WO2022062548A1 - 存储器的制造方法和存储器 - Google Patents

存储器的制造方法和存储器 Download PDF

Info

Publication number
WO2022062548A1
WO2022062548A1 PCT/CN2021/103864 CN2021103864W WO2022062548A1 WO 2022062548 A1 WO2022062548 A1 WO 2022062548A1 CN 2021103864 W CN2021103864 W CN 2021103864W WO 2022062548 A1 WO2022062548 A1 WO 2022062548A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit line
layer
dummy bit
line contact
forming
Prior art date
Application number
PCT/CN2021/103864
Other languages
English (en)
French (fr)
Inventor
平尔萱
周震
张令国
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/487,622 priority Critical patent/US11856758B2/en
Publication of WO2022062548A1 publication Critical patent/WO2022062548A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/485Bit line contacts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Definitions

  • the embodiments of the present application relate to the field of semiconductors, and in particular, to a method for manufacturing a memory and a memory.
  • Memory is a memory component used to store programs and various data information. Random access memory is divided into static random access memory and dynamic random access memory.
  • a dynamic random access memory typically includes a capacitor, which is used to store charge representing the stored information, and a transistor connected to the capacitor, which is a switch that controls the flow of charge into and out of the capacitor.
  • the word line gives a high level, the transistor is turned on, and the bit line charges the capacitor.
  • the word line also gives a high level, the transistor is turned on, and the capacitor is discharged, so that the bit line obtains the read signal.
  • the technical problem solved by the embodiments of the present application is to provide a method for manufacturing a memory and a memory, so as to improve the performance of the memory.
  • embodiments of the present application provide a method for manufacturing a memory.
  • the method for manufacturing a memory includes: providing a substrate and a plurality of discrete dummy bit line contact layers, the substrate has a plurality of active regions, and each the dummy bit line contact layer is connected to the active region; a dummy bit line structure is formed on top of the dummy bit line contact layer; a sacrificial layer is formed that fills the area between adjacent dummy bit line structures, and The sacrificial layer is located on the side wall of the dummy bit line structure and the side wall of the dummy bit line contact layer; after the sacrificial layer is formed, the dummy bit line structure is removed to form a surface where the dummy bit line contact layer is exposed. through holes; removing the dummy bit line contact layer to form through holes
  • the material of the dummy bit line contact layer is different from the material of the dummy bit line structure.
  • the material of the dummy bit line contact layer includes silicon nitride, silicon oxynitride or silicon carbonitride.
  • the material of the dummy bit line structure includes silicon nitride, silicon oxynitride or silicon carbonitride.
  • the material of the bit line contact layer includes single crystal silicon.
  • the method of forming the bit line contact layer includes an epitaxial growth technique.
  • the step of forming the dummy bit line structure includes: forming a dummy bit line layer on the substrate, the dummy bit line layer covering the dummy bit line contact layer; on the dummy bit line layer A patterned mask layer is formed thereon; using the patterned mask layer as a mask, the dummy bit line layer is etched to form a dummy bit line structure.
  • the step of forming the patterned mask layer includes: forming a plurality of discrete cores on the dummy bit line layer; forming a top and sidewall covering the core and the dummy bit lines The sidewall film of the layer; the sidewall film is etched to form the sidewall layer located on the opposite sidewall of the core part; the core part is removed, and the sidewall layer is used as the patterned mask layer.
  • an etching selectivity ratio between the material of the dummy bit line structure and the material of the sacrificial layer is 5-15.
  • the material of the sacrificial layer includes silicon oxide.
  • the method before forming the sacrificial layer, further includes: forming a dielectric layer on the sidewalls of the dummy bit line structure and the dummy bit line contact layer, the material of the dielectric layer and the material of the sacrificial layer Different; the formed sacrificial layer is also located on the sidewall surface of the dielectric layer.
  • the material of the dielectric layer includes a low dielectric constant material.
  • a bit line conductive portion is formed on the bit line contact layer, and the step of forming the bit line conductive portion includes: forming a barrier layer on the bottom and sidewalls of the via holes on the bit line contact layer ; A conductive layer is formed on the upper surface of the barrier layer.
  • the method further includes: forming an insulating cap layer on top of the bit line conductive portion; after forming the insulating cap layer, removing the sacrificial layer; removing the sacrificial layer After layering, a protective layer is formed on the surface of the conductive part of the bit line and the insulating cap layer.
  • Embodiments of the present application further provide a memory manufactured by the aforementioned manufacturing method, comprising: a substrate and a plurality of discrete bit line contact layers, the substrate has a plurality of active regions, and each of the bit line contact layers is connected to The active region is electrically connected; the bit line conductive part is located on the top of the bit line contact layer.
  • a through hole is formed between the sacrificial layers; the through hole can be used as a filling area for the bit line contact layer, avoiding the removal of the dummy bit line structure by etching At the same time, damage or residual impurities are caused to the bit line contact layer, thereby improving the performance of the memory.
  • the resistance of the bit line contact layer formed by the epitaxial growth technique is lower, which reduces the resistance of the contact surface between the bit line contact layer and the active region, thereby increasing the operating speed of the memory.
  • the step of forming the patterned mask layer includes: forming a plurality of discrete core portions on the dummy bit line layer; forming a spacer film covering the top and sidewalls of the core portion and the dummy bit line layer; The sidewall film is etched to form sidewall layers of opposite sidewalls of the core layer; the core portion is removed, and the sidewall layer is used as a patterned mask layer.
