WO2022062288A1 - 苯胺基酸酐及其制备方法与聚氨基酸接枝链 - Google Patents

苯胺基酸酐及其制备方法与聚氨基酸接枝链 Download PDF

Info

Publication number
WO2022062288A1
WO2022062288A1 PCT/CN2021/074017 CN2021074017W WO2022062288A1 WO 2022062288 A1 WO2022062288 A1 WO 2022062288A1 CN 2021074017 W CN2021074017 W CN 2021074017W WO 2022062288 A1 WO2022062288 A1 WO 2022062288A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
acid anhydride
reaction
graft chain
water
Prior art date
Application number
PCT/CN2021/074017
Other languages
English (en)
French (fr)
Inventor
吴优
李战雄
王雪婷
陈明强
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US18/028,542 priority Critical patent/US20230357171A1/en
Publication of WO2022062288A1 publication Critical patent/WO2022062288A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/30Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D263/34Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/44Two oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/10Alpha-amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/02Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin
    • D06M14/04Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin of vegetal origin, e.g. cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/02Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin
    • D06M14/06Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to materials of natural origin of animal origin, e.g. wool or silk
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/59Polyamides; Polyimides
    • D06M15/595Derivatives obtained by substitution of a hydrogen atom of the carboxamide radical
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/10Animal fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/10Animal fibres
    • D06M2101/12Keratin fibres or silk
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties

Definitions

  • the invention relates to an aniline acid anhydride, a preparation method thereof, and a polyamino acid graft chain, and belongs to the technical field of special functional textiles and preparation thereof.
  • the prior art discloses a wear-resistant, environmentally friendly and degradable super-hydrophobic coating finishing method.
  • the super-hydrophobic coating is constructed by a two-step dipping method.
  • the superhydrophobicity is obtained by grafting the low surface energy substance stearic acid.
  • the production process and equipment are extremely simple, the reaction conditions are mild, and the cost is low.
  • the product has excellent wear resistance, soap resistance, acid and alkali resistance. And can be directly applied to large-scale industrial production; fabrics treated by this method can obtain good hydrophobicity, oil-water separation and UV protection properties, green and environmental protection, and can be naturally degraded. Separation materials, etc. are widely used.
  • the water-collecting function obtained by the coated hair-treated fabric is not durable.
  • the invention discloses aniline acid anhydride and a preparation method thereof and a polyamino acid graft chain.
  • the aniline acid anhydride is used for surface modification of fiber materials after ring-opening polymerization, so as to ensure the strength, air permeability and whiteness of fabrics (or fibers). Under the premise that the properties such as , feel and other properties are not affected, a surface hydrophobically modified fabric is obtained. Aiming at the problem of unsatisfactory durability commonly existing in water-repellent fabrics, the aniline acid anhydride of the present invention forms a hydrophobic graft chain, thereby providing water-repellent function and durable water-repellent.
  • anilino acid anhydride which has the following chemical structural formula.
  • R 1 , R 2 and R 3 are independently selected from H, -CH 3 , -CH 2 CH 3 or -CF 3 ; R 4 is -CH 3 or -CH 2 CH 3 .
  • a polyamino acid graft chain the chemical structure of the polyamino acid graft chain is as follows.
  • R 1 , R 2 and R 3 are independently selected from H, -CH 3 , -CH 2 CH 3 or -CF 3 ;
  • R 4 is -CH 3 or -CH 2 CH 3 ;
  • R 5 is -CH 2 - or -CH 2 CH 2 CH 2 NH-;
  • X is O or NH;
  • n 3 ⁇ 200. * Indicates an end-capping group or a substrate, such as fabric, the polyamino acid graft chain of the present invention can exist on the substrate to play a water-repellent role, and can also be prepared independently and then applied to the substrate finishing.
  • the preparation method of the above-mentioned aniline acid anhydride comprises the following steps: in the presence of an acid binding agent, N-phenylamino acid and Boc acid anhydride are subjected to addition-elimination reaction to obtain N-phenyl-tert-butoxycarbylglycine; under nitrogen protection, N-phenyl-tert-butoxycarbylglycine cyclization to give anilino anhydrides.
  • the preparation method of the above-mentioned polyamino acid graft chain comprises the following steps: in the presence of an acid binding agent, N-phenylamino acid is reacted with Boc acid anhydride to obtain N-phenyl-tert-butoxycarbylglycine; cyclization reaction of glycine-tert-butoxycarbyl glycine to obtain anilino acid anhydride; a mixed reaction of terminal amino substance and anilino acid anhydride to obtain the polyamino acid graft modified water-repellent fabric.
