WO2022062319A1 - 一种含硅酸盐骨架的硅基负极材料、负极片和锂电池 - Google Patents

一种含硅酸盐骨架的硅基负极材料、负极片和锂电池 Download PDF

Info

Publication number
WO2022062319A1
WO2022062319A1 PCT/CN2021/078603 CN2021078603W WO2022062319A1 WO 2022062319 A1 WO2022062319 A1 WO 2022062319A1 CN 2021078603 W CN2021078603 W CN 2021078603W WO 2022062319 A1 WO2022062319 A1 WO 2022062319A1
Authority
WO
WIPO (PCT)
Prior art keywords
degrees
negative electrode
sio
silicon
silicate
Prior art date
Application number
PCT/CN2021/078603
Other languages
English (en)
French (fr)
Inventor
殷营营
刘柏男
罗飞
李泓
Original Assignee
溧阳天目先导电池材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 溧阳天目先导电池材料科技有限公司 filed Critical 溧阳天目先导电池材料科技有限公司
Priority to EP21870708.1A priority Critical patent/EP4220757A1/en
Priority to US18/246,734 priority patent/US20230369589A1/en
Priority to KR1020237014047A priority patent/KR20230074562A/ko
Priority to JP2023519147A priority patent/JP2023543249A/ja
Publication of WO2022062319A1 publication Critical patent/WO2022062319A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of secondary battery materials, in particular to a silicon-based negative electrode material containing a silicate skeleton, a negative electrode sheet and a lithium battery.
  • Silicon-based anodes are currently the main commercially developed high-energy-density anode materials.
  • the theoretical capacity of metal silicon is as high as 4200mAh /g, but the volume expansion of about 300% in the process of lithium intercalation to form Li22Si5 alloy will lead to the collapse of the electrode material structure and the continuous destruction and regeneration of the solid electrolyte interface (SEI). process, the cycle performance of metal silicon is particularly poor.
  • SiO x silicon oxide
  • SiO x silicon oxide
  • the ideal SiOx has a structure in which silicon nanoclusters are uniformly dispersed in the SiO2 matrix.
  • the buffer zone suppresses the volume expansion of silicon.
  • the role of the buffer band is limited and cannot make the cycle performance of SiO x reach a practical standard.
  • the embodiments of the present invention provide a silicon-based negative electrode material containing a silicate skeleton, a negative electrode sheet and a lithium battery.
  • the silicon oxide material is modified as a silicon-based negative electrode material, and the dispersed silicate material constitutes the skeleton structure of the silicon-based negative electrode material.
  • the volume expansion of the base negative electrode, the silicate skeleton can play a pinning role, reduce the deformation stress, and help improve the cycle performance of the material.
  • an embodiment of the present invention provides a silicon-based negative electrode material containing a silicate skeleton, the silicon-based negative electrode material comprising a modified silicon oxide material with a silicate material dispersed therein;
  • the general formula of the modified siliceous oxide material with the dispersed distribution of silicate material inside is M x SiO y , 1 ⁇ x ⁇ 6, 3 ⁇ y ⁇ 6, and the element M includes Mg, Ni, Cu, Zn, Al , one or more of Na, Ca, K, Li, Fe, Co; the grain size of the modified silicon oxide material is 0.5nm-100nm; in the modified silicon oxide material, the The content of silicate material accounts for 5%-60% of the total mass of the modified silicon oxide material;
  • the dispersed silicate material constitutes the skeleton structure of the silicon-based negative electrode material, does not undergo physical and chemical reactions with the delithiation and intercalation of the silicon-based negative electrode material during the cycle, and maintains the original structure after multiple cycles. Change.
  • the silicon-based negative electrode material further comprises a carbon coating layer
  • the carbon coating layer is coated outside the modified silicon oxide material, and has a thickness of 1 nm-100 nm.
  • the grain size of the modified silicon oxide material is 2nm-30nm; in the modified silicon oxide material, the content of the silicate material accounts for 10% of the total mass of the modified silicon oxide material -30%.
  • the silicon-based negative electrode material has an average particle size (D 50 ) of 0.1-40 ⁇ m, and a specific surface area of 0.5 m 2 /g-40 m 2 /g.
  • the average particle size (D 50 ) of the silicon-based negative electrode material is 2-15 ⁇ m, and the specific surface area is 1 m 2 /g-10 m 2 /g.
  • the corresponding silicate is MgSiO 3 and/or Mg 2 SiO 4 ;
  • the strongest peaks of the XRD diffraction peaks of the MgSiO 3 are located at 28.1 degrees, 31.1 degrees, 34.8 degrees, and 34.9 degrees. , one or several places in 36.9 degrees, the strongest peak of the XRD diffraction peak of the Mg 2 SiO 4 is located at 36.5 degrees;
  • the corresponding silicate is NiSiO 4
  • the strongest peak of the XRD diffraction peak of the NiSiO 4 is located at 37.0 degrees;
  • the corresponding silicate is CuSiO 3 ; the strongest peak of the XRD diffraction peak of the CuSiO 3 is located at 12.2 degrees;
  • the corresponding silicate is ZnSiO 3 and/or Zn 2 SiO 4 ;
  • the strongest peaks of the XRD diffraction peaks of the ZnSiO 3 are located at 31.0 degrees and/or 34.0 degrees;
  • the Zn 2 SiO The strongest peaks of the XRD diffraction peaks of 4 are located at one or more of (31.0 degrees and 34.0 degrees), 31.5 degrees, 31.7 degrees, 33.1 degrees, 36.5 degrees, and 37.0 degrees;
  • the corresponding silicate is Al 2 SiO 5 ;
  • the strongest peak of the XRD diffraction peak of the Al 2 SiO 5 is located at 26.1 degrees and/or 28.0 degrees;
  • the corresponding silicate is Na 2 SiO 3 and/or Na 4 SiO 4 ;
  • the strongest peak of the XRD diffraction peak of the Na 2 SiO 3 is located at 29.4 degrees, and the Na 4 SiO 4
  • the strongest peaks of the XRD diffraction peaks are located at 13.0 degrees and 23.2 degrees;
  • the corresponding silicate is CaSiO 3 and/or Ca 2 SiO 4 ;
  • the strongest peaks of the XRD diffraction peaks of the CaSiO 3 are located at 25.3 degrees and/or 30.0 degrees, and the Ca 2 SiO
  • the strongest peak of the XRD diffraction peak of 4 is located at one or more of 32.0 degrees, 32.1 degrees, 32.5 degrees, 32.7 degrees, 32.8 degrees, 33.0 degrees, and 33.2 degrees;
  • the corresponding silicate is K 4 SiO 4 ; the strongest peaks of the XRD diffraction peaks of the K 4 SiO 4 are located at 30.4 degrees and 37.8 degrees;
  • the corresponding silicate is Li 2 SiO 3 and/or Li 4 SiO 4 ; the strongest peaks of the XRD diffraction peaks of the Li 2 SiO 3 are located at 18.9 degrees and/or 27.0 degrees, so The most intense peaks of the XRD diffraction peaks of the Li 4 SiO 4 are located at (22.2 degrees and 33.8 degrees) and/or 34.9 degrees;
  • the corresponding silicate is FeSiO 3 and/or Fe 2 SiO 4 ;
  • the strongest peak of the XRD diffraction peak of the FeSiO 3 is located at 32.7 degrees, and the XRD diffraction peak of the Fe 2 SiO 4 The strongest peak is located at 63.8 degrees;
  • the corresponding silicate is Co 2 SiO 4 ; the strongest peaks of the XRD diffraction peaks of the Co 2 SiO 4 are located at one or more of 36.4 degrees, 36.5 degrees and 36.6 degrees.
  • an embodiment of the present invention provides a negative electrode sheet, the negative electrode sheet includes the silicon-based negative electrode material containing a silicate skeleton described in the first aspect above.
  • an embodiment of the present invention provides a lithium battery, wherein the negative electrode sheet includes the silicon-based negative electrode material containing a silicate skeleton as described in the first aspect above.
  • the negative electrode sheet includes the silicate skeleton-containing silicon-based negative electrode material described in the first aspect.
  • the silicon-based negative electrode material containing a silicate skeleton provided by the present invention modifies the silicon oxide material by introducing the silicate material into the traditional silicon oxide material and dispersing in it, so that the modified material can be used as Silicon-based anode material.
  • the dispersed silicate material has stable structure and performance, and does not undergo physical and chemical reactions with the material deintercalation of lithium.