  • the sidewall film is not formed by photolithography, but grown on the sidewall of the core part; in this way, the size of the sidewall layer can not be limited by the photolithography process, and by reducing the size of the sidewall layer, The size of the dummy bit line structure formed by using the spacer layer as a mask can be reduced, thereby reducing the size of the memory.
  • 1 to 17 are schematic structural diagrams corresponding to each step in the manufacturing method of the memory provided by the first embodiment of the present application;
  • FIG. 18 is a schematic structural diagram of a memory provided by a second embodiment of the present application.
  • an embodiment of the present application provides a method for manufacturing a memory, in which a dummy bit line structure is formed in a through hole surrounded by a dummy bit line contact layer and a sacrificial layer, and after the dummy bit line structure is subsequently removed, the dummy bit line structure is also removed.
  • the bit line contact layer is formed and the through hole is formed in the substrate, and the bit line contact layer is formed in the through hole; in this way, the damage to the bit line contact layer when the dummy bit line structure is removed by etching can be avoided, and the bit line contact layer can be avoided.
  • Non-volatile impurities remain, thereby improving the performance of the memory.
  • FIGS. 1 to 17 are schematic structural diagrams corresponding to each step in the manufacturing method.
  • a substrate 100 and a plurality of discrete dummy bit line contact layers 101 are provided, the substrate 100 has a plurality of active regions 102 , and each dummy bit line contact layer 101 is connected to the active region 102 .
  • the material of the substrate 100 includes silicon, germanium or other semiconductor materials.
  • the regions between adjacent active regions 102 are filled with first isolation layers 103 , and the first isolation layers 103 are used to isolate the plurality of active regions 102 .
  • the material of the first isolation layer 103 is an insulating material, such as silicon dioxide.
  • each dummy bit line contact layer 101 is located in the substrate 100 , and a part is higher than the surface of the substrate 100 .
  • the dummy bit line contact layer may also be located on the surface of the substrate.
  • the material of the dummy bit line contact layer 101 includes silicon nitride, silicon oxynitride or silicon carbonitride.
  • a second isolation layer 104 may also be formed on the surface of the substrate 100 .
  • the second isolation layer 104 fills the area between the discrete dummy bit line contact layers 101 for isolating a plurality of subsequent bit line contact layers.
  • the material of the second isolation layer 104 is an insulating material, such as silicon nitride.
  • the material of the second isolation layer 104 is different from that of the dummy bit line contact layer 101 .
  • a dummy bit line structure 117 is formed on top of the dummy bit line contact layer 101 .
  • the dummy bit line structure 117 is used to define the position and size of the subsequently formed bit line structure, that is, the size of the dummy bit line structure 117 is the same as that of the subsequently formed bit line structure. Since the dummy bit line structure 117 does not need to have conductive properties, an insulating material may be used as the material of the dummy bit line structure 117 .
  • the steps of forming the dummy bit line structure 117 include: forming a dummy bit line layer 105 on the substrate 100, the dummy bit line layer 105 covering the dummy bit line contact layer 101; forming a patterned mask layer 115 on the dummy bit line layer 105; Using the patterned mask layer 115 as a mask, the dummy bit line layer 105 is etched to form a dummy bit line structure 117 .
  • the dummy bit line structure 117 is formed by a double patterning (SADP) method.
  • SADP double patterning
  • a dummy bit line layer 105 is formed on a substrate 100 , and the dummy bit line layer 105 covers the dummy bit line contact layer 101 .
  • a bottom mask layer 106 and a core layer 109 are sequentially stacked on the dummy bit line layer 105 .
  • the underlying mask layer 106 includes: a first underlying mask layer 107 and a second underlying mask layer 108 .
  • the materials of the first underlying mask layer 107 and the second underlying mask layer 108 are different. Specifically, the material of the first underlying mask layer 107 may be silicon oxynitride, and the material of the second underlying mask layer 108 may be hydrogen-containing Silicon oxide.
  • the underlying mask layer may also be a single-layer structure.
  • the core layer 109 includes a first core layer 110 and a second core layer 111 .
  • the material of the first core layer 110 includes: silicon oxynitride.
  • the material of the second core layer 111 includes: containing silicon hydroxide.
  • the core layer may also be a single-layer structure.
  • a patterned photoresist layer 112 is formed on the core layer 109 .
  • the core layer 109 (refer to FIG. 1 ) is etched to form a plurality of discrete core portions 113 .
  • the core portion 113 has a double-layer structure, and in other embodiments, the core portion may also have a single-layer structure.
  • the patterned photoresist layer 112 is removed.
  • a spacer film 114 covering the top and sidewalls of the core portion 113 and the underlying mask layer 106 is formed.
  • the spacer film 114 is deposited by the atomic layer deposition technique; the thickness of the spacer film 114 formed by the atomic layer deposition technique is more uniform.
  • chemical vapor deposition, physical vapor deposition and other methods can be used to form the spacer film.
  • the material of the spacer film 114 is different from that of the core portion 113 , and may be silicon oxide, for example.
  • the spacer film 114 (refer to FIG. 3 ) is etched to form spacer layers 115 located on opposite sidewalls of the core portion 113 . Due to the etching load effect, the larger the etching area, the easier it is to be etched, and the spacer film 114 (refer to FIG. 3 ) deposited on the sidewall of the core portion 113 is not easily etched, thereby forming the spacer layer 115 .
  • the core portion 113 (refer to FIG. 4 ) is removed, and the spacer layer 115 is used as a patterned mask layer 115 .
  • the underlying mask layer 106 (refer to FIG. 4 ) is etched to form the patterned underlying mask layer 116 .