  • N-phenyl-tert-butoxycarbylglycine of the present invention is as follows.
  • the reaction temperature is 0 ⁇ 80°C, preferably room temperature ⁇ 70°C, and the time is 1 ⁇ 120h, preferably 24 ⁇ 60h ;
  • the reaction temperature is a four-step step temperature rise, such as room temperature + (30 ⁇ 50 ° C) + (50 ⁇ 60 ° C) + (60 ⁇ 70 ° C), the temperature difference between adjacent steps is 5 ⁇ 25 ° C.
  • the invention discloses the application of the above-mentioned aniline acid anhydride in the preparation of a water-repellent polyamino acid graft chain or in the preparation of a water-repellent finishing agent.
  • the amino-terminated substance is an aminosilane coupling agent or a substance treated with an aminosilane coupling agent, such as a fabric treated with an aminosilane coupling agent.
  • the aminosilane coupling agent is hydrolyzed in a water/ethanol mixed solvent to obtain a hydrolyzed solution, and the fabric is put into the hydrolyzed solution to react to obtain a pretreated fabric with amino groups on the fiber surface, which is an amino pretreated fabric as an amino-terminated substance;
  • the linking agent is any one of aminopropyltriethoxysilane, aminopropyltrimethoxysilane, aminoethylaminopropyltriethoxysilane, and aminoethylaminopropyltrimethoxysilane.
  • N-phenyl-tert-butoxycarbylglycine is cyclized to obtain anilino anhydride; specifically, N-phenyl-tert-butoxycarbylglycine is dissolved in an anhydrous solvent, A cyclizing agent is added under nitrogen protection, and then a cyclization reaction is carried out to generate anilino acid anhydride; the cyclizing agent is PCl 3 ; the anhydrous solvent is anhydrous dichloromethane, anhydrous chloroform or anhydrous tetrachloroethane;
  • the cyclization agent is added in 2 to 10 batches, preferably 3 to 5 batches, and the temperature for adding the cyclization agent is -20 to 45°C, preferably -5 to 5°C; the temperature of the cyclization reaction is 5 to 45°C. , preferably 20 ⁇ 30°C; time is 0.1 ⁇ 48h, preferably 12 ⁇ 24h.
  • N-phenylamino acid reacts with Boc acid anhydride to obtain N-phenyl-tert-butoxycarbylglycine;
  • the acid binding agent is triethylamine or pyridine;
  • the temperature is 5 ⁇ 45°C, and the time is 0.1 ⁇ 24h.
  • the molar ratio of N-phenylamino acid and Boc acid anhydride is 1:2.5.
  • the Boc acid anhydride solution is added dropwise to the mixture of the N-phenylamino acid solution and the acid binding agent, and an addition-elimination reaction is carried out to obtain N-phenyl-N-tert-butoxycarbonylglycine;
  • the addition time is 20 ⁇ 120min, preferably 30 ⁇ 60min.
  • the solvent is water/1,4-dioxane, wherein the volume ratio of water and dioxane is 1:1 ⁇ 2, preferably 1:1 ⁇ 1.5; Boc acid anhydride solution Among them, the solvent is any one of 1,4-dioxane, tetrahydrofuran or diethyl ether.
  • the reaction temperature of the reaction between N-phenylamino acid and Boc acid anhydride is 5 ⁇ 45°C, preferably room temperature; the reaction time is 0.1 ⁇ 24h, preferably 12 ⁇ 18h.
  • the technical solution provided by the present invention has the beneficial effects that: the present invention discloses for the first time anilino acid anhydride, especially when the polyamino acid graft modified water-repellent fabric prepared by polymerization is connected to the fiber through covalent bonds,
  • the hydrophobic fabric is endowed with excellent durability and fastness, which solves the problem of fastness checking of the conventional coating by fixing the fabric through physical action, and the problems of high cost and strict equipment requirements caused by other physical modifications.
  • the polyamino acid prepared by the aniline acid anhydride of the present invention belongs to the environment-friendly polymer with good biocompatibility and natural degradability, which conforms to the current development trend of green chemicals.
  • Fig. 1 is the N-aniline acid anhydride hydrogen NMR image prepared in Example 2, and the solvent is deuterated chloroform.
