2-4% by weight, and the content of titanium is 5-10% by weight. %, the chlorine content is 30-70wt%; wherein the magnesium content is preferably 12-18wt%, the aluminum content is preferably 2.5-3.5wt%, the titanium content is preferably 6-8wt%, and the chlorine content is 35-60wt%.
  • the ultra-high to ultra-high molecular weight polyethylene particles prepared by the present invention have a characteristic segment distribution.
  • the polyethylene particles of the present invention have extremely low degree of branching.
  • the number of branches in 100,000 carbons is less than 1, while the commercially available ultra-high or ultra-high molecular weight polyethylene prepared by other methods has a relatively higher degree of branching.
  • the number of 4150 branches produced by the commercially available Ticona company is 18/100,000.
  • the number of branches in the GK03 material produced by the commercial Yanshan Petrochemical Company is 12 per 100,000 carbons, while the number of branches in the 100,000 carbons of the ultra-low branching degree ultra-high molecular weight polyethylene of the present application is less than 1 (see Figure 3-figure for details) 5).
  • the ultra-high to ultra-high molecular weight polyethylene particles prepared by the present invention have higher crystallinity than commercially available products.
  • the ultra-low branching degree ultra-high molecular weight polyethylene P1 (Example 16, batch 1) of the present invention has a primary crystallinity of 77.0% and a secondary crystallinity of 63.4%.
  • the commercial Ticona 4150 has a primary crystallinity of 68.8% and a secondary crystallinity of 58.3%;
  • the commercial Yanshan Petrochemical production material GK03 has a primary crystallinity of 63.8% and a secondary crystallinity of 54.8 % (See Figure 6- Figure 8).
  • the preparation method of ultra-high to ultra-high molecular weight polyethylene particles of the present invention is as follows:
  • the heterogeneous catalytic system composed of the above-mentioned catalyst and the alkyl aluminum compound as the co-catalyst is contacted with ethylene and reacted for 1-18 hours at the ethylene partial pressure in the range of 0.2 to 10Mpa and 0 to 100°C.
  • the molar ratio of catalyst to co-catalyst is 1:1-5000. Generally, it can be polymerized at 1:10-2000 for 2-6 hours in order to maintain the catalytic activity, polymer properties and production cost in a good range, preferably 1:1: 20 ⁇ 500.
  • the partial pressure of hydrogen can be selected to be 0.01-1 MPa.
  • the polymerization is generally carried out in inert organic solvents, such as hydrocarbons, cyclic hydrocarbons or aromatic hydrocarbons, and can also be carried out in halogenated solvents, such as dichloroethane and chlorobenzene.
  • inert organic solvents can be used Hydrocarbons with less than 12 carbons. Examples are as follows but not limited to propane, isobutane, n-pentane, 2-methylbutane, n-hexane, cyclohexane, toluene, chlorobenzene, dichloroethane and mixtures thereof.
  • the polymerization temperature is maintained at 0 to 100°C. In order to achieve good catalytic activity and productivity, it can be maintained at 40 to 80°C.
  • the co-catalyst is an alkyl aluminum compound, an alkyl aluminoxane or a weak coordination anion;
  • the alkyl aluminum compound is preferably AlEt 3 , AlMe 3 or Al(i-Bu) 3 , AlEt 2 Cl, alkyl aluminum oxide
  • the alkane is preferably methylaluminoxane, MMAO (modified methylaluminoxane), etc.
  • the weak coordination anion is preferably [B(3,5-(CF 3 ) 2 C 6 H 3 ) 4 ] - , - OSO 2 CF 3 or ((3,5- (CF 3) 2 ) C 6 H 3) 4 B -.
  • the catalyst and the co-catalyst can be added to the system in any order to allow the polymerization to proceed, and AlEt 3 is preferred.
  • the ratio of the catalyst and the co-catalyst used in the polymerization is variable. Generally, the polymerization time is 1-18 hours, and the molar ratio of the catalyst to the co-catalyst is 1:1-5000. Generally, the polymerization can be carried out at 1:10-2000. -6 hours in order to maintain the catalytic activity, polymer properties and production cost in a good range, preferably 1:20-500.
  • the catalyst catalyzes the polymerization of ethylene at 40-80°C and 0.2-0.8MPa ethylene pressure to obtain ultra-high molecular weight polyethylene particles, and the polymerization activity is higher than 100Kg PE/g Cat.
  • At least 95% by weight of the obtained powder passes through a 150-micron mesh sieve, and the median diameter (d 50 ) measured by laser diffraction scattering method is 50 ⁇ m ⁇ d 50 ⁇ 80 ⁇ m, more preferably, 50 ⁇ m ⁇ d 50 ⁇ 70 ⁇ m
  • Polyethylene has a viscosity average molecular weight of 1.5-10 million; better, polyethylene has a viscosity average molecular weight of 1.5-8 million.
  • the catalyst of the present invention catalyzes the polymerization of ethylene under the conditions of 40-80°C, 0.2-0.8 MPa ethylene pressure, and 0.01-0.1 MPa hydrogen partial pressure to obtain ultra-high molecular weight polyethylene particles, and the polymerization activity is higher than 50Kg PE/g Cat., At least 95% by weight of the powder obtained by polymerization passes through a 100-micron mesh sieve.
  • the median diameter (d 50 ) measured by the laser diffraction scattering method is 40 ⁇ m ⁇ d 50 ⁇ 60 ⁇ m, and the polyethylene has a viscosity average molecular weight of 500,000 to 1.5 million.
  • the branched structure can be analyzed by melting 13 C NMR.
  • the analysis result confirms that in the ultra-high to ultra-high molecular weight polyethylene provided by the present invention, the number of branches in the polymer is less than one per 100,000 backbone carbon atoms.
  • the ultra-high to ultra-high molecular weight polyethylene particles created by the invention have a bulk density of 0.35 g/cm 3 -0.5 g/cm 3 and can be used to prepare high-strength and high-modulus fibers and lithium battery separators. Moreover, when the molecular weight is similar to that of pure ultra-high molecular weight polyethylene samples sold on the market, it has more outstanding processing performance.
  • the extrusion speed is 2 times or more than that of other ultra-high molecular weight polyethylene with the same molecular weight under the same processing conditions. , Common 2-5 times.
  • the said ultra-high molecular weight polyethylene microparticles have the characteristics of low screw pressure during the preparation process of the high-strength high-modulus ultra-high molecular weight polyethylene fiber prepared by the gel spinning method and high super-stretching ratio in the post-spinning process.
  • the strength of the high-strength and high-modulus fiber can reach 38.4 cN/dtex, such as 35-40 cN/dtex, and the modulus can reach 1684 cN/dtex, such as 1200-1800 cN/dtex.
  • the ultra-high molecular weight polyethylene particles can be used to prepare lithium battery separators, and the separators have excellent tensile strength and puncture strength, and have the characteristics of high porosity and low air permeability.
  • the thickness of the membrane is 15.3 ⁇ m
  • the tensile strength (MD) is 115.3MPa
  • the elongation at break (MD) is 162.7%
  • the tensile strength (TD) ) 149.5MPa
  • breaking elongation (TD) 126.6% puncture strength 360.2g
  • specific puncture strength 23.5g/ ⁇ m porosity 49.9%
  • air permeability value 113.5S/100cc 113.5S/100cc.
  • the following examples show different aspects of the present invention.
  • the examples given include polyethylene particles, special catalysts, catalyst preparation methods, and polymerization methods using the catalysts.
  • magnesium (Mg) content, aluminum (Al) content, titanium (Ti) content and chlorine content in the special catalyst was carried out on ICP-AES, OPTRMA-3000 inductively coupled plasma emission spectrometer.
  • the particle size distribution of polyethylene particles is measured with a Malvern S particle size analyzer, using n-hexane or ethanol as a dispersant.
  • the DSC spectra of polyethylene particles are measured by TA Q2000 Differential Scanning Calorimeter, and the heating and cooling rate is set to 10°C/min.
  • the viscosity-average molecular weight of polyethylene particles is measured by a high-temperature viscometer. Generally, 2.5-2.8 mg of sample is weighed and dissolved in 15 mL of decalin. The calculation formula is as follows:
  • ⁇ 1 ( ⁇ sp +5In ⁇ r )/6c
  • ⁇ 2 ⁇ 2( ⁇ sp - ⁇ r ) ⁇ 0.5 /c
  • the measurement of polyethylene branched chain content is obtained by melting 13 C-NMR spectrum (Reference: J. of Polymer Science: Polymeo Physics Edition VOL. 11, 275-287, 1973)
  • the polymer 13 C-NMR spectrum is measured on Agilent DD2 600MHz solid system With a high temperature wide cavity magic angle rotating attachment, the measurement is performed at 140 °C, and the cumulative time of each sample measurement is more than 16 hours to meet the measurement accuracy of more than 1 branch/100,000 carbons.
  • the solid is precipitated to obtain the catalyst precursor slurry; the temperature of the catalyst precursor slurry is lowered to below -30°C, and 1L of monochlorodiethylaluminum is slowly added dropwise to contact the reaction for 2h , Then control the heating rate to 1°C/min, raise the temperature to 85°C and react for 4h; again lower the temperature to below -30°C, add dropwise 1492g titanium alkyl complex 3 in 5L hexane solution for complexation reaction for 1h, then control the heating The speed is 1°C/min, the temperature is raised to 85°C and the reaction is 4h.
  • the concentration of the slurry catalyst is calibrated to 135g/L, and the titanium content is determined to be 6.0wt%, the magnesium content is preferably 17.0wt%, and the aluminum content is preferably 2.5wt%. The content is 48.5 wt%, and the median diameter (d50) is 0.65 ⁇ m.
  • the filter cake obtained is added with hexane to obtain 10L slurry type ultra-high activity catalyst CAT-2, take 100mL of the slurry catalyst and dry to obtain a solid catalyst mass of 13.2g, so the calibration slurry catalyst concentration is 132g/L, the measured titanium content is 6.1wt%, the magnesium content is preferably 17.5% by weight, and the aluminum content is preferably 2.9 wt%, the chlorine content is 49.5% by weight, and the median diameter (d50) is 0.70 ⁇ m.
  • Type ultra-high activity catalyst CAT-4 take 100mL of the slurry catalyst and dry it to obtain a solid catalyst mass of 10.5g, so the concentration of the slurry catalyst is calibrated to 105g/L, the measured titanium content is 6.8wt%, and the magnesium content is preferably 17.6wt%
  • the aluminum content is preferably 2.9 wt%, the chlorine content is 55.2 wt%, and the median diameter (d50) is 0.70 ⁇ m.
  • the filter cake is settled and filtered. Add hexane to the filter cake.
  • the magnesium content is preferably 17.7 wt%
  • the aluminum content is preferably 3.3 wt%
  • the chlorine content is 48.8 wt%
  • the median diameter (d50) is 0.71 ⁇ m.
  • the 5L hexane solution of base complex 18 is complexed for 1h, and then the heating rate is controlled to 1°C/min, and the temperature is raised to 85°C for 4h. After the reaction time is over, the filter cake is settled and filtered, and the obtained filter cake is added with hexane to prepare a slurry , That is, 10L slurry-type ultra-high activity catalyst CAT-7 is obtained. Take 100mL of the slurry catalyst and dry to obtain a solid catalyst mass of 12.8g.
  • the concentration of the slurry catalyst is calibrated to 128g/L, and the titanium content is determined to be 6.5wt% and the magnesium content It is preferably 17.8% by weight, the aluminum content is preferably 3.5% by weight, the chlorine content is 52.2% by weight, and the median diameter (d50) is 0.80 ⁇ m.
  • the filter cake was settled and filtered. Add hexane to the filter cake.
  • the magnesium content is preferably 18.0% by weight
  • the aluminum content is preferably 3.0% by weight
  • the chlorine content is 49.0% by weight
  • the median diameter (d50) is 0.72 ⁇ m.
  • the filter cake is settled and filtered. Add hexane to the filter cake.
  • the magnesium content is preferably 17.6% by weight
  • the aluminum content is preferably 2.8% by weight
  • the chlorine content is 54.9% by weight
  • the median diameter (d50) is 0.76 ⁇ m.
  • the concentration of the slurry catalyst is calibrated to 122g/L, and the titanium content is determined to be 6.5wt%, and the magnesium content It is preferably 17.8% by weight, the aluminum content is preferably 3.5% by weight, the chlorine content is 56.1% by weight, and the median diameter (d50) is 0.80 ⁇ m.
  • the concentration of the slurry catalyst is calibrated to 115g/L, and the titanium content is determined to be 5.8wt%, and the magnesium content It is preferably 17.8% by weight, the aluminum content is preferably 3.5% by weight, the chlorine content is 55.3% by weight, and the median diameter (d50) is 0.80 ⁇ m.
  • the filter cake obtained is added with hexane to prepare a slurry to obtain a 10L slurry type super high Active catalyst CAT-13, take 100mL of the slurry catalyst and dry it to obtain a solid catalyst mass of 10.8g, so the concentration of the slurry catalyst is calibrated to 108g/L, and the measured titanium content is 5.0wt%, the magnesium content is preferably 19.8wt%, and the aluminum content Preferably, it is 3.3 wt%, the chlorine content is 54.8 wt%, and the median diameter (d50) is 0.82 ⁇ m.
  • the filter cake obtained is added to hexane to prepare a slurry, and then 10L slurry type ultra-high activity catalyst CAT is obtained.
  • 10L slurry type ultra-high activity catalyst CAT is obtained. -14. Take 100mL of the slurry catalyst and dry it to obtain a solid catalyst mass of 11.9g. Therefore, the concentration of the slurry catalyst is calibrated to 119g/L.
  • the measured titanium content is 5.2wt%
  • the magnesium content is preferably 17.3wt%
  • the aluminum content is preferably 3.8wt. %
  • the chlorine content is 53.8wt%
  • the median diameter (d50) is 0.87 ⁇ m.
  • Example 14 The operation was as in Example 14, and the ethylene polymerization reaction of Cat-7 catalyst under different conditions of ethylene pressure, temperature, and amount of triethylaluminum. The specific results are shown in Table 2.
  • Cat-7 catalyst for ethylene polymerization under different ethylene pressure, hydrogen partial pressure and temperature conditions Cat-7 catalyst for ethylene polymerization under different ethylene pressure, hydrogen partial pressure and temperature conditions.
  • the 30L stainless steel stirred polymerization vessel replaced with N 2 twice, using conditions under nitrogen pressure 0.4MPa 8kg AlEt 3 in hexane to burst into the kettle, controlling the stirring speed of 250 rpm, using conditions under nitrogen pressure 0.4MPa hexane to 100mg 2kg Cat-7 is rushed into the polymerization kettle, activated for 10 minutes, then the nitrogen pressure in the kettle is removed, the hydrogen and ethylene in the system are controlled to reach their respective partial pressures, so that the pressure in the kettle reaches the preset pressure, and the temperature in the kettle is controlled to the preset temperature After polymerization for 2 hours, stop feeding ethylene to lower the temperature in the kettle to below 50°C, vent the gas in the system and discharge the material, and obtain granular polymer after drying.
  • Table 3 The specific results are shown in Table 3.
  • the polymer P1 was subjected to wet-process production of high-strength, high-modulus, ultra-high molecular weight polyethylene fiber spinning research, and spinning experiments were conducted with reference to mature spinning conditions. The results showed good spinnability, low screw outlet pressure, and high draft ratio in the post-spinning process.
  • the finished fiber is soft and bright in color.
  • the average tensile strength of the finished product can reach 38.4cN/dtex., and the maximum modulus can reach 1684cN/dtex.
  • the specific results of each embodiment are shown in the following table, and the tensile strain test result graph is shown in FIG. 11.
  • the photo of the prepared cast piece is shown in FIG. 10.
  • Sample JH-60 has a small bulk density, narrow particle size distribution, viscosity-average molecular weight of 600,000, good blending with white oil, high solubility, and the prepared cast sheet has good appearance and transparency.
  • the produced diaphragm has excellent tensile strength and puncture strength, and has the characteristics of high porosity and low air permeability, which meets the requirements of experimental line diaphragm production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本发明提供了一类特高至超高分子量聚乙烯微粒及其制造用催化剂,具体地,本发明提供了具有如下所示特性的微粒:(a)粘均分子量为50-1000万范围;(b)重量比至少95%以上通过150微米的网状筛,粒中径(d50)为40μm≤d50≤80μm;(c)骨架碳原子支链含量<1/100,000C;(d)一次结晶度>70%,二次结晶度>55%。本发明还提供了制备该类高分子量聚乙烯微粒的专用催化剂及其制备方法,以及用所述催化剂制备得到的特高至超高分子量聚乙烯。