  • the patterned bottom mask layer 116 has a double-layer structure.
  • the patterned underlying mask layer can also be a single-layer structure.
  • the dummy bit line layer 105 (refer to FIG. 5 ) is etched to form a dummy bit line structure 117 .
  • the patterned bottom mask layer 116 is removed.
  • the patterned mask layer 115 (refer to FIG. 4 ) transfers the pattern to the dummy bit line structure 117 through the patterned underlying mask layer 116 . Therefore, the width of the dummy bit line structure 117 is the same as the width of the patterned mask layer 115. The smaller the width of the patterned mask layer 115 is, the smaller the width of the dummy bit line structure 117 is, and the smaller the size of the memory is. little.
  • the material of the dummy bit line structure 117 includes silicon nitride, silicon oxynitride or silicon carbonitride.
  • the material of the dummy bit line structure 117 is different from the material of the dummy bit line contact layer 101 .
  • the dummy bit line structure may not be formed by a double patterning process.
  • a single-layer hard mask layer is directly formed on the dummy bit line layer, and the hard mask layer is subjected to photolithography.
  • etching to form a plurality of discrete core portions on the dummy bit line layer forming a sidewall film covering the top and sidewalls of the core portion and the dummy bit line layer; etching the sidewall film to form opposite The sidewall layer of the sidewall is removed; the core part is removed, the sidewall layer is a patterned mask layer, and the dummy bit line layer is etched by using the patterned mask layer to form a dummy bit line structure.
  • a dielectric layer 118 is formed on the sidewalls of the dummy bit line structure 117 and the dummy bit line contact layer 101 .
  • the dielectric layer 118 can protect the bit line conductive portion and ensure the accuracy of the shape and size of the bit line conductive portion.
  • the material of the dielectric layer 118 includes a low dielectric constant material, and the low dielectric constant material can reduce the parasitic capacitance of the memory and improve the operating speed of the memory.
  • the process steps of forming the dielectric layer 118 include: referring to FIG. 7 , forming an initial dielectric film 128 on the surface of the second isolation layer 104 ; referring to FIG. 8 , removing the surface of the second isolation layer 104 and the dummy bits Initial dielectric film 128 on the top surface of line structure 117 (refer to FIG. 7 ).
  • a sacrificial layer 119 filling a region between adjacent dummy bit line structures 117 is formed, and the sacrificial layer 119 is located on the sidewalls of the dummy bit line structures 117 .
  • the sacrificial layer 119 also covers the surface of the second isolation layer 104 and the sidewall surface of the dielectric layer 118 .
  • the sacrificial layer may also be located on the sidewall of the dummy bit line contact layer.
  • the material of the sacrificial layer 119 is different from the material of the dielectric layer 118, and may be silicon oxide, for example.
  • the dummy bit line structure 117 (refer to FIG. 9 ) is removed to form a via hole exposing the dummy bit line contact layer 101 .
  • the etching rate of the dummy bit line structure 117 is greater than the etching rate of the sacrificial layer 119 , and the etching selectivity ratio between the material of the dummy bit line structure 117 and the material of the sacrificial layer 119 is 5-15, for example, 8 , 10, 13.
  • the dummy bit line structure 117 is removed by wet etching, and the etching solvent is a hot phosphoric acid solution. In other embodiments, the dummy bit line structure may also be removed by dry etching.
  • the dummy bit line contact layer 101 (refer to FIG. 10 ) is removed to form via holes in the substrate 100 (refer to FIG. 5 ).
  • the dummy bit line contact layer 101 is removed by wet etching. In other embodiments, dry etching may also be used to remove the dummy bit line contact layer.
  • bit line contact layer 125 filling the via hole in the substrate 100 (refer to FIG. 5 ) is formed, and the bit line contact layer 125 is electrically connected to the active region 102 .
  • the epitaxial growth technique is used to form the bit line contact layer 125 , and the material of the bit line contact layer 125 includes single crystal silicon.
  • single crystal silicon can be doped with various ions to improve the conductivity.
  • the bit line contact layer 125 formed by the epitaxial growth technique can avoid damage or residual impurities caused when the dummy bit line structure 117 (refer to FIG. 9 ) is removed by etching; at the same time, single crystal silicon or single crystal silicon doped with ions
  • the resistance is lower than that of polysilicon; in this way, the conductivity of the bit line contact layer 125 can be improved, and the resistance of the contact surface between the bit line contact layer 125 and the active region 102 can be reduced, thereby increasing the operating speed of the memory.
  • bit line conductive portion 120 filling the via hole and covering the bit line contact layer 125 is formed.
  • the bit line conductive portion 120 is a conductive structure in the bit line structure.
  • the bit line conductive portion is formed by filling the via hole.
  • the bit line conductive portion 120 is supported by the sacrificial layer 119 during the formation process. Therefore, even if the width of the bit line conductive portion 120 is narrow, it is not easy to tilt or collapse.
  • impurities generated by etching will not remain in the bit line conductive portion 120 , thereby reducing the resistance of the bit line conductive portion 120 and improving the operating speed of the memory.
  • the steps of forming the bit line conductive portion 120 include: forming a barrier layer 121 on the bottom and sidewalls of the via hole; and forming a conductive layer 122 filling the via hole on the surface of the barrier layer 121 .
  • the thicknesses of the conductive layer 122 and the barrier layer 121 formed by the atomic deposition layer deposition technology are more uniform. In other embodiments, other deposition techniques may also be employed.
  • the material of the barrier layer 121 includes one or both of tantalum nitride or titanium nitride. Tantalum nitride or titanium nitride can conduct electricity and have good blocking ability, which can block the diffusion of the conductive layer 122 .
  • the material of the conductive layer 122 includes one or more of ruthenium, tungsten, gold or silver. Ruthenium, tungsten, gold or silver are all low-resistance metals, which can further reduce the resistance of the conductive layer 122 and improve the running speed of the memory.