  • the silicate material constitutes the skeleton structure of the silicon-based negative electrode material. Facing the volume expansion of the silicon-based negative electrode, the silicate skeleton can It plays a role in pinning, slows down the deformation stress, and is beneficial to improve the cycle performance of the material.
  • Example 1 is an X-ray diffraction (XRD) pattern of the silicon-based negative electrode containing a silicate skeleton provided in Example 1 of the present invention after being cycled for 1 week;
  • XRD X-ray diffraction
  • Example 2 is an XRD pattern of the silicon-based negative electrode containing a silicate skeleton provided in Example 1 of the present invention after being cycled for 50 weeks;
  • Example 3 is a scanning electron microscope (SEM) image of the silicon-based negative electrode particles containing a silicate skeleton provided in Example 1 of the present invention
  • Example 4 is an XRD pattern of the silicon-based negative electrode containing a silicate skeleton provided in Example 2 of the present invention after being cycled for 1 week;
  • Example 5 is an XRD pattern of the silicon-based negative electrode containing a silicate skeleton provided in Example 2 of the present invention after 50 cycles of cycle.
  • the silicon-based negative electrode material containing a silicate skeleton provided by the present invention includes a modified silicon oxide material with a dispersed distribution of the silicate material inside;
  • the general formula of the modified siliceous oxide material with the dispersed distribution of the silicate material inside is M x SiO y , 1 ⁇ x ⁇ 6, 3 ⁇ y ⁇ 6, and the element M includes Mg, Ni, Cu, Zn, Al, Na , one or more of Ca, K, Li, Fe, Co; the grain size of the modified siliceous oxide material is 0.5nm-100nm, preferably 2nm-30nm; in the modified siliceous oxide material, the The content of the silicate material accounts for 5%-60% of the total mass of the modified silicon oxide material, preferably 10%-30%.
  • the dispersed silicate material constitutes the skeleton structure of the silicon-based negative electrode material, which does not undergo physical and chemical reactions with the delithiation and intercalation of the silicon-based negative electrode material during the cycle, and maintains the original structure after multiple cycles.
  • the silicon-based negative electrode material may further include a carbon coating layer; the carbon coating layer is coated outside the modified silicon oxide material and has a thickness of 1 nm-100 nm.
  • the average particle size (D 50 ) of the silicon-based negative electrode material of the present invention is 0.1-40 ⁇ m, and the specific surface area is 0.5 m 2 /g-40 m 2 /g. In a preferred example, the average particle size (D 50 ) is 2-15 ⁇ m, and the specific surface area is 1 m 2 /g-10 m 2 /g.
  • the structure and morphology of the internal molecules of the obtained silicon-based negative electrode material are different.
  • the corresponding silicate is MgSiO 3 and/or Mg 2 SiO 4 ; wherein, the strongest peaks of the XRD diffraction peaks of MgSiO 3 are located at 28.1 degrees, 31.1 degrees, 34.8 degrees, 34.9 degrees, and 36.9 degrees. In one or several places, the strongest peak of the XRD diffraction peak of Mg 2 SiO 4 is located at 36.5 degrees;
  • the corresponding silicate is NiSiO 4 ; wherein, the strongest peak of the XRD diffraction peak of NiSiO 4 is located at 37.0 degrees;
  • the corresponding silicate is CuSiO 3 ; wherein, the strongest peak of the XRD diffraction peak of CuSiO 3 is located at 12.2 degrees;
  • the corresponding silicate is ZnSiO 3 and/or Zn 2 SiO 4 ; wherein, the strongest peaks of the XRD diffraction peaks of ZnSiO 3 are located at 31.0 degrees and/or 34.0 degrees; XRD diffraction of Zn 2 SiO 4 The strongest peak of the peak is located at one or more of (31.0 degrees and 34.0 degrees), 31.5 degrees, 31.7 degrees, 33.1 degrees, 36.5 degrees, and 37.0 degrees;
  • the corresponding silicate is Al 2 SiO 5 ; the strongest peaks of the XRD diffraction peaks of Al 2 SiO 5 are located at 26.1 degrees and/or 28.0 degrees;
  • the corresponding silicates are Na 2 SiO 3 and/or Na 4 SiO 4 ; the strongest peak of XRD diffraction peak of Na 2 SiO 3 is located at 29.4 degrees, and that of Na 4 SiO 4 is the strongest The peaks are located at 13.0 degrees and 23.2 degrees;
  • the corresponding silicate is CaSiO 3 and/or Ca 2 SiO 4 ;
  • the strongest peaks of the XRD diffraction peaks of CaSiO 3 are located at 25.3 degrees and/or 30.0 degrees, and the XRD diffraction peaks of Ca 2 SiO 4 are the strongest. Strong peaks are located at one or more of 32.0 degrees, 32.1 degrees, 32.5 degrees, 32.7 degrees, 32.8 degrees, 33.0 degrees, and 33.2 degrees;
  • the corresponding silicate is K 4 SiO 4 ; the strongest peaks of the XRD diffraction peaks of K 4 SiO 4 are located at 30.4 degrees and 37.8 degrees;
  • the corresponding silicate is Li 2 SiO 3 and/or Li 4 SiO 4 ;
  • the strongest peaks of the XRD diffraction peaks of Li 2 SiO 3 are located at 18.9 degrees and/or 27.0 degrees .
  • the strongest peaks of XRD diffraction peaks are located at (22.2 degrees and 33.8 degrees) and/or 34.9 degrees;
  • the corresponding silicate is FeSiO 3 and/or Fe 2 SiO 4 ; the strongest peak of the XRD diffraction peak of FeSiO 3 is located at 32.7 degrees, and the strongest peak of the XRD diffraction peak of Fe 2 SiO 4 is located at 63.8 degrees place;
  • the corresponding silicate is Co 2 SiO 4 ; the strongest peak of the XRD diffraction peak of Co 2 SiO 4 is located at one or more of 36.4 degrees, 36.5 degrees and 36.6 degrees.
  • silicon-based negative electrode materials can be used in negative electrode plates and lithium-ion batteries, such as liquid lithium-ion batteries, semi-solid lithium-ion batteries, all-solid-state ion batteries or lithium-sulfur batteries, and can also be combined with other materials in practical applications. Commonly used as negative electrode material.
  • the silicon-based negative electrode material containing a silicate skeleton provided by the present invention modifies the silicon oxide material by introducing the silicate material into the traditional silicon oxide material and dispersing in it, so that the modified material can be used as Silicon-based anode material.
  • the dispersed silicate material has stable structure and performance, and does not undergo physical and chemical reactions with the material deintercalation of lithium.
  • the silicate material constitutes the skeleton structure of the silicon-based negative electrode material. Facing the volume expansion of the silicon-based negative electrode, the silicate skeleton can It plays a role in pinning, slows down the deformation stress, and is beneficial to improve the cycle performance of the material.
  • the silicate first adheres to the surface of the silicon oxide particles, and then is subjected to high temperature treatment, and the silicate can rapidly diffuse into the interior of the silicon oxide particles to form a skeleton structure under the driving of its own concentration difference.
  • the silicon-based negative electrode containing magnesium metasilicate and magnesium silicate skeleton, carbon black (SP), and sodium carboxymethyl cellulose (CMC) were prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which was coated with After drying, the negative pole piece was made, and the ternary positive material nickel cobalt lithium manganate NCM 333 was used as the counter electrode, and the button battery was assembled in the glove box, and the charge and discharge test was carried out to evaluate its cycle performance. The results are shown in the table. 1.
  • siliceous oxide powder and the magnesium metasilicate powder are uniformly mixed according to the mass ratio of 3:1, and placed in a vacuum furnace;
  • the silicon-based negative electrode containing the magnesium metasilicate skeleton, carbon black (SP), and sodium carboxymethyl cellulose (CMC) were prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, and after coating and drying A negative pole piece was made, and the positive electrode material lithium cobalt oxide (LCO) was used as the counter electrode to assemble a button battery in a glove box, and the charge-discharge test was carried out to evaluate its cycle performance.