Description

一类特高至超高分子量聚乙烯制造用催化剂 技术领域
本发明涉及一类适用于制造特高/超高分子量聚乙烯纤维以及锂电池隔膜的特高至超高分子量聚乙烯微粒的催化剂。更具体地涉及一类制造无支化、高结晶度、粘均分子量50-1000万、粒径分布集中在(d50)为40μm≤d50≤80μm聚乙烯微粒的催化剂,其制备方法以及使用该催化剂催化乙烯聚合方法。
背景技术
特高/超高分子量聚乙烯是一类具有高抗冲击性,极高的耐磨性,高耐腐蚀性,自润滑性,耐环境应力开裂能力,安全卫生等优点的热塑性工程塑料,广泛用于纺织,造纸,运输,包装,机械,化工,采矿,石油,农业,医疗,精细过滤,电池隔膜等诸多领域。
目前,用于特高/超高分子量聚乙烯生产的催化剂主要有Ziegler-Natta型,铬系,茂金属,非茂金属等,但是应用最为广泛,技术最为成熟的仍然是Z-N催化剂。现有的技术中,该类催化剂一般都是化学法控制氯化镁载体的粒径,并以此来控制催化剂的粒径,从而得到可控的聚合物粒径。特高/超高分子量聚乙烯催化剂的专利已经有很多报道,现有的技术主要集中在改善催化剂的活性,聚合物的分子量及聚合物的堆密度以及催化剂制备过程中助剂的使用以及操作步骤的控制等,而且通常用该类方法制备的催化剂粒径大部分在5微米(D0.5)以上,所生产的特高/超高分子量聚合物粒径范围(D50)主要集中在120微米到200微米之间,或600微米以上的粗大粒子,上述方法制备的催化剂都不能得到更细粒径的聚合物。专利CN200580039390.2公开了乙烯类聚合物微粒及其制造用催化剂,其聚合物微粒重量比至少95%以上通过37微米的网状筛,以激光衍射散射法测定的中径(d50)为3μm≤d50≤25μm,聚合物需要脱除无机物杂质的繁琐步骤,而且更为不利的是,该专利方法报道的催化剂的制备过程必须要使用管制溶剂甲苯作为溶剂才可能获得化合物的均一溶液。
综上所述,本领域尚缺乏一种制备过程环保、催化活性高的超细特高/超高分子量聚乙烯催化剂。
发明内容
本发明提供了一类无支化、高结晶度、粘均分子量50-1000万、粒径分布集中在(d50)为40μm≤d50≤80μm聚乙烯微粒,同时提供了相应的催化剂技术,该催化剂技术催化乙烯聚合效率高,活性可以高达200Kg PE/g Cat.。
本发明的第一方面,提供了一种催化剂,其特征在于,所述的催化剂用于制备特高至超高分子量聚乙烯微粒;且所述的催化剂中,镁含量为10-30wt%,铝含量2-4wt%,钛含量5-10wt%,氯含量30-70wt%;其中镁含量优选为12-18wt%,铝含量优选2.5-3.5wt%,钛含量优选6-8wt%。
在另一优选例中,所述的催化剂是通过如下步骤制备的:
(a)氮气保护条件下,将无水氯化镁加入到惰性烃类溶剂中,搅拌条件下加入相对于氯化镁2-6当量的C1-C10的醇进行接触,体系保持至60-120℃形成均一溶液,然后,降温至-30℃以下,控制搅拌转速和超重力反应器转速得到前体浆液P-I;其中,所述的降温速度优选1-10℃/min;更优选1-5℃/min,最优选1℃/min;
(b)步骤(a)得到的前体浆液I在低于-30℃的条件下与烷基铝接触1-2h,随后在60-120℃保持2-6h得到前体浆液P-II;
(c)步骤(b)得到的前体浆液II在-30℃以下与钛化合物的惰性烃类溶液接触0.5-1h后升温并在60-120℃保持2-6h,得到催化剂浆液C-III;升温速度优选1-10℃/min;
(d)将步骤(c)得到的催化剂浆液C-III过滤;
和任选的(e)将步骤(d)得到的催化剂浆液干燥得到催化剂粉末。
在另一优选例中,所述催化剂的制备步骤中不使用甲苯、卤代烃或芳香烃。
在另一优选例中,所述的钛化合物是TiCl 4或TiR 4,其中R是C1-C6的烷基、烯丙基、苄基或NMe 2;所述的烷基优选甲基、乙基、丙基或丁基。
在另一优选例中,所述的钛化合物为具有如下式I-IV的一种或几种所示的结构:
Figure PCTCN2021101907-appb-000001
其中,X为SR 5或P(R 5) 2
R 1、R 2、R 3、R 4、R 5各自独立地为取代或未取代的选自下组的基团:C1-C6烷基、C2-C6烯基、C3-C8环烷基、C6-C10芳基、卤代的C3-C8环烷基、5-7元杂芳基;
或R 3和R 4,以及与其相连的碳原子共同形成5-7元的饱和、部分不饱和或芳香性的碳环或杂环;
R 6选自下组:C1-C6的烷基、烯丙基、苄基、C1-C6的硅烷基;所述的烷基优选甲基、乙基、丙基或丁基;
R 7选自下组:C1-C6烷基、C2-C6烯基或C3-C8环烷基;
其中,所述的杂芳基的骨架上具有1-3个选自下组的杂原子:N、S(O)、P或O;
除非特别说明,所述的“取代”是指被选自下组的一个或多个(例如2个、3个、4个等)取代基所取代:卤素、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基、卤代的C1-C6烷氧基。
在另一优选例中,所述的钛化合物选自下组:
Figure PCTCN2021101907-appb-000002
Figure PCTCN2021101907-appb-000003
在另一优选例中,所述催化剂微粒的粒径d 50为0.5μm≤d 50≤1μm。
本发明的第二方面,提供了一种如本发明第一方面所述的催化剂的制备方法,所述方法包括步骤:
(a)氮气保护条件下,将无水氯化镁加入到惰性烃类溶剂中,搅拌条件下加入相对于氯化镁2-6当量的C1-C10的醇进行接触,体系保持至60-120℃形成均一溶液,然后,降温至-30℃以下,控制搅拌转速和超重力反应器转速得到前体浆液P-I;其中,所述的降温速度优选1-10℃/min;更优选1-5℃/min,最优选1℃/min;
(b)步骤(a)得到的前体浆液I在低于-30℃的条件下与烷基铝接触1-2h,随后在60-120℃保持2-6h得到前体浆液P-II;
(c)步骤(b)得到的前体浆液II在-30℃以下与钛化合物的惰性烃类溶液接触0.5-1h后升温并在60-120℃保持2-6h,得到催化剂浆液C-III;升温速度优选1-10℃/min;
(d)将步骤(c)得到的催化剂浆液C-III过滤;
和任选的(e)将步骤(d)得到的催化剂浆液干燥得到催化剂粉末。
在另一优选例中,所述的惰性烃类溶剂选自下组:C5-C30的烷烃,环烷烃或者混合烷烃,优选C5-C8的烷烃,环烷烃或者混合烷烃,优选己烷,庚烷,辛烷,壬烷,癸烷,最优选己烷,癸烷。
在另一优选例中,所述的催化剂制备中,步骤(a)所述的C1-C10的醇优选甲醇、乙 醇、正丙醇、正丁醇、正戊醇、正己醇、2-乙基己醇或正辛醇。
在另一优选例中,所述的催化剂制备中,步骤(a)中搅拌转速为50-150rpm之间,超重力反应器转速为10000-50000rpm之间;优选搅拌转速80-150rpm,超重力反应器转速3000-45000rpm,更优选搅拌转速80-100rpm,超重力反应器转速3000-40000rpm。
在另一优选例中,所述的催化剂制备中,步骤(b)中的烷基铝选自下组:二氯乙基铝、二乙基氯化铝、三乙基铝、三异丁基铝、倍半氯化乙基铝或倍半氯化丁基铝。
在另一优选例中,所述的催化剂制备中,步骤(c)中钛化合物与氯化镁的摩尔比可以为0.3-0.8:1,优选0.4-0.6:1,最优选0.5:1。
本发明的第三方面,提供了一种聚烯烃制备方法,所述的方法包括:用如本发明第一方面所述的催化剂催化烯烃聚合,得到所述的聚烯烃。
在另一优选例中,所述的烯烃为乙烯。
在另一优选例中,所述的聚烯烃为特高至超高分子量聚乙烯微粒;较佳地,所述的微粒中,高分子链上的烷烃支链数<1/100,000C(即,100,000个碳原子中具有的烷烃支链<1)。
本发明的第四方面,提供了一种特高分子量聚乙烯微粒,其特征在于,所述的微粒具有如下特征:
(a)粘均分子量为50万-150万克/摩尔;更优的,特高分子量聚乙烯粘均分子量为80万-150万克/摩尔;
(b)≥95wt%可通过100微米的网状筛,d 50为40μm≤d 50≤80μm;更优选地,d 50为40μm≤d 50≤60μm。
在另一优选例中,所述的微粒中,高分子链上的烷烃支链数<1/100,000C(即,100,000个碳原子中具有的烷烃支链<1)。
在另一优选例中,所述的微粒的一次结晶度>70%,且二次结晶度>55%;其中,所述的一次结晶度是指第一次升温测试的结晶度,二次是指第二次升温测试的结晶度。
在另一优选例中,所述的特高分子量聚乙烯微粒是由催化剂及助催化剂在40-80℃和0.2-2.0MPa乙烯压力下催化乙烯聚合得到的。优选乙烯压力为0.2-1.5Mpa。
在另一优选例中,所述的特高分子量聚乙烯微粒是由催化剂及助催化剂在40-80℃、乙烯分压为0.2-1.5MPa、氢气分压为0.01-0.2MPa下催化乙烯聚合得到;氢气分压和乙烯分压的比例优选1:3-50,更优选1:5-30。
在另一优选例中,所述的微粒≥95wt%可通过100微米的网状筛,且d 50为40μm≤d 50≤60μm。
在另一优选例中,所述微粒的d 90为90μm≤d 90≤100μm。
本发明的第五方面,提供了一种如本发明第四方面所述的特高分子量聚乙烯微粒,其特征在于,所述的特高分子量聚乙烯微粒的制备方法包括步骤:用催化剂及助催化剂与乙烯接触进行催化聚合反应,从而得到所述的特高分子量聚乙烯微粒;
其中,所述的催化剂为催化剂微粒,或包括所述的催化剂微粒的催化剂浆液;所述催化剂微粒的粒径d 50为0.5μm≤d 50≤1μm,且所述催化剂的镁含量为10-30重量份,铝含量为2-4重量份,钛含量为5-10)重量份,氯含量30-70重量份。
在另一优选例中,所述的催化剂活性高于50千克聚合物/克催化剂。
在另一优选例中,所述催化剂料液中的催化剂微粒浓度为100-150g/L。
在另一优选例中,所述的催化剂是通过以下方法制备的:
(a)惰性气体保护条件下,将无水氯化镁加入到惰性烃类溶剂和≥2当量氯化镁的C1-C10的醇(优选2-6当量的C1-C10的醇)的混合液中进行接触,在60-120℃下反应形成均一溶液,然后降温至-30℃以下,在超重力反应器中进行搅拌,得到前体浆液P-I;其中所述的降温速度优选1-10℃/min;更优选1-5℃/min,最优选1℃/min;上述反应中,以无水氯化镁的用量作为1当量;