  • bit line conductive portion may also be a single-layer structure.
  • the conductive layer 122 and the barrier layer 121 are also formed on the top surface of the sacrificial layer 119 ; as shown in FIG. 14 , the bit line conductive portion 120 is planarized to remove the layers higher than the sacrificial layer. Conductive layer 122 and barrier layer 121 on the top surface of 119 (refer to FIG. 11 ).
  • a chemical mechanical polishing technique is used to planarize the bit line conductive portion 120 .
  • an insulating capping layer 123 is formed on top of the bit line conductive portion 120 .
  • the insulating capping layer 123 serves as an insulating structure in the bit line structure.
  • the insulating capping layer 123 is formed by a double patterning process (SADP), and the size of the insulating capping layer 123 formed by the double patterning process (SADP) is more precise.
  • SADP double patterning process
  • the sacrificial layer 119 is removed (refer to FIG. 15).
  • the etching rate of the sacrificial layer 119 is greater than the etching rate of the insulating cap layer 123 , and the etching selectivity ratio between the material of the sacrificial layer 119 and the material of the insulating cap layer 123 is 5-15, such as 8, 10, and 13.
  • the high etching selectivity ratio can ensure that in the process of removing the sacrificial layer 119, the insulating cap layer 123 maintains the original shape and size.
  • the sacrificial layer 119 is removed by wet etching, and the etching reagent is a hydrofluoric acid solution. In other embodiments, the sacrificial layer may also be removed by dry etching.
  • a protective layer 124 is formed on the surface of the bit line conductive portion 120 and the insulating cap layer 123 .
  • the protective layer 124 also covers the surface of the second isolation layer 104 and the surface of the dielectric layer 118 .
  • the protective layer 124 is formed by using the atomic layer deposition technique.
  • the material of the protective layer 124 includes silicon carbonitride.
  • the bit line contact layer 125 is formed by the epitaxial growth technology, which can avoid damage and residual impurities caused during the process of etching and removing the dummy bit line structure 117; at the same time, the resistance of the single crystal silicon bit line contact layer 125 Lower than the bit line contact layer of polysilicon material, the resistance of the interface between the bit line contact layer 125 and the active region 102 can be reduced. In this way, the performance of the memory is better.
  • the second embodiment of the present application further provides a memory, which can be manufactured by the manufacturing method of the memory in the first embodiment.
  • FIG. 18 is a schematic structural diagram of a memory provided in this embodiment.
  • the memory includes: a substrate 200 and a plurality of discrete bit line contact layers 225, the substrate 200 has a plurality of active regions 202, and each bit line contact layer 225 is electrically connected to the active region 202; the bit lines are conductive portion 205 , the bit line conductive portion 205 is located on top of the bit line contact layer 225 .
  • a first isolation layer 203 is further included between the active regions 202 , and the first isolation layer 203 is used to isolate the active regions 202 .
  • the surface of the substrate 200 further includes a second isolation layer 204 , and the second isolation layer 204 is used to isolate the bit line contact layer 225 .
  • the material of the bit line contact layer 225 includes single crystal silicon, or single crystal silicon containing doped ions.
  • the resistance of single crystal silicon is low, so that the resistance of the contact surface between the bit line contact layer 225 and the active region 102 can be reduced.
  • the bit line conductive portion 205 further includes: a conductive layer 206 on top of the bit line contact layer 225 ;
  • the material of the conductive layer 206 includes one or more of ruthenium, tungsten, gold or silver. Ruthenium, tungsten, gold or silver are all low-resistance metals, which can reduce the resistance of the conductive layer 206 and improve the running speed of the memory.
  • the material of the barrier layer 207 is a conductive material, such as tantalum nitride or titanium nitride.
  • the thickness of the barrier layer 207 is 2.5-6 nm, for example, 3 nm, and the barrier layer 207 with this thickness has a good ability of blocking the diffusion of the conductive layer 206 .
  • the material of the bit line contact layer 225 of the memory provided by this embodiment includes single crystal silicon, or single crystal silicon containing doped ions.
  • the resistance of single crystal silicon is low, so that the resistance of the contact surface between the bit line contact layer 225 and the active region 102 can be reduced.
  • the material of the conductive layer 206 is a low-resistance material such as ruthenium, tungsten, gold, or silver, the resistance of the conductive layer 206 is low, and the operation speed of the memory is fast.
  • the barrier layer of the memory provided in this embodiment has a good ability of blocking the diffusion of the conductive layer, which can further improve the performance of the memory.
  • a method for manufacturing a memory includes: providing a substrate and a plurality of discrete dummy bit line contact layers, the substrate has a plurality of active regions, and each dummy bit line contact layer is connected to the active region; A dummy bit line structure is formed on the top of the dummy bit line contact layer; a sacrificial layer filling the area between adjacent dummy bit line structures is formed, and the sacrificial layer is located on the side wall of the dummy bit line structure and the side wall of the dummy bit line contact layer; After the sacrificial layer, the dummy bit line structure is removed to form a via hole exposing the dummy bit line contact layer; the dummy bit line contact layer is removed to form a via hole in the substrate; a bit line contact layer filling the via hole in the substrate is formed, the bit line contact layer is formed.
  • the line contact layer is electrically connected to the active region. In this way, forming the bit line contact layer by filling the via hole can avoid damage or residual impurities on the bit line contact layer when the dummy bit line structure is removed, thereby improving the operating speed of the memory