  • LCO lithium cobalt oxide
  • the siliceous oxide powder and the nickel silicate powder are uniformly mixed according to the mass ratio of 3:1, and placed in a vacuum furnace;
  • the silicon-based negative electrode containing nickel silicate skeleton, carbon black (SP), and sodium carboxymethyl cellulose (CMC) were prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which was coated and dried.
  • a negative pole piece was formed, and the ternary positive material nickel-cobalt lithium manganate NCM 523 was used as the counter electrode, and a button battery was assembled in a glove box, and the charge-discharge test was carried out to evaluate its cycle performance.
  • the silicon oxide powder and the copper metasilicate powder are uniformly mixed according to the mass ratio of 3:1, and placed in a vacuum furnace;
  • the silicon-based negative electrode containing the copper metasilicate skeleton, carbon black (SP), and sodium carboxymethyl cellulose (CMC) were prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, and after coating and drying A negative electrode piece was made, and the ternary positive electrode material nickel cobalt lithium aluminate NCA was used as the counter electrode, and a button battery was assembled in a glove box, and the charge and discharge test was carried out to evaluate its cycle performance.
  • siliceous oxide powder, the zinc metasilicate powder and the zinc silicate powder are uniformly mixed according to the mass ratio of 3:0.3:0.7, and placed in a vacuum furnace;
  • the silicon-based negative electrode containing zinc metasilicate and zinc silicate skeleton is prepared with carbon black (SP) and sodium carboxymethylcellulose (CMC) in a ratio of 7:2:1 to prepare negative electrode slurry, which is coated with After drying, the negative pole piece was made, and the positive electrode material lithium manganate (LMO) was used as the counter electrode, and a button battery was assembled in the glove box, and the charge and discharge test was carried out to evaluate its cycle performance.
  • SP carbon black
  • CMC sodium carboxymethylcellulose
  • the siliceous oxide powder and the aluminum silicate powder are uniformly mixed according to the mass ratio of 3:1, and placed in a vacuum furnace;
  • the silicon-based negative electrode containing aluminum silicate skeleton is prepared with carbon black (SP) and sodium carboxymethyl cellulose (CMC) according to the ratio of 7:2:1 to prepare a negative electrode slurry, which is coated and dried to make a negative electrode slurry.
  • SP carbon black
  • CMC sodium carboxymethyl cellulose
  • a negative pole piece was formed, and the ternary positive material NCM 811 was used as the counter electrode to assemble a button battery in a glove box, and the charge-discharge test was carried out to evaluate its cycle performance.
  • Table 1 The results are shown in Table 1.
  • the silicon-based negative electrode containing sodium metasilicate and sodium silicate skeleton, carbon black (SP) and sodium carboxymethyl cellulose (CMC) were prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which was coated with After drying, a negative pole piece was made, and the positive electrode material lithium cobaltate LCO was used as the counter electrode to assemble a button battery in a glove box, and the charge and discharge test was carried out to evaluate its cycle performance.
  • the results are shown in Table 1.
  • the silicon-based negative electrode containing calcium metasilicate and calcium silicate skeleton, carbon black (SP), and sodium carboxymethyl cellulose (CMC) were prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which was coated with After drying, a negative pole piece was made, and the positive electrode material lithium cobaltate LCO was used as the counter electrode to assemble a button battery in a glove box, and the charge and discharge test was carried out to evaluate its cycle performance.
  • the results are shown in Table 1.
  • Silica powder and potassium silicate powder are uniformly mixed according to the mass ratio of 3:1, and placed in a vacuum furnace;
  • the silicon-based negative electrode containing potassium silicate skeleton, carbon black (SP), and sodium carboxymethyl cellulose (CMC) were prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which was coated and dried to make a negative electrode slurry.
  • a negative pole piece was formed, and the ternary positive material nickel-cobalt lithium manganate NCM 333 was used as the counter electrode, and a button battery was assembled in a glove box, and the charge-discharge test was carried out to evaluate its cycle performance.
  • the silicon-based negative electrode containing lithium metasilicate and lithium silicate skeleton, carbon black (SP), and sodium carboxymethyl cellulose (CMC) were prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which was coated with After drying, the negative pole piece was made, and the ternary positive material nickel cobalt lithium manganate NCM 333 was used as the counter electrode, and the button battery was assembled in the glove box, and the charge and discharge test was carried out to evaluate its cycle performance. The results are shown in the table. 1.
  • the silicon-based negative electrode containing iron metasilicate and iron silicate skeleton, carbon black (SP), and sodium carboxymethylcellulose (CMC) were prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which was coated with After drying, the negative pole piece is made, and the positive electrode material lithium cobalt oxide LCO is used as the counter electrode, and the garnet type Li 7 La 3 Zr 2 O 12 (LLZO) is used as the solid electrolyte, and the solid state button battery is assembled in the glove box.
  • the charge-discharge test was carried out to evaluate its cycle performance. The results are shown in Table 1.
  • siliceous oxide powder and the cobalt silicate powder are uniformly mixed according to the mass ratio of 3:0.3:0.7, and placed in a vacuum furnace;
  • the silicon-based negative electrode containing cobalt silicate skeleton, carbon black (SP), and sodium carboxymethyl cellulose (CMC) are prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which is coated and dried to make a negative electrode slurry.
  • a negative electrode piece was formed, the positive electrode material lithium cobalt oxide LCO was used as the counter electrode, and the polyolefin-based gel polymer electrolyte membrane was used as the semi-solid electrolyte.
  • the semi-solid button battery was assembled in a glove box, and the charge-discharge test was carried out to evaluate it. Its cycle performance, the results are shown in Table 1.
  • the present invention also provides a comparative example.
  • the prepared silicon-based negative electrode, carbon black (SP) and sodium carboxymethyl cellulose (CMC) are prepared in a ratio of 7:2:1 to prepare a negative electrode slurry, which is coated and dried to make a negative electrode pole piece , using the ternary cathode material nickel cobalt manganese lithium NCM 333 as the counter electrode, a button battery was assembled in a glove box, and the charge-discharge test was carried out to evaluate its cycle performance. The results are shown in Table 1.
  • Table 1 above is a comparison of the electrochemical cycle performance of the lithium secondary batteries prepared in Examples 1-12 and Comparative Example 1.
  • the phosphates are dispersed in the silicon-based negative electrode matrix and play the role of supporting the skeleton, and no physical and chemical reactions occur during the electrochemical lithium insertion and delithiation processes, so the stable structure is silicon-based
  • the negative electrode provides skeleton support, which slows down the stress and strain caused by volume expansion, so that the 50-cycle capacity retention rate of each example is greatly improved compared to the comparative example, that is, the cycle performance of the silicon-based negative electrode is effectively improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Secondary Cells (AREA)