  • Fig. 2 is the infrared image of N-aniline acid anhydride prepared in Example 2.
  • Figure 3 is a scanning electron microscope (SEM) image of the N-(p-trifluorotoluene) amino acid anhydride prepared in Example 3 on the surface of the fiber by ring-opening polymerization and graft-modified cotton fabric, and after soaping (left);
  • the contact angle test chart after washing (top right) shows that the contact angle of the fabric to water is 141.6°, the treated fabric has excellent hydrophobicity, the surface coating is stable to soaping and has good durability.
  • Fig. 4 is the FT-IR image of the polyphenylamino acid graft modified fabric prepared in Example 4. From the characteristic absorption peaks of the benzene ring and amino acid structure appearing in the infrared absorption curve, it can be seen that the polyphenyl amino acid has been successfully inserted into the hemp fiber surface.
  • Fig. 5 is the N-aniline acid anhydride prepared in Example 4 on the surface of hemp fiber after ring-opening polymerization finishing the contact angle test of the fabric after soaping, it can be known that the contact angle of the fabric to water is 140.1°, and the treated fabric is excellent in hydrophobicity to obtain a surface coating Soaping is stable and durability is good.
  • Figure 6 is a test chart of the contact angle of the N-aniline anhydride prepared in Example 5 after soaping on the surface of the silk fabric after ring-opening polymerization finishing.
  • Figure 7 is an optical photograph of the polyamino acid graft modified silk fabric prepared in Example 5 and the silk fabric treated with a commercially available water-repellent finishing agent, after protease catalytic degradation, it can be seen that the polyphenyl amino acid graft modified silk fabric is easy Degradation, while the commercially available water-repellent finishing agent-finished silk fabrics basically did not degrade under these conditions.
  • the invention discloses a preparation method of aniline acid anhydride, which comprises the following steps.
  • N-phenylamino acid undergoes addition-elimination reaction with Boc anhydride in a mixed solvent to form an intermediate N-phenyl-tert-butoxycarbylglycine.
  • PCl 3 cyclization N-phenyl-tert-butoxycarbyl glycine is cyclized by carboxyl group and Boc group under the action of cyclization agent PCl 3 to generate N-aniline acid anhydride.
  • polyamino acid graft chains are prepared by the polymerization of aniline acid anhydrides. Taking the fabric treated with aminosilane coupling agent as an example, on the surface of the fibers, ring-opening polymerization of aniline acid anhydrides is induced to form graft chains.
  • the raw materials involved in the present invention are all commercially available conventional products, and the specific preparation methods and testing operations are conventional methods. Unless otherwise specified, they are all carried out at room temperature and in a conventional environment.
  • the fabric used for the amino-terminated substance is a conventional fabric, untreated , is hydrophilic.
  • Fabric pretreatment Dissolve aminosilane coupling agent, aminopropyltriethoxysilane, in a mixed solution of water/ethanol (the volume ratio of water and ethanol is 1:9), and adjust the pH of the solution to 10% ammonia water. 10. Hydrolyze for 3h at room temperature to obtain a transparent hydrolyzed solution of aminosilane coupling agent, and then place a piece of 300g circular cotton fabric in the above-mentioned 400mL hydrolyzed solution of aminosilane coupling agent (the amount of aminosilane coupling agent is 6% of the fabric weight) A water bath reaction was carried out, the temperature of the water bath was 50 °C, and the reaction time was 120 min. After the reaction was completed, the fabric was taken out, washed three times with water, dried at 60°C, and baked at 120°C for 3 min to obtain the cotton fabric pretreated with the aminosilane coupling agent.
  • the above-mentioned cotton fabric is replaced with a hemp fabric or a mulberry silk fabric, and the rest remains unchanged to obtain a hemp fabric pretreated with an aminosilane coupling agent or a silk fabric pretreated with an aminosilane coupling agent.
  • Example 3 Take 3.1 g of the white solid product N-trifluorotoluidine acid anhydride in Example 1 and dissolve it completely in 450 mL of N,N-dimethylformamide (DMF) solution.
  • the treated cotton fabric was added to the DMF solution, reacted at room temperature for 4 h, then heated to 50 °C for 8 h, then heated to 60 °C for 12 h, and finally heated to 70 °C for 12 h.
  • the total grafting reaction time was 48 h.