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Abstract

本申请实施例提供一种存储器的制造方法和存储器,存储器的制造方法包括:提供基底以及多个分立的伪位线接触层,基底内具有多个有源区,且每一伪位线接触层与有源区连接;在伪位线接触层的顶部形成伪位线结构;形成填充相邻伪位线结构之间的区域的牺牲层,且牺牲层位于伪位线结构侧壁以及伪位线接触层侧壁;在形成牺牲层之后,去除伪位线结构,形成露出伪位线接触层的通孔;去除伪位线接触层,形成位于基底内的通孔;形成填充基底内的通孔的位线接触层,位线接触层与有源区电连接。如此,以填充通孔的方法形成位线接触层,可以避免去除伪位线结构时对位线接触层造成损伤或残留杂质,从而提高存储器的运行速率。

Description

存储器的制造方法和存储器
相关申请的交叉引用
本申请要求在2020年09月24日提交中国专利局、申请号为202011018109.X、申请名称为“存储器的制造方法和存储器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及半导体领域,特别涉及一种存储器的制造方法和存储器。
背景技术
存储器是用来存储程序和各种数据信息的记忆部件,随机存储器分为静态随机存储器和动态随机存储器。动态随机存储器通常包括电容器以及与电容器连接的晶体管,电容器用来存储代表存储信息的电荷,晶体管是控制电容器的电荷流入和释放的开关。在写入数据时字线给出高电平,晶体管导通,位线向电容器充电。读出时字线同样给出高电平,晶体管导通,电容器放电,使位线获得读出信号。
然而,随着存储器工艺节点的不断缩小,存储器的性能有待提高。
发明内容
本申请实施例解决的技术问题为提供一种存储器的制造方法和存储器,以提高存储器的性能。为解决上述问题,本申请实施例提供一种存储器的制造方法,存储器的制造方法包括:提供基底以及多个分立的伪位线接触层,所述基底内具有多个有源区,且每一所述伪位线接触层与所述有源区连接;在所述伪位线接触层的顶部形成伪位线结构;形成填充相邻所述伪位线结构之间的区域的牺牲层,且所述牺牲层位于所述伪位线结构侧壁以及所述伪位线接触层侧壁;在形成所述牺牲层之后,去除所述伪位线结构,形成露出所述伪位线接触层的通孔;去除所述伪位线接触层,形成位于所述基底内的通孔;形成填充所述基 底内的通孔的位线接触层,所述位线接触层与所述有源区电连接。
在一些实施例中,所述伪位线接触层的材料与伪位线结构的材料不同。
在一些实施例中,所述伪位线接触层的材料包括氮化硅、氮氧化硅或碳氮化硅。
在一些实施例中,所述伪位线结构的材料包括氮化硅、氮氧化硅或碳氮化硅。
在一些实施例中,所述位线接触层的材料包括单晶硅。
在一些实施例中,形成所述位线接触层的方法包括:外延生长技术。
在一些实施例中,形成所述伪位线结构的步骤包括:在所述基底上形成伪位线层,所述伪位线层覆盖所述伪位线接触层;在所述伪位线层上形成图形化的掩膜层;以所述图形化的掩膜层为掩膜,刻蚀所述伪位线层,形成伪位线结构。
在一些实施例中,形成所述图形化的掩膜层步骤包括:在所述伪位线层上形成多个分立的核心部;形成覆盖所述核心部顶部和侧壁以及所述伪位线层的侧墙膜;对所述侧墙膜进行刻蚀处理,形成位于所述核心部的相对的侧壁的侧墙层;去除所述核心部,所述侧墙层作为所述图形化的掩膜层。
在一些实施例中,去除所述伪位线结构的工艺中,所述伪位线结构的材料与所述牺牲层的材料的刻蚀选择比为5-15。
在一些实施例中,所述牺牲层的材料包括氧化硅。
在一些实施例中,在形成所述牺牲层前,还包括:在所述伪位线结构及所述伪位线接触层的侧壁形成介质层,所述介质层的材料与牺牲层的材料不同;形成的所述牺牲层还位于所述介质层的侧壁表面。
在一些实施例中,所述介质层的材料包括低介电常数材料。
在一些实施例中,在所述位线接触层上形成位线导电部,形成所述位线导电部的步骤包括:在所述位线接触层上的通孔的底部及侧壁形成阻挡层;在所述阻挡层的上表面形成导电层。
在一些实施例中,形成所述位线导电部后,还包括:在所述位线导电部的 顶部形成绝缘盖层;形成所述绝缘盖层后,去除所述牺牲层;去除所述牺牲层后,在所述位线导电部和绝缘盖层的表面形成保护层。
本申请实施例还提供一种如前述制造方法制造的存储器,包括:基底以及多个分立的位线接触层,所述基底内具有多个有源区,且每一所述位线接触层与所述有源区电连接;位线导电部,所述位线导电部位于所述位线接触层的顶部。
与现有技术相比,本申请实施例提供的技术方案具有以下优点:
本申请实施例中,去除伪位线结构及伪位线接触层后,在牺牲层之间形成了通孔;通孔可以作为位线接触层的填充区间,避免了刻蚀去除伪位线结构时对位线接触层造成损伤或残留杂质,从而提高了存储器的性能。
在一些实施例中,通过外延生长技术形成的位线接触层的电阻更低,降低了位线接触层与有源区的接触面的电阻,从而提高存储器的运行速率。
在一些实施例中,形成图形化的掩膜层步骤包括:在伪位线层上形成多个分立的核心部;形成覆盖核心部顶部和侧壁以及所述伪位线层的侧墙膜;对侧墙膜进行刻蚀处理,形成所述核心层的相对的侧壁的侧墙层;去除核心部,侧墙层作为图形化的掩膜层。即侧墙膜并不是通过光刻的方法形成的,而是在核心部的侧壁生长出来的;如此,侧墙层的尺寸可以不受光刻工艺的限制,通过缩小侧墙层的尺寸,可以缩小以侧墙层为掩模形成的伪位线结构的尺寸,进而减小存储器的尺寸。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,除非有特别申明,附图中的图不构成比例限制。
图1至图17为本申请第一实施例提供的存储器的制造方法中各步骤对应的结构示意图;
图18为本申请第二实施例提供的存储器的结构示意图。
具体实施方式
由背景技术可知,现有技术的存储器的性能有待提高。
分析发现,导致上述问题的主要原因包括:在位线接触层与牺牲层围成的通孔中形成伪位线结构,后续利用刻蚀的方法去除伪位线结构时,会对位线接触层造成损伤,同时也会在位线接触层中残留不易挥发的杂质,从而影响存储器的运行速度。
为解决上述问题,本申请实施例提供一种存储器的制造方法,在伪位线接触层与牺牲层围成的通孔中形成伪位线结构,后续在去除伪位线结构后,还去除伪位线接触层并在基底中形成通孔,在通孔中形成位线接触层;如此,可以避免刻蚀去除伪位线结构时对位线接触层造成的损伤,避免在位线接触层中残留不易挥发的杂质,从而提高存储器的性能。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。