Abstract

一种含硅酸盐骨架的硅基负极材料、负极片和锂电池。所述硅基负极材料包括内部具有硅酸盐材料弥散分布的改性氧化亚硅材料;所述内部具有硅酸盐材料弥散分布的改性氧化亚硅材料的通式为MxSiOy,1≤x<6,3≤y<6,元素M包含Mg、Ni、Cu、Zn、Al、Na、Ca、K、Li、Fe、Co中的一种或多种;晶粒尺寸为0.5nm-100nm;改性氧化亚硅材料中,硅酸盐材料的含量占改性氧化亚硅材料总质量的5%-60%;弥散分布的硅酸盐材料构成硅基负极材料的骨架结构,不随硅基负极材料在循环过程中的脱锂和嵌锂而发生理化反应,且在多次循环后保持原始结构不变。

Description

一种含硅酸盐骨架的硅基负极材料、负极片和锂电池
本申请要求于2020年09月27日提交中国专利局、申请号为202011031904.2、发明名称为“一种含硅酸盐骨架的硅基负极材料、负极片和锂电池”的中国专利申请的优先权。
技术领域
本发明涉及二次电池材料技术领域,尤其涉及一种含硅酸盐骨架的硅基负极材料、负极片和锂电池。
背景技术
新能源汽车对长里程的追求对电池的能量密度提出了更高的要求。为了使电动汽车性价比达到最佳,单体电池的能量密度需达到350Wh/Kg(750Wh/L)。为了提高电池的能量密度,国内外电池材料厂致力于开发更高容量密度的正负极活性材料。
硅基负极是目前商业上主要研发的高能量密度负极材料。金属硅的理论容量高达4200mAh/g,但是在嵌锂形成Li 22Si 5合金的过程中伴随着约300%的体积膨胀,将会导致电极材料结构崩坍、固体电解质界面(SEI)不断破坏再生成过程,使得金属硅的循环性能特别差。
氧化亚硅(SiO x)相比于硅容量小,但对于缓解体积膨胀提高电池的循环寿命有着明显的优势。理想的SiO x具有硅纳米团簇均匀分散于SiO 2基质中的结构,在首周嵌锂时,锂与二氧化硅反应会生成多种不可逆的锂氧化物,这些不可逆产物会作为硅体积膨胀的缓冲带,抑制硅的体积膨胀。但是缓冲带的作用是有限的,并不能使SiO x的循环性能达到可实际应用的 标准。
为了降低硅基负极的膨胀,国内外研究人员通过活性物质纳米化、设计多孔结构、掺杂等方向进行了研究探索。专利CN 103682287 A设计了纳米硅颗粒内嵌在空心石墨内层的结构,通过纳米化和空心结构的设计,提高了硅负极的循环性能。文献(Zhaolin,Li,Hailei,等.Watermelon‐Like Structured SiOx–TiO 2@C Nanocomposite as a High‐Performance Lithium‐Ion Battery Anode[J].Advanced Functional Materials,2016.)报道了具有核壳结构的氧化亚硅-二氧化钛@碳(SiOx-TiO 2@C)复合纳米材料,TiO 2脱嵌锂时体积变化小,将其分布于SiO x基质中,可起钉扎效应,提高SiO x颗粒的结构稳定性,有效改善SiO x材料在高电流密度充放电下的循环特性。
但目前而言,硅基负极体系的性能改善仍然面临着纳米颗粒大规模制备和分散、多孔结构稳定性设计、掺杂稳定性等难题。硅基负极的体积膨胀大循环性能差的问题还未得到真正有效的解决。
发明内容
本发明实施例提供了一种含硅酸盐骨架的硅基负极材料、负极片和锂电池。通过向传统氧化亚硅材料中引入硅酸盐材料在其中弥散分布,对氧化亚硅材料改性作为硅基负极材料,弥散分布的硅酸盐材料构成硅基负极材料的骨架结构,面对硅基负极的体积膨胀,硅酸盐骨架能起到钉扎作用,减缓形变应力,有利于提高材料的循环性能。
第一方面,本发明实施例提供了一种含硅酸盐骨架的硅基负极材料,所述硅基负极材料包括内部具有硅酸盐材料弥散分布的改性氧化亚硅材料;
所述内部具有硅酸盐材料弥散分布的改性氧化亚硅材料的通式为M xSiO y,1≤x<6,3≤y<6,元素M包含Mg、Ni、Cu、Zn、Al、Na、Ca、K、 Li、Fe、Co中的一种或多种;所述改性氧化亚硅材料的晶粒尺寸为0.5nm-100nm;所述改性氧化亚硅材料中,所述硅酸盐材料的含量占改性氧化亚硅材料总质量的5%-60%;
弥散分布的所述硅酸盐材料构成所述硅基负极材料的骨架结构,不随硅基负极材料在循环过程中的脱锂和嵌锂而发生理化反应,且在多次循环后保持原始结构不变。
优选的,所述硅基负极材料还包括碳包覆层;
所述碳包覆层包覆在所述改性氧化亚硅材料之外,厚度为1nm-100nm。
优选的,所述改性氧化亚硅材料的晶粒尺寸为2nm-30nm;所述改性氧化亚硅材料中,所述硅酸盐材料的含量占改性氧化亚硅材料总质量的10%-30%。
优选的,所述硅基负极材料的平均粒径(D 50)为0.1-40μm,比表面积为0.5m 2/g-40m 2/g。
进一步优选的,所述硅基负极材料的平均粒径(D 50)为2-15μm,比表面积为1m 2/g-10m 2/g。
优选的,所述元素M为Mg时,对应的硅酸盐为MgSiO 3和/或Mg 2SiO 4;所述MgSiO 3的XRD衍射峰最强峰位于28.1度、31.1度、34.8度、34.9度、36.9度中的一处或几处,所述Mg 2SiO 4的XRD衍射峰最强峰位于36.5度处;
所述元素M为Ni时,对应的硅酸盐为NiSiO 4,所述NiSiO 4的XRD衍射峰最强峰位于37.0度处;
所述元素M为Cu时,对应的硅酸盐为CuSiO 3;所述CuSiO 3的XRD衍射峰最强峰位于12.2度处;
所述元素M为Zn时,对应的硅酸盐为ZnSiO 3和/或Zn 2SiO 4;所述ZnSiO 3的XRD衍射峰最强峰位于31.0度和/或34.0度处;所述Zn 2SiO 4的XRD衍射峰最强峰位于(31.0度和34.0度)、31.5度、31.7度、33.1度、36.5度、37.0度中的一处或几处;
所述元素M为Al时,对应的硅酸盐为Al 2SiO 5;所述Al 2SiO 5的XRD衍射峰最强峰位于26.1度和/或28.0度处;
所述元素M为Na时,对应的硅酸盐为Na 2SiO 3和/或Na 4SiO 4;所述Na 2SiO 3的XRD衍射峰最强峰位于29.4度处,所述Na 4SiO 4的XRD衍射峰最强峰位于13.0度和23.2度处;
所述元素M为Ca时,对应的硅酸盐为CaSiO 3和/或Ca 2SiO 4;所述CaSiO 3的XRD衍射峰最强峰位于25.3度和/或30.0度处,所述Ca 2SiO 4的XRD衍射峰最强峰位于32.0度、32.1度、32.5度、32.7度、32.8度、33.0度、33.2度中的一处或几处;
所述元素M为K时,对应的硅酸盐为K 4SiO 4;所述K 4SiO 4的XRD衍射峰最强峰位于30.4度和37.8度处;
所述元素M为Li时,对应的硅酸盐为Li 2SiO 3和/或Li 4SiO 4;所述Li 2SiO 3的XRD衍射峰最强峰位于18.9度和/或27.0度处,所述Li 4SiO 4的XRD衍射峰最强峰位于(22.2度和33.8度)和/或34.9度处;
所述元素M为Fe时,对应的硅酸盐为FeSiO 3和/或Fe 2SiO 4;所述FeSiO 3的XRD衍射峰最强峰位于32.7度处,所述Fe 2SiO 4的XRD衍射峰最强峰位于63.8度处;
所述元素M为Co时,对应的硅酸盐为Co 2SiO 4;所述Co 2SiO 4的XRD衍射峰最强峰位于36.4度、36.5度、36.6度中的一处或几处。
第二方面,本发明实施例提供了一种负极片,所述负极片包括上述第一方面所述的含硅酸盐骨架的硅基负极材料。
第三方面,本发明实施例提供了一种锂电池,所述所述负极片包括上述第一方面所述的含硅酸盐骨架的硅基负极材料。
优选的,所述负极片包括上述第一方面所述的含硅酸盐骨架的硅基负极材料。
本发明提供的含硅酸盐骨架的硅基负极材料,通过向传统氧化亚硅材 料中引入硅酸盐材料在其中弥散分布,对氧化亚硅材料改性,使改性后的材料可用作硅基负极材料。弥散分布的硅酸盐材料具有稳定的结构和性能,不随材料脱嵌锂发生理化反应,硅酸盐材料构成硅基负极材料的骨架结构,面对硅基负极的体积膨胀,硅酸盐骨架能起到钉扎作用,减缓形变应力,有利于提高材料的循环性能。