(b)步骤(a)得到的前体浆液P-I在低于-30℃的条件下与烷基铝接触至少1h,随后升温至60-120℃保持2-6h得到前体浆液P-II;其中所述的升温速度优选1-10℃/min;
(c)将步骤(b)得到的前体浆液P-II降温至-30℃以下,与钛化合物的惰性烃类溶液接触0.5-3h后,升温至60-120℃保持2-6h,得到催化剂浆液C-III;其中所述的降温速度优选1-10℃/min,所述的升温速度优选1-10℃/min;
(d)将步骤(c)得到的催化剂浆液C-III过滤,得到催化剂。
在另一优选例中,所述的催化剂的制备方法还包括步骤:(e)将步骤(d)得到的催化剂干燥,得到催化剂粉末。
本发明的第六方面,提供了一种特高分子量聚乙烯微粒,所述的微粒具有如下特征:
(a)粘均分子量为50万-150万克/摩尔;更优的,特高分子量聚乙烯粘均分子量为80万-150万克/摩尔;
(b)≥95wt%可通过100微米的网状筛,d 50为40μm≤d 50≤80μm;更优选地,d 50为40μm≤d 50≤60μm。
在另一优选例中,所述的微粒中,高分子链上的烷烃支链数<1/100,000C(即,100,000个碳原子中具有的烷烃支链<1)。
在另一优选例中,所述的微粒的一次结晶度>70%,且二次结晶度>55%;其中,所述的一次结晶度是指第一次升温测试的结晶度,二次是指第二次升温测试的结晶度。
在另一优选例中,所述的特高分子量聚乙烯微粒是由催化剂及助催化剂在40-80℃和0.2-2.0MPa乙烯压力下催化乙烯聚合得到的。优选乙烯压力为0.2-1.5Mpa。
在另一优选例中,所述的特高分子量聚乙烯微粒是由催化剂及助催化剂在40-80℃、乙烯分压为0.2-1.5MPa、氢气分压为0.01-0.2MPa下催化乙烯聚合得到;氢气分压和乙烯分压的比例优选1:3-50,更优选1:5-30。
在另一优选例中,所述的微粒≥95wt%可通过100微米的网状筛,且d 50为40μm≤d 50≤60μm。
在另一优选例中,所述微粒的d 90为90μm≤d 90≤100μm。
本发明的第七方面,提供了一种如本发明第六方面所述的特高分子量聚乙烯微粒,所述的特高分子量聚乙烯微粒的制备方法包括步骤:用催化剂及助催化剂与乙烯接触进行催化聚合反应,从而得到所述的特高分子量聚乙烯微粒;
其中,所述的催化剂为催化剂微粒,或包括所述的催化剂微粒的催化剂浆液;所述 催化剂微粒的粒径d 50为0.5μm≤d 50≤1μm,且所述催化剂的镁含量为10-30重量份,铝含量为2-4重量份,钛含量为5-10重量份,氯含量30-70重量份。
在另一优选例中,所述的催化剂活性高于50千克聚合物/克催化剂。
在另一优选例中,所述催化剂料液中的催化剂微粒浓度为100-150g/L。
在另一优选例中,所述的催化剂是通过以下方法制备的:
(a)惰性气体保护条件下,将无水氯化镁加入到惰性烃类溶剂和≥2当量氯化镁的C1-C10的醇(优选2-6当量的C1-C10的醇)的混合液中进行接触,在60-120℃下反应形成均一溶液,然后降温至-30℃以下,在超重力反应器中进行搅拌,得到前体浆液P-I;其中所述的降温速度优选1-10℃/min;更优选1-5℃/min,最优选1℃/min;上述反应中,以无水氯化镁的用量作为1当量;
(b)步骤(a)得到的前体浆液P-I在低于-30℃的条件下与烷基铝接触至少1h,随后升温至60-120℃保持2-6h得到前体浆液P-II;其中所述的升温速度优选1-10℃/min;
(c)将步骤(b)得到的前体浆液P-II降温至-30℃以下,与钛化合物的惰性烃类溶液接触0.5-3h后,升温至60-120℃保持2-6h,得到催化剂浆液C-III;其中所述的降温速度优选1-10℃/min,所述的升温速度优选1-10℃/min;
(d)将步骤(c)得到的催化剂浆液C-III过滤,得到催化剂。
在另一优选例中,所述的催化剂的制备方法还包括步骤:(e)将步骤(d)得到的催化剂干燥,得到催化剂粉末。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1是粘均分子量150-1000万代表性聚合物粒度分布报告;
图2是粘均分子量50-150万代表性聚合物粒度分布报告;
图3利用超高活性聚乙烯催化剂生产的超低支化度超高分子量聚乙烯P1(实施例16,批次1)的高温碳谱,其中,100000个碳中支链数目小于1;
图4市售超高分子量聚乙烯P2(进口的Ticona公司生产的4150)的高温碳谱;其中,支链数目为18个/100000个碳;
图5市售超高分子量聚乙烯P3(燕山石化生产料GK03)的高温碳谱,其支链数目为12个/100000个碳;
图6是利用超高活性聚乙烯催化剂生产的超低支化度超高分子量聚乙烯P1(实施例16,批次1)的DSC谱图,一次结晶度为77.0%,二次结晶度为63.4%;
图7市场售超高分子量聚乙烯P2(进口的Ticona公司生产的4150)的DSC谱图,一次结晶度为68.8%,二次结晶度为58.3%;
图8市场售超高分子量聚乙烯P3(燕山石化生产料GK03)的DSC谱图,一次结晶度为63.8%,二次结晶度为54.8%;
图9是利用该聚乙烯催化剂生产的超低支化度超高分子量聚乙烯P1(实施例16,批次1)的SEM电镜图片;
图10为实施例21的铸片照片;
图11为实施例20中所得到的产物的拉伸应变测试结果图。
具体实施方式
本发明人经过长期而深入的研究,制备得到了一种适用于制备粒径降低的超高分子量聚乙烯催化剂。此类催化剂的制备无需使用甲苯等有毒有害溶剂,且制备得到的聚乙烯无支化、高结晶度、粘均分子量50-1000万、粒径分布均一(集中在(d50)为40μm≤d50≤80μm)且≥95wt%可通过150微米的网状筛。基于上述发现,发明人完成了本发明。
聚乙烯催化剂及其制备
本发明提供了一种可应用于生产上述特高至超高分子量聚乙烯的高活性专用催化剂,所述的催化剂的制备包括步骤(a)-(d),和任选的步骤(e):
(a)惰性气体保护条件下,将无水氯化镁加入到惰性烃类溶剂中,搅拌条件下加入≥2当量氯化镁的C1-C10的醇进行接触,体系保持至60-120℃形成均一溶液,然后,降温至-30℃以下,控制搅拌转速和超重力反应器转速得到前体浆液P-I;其中,所述的降温速度优选1-10℃/min;所述的惰性气体优选氮气;优选2-6当量的C1-C10的醇;更优选2-4当量;
(b)步骤(a)得到的前体浆液I在低于-30℃的条件下与烷基铝接触1-2h,随后在60-120℃保持2-6h得到前体浆液P-II;
(c)步骤(b)得到的前体浆液II在-30℃以下与钛化合物的烃类溶液接触0.5-1h后升温并在60-120℃保持2-6h,得到催化剂浆液C-III;升温速度优选1-10℃/min;
(d)将步骤(c)得到的催化剂浆液C-III过滤;
(e)将步骤(d)得到的催化剂浆液干燥;
所述的催化剂制备过程中,所述的烃类溶剂可以是C5-C30的烷烃,环烷烃或者混合烷烃,优选C5-C8的烷烃,环烷烃或者混合烷烃,优选己烷,庚烷,辛烷,壬烷,癸烷,最优选己烷,癸烷。
所述的醇是指C1-C10的一元或者多元醇,其类型可以是脂肪醇,脂环醇或者芳香醇中的一种或者多种,优选脂肪醇,所述的醇可被任意C1-C10的烷基、C1-C10的烷氧基或卤素原子取代。
其中,所述的脂肪醇可以是甲醇、乙醇、丙醇、2-丙醇、丁醇、戊醇、2-甲基戊醇、2-乙基戊醇、己醇等,其中优选乙醇、丁醇、戊醇;
所述的芳香醇可以是苯甲醇、苯乙醇、甲基苯甲醇等,其中优选苯乙醇;
所述的脂环醇比如环己醇、环戊醇和环辛醇等,其中优选环己醇;
所述的烷基取代的醇比如甲基环戊醇、乙基环戊醇、丙基环戊醇、甲基环己醇、乙基环己醇、丙基环己醇、甲基环辛醇、乙基环辛醇等,其中优选甲基环己醇;
所述的卤素原子取代,是指醇的碳链上的一个或多个氢原子被卤素原子取代,典型的例子比如三氯甲醇、三氯乙醇和三氯己醇等,其中优选三氯甲醇。
所述的烷氧基取代,是指醇的碳链上的一个或多个氢原子被烷氧基取代,典型的例子比如乙二醇一乙醚、乙二醇一正丁醚和1-丁氧基-2-丙醇等,其中优选乙二醇一乙醚。
在这些醇中,最优选为乙醇和丁醇。
这些醇可以单独使用一种,也可以多种混合使用;其中,氯化镁和醇的摩尔比可以是1:2-6,优选1:4-5。
所述的步骤(a)中接触反应的温度为60-120℃,优选80-100℃。
所述的步骤(a)的溶解、再降温结晶析出的过程中,为了控制固体析出速度,降温速度为1-10℃/min,优选1-5℃/min,最优选1℃/min。在降温析出过程中,控制搅拌转速为50-150rpm之间,超重力反应器转速为10000-50000rpm之间,优选搅拌转速50rpm,超重力反应器转速45000rpm,更优选搅拌转速80rpm,超重力反应器转速40000rpm,最优选搅拌转速100rpm,超重力反应器转速38000rpm。
所述的步骤(b)中,所述的烷基铝可以是二氯乙基铝,二乙基氯化铝,三乙基铝,三异丁基铝,倍半氯化乙基铝,倍半氯化丁基铝,MAO,MMAO,优选二乙基氯化铝,三乙基铝,三异丁基铝,最优选二乙基氯化铝,其中,烷基铝和氯化镁的摩尔比可以为1-10:1,优选2-5:1,最优选2-3:1;在烷基铝接触反应的过程中,需要控制反应升温的速度,升温速度为1-10℃/min,优选1-5℃/min,最优选1℃/min;最后烷基铝接触反应的温度控制在60-120℃,优选80-100℃,在优选温度下反应时间控制在2-6h,优选4-5h。
本发明所述的催化剂,其特征在于,所述的钛化合物必须能够溶解于烃类溶剂中,例如,TiCl 4或Ti(R) 4,其中R是C1-C6的烷基、烯丙基、苄基或NMe 2;所述的烷基优选甲基、乙基、丙基或丁基;也可以为具有如下式I-IV的结构的任一化合物或几种化合物的混合物:
Figure PCTCN2021101907-appb-000004
其中,X为SR 5或P(R 5) 2
R 1、R 2、R 3、R 4、R 5各自独立地为取代或未取代的选自下组的基团:C1-C6烷基、C2-C6烯基、C3-C8环烷基、C6-C10芳基、卤代的C3-C8环烷基、5-7元杂芳基;
或R 3和R 4,以及与其相连的碳原子共同形成5-7元的饱和、部分不饱和或芳香性的碳环或杂环;