  • the fabric was taken out to terminate the reaction, washed three times with water, washed with conventional ultrasonic waves for 15 min, and then dried at 60 °C to obtain a water-repellent cotton fabric.
  • n is 20 to 60).
  • Example 4 Take 3.1 g of the white solid product N-aniline acid anhydride in Example 2 and dissolve it completely in 450 mL of N,N-dimethylformamide (DMF) solution, and pretreat hemp fabric with aminosilane coupling agent It was added to the DMF solution, reacted at room temperature for 4 hours, then heated to 50 °C for 8 hours, heated to 60 °C for 12 hours, and finally heated to 70 °C for 12 hours. The total grafting reaction time was 48 hours. After the reaction was completed, the hemp fabric was taken out to terminate the reaction, washed three times with water, cleaned with conventional ultrasonic waves for 15 min, and then dried at 60° C. to obtain a water-repellent hemp fabric.
  • DMF N,N-dimethylformamide
  • Example 5 Dissolve 0.25g of N-aniline anhydride (prepared in Example 2) in 45mL of tetrahydrofuran (THF), add aminosilane coupling agent pretreated silk fabric to the THF solution, react at room temperature for 2h, and then The temperature was raised to 30°C for 4h, the temperature was raised to 50°C for 12h, and the temperature was raised to 60°C for 12h. The total grafting reaction time was 24h. After the reaction was completed, the fabric was taken out to terminate the reaction, washed three times with water, cleaned with conventional ultrasonic waves for 15 min, and dried at 60° C. to obtain a water-repellent silk fabric.
  • the structure of the polyamino acid graft chain on the fiber surface is as follows (the wavy line is the fiber, and n is 30-70).
  • contact angle test For the contact angle test, the wettability of the coated fabrics before and after soaping was tested by the DSA100 automatic microscopic droplet wettability measuring instrument from Krüss Company in Germany. Water was selected as the test droplet, and the droplet volume was 5 ⁇ L. Five tests were performed to obtain the average value.
  • the surface contact angles of the acid anhydride ring-opening polymerization finishing fabric before and after soaping in Example 3 were measured to be 145.4° and 141.6°, respectively. See Figure 3. After soaping, it still showed hydrophobic performance, indicating that the finishing durability was good.
  • the surface contact angles of the acid anhydride ring-opening polymerization finishing fabrics before and after soaping in Example 4 were measured to be 141.2° and 140.1°, respectively, and the hydrophobic properties could still be exhibited after soaping. See Figure 5, indicating that the finishing durability is good.
  • the N-aniline acid anhydride of Example 4 was replaced with N-trifluorotoluene acid anhydride, and the rest remained unchanged, and the surface contact angles before and after soaping of the water-repellent hemp fabric were 141.9° and 139.3°, respectively.
  • the surface contact angles of the acid anhydride ring-opening polymerization finishing fabrics before and after soaping in Example 5 were measured to be 142.7° and 139.8°, respectively, and the hydrophobic properties could still be exhibited after soaping. See Figure 6, indicating that the finishing durability is good.
  • Degradability test The water-repellent fabric samples were cut into discs with a diameter of about 10 mm, washed with ethanol and deionized water in turn, and dried in vacuum at 37 °C for 24 h for use. Papain was used as proteolytic enzyme, and the protease was activated in 0.01M cysteine, 0.04M EDTA buffer solution (pH 8.0), and the concentration was 1 mg enzyme/ml solution. Use a pipette to pipette 3 mL of the enzyme solution, add it to the corresponding well of the culture plate, and then weigh the above-mentioned disc fabric and put it into the well of the culture plate to ensure that the sample is completely immersed in the enzyme solution. After degrading for a certain period of time, the samples were taken out and washed with a large amount of deionized water, then vacuum-dried at 37 °C for 24 h, and weighed and recorded.
  • W 0 is the quality of the fabric before degradation
  • Wi is the quality after degradation
  • Finishing process two dipping and two tying (the nip rate is 80%) ⁇ pre-baking (90 °C, 3 min) ⁇ baking (155 °C, 2 min) ⁇ finishing silk fabric.
  • the treated fabric samples were soaped according to GB/T 3921-2008 "Color fastness to soaping of textiles color fastness test", and then the soaping durability of the graft-modified silk fabric was tested.
  • the contact angle test uses the DSA100 automatic microscopic droplet wettability measuring instrument of Krüss Company in Germany to test the wettability of the coated fabrics before and after soaping. Take its average. The surface contact angles of the finished fabric before and after soaping were measured to be 136.8° and 108.1°, respectively. After soaping, the contact angle decreased a lot, the hydrophobicity decreased, and the finishing durability was poor.