附图说明
下面通过附图和实施例,对本发明实施例的技术方案做进一步详细描述。
图1为本发明实施例1提供的含硅酸盐骨架的硅基负极循环1周后的的X射线衍射(XRD)图;
图2为本发明实施例1提供的含硅酸盐骨架的硅基负极循环50周后的XRD图;
图3为本发明实施例1提供的含硅酸盐骨架的硅基负极颗粒的扫描电子显微镜(SEM)图;
图4为本发明实施例2提供的含硅酸盐骨架的硅基负极循环1周后的的XRD图;
图5为本发明实施例2提供的含硅酸盐骨架的硅基负极循环50周后的XRD图。
具体实施方式
下面通过附图和具体的实施例,对本发明进行进一步的说明,但应当理解为这些实施例仅仅是用于更详细说明之用,而不应理解为用以任何形式限制本发明,即并不意于限制本发明的保护范围。
本发明提供的含硅酸盐骨架的硅基负极材料,包括内部具有硅酸盐材料弥散分布的改性氧化亚硅材料;
内部具有硅酸盐材料弥散分布的改性氧化亚硅材料的通式为M xSiO y,1 ≤x<6,3≤y<6,元素M包含Mg、Ni、Cu、Zn、Al、Na、Ca、K、Li、Fe、Co中的一种或多种;改性氧化亚硅材料的晶粒尺寸为0.5nm-100nm,优选为2nm-30nm;改性氧化亚硅材料中,所述硅酸盐材料的含量占改性氧化亚硅材料总质量的5%-60%,优选为10%-30%。
弥散分布的硅酸盐材料构成硅基负极材料的骨架结构,不随硅基负极材料在循环过程中的脱锂和嵌锂而发生理化反应,且在多次循环后保持原始结构不变。
进一步的,硅基负极材料还可以包括碳包覆层;碳包覆层包覆在改性氧化亚硅材料之外,厚度为1nm-100nm。
本发明的硅基负极材料的平均粒径(D 50)为0.1-40μm,比表面积为0.5m 2/g-40m 2/g。优选的例子中,平均粒径(D 50)为2-15μm,比表面积为1m 2/g-10m 2/g。
对于不同的硅酸盐的弥散分布,所获得的硅基负极材料的材料内部分子的结构、形态有所不同。
元素M为Mg时,对应的硅酸盐为MgSiO 3和/或Mg 2SiO 4;其中,MgSiO 3的XRD衍射峰最强峰位于28.1度、31.1度、34.8度、34.9度、36.9度中的一处或几处,Mg 2SiO 4的XRD衍射峰最强峰位于36.5度处;
元素M为Ni时,对应的硅酸盐为NiSiO 4;其中,NiSiO 4的XRD衍射峰最强峰位于37.0度处;
元素M为Cu时,对应的硅酸盐为CuSiO 3;其中,CuSiO 3的XRD衍射峰最强峰位于12.2度处;
元素M为Zn时,对应的硅酸盐为ZnSiO 3和/或Zn 2SiO 4;其中,ZnSiO 3的XRD衍射峰最强峰位于31.0度和/或34.0度处;Zn 2SiO 4的XRD衍射峰最强峰位于(31.0度和34.0度)、31.5度、31.7度、33.1度、36.5度、37.0度中的一处或几处;
元素M为Al时,对应的硅酸盐为Al 2SiO 5;Al 2SiO 5的XRD衍射峰最强 峰位于26.1度和/或28.0度处;
元素M为Na时,对应的硅酸盐为Na 2SiO 3和/或Na 4SiO 4;Na 2SiO 3的XRD衍射峰最强峰位于29.4度处,Na 4SiO 4的XRD衍射峰最强峰位于13.0度和23.2度处;
元素M为Ca时,对应的硅酸盐为CaSiO 3和/或Ca 2SiO 4;CaSiO 3的XRD衍射峰最强峰位于25.3度和/或30.0度处,Ca 2SiO 4的XRD衍射峰最强峰位于32.0度、32.1度、32.5度、32.7度、32.8度、33.0度、33.2度中的一处或几处;
元素M为K时,对应的硅酸盐为K 4SiO 4;K 4SiO 4的XRD衍射峰最强峰位于30.4度和37.8度处;
元素M为Li时,对应的硅酸盐为Li 2SiO 3和/或Li 4SiO 4;Li 2SiO 3的XRD衍射峰最强峰位于18.9度和/或27.0度处,Li 4SiO 4的XRD衍射峰最强峰位于(22.2度和33.8度)和/或34.9度处;
元素M为Fe时,对应的硅酸盐为FeSiO 3和/或Fe 2SiO 4;FeSiO 3的XRD衍射峰最强峰位于32.7度处,Fe 2SiO 4的XRD衍射峰最强峰位于63.8度处;
元素M为Co时,对应的硅酸盐为Co 2SiO 4;Co 2SiO 4的XRD衍射峰最强峰位于36.4度、36.5度、36.6度中的一处或几处。
以上提出的硅基负极材料,可以用于负极极片以及锂离子电池中,如液态锂离子电池、半固态锂离子电池、全固态离子电池或锂硫电池,在实际应用中还可以与其他材料共同使用作为负极材料。
本发明提供的含硅酸盐骨架的硅基负极材料,通过向传统氧化亚硅材料中引入硅酸盐材料在其中弥散分布,对氧化亚硅材料改性,使改性后的材料可用作硅基负极材料。弥散分布的硅酸盐材料具有稳定的结构和性能,不随材料脱嵌锂发生理化反应,硅酸盐材料构成硅基负极材料的骨架结构,面对硅基负极的体积膨胀,硅酸盐骨架能起到钉扎作用,减缓形变应力,有利于提高材料的循环性能。
为更好的理解本发明提供的技术方案,下述以多个具体实例分别说明采用含有不同硅酸盐骨架的硅基负极材料,及应用于锂离子电池的方法和电池特性。
实施例1
(1)将氧化亚硅粉末、偏硅酸镁粉末、硅酸镁粉末按照3:0.3:0.7的质量比混合均匀,并置于真空炉中;
(2)在1400℃,真空下将混合料热处理2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品与石油沥青按照20:1的质量比进行混合,置于高温炉中,氮气氛围900℃热处理2小时,得到含偏硅酸镁和硅酸镁骨架的硅基负极。
本发明所采用的固固混合,硅酸盐首先粘附在氧化亚硅颗粒表面,之后进行高温处理,在自身浓度差的驱使下硅酸盐能够快速扩散到氧化亚硅颗粒内部形成骨架结构。
(4)将含偏硅酸镁和硅酸镁骨架的硅基负极与碳黑(SP)、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料镍钴锰酸锂NCM 333为对电极,在手套箱中组装成纽扣电池,对其进行充放电测试,评价其循环性能,结果见表1。
(5)将循环1圈、50圈的放电态电池分别进行拆解,用碳酸二甲酯(DMC)溶剂浸泡冲洗负极极片,晾干后,刮下极片物料,进行XRD测试,得到的XRD图谱分别如图1、图2所示。图中清晰可见材料中包含MgSiO 3和Mg 2SiO 4,主峰分别位于31.1度和36.5度处,并且循环50周后,其硅酸盐骨架MgSiO 3和Mg 2SiO 4的XRD峰没有发生改变。
(6)本实施例所得的具有碳层包覆的含偏硅酸镁和硅酸镁粉末骨架 的硅基负极颗粒的SEM图像如图3所示。
实施例2
(1)将氧化亚硅粉末、偏硅酸镁粉末按照3:1的质量比混合均匀,并置于真空炉中;
(2)在1400℃,真空下将混合料热处理2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品置于回转炉中,在1000℃下通体积比为3:1的氩气和甲烷的混合气体,并保温2小时,得到含偏硅酸镁骨架的硅基负极;
(4)将含偏硅酸镁骨架的硅基负极与碳黑(SP)、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以正极材料钴酸锂(LCO)为对电极,在手套箱中组装成纽扣电池,对其进行充放电测试,评价其循环性能,结果见表1;
(5)将循环1圈、50圈的放电态电池分别进行拆解,用DMC溶剂浸泡冲洗负极极片,晾干后,刮下极片物料,进行XRD测试,得到的XRD图谱分别如图4、图5所示。图中清晰可见材料中包含MgSiO 3,主峰位于31.1度处,并且循环50周后,其硅酸盐骨架MgSiO 3的XRD峰没有发生改变。
实施例3
(1)将氧化亚硅粉末、硅酸镍粉末按照3:1的质量比混合均匀,并置于真空炉中;