R 6选自下组:C1-C6的烷基、烯丙基、苄基、C1-C6的硅烷基;所述的烷基优选甲基、乙基、丙基或丁基;
R 7选自下组:C1-C6烷基、C2-C6烯基、C3-C8环烷基;
其中,所述的杂芳基的骨架上具有1-3个选自下组的杂原子:N、S(O)、P和O。
除非特别说明,所述的“取代”是指被选自下组的一个或多个(例如2个、3个、4个等)取代基所取代:卤素、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基、卤代的C1-C6烷氧基。
在本发明的优选实施方式中,所述的钛化合物选自下组:
Figure PCTCN2021101907-appb-000005
Figure PCTCN2021101907-appb-000006
无论使用哪一种钛化合物均不影响聚合物粒径的分布和分子量的控制,但是选择不同的钛化合物或者钛化合物的用量对于聚合活性有一定的影响。其中,优选TiCl 4,TiBn 4,Ti(NMe 2) 4,化合物3,4,8,14,16,17,18,20,22,24,25或27,最优选17,18。
钛配合物与氯化镁的摩尔比可以为0.3-0.8:1,优选0.4-0.6:1,最优选0.5:1;在第四副族金属钛的烷基配合物络合载钛反应的过程中,需要控制反应升温的速度,升温速度为1-10℃/min,优选1-5℃/min,最优选1℃/min;最后载钛接触反应的温度控制在60-120℃,优选80-100℃,在优选温度下反应时间控制在2-6h,优选4-5h。
本发明所述的催化剂,其制备过程中不需要使用芳烃或者卤代烃类溶剂,芳香烃溶剂根据《危险化学品安全管理条例》、《易制毒化学品管理条例》等管理规范,其使用对环境危害性也很大。本发明所述的催化剂,其制备过程可以在对环境更友好的烃类中完成,所述的烃类溶剂是C5-C30的烷烃,环烷烃或者混合烷烃,优选C5-C8的烷烃,环烷烃或者混合烷烃,优选己烷,庚烷,辛烷,壬烷,癸烷,最优选己烷,癸烷;其中的烃类溶剂可以回收并重复使用,因此,制备过程更复合环保要求。
本发明所述的催化剂,其特征在于,反应液过滤、加入烃类溶剂洗涤得到滤饼的过程中,所述的烃类溶剂可以是C5-C30的烷烃,环烷烃或者混合烷烃,优选C5-C8的烷烃,环烷烃或者混合烷烃,优选己烷,庚烷,辛烷,壬烷,癸烷,最优选己烷,过滤洗涤的次数可以是3-6次,优选为4-5次;
本发明所述的催化剂,可以在完成步骤(d)直接使用,条件是将步骤(c)得到的催化剂浆液C-III过滤后形成的滤饼与惰性烃类溶剂配成一定浓度的浆液催化剂,所述的惰性烃类溶剂可以是C5-C30的烷烃,环烷烃或者混合烷烃,优选C5-C8的烷烃,环烷烃或者混合烷烃,优选己烷,庚烷,辛烷,壬烷,癸烷,最优选己烷。
本发明所述的催化剂,也可以在完成步骤(e)后使用,条件是将步骤(c)得到的催化剂浆液C-III过滤后形成的滤饼进行真空干燥,得到粉末催化剂,真空干燥过程中真空 度大于-100Pa,干燥时间控制在4-6h。
特高/超高分子量聚乙烯微粒及其制备
本发明提供了一类特高至超高分子量聚乙烯微粒,所述的微粒至少满足以下特征:(a)粘均分子量为50-1000万范围;(b)重量比至少95%以上通过150微米的网状筛,以激光衍射散射法测定的中径(d 50)为40μm≤d 50≤80μm;
此外,聚合物分子结构还可以满足(c)高分子链上烷烃支链数<1/100,000C(通过熔融 13C NMR测定);进一步地,还满足条件(d)差示扫描量热法测定的一次结晶度>70%,二次结晶度>55%。其中,所述的一次结晶度是指差示扫描量热法中第一次升温测试的结晶度结果,二次是指第二次升温测试的结晶度结果。
按照市场上常用的区分方法,将粘均分子量为150-1000万克/摩尔的聚合物粒子称为超高分子量聚乙烯,50-150万克/摩尔的聚合物粒子称为特高分子量聚乙烯。本发明所述的特高至超高分子量聚乙烯微粒的分子量可以方便地通过聚合条件控制,即:
在催化剂和助催化剂存在下,在40-80℃、0.2-2.0MPa乙烯压力下催化乙烯聚合,从而得到上述的超高分子量聚乙烯粉料。在本申请的优选实施例中,得到超高聚乙烯微粒重量比至少95%以上通过150微米的网状筛,且50μm≤d50≤70μm。
在由催化剂及助催化剂在40-80℃、乙烯分压为0.2-1.5MPa、氢气分压为0.01-
0.2MPa下催化乙烯聚合得到特高分子量聚乙烯粉料;其中,氢气分压和乙烯分压的比例优选1:3-50,更优选1:5-30。
聚合得到的所述的特高分子量聚乙烯微粒中,重量比至少95%以上通过100微米的网状筛,40μm≤d50≤60μm,聚乙烯粘均分子量为50-150万;更优选地,聚乙烯粘均分子量为80-150万。
所述的制备方法中,催化剂的催化活性优选高于100千克聚合物/克催化剂;其中所述的催化剂组分中镁含量为10-30wt%,铝含量2-4wt%,钛含量5-10wt%,氯含量30-70wt%;其中镁含量优选为12-18wt%,铝含量优选2.5-3.5wt%,钛含量优选6-8wt%,氯含量35-60wt%。
相较于市售的特高至超高分子量聚乙烯,本发明所制备的特高至超高分子量聚乙烯微粒具有特征的链段分布,具体地,本发明的聚乙烯微粒支化度极低,100000个碳中支链数目小于1,而其他方法制备的市售特高或超高分子量聚乙烯则具有相对更高的支化度。例如,采用熔融 13C-NMR谱测定条件下(参考文献:J.of Polymer Science:Polymeo Physics Edition VOL.11,275-287,1973),市售Ticona公司生产的4150支链数目为18个/100000个碳,市售燕山石化生产料GK03支链数目为12个/100000个碳,而本申请的超低支化度超高分子量聚乙烯100000个碳中支链数目小于1(详见图3-图5)。
此外,本发明所制备的特高至超高分子量聚乙烯微粒具有相较于市售产品更高的结晶度。例如,本发明的超低支化度超高分子量聚乙烯P1(实施例16,批次1)的一次结晶度为77.0%,二次结晶度为63.4%。而在同等测试条件下,市售Ticona公司生产的4150一次结晶度为68.8%,二次结晶度为58.3%;市售燕山石化生产料GK03的一次结晶度为63.8%,二次结晶度为54.8%(见图6-图8)。
本发明所述的特高至超高分子量聚乙烯微粒的制备方法如下:
以上述的催化剂和烷基铝化合物为助催化剂组成的非均相催化体系与乙烯接触,在乙烯分压为0.2至10Mpa、0至100℃范围内反应1-18小时获得。催化剂与助催化剂的摩尔比是1:1-5000,一般可在1:10-2000时聚合2-6小时以便使催化活性、聚合物性质与生产成本均维持在较好的范围,优选1:20~500。
为控制较低的特高分子量的聚乙烯粒子,可以选择氢气分压为0.01-1MPa。
聚合一般在惰性有机溶剂中进行,例如烃类、环烃类或芳烃类,也可以在卤代溶剂中进行,如二氯乙烷、氯苯,为有利于反应器操作,惰性有机溶剂可使用小于12个碳的烃类。举例如下但并不仅限于此,丙烷、异丁烷、正戊烷、2-甲基丁烷、正己烷、环己烷、甲苯、氯苯、二氯乙烷及其混合物。
聚合温度维持在0至100℃,为达到好的催化活性与生产能力,可维持在40至80℃。
聚合乙烯分压为0.2至1.5Mpa或聚合乙烯分压为0.2至1.5Mpa/氢气分压为0.01-0.1MPa内操作可获得较好的反应器操作参数与聚合物。
助催化剂是烷基铝化合物,烷基铝氧烷或弱配位阴离子;所述的烷基铝化合物优选于AlEt 3,AlMe 3或Al(i-Bu) 3,AlEt 2Cl,烷基铝氧烷优选甲基铝氧烷,MMAO(修饰的甲基铝氧烷)等;弱配位阴离子优选于[B(3,5-(CF 3) 2C 6H 3) 4] --OSO 2CF 3或((3,5-(CF 3) 2)C 6H 3) 4B -。催化剂与助催化剂可以任何顺序加入体系使聚合进行,优选AlEt 3。聚合所使用的催化剂与助催化剂的比例可变,通常所述的聚合时间为1-18小时,催化剂与助催化剂的摩尔比是1:1-5000,一般可在1:10-2000时聚合2-6小时以便使催化活性、聚合物性质与生产成本均维持在较好的范围,优选1:20-500。
在本发明的优选实施方式中,所述的催化剂在40-80℃、0.2-0.8MPa乙烯压力下催化乙烯聚合得到超高分子量聚乙烯微粒,且聚合活性高于100Kg PE/g Cat.,聚合得到的粉料重量比至少95%以上通过150微米的网状筛,以激光衍射散射法测定的中径(d 50)为50μm≤d 50≤80μm,更优的,为50μm≤d 50≤70μm,聚乙烯粘均分子量150-1000万;更优的,聚乙烯粘均分子量150-800万。
本发明所述的催化剂在40-80℃、0.2-0.8MPa乙烯压力、0.01-0.1MPa氢气分压条件下催化乙烯聚合得到特高分子量聚乙烯微粒,聚合活性高于50Kg PE/g Cat.,聚合得到的粉料重量比至少95%以上通过100微米的网状筛,以激光衍射散射法测定的中径(d 50)为40μm≤d 50≤60μm,聚乙烯粘均分子量50-150万。
利用熔融 13C NMR可以分析其支化结构。分析结果证实,本发明提供的特高至超高分子量聚乙烯,聚合物中每100,000个骨架碳原子中含有支链数目小于1个。
本发明创制的特高至超高分子量聚乙烯微粒,其堆密度在0.35g/cm 3-0.5g/cm 3,可用于制备高强高模纤维以及锂电池隔膜等。而且,在分子量与市场上销售的纯超高分子量聚乙烯样品相近的情况下,具有更突出的加工性能。
特高/超高分子量聚乙烯制品
采用所述的特高至超高分子量聚乙烯制备高强高模纤维以及锂电池隔膜时,挤出 速度是其它相同分子量特高至超高分子量聚乙烯在同样加工条件下的2倍或2倍以上,常见2-5倍。
所述的超高分子量聚乙烯微粒在凝胶纺丝法制备高强高模超高分子量聚乙烯纤维的制备过程中具有螺杆压力低、后纺过程中可超倍拉伸倍数高的特点。
所述的高强高模纤维的强度可达到38.4cN/dtex,例如35-40cN/dtex;模量可达到1684cN/dtex,例如1200-1800cN/dtex。