本申请第一实施例提供一种存储器的制造方法,图1至图17为该制造方法中各步骤对应的结构示意图。
参考图1,提供基底100以及多个分立的伪位线接触层101,基底100内具有多个有源区102,且每一伪位线接触层101与有源区102连接。
基底100的材料包括硅、锗或者其它半导体材料。
相邻的有源区102之间的区域填充有第一隔离层103,第一隔离层103用于隔离多个有源区102。第一隔离层103的材料为绝缘材料,例如可以为二氧化硅。
在本实施例中,每一伪位线接触层101一部分位于基底100内,一部分高于基底100表面。在其他实施例中,伪位线接触层也可位于基底表面。
伪位线接触层101的材料包括氮化硅、氮氧化硅或碳氮化硅。
本实施例中,基底100表面还可以形成有第二隔离层104。第二隔离层104填充分立的伪位线接触层101之间的区域,用于隔离后续形的多个位线接触层。
第二隔离层104的材料为绝缘材料,例如可以为氮化硅。第二隔离层104的材料与伪位线接触层101的材料不同。
结合参考图1至图6,在伪位线接触层101的顶部形成伪位线结构117。
伪位线结构117用于定义后续形成的位线结构的位置和尺寸,也就是说,伪位线结构117的尺寸与后续形成的位线结构的尺寸相同。由于伪位线结构117不需要具有导电特性,因此可以采用绝缘材料作为伪位线结构117的材料。
形成伪位线结构117的步骤包括:在基底100上形成伪位线层105,伪位线层105覆盖伪位线接触层101;在伪位线层105上形成图形化的掩膜层115;以图形化的掩膜层115为掩膜,刻蚀伪位线层105,形成伪位线结构117。
具体的,在本实施例中,以双重图形化(SADP)的方法形成伪位线结构117。
以下将结合附图对伪位线结构117的形成方法做详细说明。
参考图1,在基底100上形成伪位线层105,伪位线层105覆盖伪位线接触层101。
在伪位线层105上形成依次堆叠的底层掩膜层106和核心层109。本实施例中,底层掩膜层106包括:第一底层掩膜层107和第二底层掩模层108。
第一底层掩膜层107与第二底层掩膜层108的材料不同,具体地,第一底层掩膜层107的材料可以为氮氧化硅,第二底层掩膜层108的材料可以为含氢氧化硅。
可以理解的是,在其他实施例中,底层掩膜层也可以为单层结构。
本实施例中,核心层109包括第一核心层110和第二核心层111。第一核心层110的材料包括:氮氧化硅。第二核心层111的材料包括:含氢氧化硅。
在其他实施例中,核心层也可以为单层结构。
在核心层109上形成图形化的光刻胶层112。
参考图2,以图形化的光刻胶层为112(参考图1)为掩膜,刻蚀核心层109(参考图1),形成多个分立的核心部113。核心部113为双层结构,在其他实施例中,核心部也可以为单层结构。
在形成核心部113之后,去除图形化的光刻胶层112。
参考图3,形成覆盖核心部113顶部和侧壁以及底层掩膜层106的侧墙膜114。
在本实施例中,采用原子层沉积技术沉积侧墙膜114;通过原子层沉积技术形成的侧墙膜114厚度更为均匀。在其他实施例中,可采用化学气相沉积、物理气相沉积等方法形成侧墙膜。
侧墙膜114的材料与核心部113的材料不同,例如可以为氧化硅。
参考图4,对侧墙膜114(参考图3)进行刻蚀处理,形成位于核心部113的相对的侧壁的侧墙层115。由于刻蚀负载效应,即刻蚀面积越大,越容易被刻蚀,沉积在核心部113侧壁的侧墙膜114(参考图3)不容易被刻蚀,从而形成了侧墙层115。
参考图5,去除核心部113(参考图4),侧墙层115作为图形化的掩膜层115。
以图形化的掩膜层115为掩膜,刻蚀底层掩膜层106(参考图4),形成图形化的底层掩模层116。本实施例中,图形化的底层掩膜层116为双层结构。在其他实施例中,图形化的底层掩膜层也可以为单层结构。
参考图6,以图形化的底层掩膜层116(参考图5)为掩膜,刻蚀伪位线层105(参考图5),形成伪位线结构117。形成伪位线结构117后,去除图形化的底层掩膜层116。
在本实施例中,图形化的掩膜层115(参考图4)通过图形化的底层掩膜层116,将图案传递给了伪位线结构117。因此,伪位线结构117的宽度与图形化的掩膜层115的宽度一致,图形化的掩膜层115的宽度越小,伪位线结构117的宽度就越小,进而存储器的尺寸也越小。
伪位线结构117的材料包括氮化硅、氮氧化硅或碳氮化硅。伪位线结构117 的材料与伪位线接触层101的材料不同。
值得注意的是,在其他实施例中,也可以不采用双重图形化工艺形成伪位线结构,例如:直接在伪位线层上形成单层硬掩膜层,对该硬掩膜层进行光刻,形成位于伪位线层上的多个分立的核心部;形成覆盖核心部顶部和侧壁以及伪位线层的侧墙膜;对侧墙膜进行刻蚀处理,形成位于核心部的相对的侧壁的侧墙层;去除核心部,侧墙层为图形化的掩膜层,利用该图形化的掩膜层刻蚀伪位线层,形成伪位线结构。
参考图7至图8,在伪位线结构117及伪位线接触层101的侧壁形成介质层118。
在后续刻蚀去除牺牲层的过程中,介质层118能够保护位线导电部,保证位线导电部的形貌以及尺寸的精确性。
介质层118的材料包括低介电常数材料,低介电常数材料可以减小存储器的寄生电容,提高存储器的运行速率。
具体地,本实施例中,形成介质层118的工艺步骤包括:参考图7,在第二隔离层104的表面还形成初始介质膜128;参考图8,去除第二隔离层104表面和伪位线结构117顶部表面的初始介质膜128(参考图7)。
参考图9,形成填充相邻伪位线结构117之间的区域的牺牲层119,且牺牲层119位于伪位线结构117侧壁。
牺牲层119还覆盖第二隔离层104的表面及介质层118侧壁表面。
在其他实施例中,牺牲层还可位于伪位线接触层的侧壁。
牺牲层119的材料与介质层118的材料不同,例如可以为氧化硅。
参考图10,去除伪位线结构117(参考图9),形成露出伪位线接触层101的通孔。在本实施例中,伪位线结构117的刻蚀速率大于牺牲层119的刻蚀速率,且伪位线结构117的材料与牺牲层119的材料的刻蚀选择比为5-15,例如8、10、13。采用湿法刻蚀的方法去除伪位线结构117,刻蚀溶剂采用热磷酸溶液。在其他实施例中,也可采用干法刻蚀的方法去除伪位线结构。
参考图11,去除伪位线接触层101(参考图10),形成位于基底100(参考 图5)内的通孔。
本实施例中,采用湿法刻蚀去除伪位线接触层101。在其他实施例中,也可采用干法刻蚀去除伪位线接触层。