  • the water-repellent fabric samples were cut into discs with a diameter of about 10 mm, washed with ethanol and deionized water in turn, and dried in vacuum at 37 °C for 24 h for use.
  • Papain was used as proteolytic enzyme, and the protease was activated in 0.01M cysteine, 0.04M EDTA buffer solution (pH 8.0), and the concentration was 1 mg enzyme/ml solution.
  • Use a pipette to pipette 3 mL of the enzyme solution add it to the corresponding well of the culture plate, and then weigh the above-mentioned disc fabric and put it into the well of the culture plate to ensure that the sample is completely immersed in the enzyme solution. After degrading for a certain period of time, the samples were taken out and washed with a large amount of deionized water, then vacuum-dried at 37 °C for 24 h, and weighed and recorded.
  • W 0 is the quality of the fabric before degradation
  • Wi is the quality after degradation
  • the above-mentioned mulberry silk fabric was replaced with an aminosilane coupling agent pretreated silk fabric, and the rest remained unchanged.
  • the obtained E-061 treated silk fabrics were treated with a water contact angle of 137.3° and 106.5° on the surface of the silk fabric before and after soaping. The corners drop a lot, the hydrophobicity drops, and the finishing durability is poor.
  • Example 4 On the basis of Example 4, the reaction was carried out at room temperature for 4 h, then heated to 50 °C for 8 h, heated to 60 °C for 12 h, and finally heated to 70 °C for 12 h.
  • the total grafting reaction time was 48 h and replaced with room temperature for 48 h. The rest remain unchanged, and the water contact angles of the obtained water-repellent hemp fabrics before and after soaping are 134.7° and 130.5°, respectively.
  • Example 4 On the basis of Example 4, the reaction was carried out at room temperature for 4 h, then heated to 50 °C for 8 h, heated to 60 °C for 12 h, and finally heated to 70 °C for 12 h.
  • the total grafting reaction time was 48 h and replaced with 60 °C reaction. 48h; the rest remained unchanged, the water contact angles of the obtained water-repellent hemp fabrics before and after soaping were 130.9° and 122.3°, respectively.