所述的特高分子量聚乙烯微粒,可用于制备锂电池隔膜,且该隔膜具有优异的拉伸强度和穿刺强度,具有孔隙率高透气值低的特点。例如,采用粘均分子量为60万的特高分子量聚乙烯微粒,加工制备膜片厚度15.3μm,其拉伸强度(MD)115.3MPa,断裂伸长率(MD)162.7%,拉伸强度(TD)149.5MPa,断裂伸长率(TD)126.6%,穿刺强度360.2g,比穿刺强度23.5g/μm,孔隙率49.9%,透气值113.5S/100cc。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。
以下实施例显示了本发明的不同侧面,所给出的实施例包括聚乙烯微粒,专用催化剂、催化剂制备方法以及使用该催化剂的聚合方法。
专用催化剂中镁(Mg)含量、铝(Al)含量、钛(Ti)含量以及氯含量测定在ICP-AES,OPTRMA-3000电感耦合等离子体发射光谱仪上进行。
聚乙烯微粒的粒度分布采用Malvern S型粒度分析仪测定,使用正己烷或者乙醇中做分散剂。
聚乙烯微粒的DSC谱图采用TA Q2000型差示扫描量热仪测定,升温和降温速度设定为10℃/min。
聚乙烯微粒的粘均分子量采用高温粘度仪进行测定,一般称取2.5-2.8mg样品,使用15mL十氢萘溶解,其计算公式如下:
η sp=t-t 0/t 0
η r=t/t 0
c=100*m(g)*ρ 135℃/V(ml)*ρ 25℃
η 1=(η sp+5Inη r)/6c
η 2=【2(η spr)】 0.5/c
【η】=(η 12)/2
M v=4.55×10 4×【η】 1.37
聚乙烯支链含量测量是利用熔融 13C-NMR谱得到的(参考文献:J.of Polymer Science:Polymeo Physics Edition VOL.11,275-287,1973)聚合物 13C-NMR谱在Agilent DD2 600MHz solid system带高温宽腔魔角旋转附件上,140℃下测定,每个样品测量累加时间大于16小时,以满足测量精度大于1个支链/100000个碳。
部分含[ONX]的三齿配体的合成方法参考:专利CN200610026766.2, 01126323.7,02110844.7,Hu W.et.al.,Organometallics 2004,23,1684-1688;Wang,C.et.al.Macromol.Rapid Commun.2005,26,1609–1614
实施例1
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,350g氯化镁,控制搅拌转速为100rpm,在85℃下反应2h至澄清溶液;以1℃/min的速度降温至-30℃以下,搅拌转速100rpm,超重力反应器转速38000rpm,固体析出得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加1492g钛的烷基配合物3的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤后,加入己烷得到10L浆液型超高活性催化剂CAT-1。取100mL该浆液催化剂经干燥得到固体催化剂质量为13.5g,故标定该浆液催化剂浓度为135g/L,测定钛含量为6.0wt%,镁含量优选为17.0wt%,铝含量优选2.5wt%,氯含量48.5wt%,中径(d50)为0.65μm。
Figure PCTCN2021101907-appb-000007
实施例2
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;开始设定降温速度为1℃/min降温至-30℃以下,搅拌转速100rpm,超重力反应器转速38000rpm,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加1660g钛的烷基配合物4的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷得到10L浆液型超高活性催化剂CAT-2,取100mL该浆液催化剂经干燥得到固体催化剂质量为13.2g,故标定该浆液催化剂浓度为132g/L,测定钛含量为6.1wt%,镁含量优选为17.5wt%,铝含量优选2.9wt%,氯含量49.5wt%,中径(d50)为0.70μm。
Figure PCTCN2021101907-appb-000008
实施例3
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;开始设定降温速度为1℃/min降温至-30℃以下,搅拌转速100rpm,超重力反应器转速38000rpm,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加1468g第四副族金属钛的烷基配合物8的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷即得到10L浆液型超高活性催化剂CAT-3,取100mL该浆液催化剂经干燥得到固体催化剂质量为12.0g,故标定该浆液催化剂浓度为120g/L,测定钛含量为6.4wt%,镁含量优选为17.8wt%,铝含量优选3.0wt%,氯含量51.3wt%,中径(d50)为0.77μm。
Figure PCTCN2021101907-appb-000009
实施例4
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;开始设定降温速度为1℃/min降温至-30℃以下,搅拌转速100rpm,超重力反应器转速38000rpm,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加1150g钛的烷基配合物14的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷配成浆液,即得到10L浆液型超高活性催化剂CAT-4,取100mL该浆液催化剂经干燥得到固体催化剂质量为10.5g,故标定该浆液催化剂浓度为105g/L,测定钛含量为6.8wt%,镁含量优选为 17.6wt%,铝含量优选2.9wt%,氯含量55.2wt%,中径(d50)为0.70μm。
Figure PCTCN2021101907-appb-000010
实施例5
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;开始设定降温速度为1℃/min降温至-30℃以下,搅拌转速100rpm,超重力反应器转速38000rpm,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加970g钛的烷基配合物16的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷即得到10L浆液型超高活性催化剂CAT-5,取100mL该浆液催化剂经干燥得到固体催化剂质量为11.5g,故标定该浆液催化剂浓度为115g/L,测定钛含量为6.3wt%,镁含量优选为17.2wt%,铝含量优选2.6wt%,氯含量51.6wt%,中径(d50)为0.61μm。
Figure PCTCN2021101907-appb-000011
实施例6
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;开始设定降温速度为1℃/min降温至-30℃以下,搅拌转速100rpm,超重力反应器转速38000rpm,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加653g第四副族金属钛的烷基配合物17的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷将滤饼配成浆液,即得到10L浆液型超高活性催化剂CAT-6,取100mL该浆液催化剂经干燥得到固体催化剂质量为10.1g,故标定该浆液催化剂浓度为101g/L,测定钛含量为6.2wt%,镁含量优选为17.7wt%,铝含量优选3.3wt%,氯含量48.8wt%,中径(d50)为0.71μm。
Figure PCTCN2021101907-appb-000012
实施例7
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;开始设定降温速度为1℃/min降温至-30℃以下,搅拌转速100rpm,超重力反应器转速38000rpm,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加813g第四副族金属钛的烷基配合物18的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷配成浆液,即得到10L浆液型超高活性催化剂CAT-7,取100mL该浆液催化剂经干燥得到固体催化剂质量为12.8g,故标定该浆液催化剂浓度为128g/L,测定钛含量为6.5wt%,镁含量优选为17.8wt%,铝含量优选3.5wt%,氯含量52.2wt%,中径(d50)为0.80μm。
Figure PCTCN2021101907-appb-000013
实施例8
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;开始设定降温速度为1℃/min降温至-30℃以下,搅拌转速100rpm,超重力反应器转速38000rpm,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加1227g第四副族金属钛的烷基配合物20的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷将滤饼配成浆液,即得到10L浆液型超高活性催化剂CAT-8,取100mL该浆液催化剂经干燥得到固体催化剂质量为10.3g,故标定该浆液催化剂浓度为103g/L,测定钛含量为6.9wt%,镁含量优选为18.0wt%,铝含量优选3.0wt%,氯含量49.0wt%,中径(d50)为0.72μm。
Figure PCTCN2021101907-appb-000014
实施例9