(2)在1400℃,真空下将混合料热处理2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品置于回转炉中,在950℃下通体积比为2:1的氩气和乙炔的混合气体,并保温2小时,得到含硅酸镍骨架的硅基负极;
(4)将含硅酸镍骨架的硅基负极与碳黑(SP)、羧甲基纤维素钠(CMC) 按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料镍钴锰酸锂NCM 523为对电极,在手套箱中组装成纽扣电池,对其进行充放电测试,评价其循环性能,结果见表1。
实施例4
(1)将氧化亚硅粉末、偏硅酸铜粉末按照3:1的质量比混合均匀,并置于真空炉中;
(2)在1400℃,真空下将混合料热处理2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品与酚醛树脂按照20:1的比例溶于酒精溶剂,搅拌6小时形成均匀浆料;
(4)将上述浆料直接烘干;
(5)将烘干后的浆料置于高温炉中,在900℃,氮气保护气氛下将混合料烧结2小时,冷却后,进行粉碎、筛分,得到含偏硅酸铜骨架的硅基负极;
(6)将含偏硅酸铜骨架的硅基负极与碳黑(SP)、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料镍钴铝酸锂NCA为对电极,在手套箱中组装成纽扣电池,对其进行充放电测试,评价其循环性能,结果见表1。
实施例5
(1)将氧化亚硅粉末、偏硅酸锌粉末、硅酸锌粉末按照3:0.3:0.7的质量比混合均匀,并置于真空炉中;
(2)在1400℃,真空下将混合料热处理2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品与葡糖糖粉末按照20:1的比例混合均匀,并置 于高温炉中,在900℃,氩气保护气氛下将混合料烧结2小时,得到含偏硅酸锌和硅酸锌骨架的硅基负极;
(6)将含偏硅酸锌和硅酸锌骨架的硅基负极与碳黑(SP)、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以正极材料锰酸锂(LMO)为对电极,在手套箱中组装成纽扣电池,对其进行充放电测试,评价其循环性能,结果见表1。
实施例6
(1)将氧化亚硅粉末、硅酸铝粉末按照3:1的质量比混合均匀,并置于真空炉中;
(2)在1400℃,真空下将混合料热处理2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品与聚偏氟乙烯(PVDF)按照20:1的比例溶于N,N-二甲基甲酰胺(NMF)溶剂,搅拌6小时形成均匀浆料;
(4)将上述浆料直接烘干;
(5)将烘干后的浆料置于高温炉中,在900℃,氩气保护气氛下将混合料烧结2小时,冷却后,进行粉碎、筛分,得到含硅酸铝骨架的硅基负极;
(6)将含硅酸铝骨架的硅基负极与碳黑(SP)、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料NCM 811为对电极,在手套箱中组装成纽扣电池,对其进行充放电测试,评价其循环性能,结果见表1。
实施例7
(1)将氧化亚硅粉末、偏硅酸钠粉末、硅酸钠粉末按照3:0.3:0.7的质量比混合均匀,并置于真空炉中;
(2)在1400℃,真空下将混合料热处理2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品置于回转炉中,在950℃下通体积比为2:1的氩气和乙炔的混合气体,并保温2小时,得到含偏硅酸钠、硅酸钠骨架的硅基负极;
(4)将含偏硅酸钠、硅酸钠骨架的硅基负极与碳黑(SP)、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以正极材料钴酸锂LCO为对电极,在手套箱中组装成纽扣电池,对其进行充放电测试,评价其循环性能,结果见表1。
实施例8
(1)将氧化亚硅粉末、偏硅酸钙粉末、硅酸钙粉末按照3:0.3:0.7的质量比混合均匀,并置于真空炉中;
(2)在1400℃,真空下将混合料热处理2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品置于回转炉中,在1000℃下通体积比为3:1的氩气和甲烷的混合气体,并保温2小时,得到含偏硅酸钙、硅酸钙骨架的硅基负极;
(4)将含偏硅酸钙、硅酸钙骨架的硅基负极与碳黑(SP)、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以正极材料钴酸锂LCO为对电极,在手套箱中组装成纽扣电池,对其进行充放电测试,评价其循环性能,结果见表1。
实施例9
(1)将氧化亚硅粉末、硅酸钾粉末按照3:1的质量比混合均匀,并置于真空炉中;
(2)在1400℃,真空下将混合料热处理2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品与石油沥青按照20:1的质量比进行混合,置于高温炉中,氮气氛围900℃热处理2小时,得到含硅酸钾骨架的硅基负极;
(4)将含硅酸钾骨架的硅基负极与碳黑(SP)、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料镍钴锰酸锂NCM 333为对电极,在手套箱中组装成纽扣电池,对其进行充放电测试,评价其循环性能,结果见表1。
实施例10
(1)将氧化亚硅粉末、偏硅酸锂粉末、硅酸锂粉末按照3:0.3:0.7的质量比混合均匀,并置于真空炉中;
(2)在1400℃,真空下将混合料热处理2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品与石油沥青按照20:1的质量比进行混合,置于高温炉中,氮气氛围900℃热处理2小时,得到含偏硅酸锂、硅酸锂骨架的硅基负极;
(4)将含偏硅酸锂、硅酸锂骨架的硅基负极与碳黑(SP)、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料镍钴锰酸锂NCM 333为对电极,在手套箱中组装成纽扣电池,对其进行充放电测试,评价其循环性能,结果见表1。
实施例11
(1)将氧化亚硅粉末、偏硅酸铁粉末、硅酸铁粉末按照3:0.3:0.7的质量比混合均匀,并置于真空炉中;
(2)在1400℃,真空下将混合料热处理2小时,冷却后,进行粉碎、 筛分;
(3)将筛分后的样品置于回转炉中,在1000℃下通体积比为3:1的氩气和甲烷的混合气体,并保温2小时,得到含偏硅酸铁、硅酸铁骨架的硅基负极;
(4)将含偏硅酸铁、硅酸铁骨架的硅基负极与碳黑(SP)、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以正极材料钴酸锂LCO为对电极,以石榴石型Li 7La 3Zr 2O 12(LLZO)作为固态电解质,在手套箱中组装成固态纽扣电池,对其进行充放电测试,评价其循环性能,结果见表1。
实施例12
(1)将氧化亚硅粉末、硅酸钴粉末按照3:0.3:0.7的质量比混合均匀,并置于真空炉中;
(2)在1400℃,真空下将混合料热处理2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品置于回转炉中,在1000℃下通体积比为3:1的氩气和甲烷的混合气体,并保温2小时,得到含硅酸钴骨架的硅基负极;
(4)将含硅酸钴骨架的硅基负极与碳黑(SP)、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以正极材料钴酸锂LCO为对电极,以聚烯烃基凝胶聚合物电解质膜作为半固态电解质,在手套箱中组装成半固态纽扣电池,对其进行充放电测试,评价其循环性能,结果见表1。
为方便说明,本发明还提供了对比例。
对比例1
(1)将氧化亚硅粉末置于真空炉中;
(2)在1400℃,真空下热处理2小时,冷却后,进行粉碎、筛分;
(3)将筛分后的样品与石油沥青按照20:1的质量比进行混合,置于高温炉中,氮气氛围900℃热处理2小时;