参考图12,形成填充基底100(参考图5)内的通孔的位线接触层125,位线接触层125与有源区102电连接。
本实施例中,使用外延生长技术形成位线接触层125,且位线接触层125的材料包括单晶硅。同时,可以对单晶硅掺杂多种离子来提高导电能力。
因此,以外延生长技术形成的位线接触层125可以避免刻蚀去除伪位线结构117(参考图9)时造成的损伤或残留的杂质;同时,单晶硅或掺有离子的单晶硅的电阻比多晶硅的电阻更低;如此,可以提高位线接触层125的导电能力,降低位线接触层125与有源区102的接触面的电阻,从而提高存储器的运行速度。
参考图13及图14,形成填充通孔且覆盖位线接触层125的位线导电部120。
位线导电部120是位线结构中的导电结构。采用填充通孔的方法形成位线导电部,位线导电部120在形成过程中受到牺牲层119的支撑,因此,即使位线导电部120的宽度窄,也不易发生倾斜或坍塌的现象。另外,由于不采用刻蚀工艺,在位线导电部120中不会残留由刻蚀产生的杂质;从而降低位线导电部120的电阻,提高存储器的运行速度。
形成位线导电部120的步骤包括:在通孔的底部及侧壁形成阻挡层121;在阻挡层121表面形成填充满通孔的导电层122。
在本实施例中,通过原子沉积层沉积技术形成的导电层122以及阻挡层121的厚度更为均匀。在其他实施例,也可采用其他沉积技术。
阻挡层121的材料包括氮化钽或氮化钛中的一种或两种。氮化钽或氮化钛能够导电,且具有良好的阻挡能力,能够阻挡导电层122的扩散。导电层122的材料包括钌、钨、金或银中的一种或多种。钌、钨、金或银都属于低电阻金属,能够进一步降低导电层122的电阻,提高存储器的运行速度。
在其他实施例中,位线导电部也可以为单层结构。
本实施例中,如图13所示,形成导电层122以及阻挡层121还位于牺牲层119顶部表面上;如图14所示,对位线导电部120进行平坦化处理,去除高于牺牲层119顶部表面的导电层122以及阻挡层121(参考图11)。
本实施例中,采用化学机械抛光技术对位线导电部120进行平坦化处理。
参考图15,在位线导电部120的顶部形成绝缘盖层123。
绝缘盖层123作为位线结构中的绝缘结构。
本实施例中,采用双重图形化工艺(SADP)形成的绝缘盖层123,双重图形化工艺(SADP)使得形成的绝缘盖层123的尺寸更加精准。
参考图16,形成绝缘盖层123后,去除牺牲层119(参考图15)。
牺牲层119的刻蚀速率大于绝缘盖层123的刻蚀速率,且牺牲层119的材料与绝缘盖层123的材料的刻蚀选择比为5-15,比如可以为8、10、13。高的刻蚀选择比能够保证在去除牺牲层119的过程中,绝缘盖层123保持原有的形貌和尺寸。本实施例采用湿法刻蚀的方法去除牺牲层119,刻蚀试剂采用氢氟酸溶液。在其他实施例中,也可采用干法刻蚀的方法去除牺牲层。
参考图17,在位线导电部120和绝缘盖层123的表面形成保护层124。
本实施例中,保护层124还覆盖第二隔离层104的表面及介质层118的表面。
在本实施例中,采用原子层沉积技术形成保护层124。
保护层124的材料包括碳氮化硅。
综上所述,本实施例通过外延生长技术形成位线接触层125,可以避免刻蚀去除伪位线结构117过程中造成损伤和残留杂质;同时,单晶硅的位线接触层125的电阻比多晶硅材料的位线接触层更低,可以减少位线接触层125与有源区102的界面的电阻。如此,存储器的性能更好。
本申请第二实施例还提供的一种存储器,该存储器可由第一实施例中的存储器的制造方法制造。图18为本实施例提供的存储器的结构示意图。
参考图18,存储器包括:基底200以及多个分立的位线接触层225,基底200内具有多个有源区202,且每一位线接触层225与有源区202电连接;位线 导电部205,位线导电部205位于位线接触层225的顶部。
以下将结合附图对本实施例提供的存储器进行详细说明。
有源区202之间还包括第一隔离层203,第一隔离层203用于隔离有源区202。
基底200表面还包括第二隔离层204,第二隔离层204用于隔离位线接触层225。
位线接触层225的材料包括单晶硅,或者含有掺杂离子的单晶硅。单晶硅的电阻较低,从而可以降低位线接触层225与有源区102的接触面的电阻。
位线导电部205还包括:位于位线接触层225顶部的导电层206;位于位线接触层225与导电层206之间的阻挡层207,阻挡层207还覆盖导电层206的侧壁。
导电层206的材料包括钌、钨、金或银中的一种或多种。钌、钨、金或银均为低电阻金属,能够降低导电层206的电阻,提高存储器的运行速度。
阻挡层207的材料为导电材料,例如可以为氮化钽或氮化钛。
阻挡层207的厚度为2.5-6nm,比如可以为3nm,该厚度的阻挡层207具有良好的阻挡导电层206扩散的能力。
位于位线导电部205及位线接触层225侧壁的介质层208;位于位线导电部205顶部的绝缘盖层209;位于绝缘盖层209及介质层208表面的保护层210,保护层210还位于第二隔离层204的表面上。
综上所述,本实施例提供的存储器的位线接触层225的材料包括单晶硅,或者含有掺杂离子的单晶硅。单晶硅的电阻较低,从而可以降低位线接触层225与有源区102的接触面的电阻。导电层206的材料为钌、钨、金或银等低电阻材料,导电层206的电阻低,存储器的运行速度快。另外,本实施例提供的存储器的阻挡层具有良好的阻挡导电层扩散的能力,能够进一步提高存储器的性能。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本 申请的精神和范围。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各自更动与修改,因此本申请的保护范围应当以权利要求限定的范围为准。
工业实用性
在本申请实施例中,存储器的制造方法包括:提供基底以及多个分立的伪位线接触层,基底内具有多个有源区,且每一伪位线接触层与有源区连接;在伪位线接触层的顶部形成伪位线结构;形成填充相邻伪位线结构之间的区域的牺牲层,且牺牲层位于伪位线结构侧壁以及伪位线接触层侧壁;在形成牺牲层之后,去除伪位线结构,形成露出伪位线接触层的通孔;去除伪位线接触层,形成位于基底内的通孔;形成填充基底内的通孔的位线接触层,位线接触层与有源区电连接。如此,以填充通孔的方法形成位线接触层,可以避免去除伪位线结构时对位线接触层造成损伤或残留杂质,从而提高存储器的运行速率