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;开始设定降温速度为1℃/min降温至-30℃以下,搅拌转速100rpm,超重力反应器转速38000rpm,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加1361g第四副族金属钛的烷基配合物22的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷将滤饼配成浆液,即得到10L浆液型超高活性催化剂CAT-9,取100mL该浆液催化剂经干燥得到固体催化剂质量为11.4g,故标定该浆液催化剂浓度为114g/L,测定钛含量为6.3wt%,镁含量优选为17.6wt%,铝含量优选2.8wt%,氯含量54.9wt%,中径(d50)为0.76μm。
Figure PCTCN2021101907-appb-000015
实施例10
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;开始设定降温速度为1℃/min降温至-30℃以下,搅拌转速100rpm,超重力反应器转速38000rpm,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加1183g钛的烷基配合物24的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷将滤饼配成浆液,即得到10L浆液型超高活性催化剂CAT-10,取100mL该浆液催化剂经干燥得到固体催化剂质量为11.0g,故标定该浆液催化剂浓度为110g/L,测定钛含量为6.9wt%,镁含量优选为17.7wt%,铝含量优选2.8wt%,氯含量53.1wt%,中径(d50)为0.66μm。
Figure PCTCN2021101907-appb-000016
实施例11
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;开始设定降温速度为1℃/min降温至-30℃以下,搅拌转速100rpm,超重力反应器转速38000rpm,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加1358g第四副族金属钛的烷基配合物25的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷配成浆液,即得到10L浆液型超高活性催化剂CAT-11,取100mL该浆液催化剂经干燥得到固体催化剂质量为12.2g,故标定该浆液催化剂浓度为122g/L,测定钛含量为6.5wt%,镁含量优选为17.8wt%,铝含量优选3.5wt%,氯含量56.1wt%,中径(d50)为0.80μm。
Figure PCTCN2021101907-appb-000017
实施例12
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;开始设定降温速度为1℃/min降温至-30℃以下,搅拌转速100rpm,超重力反应器转速38000rpm,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加1295g第四副族金属钛的烷基配合物27的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷配成浆液,即得到10L浆液型超高活性催化剂CAT-12,取100mL该浆液催化剂经干燥得到固体催化剂质量为11.5g,故标定该浆液催化剂浓度为115g/L,测定钛含量为5.8wt%,镁含量优选为17.8wt%,铝含量优选3.5wt%,氯含量55.3wt%,中径(d50)为 0.80μm。
Figure PCTCN2021101907-appb-000018
实施例13
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;开始设定降温速度为1℃/min降温至-30℃以下,搅拌转速100rpm,超重力反应器转速38000rpm,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加1000g四氯化钛的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷配成浆液,即得到10L浆液型超高活性催化剂CAT-13,取100mL该浆液催化剂经干燥得到固体催化剂质量为10.8g,故标定该浆液催化剂浓度为108g/L,测定钛含量为5.0wt%,镁含量优选为19.8wt%,铝含量优选3.3wt%,氯含量54.8wt%,中径(d50)为0.82μm。
实施例14
干燥氮气条件下,在30L不锈钢反应釜中加入15L己烷,1.5L正丁醇,混合均匀后再加入350g氯化镁,然后油浴升温至85℃,控制搅拌转速为100rpm,反应2h至澄清均一溶液;开始设定降温速度为1℃/min降温至-30℃以下,搅拌转速100rpm,超重力反应器转速38000rpm,析出固体得到催化剂前体浆液;将催化剂前体浆液降低温度至-30℃以下,缓慢滴加1L一氯二乙基铝接触反应2h,然后控制升温速度为1℃/min,升温至85℃反应4h;再次降温至-30℃以下,滴加TiBn 4的5L己烷溶液进行络合反应1h,然后控制升温速度为1℃/min,升温至85℃反应4h,反应时间结束后,沉降过滤,得到的滤饼加入己烷配成浆液,即得到10L浆液型超高活性催化剂CAT-14,取100mL该浆液催化剂经干燥得到固体催化剂质量为11.9g,故标定该浆液催化剂浓度为119g/L,测定钛含量为5.2wt%,镁含量优选为17.3wt%,铝含量优选3.8wt%,氯含量53.8wt%,中径(d50)为0.87μm。
实施例15
催化剂Cat-1至Cat-14乙烯聚合反应
将30L不锈钢搅拌聚合釜先后用N 2置换,0.4MPa氮气下利用8kg己烷把AlEt 3(10mL)加入釜内,控制搅拌转速250rpm,釜内温度预热到60℃左右,然后,使用0.4MPa氮气压力条件下利用2kg己烷把30mg Cat冲进聚合釜内,活化10min,然后卸去釜内氮气压力,再通入乙烯气体,使釜内压力达到0.4MPa,控制釜内温度为70℃,聚合2h后停止通入乙烯,用循环恒温油浴使釜内温度降至50℃以下, 放空体系中的气体并出料,干燥后得到颗粒状聚合物,具体结果如表1所示。
表1
Figure PCTCN2021101907-appb-000019
实施例16
操作如实施例14,催化剂Cat-7在不同乙烯压力、温度、三乙基铝用量条件下的乙烯聚合反应,具体结果如表2所示。
表2
Figure PCTCN2021101907-appb-000020
Figure PCTCN2021101907-appb-000021
实施例17
催化剂Cat-7在不同乙烯压力、氢气分压、温度条件下的乙烯聚合反应。
将30L不锈钢搅拌聚合釜用N 2置换两次,使用0.4MPa氮气压力条件下将8kg己烷把AlEt 3冲进釜内,控制搅拌转速250rpm,使用0.4MPa氮气压力条件下将2kg己烷把100mg Cat-7冲进聚合釜内,活化10min,然后卸去釜内氮气压力,控制体系中氢气和乙烯分别达到各自的分压,使釜内压力达到预设压力,控制釜内温度为预设温度,聚合2h后停止通入乙烯,使釜内温度降至50℃以下,放空体系中的气体并出料,干燥后得到颗粒状聚合物,具体结果如表3所示。
表3
Figure PCTCN2021101907-appb-000022
Figure PCTCN2021101907-appb-000023
实施例18工业化生产装置试生产实验
将7.5m 3不锈钢搅拌聚合釜用N 2置换三次,乙烯置换两次,加入3吨120号溶剂油,加入质量浓度10%的Et 3Al溶剂油溶液8.5kg,再用氮气一次性将催化剂Cat-7 60mL(约含8g固体催化剂)压入反应釜,卸去釜内氮气压力再通入乙烯并逐渐提高乙烯反应压力到0.35MPa,控制聚合反应温度波动区间65.5℃-66.5℃之间;聚合反应5.5小时后,停止通入乙烯,放料至过滤釜,在过滤釜中加油洗操作后,真空干燥约3h,放料包装得到产品聚乙烯微粒P1,具体结果见表4。
表4
Figure PCTCN2021101907-appb-000024
实施例19工业化生产装置试生产实验
将7.5m 3不锈钢搅拌聚合釜用N 2置换三次,乙烯置换两次,加入3吨120号溶剂油,加入质量浓度10%的Et 3Al溶剂油溶液8.5kg,再用氮气一次性将催化剂Cat-7 60mL(约含8g固体催化剂)压入反应釜,卸去釜内氮气压力再通入乙烯并逐渐提高乙烯反应压力到0.35MPa,控制聚合反应温度波动区间75.5℃-76.5℃之间;聚合反应5.5小时后,停止通入乙烯,放料至过滤釜,在过滤釜中加油洗操作后,真空干燥约3h,放料包装得到产品聚乙烯微粒,具体结果见表5。
表5
Figure PCTCN2021101907-appb-000025
Figure PCTCN2021101907-appb-000026
实施例20超高分子量聚乙烯湿法纺丝
将聚合物P1进行湿法生产高强高模超高分子量聚乙烯纤维纺丝研究,参照成熟纺丝条件进行纺丝实验,结果显示可纺性好,螺杆出口压力低,后纺过程中牵伸倍数高,成品纤维柔软,色泽光亮,成品的拉伸强度平均值可以达到38.4cN/dtex.,模量最高可以达到1684cN/dtex。各个实施例的具体结果如下表中所示,拉伸应变测试结果图如图11中所示。
Figure PCTCN2021101907-appb-000027
Figure PCTCN2021101907-appb-000028
实施例21特高分子量聚乙烯制备锂电池隔膜实验
1.隔膜铸片操作参数
Figure PCTCN2021101907-appb-000029
制备得到的铸片照片如图10中所示。
2.隔膜性能表
Figure PCTCN2021101907-appb-000030
样品JH-60堆积密度较小,粒径分布较窄,粘均分子量为60万,与白油的共混性 较好,溶解度较高,制备的铸片,表观形貌及透明性较好,生产的隔膜具有优异的拉伸强度和穿刺强度,具有孔隙率高透气值低的特点,符合实验线隔膜生产要求。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (17)