  • the invention discloses the aniline acid anhydride for the first time, which can be polymerized by ring-opening to form a graft chain, and has good water repellency, especially excellent water washing resistance and degradability.
  • the existing ring-opening polymerization method for graft modification on the surface of the material is mainly about the graft modification of the surface of silicon-based materials or metal materials. Research.
  • the ring-opening polymerization of the present invention converts a cyclic compound monomer into a linear polymer through a ring-opening reaction, and the reaction conditions are relatively mild; the side reaction is less than that of the polycondensation reaction, and it is easy to obtain a high molecular weight polymer, and the ring-opening polymerization is not like an addition reaction.
  • the thermal effect of the polymerization process is caused by the change of ring tension, which can control the chemical composition of the surface of the base material and thereby obtain modification and functionality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本发明公开了一种苯胺基酸酐及其制备方法与聚氨基酸接枝链。在缚酸剂存在下,N-苯基氨基酸与Boc酸酐进行加成-消去反应,得到N-苯基-叔丁氧碳基甘氨酸;氮气保护下,N-苯基-叔丁氧碳基甘氨酸环化反应,得到苯胺基酸酐。本发明公开的苯胺基酸酐可以以化学接枝得到的聚氨基酸接枝链,从而以共价键与纤维结合,具有优异的牢度,且不影响织物的服用性能,解决了通过涂层等方法获得拒水织物牢度差的难题,且聚氨基酸接枝链属于生物相容性好、可自然降解的环保型聚合物,符合当前大力开发绿色化学品的趋势。

Description

苯胺基酸酐及其制备方法与聚氨基酸接枝链 技术领域
本发明涉及一种苯胺基酸酐及其制备方法与聚氨基酸接枝链,属于特种功能性纺织品及其制备技术领域。
背景技术
随着人们生活水平的提高,人们对现代纺织品的要求也越来越高,因此纺织品逐渐功能化,例如:希望纺织品具有防水、防风、抗菌、抗紫外等功能。为了满足人们对纺织品的需求,必须对一些天然纤维或者人造纤维进行表面改性以使纺织品功能化。
现有技术公开了一种耐磨环保可降解的超疏水涂层整理方法,采用两步浸渍法构造了超疏水涂层,采用多巴胺使棉织物表面获得一定粗糙结构,并提高与织物的粘附性,接枝低表面能物质硬脂酸获得超疏水性能,生产所需的工艺、设备极其简单,反应条件温和,成本低廉,同时产品具有优异的耐磨性能,耐皂洗,耐酸碱性能并能直接应用于大规模工业化生产;使用该方法处理过的织物可以获得很好的疏水、油水分离及紫外防护性能,绿色环保,可自然降解,必将在抗紫外线材料、超疏水纺织品、油水分离材料等得以广泛应用。然而,涂层发处理织物获得的聚水功能耐久性不好。
技术问题
本发明公开了苯胺基酸酐及其制备方法与聚氨基酸接枝链,将苯胺基酸酐开环聚合后用于纤维材料的表面改性,在保证织物(或纤维)的强力、透气性、白度、手感等性能不受影响的前提下,获得一种表面疏水改性的织物。针对目前拒水性织物普遍存在的耐久性不理想的问题,本发明苯胺基酸酐形成疏水接枝链,从而能够提供拒水功能,且拒水性耐久。
技术解决方案
实现本发明目的的技术方案是:苯胺基酸酐,具有如下化学结构式。
  
Figure 851905dest_path_image001
其中,R 1、R 2、R 3独立的选自H、-CH 3、-CH 2CH 3 或-CF 3;R 4为-CH 3或-CH 2CH 3
一种聚氨基酸接枝链,所述聚氨基酸接枝链的化学结构如下。
               
Figure 642006dest_path_image002
   其中,R 1、R 2、R 3独立的选自H、-CH 3、-CH 2CH 3 或-CF 3;R 4为-CH 3或-CH 2CH 3;R 5为-CH 2-或-CH 2CH 2CH 2NH-;X为O或NH;n=3~200。*表示封端基团或者基材,比如织物,本发明的聚氨基酸接枝链可以存在于基材上,起到拒水作用,还可以独立制备,再应用于基材整理。