(4)将制备的硅基负极与碳黑(SP)、羧甲基纤维素钠(CMC)按照7:2:1的比例制备负极浆料,经涂覆、烘干后制成负极极片,以三元正极材料镍钴锰酸锂NCM 333为对电极,在手套箱中组装成纽扣电池,对其进行充放电测试,评价其循环性能,结果见表1。
实施例 首周效率% 50周容量保持率%
1 83.91 52.8
2 83.53 50.3
3 82.88 52.2
4 83.67 52.2
5 82.50 52.0
6 82.43 51.3
7 83.66 53.6
8 82.73 44.9
9 83.62 46.2
10 83.82 51.8
11 83.73 40.3
12 83.88 42.9
对比例1 79.50 21.2
表1
以上表1为实施例1-12和对比例1制备的锂二次电池的电化学循环性能对比。通过对比可以看到,实施例中,磷酸盐弥散分布在硅基负极基质中,起到了支撑骨架的作用,在电化学嵌锂和脱锂过程中不发生理化反应,这样稳定的结构为硅基负极提供了骨架支撑,减缓了体积膨胀带来的应力应变,使得各实施例的50周容量保持率相对于对比例均有很大提升,即有效提高了硅基负极的循环性能。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行 了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种含硅酸盐骨架的硅基负极材料,其特征在于,所述硅基负极材料包括内部具有硅酸盐材料弥散分布的改性氧化亚硅材料;
    所述内部具有硅酸盐材料弥散分布的改性氧化亚硅材料的通式为M xSiO y,1≤x<6,3≤y<6,元素M包含Mg、Ni、Cu、Zn、Al、Na、Ca、K、Li、Fe、Co中的一种或多种;所述改性氧化亚硅材料的晶粒尺寸为0.5nm-100nm;所述改性氧化亚硅材料中,所述硅酸盐材料的含量占改性氧化亚硅材料总质量的5%-60%;
    弥散分布的所述硅酸盐材料构成所述硅基负极材料的骨架结构,不随硅基负极材料在循环过程中的脱锂和嵌锂而发生理化反应,且在多次循环后保持原始结构不变。
  2. 根据权利要求1所述的硅基负极材料,其特征在于,所述硅基负极材料还包括碳包覆层;
    所述碳包覆层包覆在所述改性氧化亚硅材料之外,厚度为1nm-100nm。
  3. 根据权利要求1所述的硅基负极材料,其特征在于,所述改性氧化亚硅材料的晶粒尺寸为2nm-30nm;所述改性氧化亚硅材料中,所述硅酸盐材料的含量占改性氧化亚硅材料总质量的10%-30%。
  4. 根据权利要求1所述的硅基负极材料,其特征在于,所述硅基负极材料的平均粒径(D 50)为0.1-40μm,比表面积为0.5m 2/g-40m 2/g。
  5. 根据权利要求4所述的硅基负极材料,其特征在于,所述硅基负极材料的平均粒径(D 50)为2-15μm,比表面积为1m 2/g-10m 2/g。
  6. 根据权利要求1所述的硅基负极材料,其特征在于,
    所述元素M为Mg时,对应的硅酸盐为MgSiO 3和/或Mg 2SiO 4;所述MgSiO 3的XRD衍射峰最强峰位于28.1度、31.1度、34.8度、34.9度、36.9度中的一处或几处,所述Mg 2SiO 4的XRD衍射峰最强峰位于36.5度处;
    所述元素M为Ni时,对应的硅酸盐为NiSiO 4,所述NiSiO 4的XRD衍 射峰最强峰位于37.0度处;
    所述元素M为Cu时,对应的硅酸盐为CuSiO 3;所述CuSiO 3的XRD衍射峰最强峰位于12.2度处;
    所述元素M为Zn时,对应的硅酸盐为ZnSiO 3和/或Zn 2SiO 4;所述ZnSiO 3的XRD衍射峰最强峰位于31.0度和/或34.0度处;所述Zn 2SiO 4的XRD衍射峰最强峰位于(31.0度和34.0度)、31.5度、31.7度、33.1度、36.5度、37.0度中的一处或几处;
    所述元素M为Al时,对应的硅酸盐为Al 2SiO 5;所述Al 2SiO 5的XRD衍射峰最强峰位于26.1度和/或28.0度处;
    所述元素M为Na时,对应的硅酸盐为Na 2SiO 3和/或Na 4SiO 4;所述Na 2SiO 3的XRD衍射峰最强峰位于29.4度处,所述Na 4SiO 4的XRD衍射峰最强峰位于13.0度和23.2度处;
    所述元素M为Ca时,对应的硅酸盐为CaSiO 3和/或Ca 2SiO 4;所述CaSiO 3的XRD衍射峰最强峰位于25.3度和/或30.0度处,所述Ca 2SiO 4的XRD衍射峰最强峰位于32.0度、32.1度、32.5度、32.7度、32.8度、33.0度、33.2度中的一处或几处;
    所述元素M为K时,对应的硅酸盐为K 4SiO 4;所述K 4SiO 4的XRD衍射峰最强峰位于30.4度和37.8度处;
    所述元素M为Li时,对应的硅酸盐为Li 2SiO 3和/或Li 4SiO 4;所述Li 2SiO 3的XRD衍射峰最强峰位于18.9度和/或27.0度处,所述Li 4SiO 4的XRD衍射峰最强峰位于(22.2度和33.8度)和/或34.9度处;
    所述元素M为Fe时,对应的硅酸盐为FeSiO 3和/或Fe 2SiO 4;所述FeSiO 3的XRD衍射峰最强峰位于32.7度处,所述Fe 2SiO 4的XRD衍射峰最强峰位于63.8度处;
    所述元素M为Co时,对应的硅酸盐为Co 2SiO 4;所述Co 2SiO 4的XRD衍射峰最强峰位于36.4度、36.5度、36.6度中的一处或几处。
  7. 一种负极片,其特征在于,所述负极片包括上述权利要求1-6任一所述的含硅酸盐骨架的硅基负极材料。
  8. 一种锂电池,其特征在于,所述锂电池包括上述权利要求1-6任一所述的含硅酸盐骨架的硅基负极材料。
  9. 根据权利要求8所述的锂电池,其特征在于,所述锂电池具体包括液态锂离子电池、半固态锂离子电池、全固态离子电池或锂硫电池。
PCT/CN2021/078603 2020-09-27 2021-03-02 一种含硅酸盐骨架的硅基负极材料、负极片和锂电池 WO2022062319A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21870708.1A EP4220757A1 (en) 2020-09-27 2021-03-02 Silicon-based negative electrode material containing silicate skeleton, negative electrode plate, and lithium battery
US18/246,734 US20230369589A1 (en) 2020-09-27 2021-03-02 Silicon-based negative electrode material containing silicate skeleton, negative electrode plate, and lithium battery
KR1020237014047A KR20230074562A (ko) 2020-09-27 2021-03-02 실리케이트 골격을 포함하는 실리콘계 음극 소재, 음극 시트 및 리튬 전지
JP2023519147A JP2023543249A (ja) 2020-09-27 2021-03-02 ケイ酸塩骨格を含むケイ素系負極材料、負極シート及びリチウム電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011031904.2 2020-09-27
CN202011031904.2A CN112151771B (zh) 2020-09-27 2020-09-27 一种含硅酸盐骨架的硅基负极材料、负极片和锂电池