  1. 一种催化剂,其特征在于,所述的催化剂用于制备特高至超高分子量聚乙烯微粒;且所述的催化剂中,镁含量为10-30wt%,铝含量2-4wt%,钛含量5-10wt%,氯含量30-70wt%;其中镁含量优选为12-18wt%,铝含量优选2.5-3.5wt%,钛含量优选6-8wt%。
  2. 如权利要求1所述的催化剂,其特征在于,所述的催化剂是通过如下步骤制备的:
    (a)氮气保护条件下,将无水氯化镁加入到惰性烃类溶剂中,搅拌条件下加入相对于氯化镁2-6当量的C1-C10的醇进行接触,体系保持至60-120℃形成均一溶液,然后,降温至-30℃以下,控制搅拌转速和超重力反应器转速得到前体浆液P-I;其中,所述的降温速度优选1-10℃/min;更优选1-5℃/min,最优选1℃/min;
    (b)步骤(a)得到的前体浆液I在低于-30℃的条件下与烷基铝接触1-2h,随后在60-120℃保持2-6h得到前体浆液P-II;
    (c)步骤(b)得到的前体浆液II在-30℃以下与钛化合物的惰性烃类溶液接触0.5-1h后升温并在60-120℃保持2-6h,得到催化剂浆液C-III;升温速度优选1-10℃/min;
    (d)将步骤(c)得到的催化剂浆液C-III过滤;
    和任选的(e)将步骤(d)得到的催化剂浆液干燥得到催化剂粉末。
  3. 如权利要求2所述的催化剂,其特征在于,所述的钛化合物是TiCl 4或TiR 4,其中R是C1-C6的烷基、烯丙基、苄基或NMe 2;所述的烷基优选甲基、乙基、丙基或丁基。
  4. 如权利要求2所述的催化剂,其特征在于,所述的钛化合物为具有如下式I-IV的一种或几种所示的结构:
    Figure PCTCN2021101907-appb-100001
    其中,X为SR 5或P(R 5) 2
    R 1、R 2、R 3、R 4、R 5各自独立地为取代或未取代的选自下组的基团:C1-C6烷基、C2-C6烯基、C3-C8环烷基、C6-C10芳基、卤代的C3-C8环烷基、5-7元杂芳基;
    或R 3和R 4,以及与其相连的碳原子共同形成5-7元的饱和、部分不饱和或芳香性的碳环或杂环;
    R 6选自下组:C1-C6的烷基、烯丙基、苄基、C1-C6的硅烷基;所述的烷基优选甲基、乙基、丙基或丁基;
    R 7选自下组:C1-C6烷基、C2-C6烯基或C3-C8环烷基;
    其中,所述的杂芳基的骨架上具有1-3个选自下组的杂原子:N、S(O)、P或O;
    除非特别说明,所述的“取代”是指被选自下组的一个或多个(例如2个、3个、4个等)取 代基所取代:卤素、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基、卤代的C1-C6烷氧基。
  5. 如权利要求2所述的催化剂,其特征在于,所述的钛化合物选自下组:
    Figure PCTCN2021101907-appb-100002
    Figure PCTCN2021101907-appb-100003
  6. 如权利要求1所述的催化剂,其特征在于,所述催化剂微粒的粒径d 50为0.5μm≤d 50≤1μm。
  7. 一种如权利要求1所述的催化剂的制备方法,其特征在于,包括步骤:
    (a)氮气保护条件下,将无水氯化镁加入到惰性烃类溶剂中,搅拌条件下加入相对于氯化镁2-6当量的C1-C10的醇进行接触,体系保持至60-120℃形成均一溶液,然后,降温至-30℃以下,控制搅拌转速和超重力反应器转速得到前体浆液P-I;其中,所述的降温速度优选1-10℃/min;更优选1-5℃/min,最优选1℃/min;
    (b)步骤(a)得到的前体浆液I在低于-30℃的条件下与烷基铝接触1-2h,随后在60-120℃保持2-6h得到前体浆液P-II;
    (c)步骤(b)得到的前体浆液II在-30℃以下与钛化合物的惰性烃类溶液接触0.5-1h后升温并在60-120℃保持2-6h,得到催化剂浆液C-III;升温速度优选1-10℃/min;
    (d)将步骤(c)得到的催化剂浆液C-III过滤;
    和任选的(e)将步骤(d)得到的催化剂浆液干燥得到催化剂粉末。
  8. 一种聚烯烃制备方法,其特征在于,所述的方法包括:用如权利要求1-6任一所述的催化剂催化烯烃聚合,得到所述的聚烯烃。
  9. 一种特高分子量聚乙烯微粒,其特征在于,所述的微粒具有如下特征:
    (a)粘均分子量为50万-150万克/摩尔;更优的,特高分子量聚乙烯粘均分子量为80万-150万克/摩尔;
    (b)≥95wt%可通过100微米的网状筛,d 50为40μm≤d 50≤80μm;更优选地,d 50为40μm≤d 50≤60μm。
  10. 如权利要求9所述的特高分子量聚乙烯微粒,其特征在于,所述的微粒中,高分子链上的烷烃支链数<1/100,000C(即,100,000个碳原子中具有的烷烃支链<1)。
  11. 如权利要求1所述的特高分子量聚乙烯微粒,其特征在于,所述的特高分子量聚乙烯微粒是由催化剂及助催化剂在40-80℃和0.2-2.0MPa乙烯压力下催化乙烯聚合得到的。优选乙烯压力为0.2-1.5Mpa。
  12. 如权利要求1所述的特高分子量聚乙烯微粒,其特征在于,所述的微粒≥95wt%可通过100微米的网状筛,且d 50为40μm≤d 50≤60μm。
  13. 一种特高分子量聚乙烯微粒,其特征在于,所述的微粒具有如下特征:
    (a)粘均分子量为50万-150万克/摩尔;更优的,特高分子量聚乙烯粘均分子量为80万-150万克/摩尔;
    (b)≥95wt%可通过100微米的网状筛,d 50为40μm≤d 50≤80μm;更优选地,d 50为40μm≤d 50≤60μm。
  14. 如权利要求1所述的特高分子量聚乙烯微粒,其特征在于,所述的微粒中,高分子链上的烷烃支链数<1/100,000C(即,100,000个碳原子中具有的烷烃支链<1)。
  15. 如权利要求1所述的特高分子量聚乙烯微粒,其特征在于,所述的微粒的一次结晶度>70%,且二次结晶度>55%;其中,所述的一次结晶度是指第一次升温测试的结晶度,二次是指第二次升温测试的结晶度。
  16. 如权利要求1所述的特高分子量聚乙烯微粒,其特征在于,所述的特高分子量聚乙烯微粒是由催化剂及助催化剂在40-80℃和0.2-2.0MPa乙烯压力下催化乙烯聚合得到的。优选乙烯压力为0.2-1.5Mpa。
  17. 如权利要求1所述的特高分子量聚乙烯微粒,其特征在于,所述的微粒≥95wt%可通过100微米的网状筛,且d 50为40μm≤d 50≤60μm。
PCT/CN2021/101907 2020-06-23 2021-06-23 一类特高至超高分子量聚乙烯制造用催化剂 WO2021259337A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010585230.4 2020-06-23
CN202010583913.6A CN113912758B (zh) 2020-06-23 2020-06-23 一类超高分子量聚乙烯及其制备
CN202010585258.8A CN113912759B (zh) 2020-06-23 2020-06-23 一类特高分子量聚乙烯及其制备
CN202010585258.8 2020-06-23
CN202010585230.4A CN113831436B (zh) 2020-06-23 2020-06-23 一类特高至超高分子量聚乙烯制造用催化剂
CN202010583913.6 2020-06-23