Claims (15)

  1. 一种存储器的制造方法,包括:
    提供基底以及多个分立的伪位线接触层,所述基底内具有多个有源区,且每一所述伪位线接触层与所述有源区连接;
    在所述伪位线接触层的顶部形成伪位线结构;
    形成填充相邻所述伪位线结构之间的区域的牺牲层,且所述牺牲层位于所述伪位线结构侧壁以及所述伪位线接触层侧壁;
    在形成所述牺牲层之后,去除所述伪位线结构,形成露出所述伪位线接触层的通孔;
    去除所述伪位线接触层,形成位于所述基底内的通孔;形成填充所述基底内的通孔的位线接触层,所述位线接触层与所述有源区电连接。
  2. 根据权利要求1所述的存储器的制造方法,其中,所述伪位线接触层的材料与所述伪位线结构的材料不同。
  3. 根据权利要求2所述的存储器的制造方法,其中,所述伪位线接触层的材料包括氮化硅、氮氧化硅或碳氮化硅。
  4. 根据权利要求2所述存储器的制造方法,其中,所述伪位线结构的材料包括氮化硅、氮氧化硅或碳氮化硅。
  5. 根据权利要求1所述的存储器的制造方法,其中,所述位线接触层的材料包括单晶硅。
  6. 根据权利要求1所述的存储器的制造方法,其中,形成所述位线接触层的方法包括:外延生长技术。
  7. 根据权利要求1所述的存储器的制造方法,其中,形成所述伪位线结构的步骤包括:在所述基底上形成伪位线层,所述伪位线层覆盖所述伪位线接触层;在所述伪位线层上形成图形化的掩膜层;以所述图形化的掩膜层为掩膜,刻蚀所述伪位线层,形成伪位线结构。
  8. 根据权利要求7所述的存储器的制造方法,其中,形成所述图形化的掩 膜层步骤包括:在所述伪位线层上形成多个分立的核心部;形成覆盖所述核心部顶部和侧壁以及所述伪位线层的侧墙膜;对所述侧墙膜进行刻蚀处理,形成位于所述核心部的相对的侧壁的侧墙层;去除所述核心部,所述侧墙层作为所述图形化的掩膜层。
  9. 根据权利要求1所述的存储器的制造方法,其中,去除所述伪位线结构的工艺中,所述伪位线结构的材料与所述牺牲层的材料的刻蚀选择比为5-15。
  10. 根据权利要求9所述的存储器的制造方法,其中,所述牺牲层的材料包括氧化硅。
  11. 根据权利要求1所述的存储器的制造方法,其中,在形成所述牺牲层前,还包括:在所述伪位线结构及所述伪位线接触层的侧壁形成介质层,所述介质层的材料与牺牲层的材料不同;形成的所述牺牲层还位于所述介质层的侧壁表面。
  12. 根据权利要求11所述的存储器的制造方法,其中,所述介质层的材料包括低介电常数材料。
  13. 根据权利要求1所述的存储器的制造方法,其中,在所述位线接触层上形成位线导电部,形成所述位线导电部的步骤包括:在所述位线接触层上的通孔的底部及侧壁形成阻挡层;在所述阻挡层的上表面形成导电层。
  14. 根据权利要求13所述的存储器的制造方法,其中,形成所述位线导电部后,还包括:在所述位线导电部的顶部形成绝缘盖层;形成所述绝缘盖层后,去除所述牺牲层;去除所述牺牲层后,在所述位线导电部和绝缘盖层的表面形成保护层。
  15. 一种采用如权利要求1-14任一项所述的制造方法制造的存储器,包括:
    基底以及多个分立的位线接触层,所述基底内具有多个有源区,且每一所述位线接触层与所述有源区电连接;
    位线导电部,所述位线导电部位于所述位线接触层的顶部。
PCT/CN2021/103864 2020-09-24 2021-06-30 存储器的制造方法和存储器 WO2022062548A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/487,622 US11856758B2 (en) 2020-09-24 2021-09-28 Method for manufacturing memory and same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011018109.XA CN114256155B (zh) 2020-09-24 2020-09-24 存储器的制造方法和存储器
CN202011018109.X 2020-09-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/487,622 Continuation US11856758B2 (en) 2020-09-24 2021-09-28 Method for manufacturing memory and same

Publications (1)

Publication Number Publication Date
WO2022062548A1 true WO2022062548A1 (zh) 2022-03-31

Family

ID=80790081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103864 WO2022062548A1 (zh) 2020-09-24 2021-06-30 存储器的制造方法和存储器

Country Status (2)

Country Link
CN (1) CN114256155B (zh)
WO (1) WO2022062548A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060148227A1 (en) * 2004-04-28 2006-07-06 Infineon Technologies Ag Method for fabricating a first contact hole plane in a memory module
CN1959953A (zh) * 2005-11-01 2007-05-09 尔必达存储器株式会社 制造半导体器件的方法
US20130052787A1 (en) * 2011-08-23 2013-02-28 Samsung Electronics Co., Ltd. Method of manufacturing semiconductor device
CN109148376A (zh) * 2017-06-28 2019-01-04 长鑫存储技术有限公司 存储器及其形成方法、半导体器件
CN110890365A (zh) * 2018-09-07 2020-03-17 长鑫存储技术有限公司 一种半导体存储器及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962018B (zh) * 2017-12-25 2022-05-13 中芯国际集成电路制造(上海)有限公司 半导体结构及其制造方法
CN109979940B (zh) * 2017-12-27 2021-03-26 长鑫存储技术有限公司 半导体存储器件及其制作方法
CN110491880B (zh) * 2019-07-10 2020-11-17 长江存储科技有限责任公司 一种三维存储器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060148227A1 (en) * 2004-04-28 2006-07-06 Infineon Technologies Ag Method for fabricating a first contact hole plane in a memory module
CN1959953A (zh) * 2005-11-01 2007-05-09 尔必达存储器株式会社 制造半导体器件的方法
US20130052787A1 (en) * 2011-08-23 2013-02-28 Samsung Electronics Co., Ltd. Method of manufacturing semiconductor device
CN109148376A (zh) * 2017-06-28 2019-01-04 长鑫存储技术有限公司 存储器及其形成方法、半导体器件
CN110890365A (zh) * 2018-09-07 2020-03-17 长鑫存储技术有限公司 一种半导体存储器及其制备方法

Also Published As

Publication number Publication date
CN114256155A (zh) 2022-03-29
CN114256155B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
KR100583732B1 (ko) 보호막 패턴을 구비하는 디램 소자의 형성 방법 및 이에의해 형성된 디램 소자
US11974427B2 (en) Manufacturing method of a memory and a memory
JP2000340772A (ja) Cmp阻止膜を使用する集積回路素子のキャパシタ製造方法
WO2022057341A1 (zh) 半导体结构及其制作方法
US6607954B2 (en) Methods of fabricating cylinder-type capacitors for semiconductor devices using a hard mask and a mold layer
US6709915B2 (en) Methods of fabricating integrated circuit memory devices
KR100599050B1 (ko) 반도체 장치 및 그 제조 방법
WO2022052627A1 (zh) 存储器的制造方法和存储器
WO2022062547A1 (zh) 存储器的制造方法和存储器
US20010045666A1 (en) Semiconductor device having self-aligned contact and fabricating method therefor
US6844229B2 (en) Method of manufacturing semiconductor device having storage electrode of capacitor
US11856758B2 (en) Method for manufacturing memory and same
US20040161918A1 (en) Semiconductor device and method for forming same using multi-layered hard mask
JP2010129770A (ja) 半導体装置およびその製造方法
WO2022062548A1 (zh) 存储器的制造方法和存储器
TWI490952B (zh) 半導體裝置及其製備方法
US20230063038A1 (en) Memory Device and Method of Forming Thereof
WO2022041952A1 (zh) 存储器的制造方法和存储器
JPH09232542A (ja) 半導体装置およびその製造方法
US8637363B1 (en) Methods of manufacturing a semiconductor device having a node array
US11985815B2 (en) Method for manufacturing memory and same
US20230309291A1 (en) Dynamic random access memory device
WO2022057385A1 (zh) 半导体结构及其制作方法
CN115346926A (zh) 存储器的制作方法以及存储器
KR100929293B1 (ko) 반도체 소자의 커패시터 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21870927

Country of ref document: EP

Kind code of ref document: A1