Publications (1)

Publication Number Publication Date
WO2022062319A1 true WO2022062319A1 (zh) 2022-03-31

Family

ID=73894839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078603 WO2022062319A1 (zh) 2020-09-27 2021-03-02 一种含硅酸盐骨架的硅基负极材料、负极片和锂电池

Country Status (6)

Country Link
US (1) US20230369589A1 (zh)
EP (1) EP4220757A1 (zh)
JP (1) JP2023543249A (zh)
KR (1) KR20230074562A (zh)
CN (1) CN112151771B (zh)
WO (1) WO2022062319A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864887A (zh) * 2022-04-07 2022-08-05 湖南金硅科技有限公司 一种氧化亚硅流动性的改性方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151771B (zh) * 2020-09-27 2022-04-12 溧阳天目先导电池材料科技有限公司 一种含硅酸盐骨架的硅基负极材料、负极片和锂电池
CN114639814B (zh) * 2022-04-06 2024-08-23 宁波杉杉新材料科技有限公司 掺杂型硅基材料及其制备方法、应用
CN116083927B (zh) * 2023-02-10 2023-08-29 江西理工大学 一种用于氧化亚硅负极材料均匀预镁化方法及其在锂离子电池中的应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682287A (zh) 2013-12-19 2014-03-26 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池硅基复合负极材料、制备方法及电池
CN106356508A (zh) * 2016-09-29 2017-01-25 深圳市贝特瑞新能源材料股份有限公司 一种复合物、其制备方法及采用该复合物制备的负极和锂离子电池
CN108493438A (zh) * 2018-04-27 2018-09-04 天津巴莫科技股份有限公司 一种锂离子电池用SiOx基复合负极材料及其制备方法
CN108963194A (zh) * 2017-05-18 2018-12-07 中国科学院物理研究所 一种硅基复合材料及其制备方法和应用
KR20190116011A (ko) * 2018-04-04 2019-10-14 대주전자재료 주식회사 규소-산화규소-탄소 복합체 및 규소-산화규소-탄소 복합체의 제조 방법
CN110615423A (zh) * 2019-09-24 2019-12-27 中国科学院化学研究所 一种锂电池硅基复合负极材料的制备方法
CN110649236A (zh) * 2019-09-24 2020-01-03 中国科学院化学研究所 一种多孔硅碳复合材料及其制备方法
CN110854377A (zh) * 2019-12-05 2020-02-28 中南大学 一种多孔氧化亚硅复合材料及其制备和应用
CN111072038A (zh) * 2019-12-27 2020-04-28 江西壹金新能源科技有限公司 一种用于锂离子电池负极的改性一氧化硅材料及其制备方法
CN112151771A (zh) * 2020-09-27 2020-12-29 溧阳天目先导电池材料科技有限公司 一种含硅酸盐骨架的硅基负极材料、负极片和锂电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168352A1 (ko) * 2018-03-02 2019-09-06 주식회사 엘지화학 음극 활물질 및 이의 제조 방법, 상기 음극 활물질을 포함하는 음극 및 리튬 이차전지
CN110660984B (zh) * 2019-10-15 2022-04-12 溧阳天目先导电池材料科技有限公司 一种纳米硅碳复合材料及其制备方法和应用
CN111463423B (zh) * 2020-04-07 2021-09-28 山东斯艾诺德新材料科技有限公司 一种氧化亚硅锂离子电池负极材料制备方法及电池负极片的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682287A (zh) 2013-12-19 2014-03-26 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池硅基复合负极材料、制备方法及电池
CN106356508A (zh) * 2016-09-29 2017-01-25 深圳市贝特瑞新能源材料股份有限公司 一种复合物、其制备方法及采用该复合物制备的负极和锂离子电池
CN108963194A (zh) * 2017-05-18 2018-12-07 中国科学院物理研究所 一种硅基复合材料及其制备方法和应用
KR20190116011A (ko) * 2018-04-04 2019-10-14 대주전자재료 주식회사 규소-산화규소-탄소 복합체 및 규소-산화규소-탄소 복합체의 제조 방법
CN108493438A (zh) * 2018-04-27 2018-09-04 天津巴莫科技股份有限公司 一种锂离子电池用SiOx基复合负极材料及其制备方法
CN110615423A (zh) * 2019-09-24 2019-12-27 中国科学院化学研究所 一种锂电池硅基复合负极材料的制备方法
CN110649236A (zh) * 2019-09-24 2020-01-03 中国科学院化学研究所 一种多孔硅碳复合材料及其制备方法
CN110854377A (zh) * 2019-12-05 2020-02-28 中南大学 一种多孔氧化亚硅复合材料及其制备和应用
CN111072038A (zh) * 2019-12-27 2020-04-28 江西壹金新能源科技有限公司 一种用于锂离子电池负极的改性一氧化硅材料及其制备方法
CN112151771A (zh) * 2020-09-27 2020-12-29 溧阳天目先导电池材料科技有限公司 一种含硅酸盐骨架的硅基负极材料、负极片和锂电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAOLIN, LIHAILEI ET AL.: "Watermelon-Like Structured SiOx-TiO @C Nanocomposite as a High-Performance Lithium-Ion Battery Anode[J", ADVANCED FUNCTIONAL MATERIALS, 2016

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864887A (zh) * 2022-04-07 2022-08-05 湖南金硅科技有限公司 一种氧化亚硅流动性的改性方法
CN114864887B (zh) * 2022-04-07 2023-09-22 湖南金硅科技有限公司 一种氧化亚硅流动性的改性方法

Also Published As

Publication number Publication date
JP2023543249A (ja) 2023-10-13
EP4220757A1 (en) 2023-08-02
CN112151771A (zh) 2020-12-29
US20230369589A1 (en) 2023-11-16
CN112151771B (zh) 2022-04-12
KR20230074562A (ko) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2022062319A1 (zh) 一种含硅酸盐骨架的硅基负极材料、负极片和锂电池
WO2021056981A1 (zh) 一种锂电池硅基复合负极材料的制备方法
US11757089B2 (en) Carbon matrix composite material, preparation method therefor and lithium ion battery comprising same
WO2022088543A1 (zh) 用于电池的负极活性材料及其制备方法、电池负极、电池
CN110931764A (zh) 锂离子二次电池的负极材料、负极片、及锂离子二次电池
WO2022062320A1 (zh) 一种含有金属元素梯度掺杂的负极材料及其应用
CN110416522B (zh) 一种含锂复合负极材料、其制备方法和其在锂二次电池中的应用
WO2022122023A1 (zh) 具有核壳结构的硅基颗粒及其制备方法、负极材料、极片和电池
CN115472816A (zh) 一种硅氧颗粒及其制备方法和应用
WO2022121281A1 (zh) 一种自填充包覆硅基复合材料、其制备方法及其应用
CN111342031B (zh) 一种多元梯度复合高首效锂电池负极材料及其制备方法
CN112687853B (zh) 硅氧颗粒团聚体及其制备方法、负极材料、电池
WO2024031867A1 (zh) 氮掺杂石墨烯包覆硅碳复合材料及其制备方法和应用
WO2022062321A1 (zh) 一种硅基负极复合材料和锂二次电池
CN111342020B (zh) 一种硅基负极材料及其制备方法以及一种锂离子电池
WO2023005987A1 (zh) 两元补锂添加剂及其制备方法与应用
CN110854373B (zh) 复合负极材料及其制备方法
CN114520320B (zh) 一种基于碱金属还原法的氧化锂复合正极材料
CN114388767B (zh) 一种纳米硅复合材料、电池负极和固体电池及其制备方法和用途
CN116014104A (zh) 富锂镍系正极材料及其制备方法、正极片与二次电池
CN116565174A (zh) 一种硅碳复合材料、制备方法、硅基负极及锂离子电池
CN109638231B (zh) 氧化亚硅复合负极材料及其制备方法和锂离子电池
CN117542995A (zh) 用于二次电池的硅基负极材料及其制备方法、电极、二次电池
CN112687851A (zh) 硅氧颗粒及其制备方法、负极材料和电池
CN115775885B (zh) 一种硅氧负极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023519147

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317021534

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237014047

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2021870708

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021870708

Country of ref document: EP

Effective date: 20230428