Publications (2)

Publication Number Publication Date
WO2021259337A1 true WO2021259337A1 (zh) 2021-12-30
WO2021259337A9 WO2021259337A9 (zh) 2022-02-10

Family

ID=79282546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101907 WO2021259337A1 (zh) 2020-06-23 2021-06-23 一类特高至超高分子量聚乙烯制造用催化剂

Country Status (1)

Country Link
WO (1) WO2021259337A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102030844A (zh) * 2010-09-14 2011-04-27 中国科学院上海有机化学研究所 烯烃聚合催化剂及超低支化度超高分子量聚乙烯
WO2011050566A1 (zh) * 2009-10-26 2011-05-05 中国石油化工股份有限公司 负载型非茂金属催化剂、其制备方法及其应用
CN106279474A (zh) * 2016-08-19 2017-01-04 中国科学院化学研究所 增溶型超高分子量超细聚乙烯及其制备方法
CN106317273A (zh) * 2016-08-19 2017-01-11 中国科学院化学研究所 超高分子量超细聚乙烯粉体及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011050566A1 (zh) * 2009-10-26 2011-05-05 中国石油化工股份有限公司 负载型非茂金属催化剂、其制备方法及其应用
CN102030844A (zh) * 2010-09-14 2011-04-27 中国科学院上海有机化学研究所 烯烃聚合催化剂及超低支化度超高分子量聚乙烯
CN102219869A (zh) * 2010-09-14 2011-10-19 中国科学院上海有机化学研究所 一种烯烃聚合催化剂及超低支化度超高分子量聚乙烯
CN106279474A (zh) * 2016-08-19 2017-01-04 中国科学院化学研究所 增溶型超高分子量超细聚乙烯及其制备方法
CN106317273A (zh) * 2016-08-19 2017-01-11 中国科学院化学研究所 超高分子量超细聚乙烯粉体及其制备方法

Also Published As

Publication number Publication date
WO2021259337A9 (zh) 2022-02-10

Similar Documents

Publication Publication Date Title
JP6141286B2 (ja) エチレン重合体を合成するプロセス
WO2004055069A1 (en) Method for the preparation of olefin polymerisation catalyst support and an olefin polymerisation catalyst
JP5791671B2 (ja) オレフィン前重合を用いたプロピレンの重合方法
JPS63264606A (ja) オレフイン重合用固体触媒およびその製法
JPS6354004B2 (zh)
EP3480258B1 (en) Solid mao composition containing al2o3 and method for producing same
CN113831436B (zh) 一类特高至超高分子量聚乙烯制造用催化剂
TWI519346B (zh) 使用非經摻合之組分來形成齊格勒-納塔(ziegler-natta)觸媒之方法
WO2020107926A1 (zh) 一种生产超高分子量聚烯烃用催化剂及其制备方法和应用
US20130150540A1 (en) Catalyst component for polymerization of olefin and preparation method thereof
JPWO2012053261A1 (ja) エチレン系重合体粒子の製造方法ならびに該エチレン系重合体粒子から得られる延伸成形体
US20080027191A1 (en) Catalyst For Ethylene Polymerization, Preparation Thereof, And Method For Controlling The Polymerization Kinetic Behavior Of Said Catalyst
CN113912758B (zh) 一类超高分子量聚乙烯及其制备
EP2287212A1 (en) A catalyst component for ethylene polymerization, preparation thereof and a catalyst comprising the catalyst component
CN113845613B (zh) 一种高纯度超高分子量聚乙烯树脂及其生产工艺
JP2019533068A (ja) 超高分子量ポリエチレンを製造するための方法
CN113912759B (zh) 一类特高分子量聚乙烯及其制备
WO2021259337A1 (zh) 一类特高至超高分子量聚乙烯制造用催化剂
WO2012160574A2 (en) Controlled morphology high activity polyolefin catalyst system
CN114591455B (zh) 催化剂及其制备方法、烯烃聚合催化剂体系
WO2022062944A1 (zh) 一类低堆密度超高分子量聚乙烯微粉
CN113801253A (zh) 一种催化剂组分、固体钛催化剂、乙烯聚合催化剂及其应用和聚乙烯产品
JP6867187B2 (ja) ポリエチレン粒子及び成形体
US10808052B2 (en) Spherical supported transition metal catalyst
CN115490794B (zh) 一种超高分子量聚乙烯粉料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21830180

Country of ref document: EP

Kind code of ref document: A1