上述苯胺基酸酐的制备方法包括以下步骤,在缚酸剂存在下,N-苯基氨基酸与Boc酸酐进行加成-消去反应,得到N-苯基-叔丁氧碳基甘氨酸;氮气保护下,N-苯基-叔丁氧碳基甘氨酸环化反应,得到苯胺基酸酐。
上述聚氨基酸接枝链的制备方法包括以下步骤,在缚酸剂存在下,N-苯基氨基酸与Boc酸酐反应,得到N-苯基-叔丁氧碳基甘氨酸;氮气保护下,N-苯基-叔丁氧碳基甘氨酸环化反应,得到苯胺基酸酐;将端氨基物质与苯胺基酸酐混合反应,得到所述聚氨基酸接枝改性拒水织物。
本发明的N-苯基-叔丁氧碳基甘氨酸如下。
Figure 130756dest_path_image003
本发明中,在苯胺基酸酐进行开环聚合反应制备聚氨基酸接枝链时,反应的温度为0~80℃,最好为室温~70℃,时间为1~120h,最好为24~60h;优选的,所述反应温度为四级阶梯升温,比如室温+(30~50℃)+(50~60℃)+(60~70℃),相邻阶梯温度相差5~25℃。
本发明公开了上述苯胺基酸酐在制备拒水聚氨基酸接枝链中的应用或者在制备拒水整理剂中的应用。
本发明中,所述端氨基物质为氨基硅烷偶联剂或者氨基硅烷偶联剂处理的物质,比如氨基硅烷偶联剂处理的织物。将氨基硅烷偶联剂在水/乙醇混合溶剂中水解得到水解液,将织物投入水解液中反应,得到纤维表面具有氨基的预处理织物,为氨基预处理织物,作为端氨基物质;氨基硅烷偶联剂为氨丙基三乙氧基硅烷、氨丙基三甲氧基硅烷、氨乙胺丙基三乙氧基硅烷、氨乙胺丙基三甲氧基硅烷中的任意一种。
本发明中,氮气保护下,N-苯基-叔丁氧碳基甘氨酸环化反应,得到苯胺基酸酐;具体的,将N-苯基-叔丁氧碳基甘氨酸溶解在无水溶剂中,在氮气保护下加入环合剂,再进行环化反应,生成苯胺基酸酐;环合剂为PCl 3;所述无水溶剂为无水二氯甲烷、无水三氯甲烷或无水四氯乙烷;优选分2~10批加入环合剂,最好为分3~5批,加入环合剂的温度为-20~45℃,最好为-5~5℃;环化反应的温度为5~45℃,最好为20~30℃;时间为0.1~48h,最好为12~24h。
本发明中,在缚酸剂存在下,N-苯基氨基酸与Boc酸酐反应,得到N-苯基-叔丁氧碳基甘氨酸;所述缚酸剂为三乙胺或吡啶;所述反应的温度为5~45℃,时间为0.1~24h。进一步的,N-苯基氨基酸与Boc酸酐的摩尔比为1:2.5。优选的,将Boc酸酐溶液滴加至N-苯基氨基酸溶液与缚酸剂的混合物中,进行加成-消去反应,得到N-苯基-N-叔丁氧羰基甘氨酸;Boc酸酐溶液的滴加时间为20~120min,最好为30~60min。N-苯基氨基酸溶液中,溶剂为水/1,4-二氧六环,其中水和二氧六环的体积比为1:1~2,最好为1:1~1.5;Boc酸酐溶液中,溶剂为1,4-二氧六环、四氢呋喃或乙醚中的任意一种。N-苯基氨基酸与Boc酸酐反应的反应温为5~45℃,最好为室温;反应的时间为0.1~24h,最好为12~18h。
有益效果
与现有技术相比,本发明提供的技术方案其有益效果在于:本发明首次公开了苯胺基酸酐,尤其聚合制备的聚氨基酸接枝改性拒水织物时,通过共价键与纤维连接,从而赋予疏水性织物优异的耐久牢度,解决了常规涂层通过物理作用固着织物而牢度查的问题以及其它物理改性所带来的成本高、设备要求苛刻等问题。本发明苯胺基酸酐制备的聚氨基酸属于生物相容性好、可自然降解的环保型聚合物,符合当前绿色化学品开发的趋势。
附图说明
图1是实施例二制备的N-苯胺基酸酐氢核磁图,溶剂为氘代氯仿。
图2是实施例二制备的N-苯胺基酸酐红外图。
图3 是实施例三制备得到的N-(p-三氟甲苯)胺基酸酐在纤维表面开环聚合接枝改性棉织物,并皂洗后扫描电子显微镜(SEM)图(左);皂洗后接触角测试图(右上)表明,织物对水接触角为141.6°,处理织物疏水性优良,表面涂层皂洗稳定,耐久性很好。
图4是实施例四制备得到的聚苯基氨基酸接枝改性织物FT-IR图,从红外吸收曲线中出现的苯环和氨基酸结构特征吸收峰可知,聚苯基氨基酸已成功接入麻纤维表面。
图5是实施例四制备得到的N-苯胺基酸酐在麻纤维表面开环聚合整理织物皂洗后接触角测试图,可知织物对水接触角为140.1°,处理织物疏水性优良得到表面涂层皂洗稳定,耐久性很好。
图6是实施例五制备得到的N-苯胺基酸酐在丝织物表面开环聚合整理织物皂洗后接触角测试图,测得织物对水接触角为139.8°,处理丝织物疏水性良好。
图7是实施例五制备得到的聚氨基酸接枝改性真丝织物和经市售拒水整理剂整理丝织物,在蛋白酶催化降解后的光学照片,可见聚苯基氨基酸接枝改性真丝织物易降解,而市售拒水整理剂整理丝织物在该条件下基本不降解。
本发明的实施方式
本发明公开了苯胺基酸酐的制备方法,包括如下步骤。
加成-消去反应:N-苯基氨基酸在混合溶剂中与Boc酸酐发生加成-消去反应,形成中间体N-苯基-叔丁氧碳基甘氨酸。
Figure 664506dest_path_image004
PCl 3 环合:N-苯基-叔丁氧碳基甘氨酸在环合剂PCl 3 的作用下,由羧基与Boc基成环,生成N-苯胺基酸酐。
Figure 922312dest_path_image005
进一步的,苯胺基酸酐聚合制备聚氨基酸接枝链,以氨基硅烷偶联剂处理的织物为例,在纤维表面,诱导苯胺基酸酐开环聚合,形成接枝链。
Figure 148894dest_path_image006
Figure 124940dest_path_image007
 
本发明涉及的原料都是市售常规产品,具体制备方法以及测试操作都为常规方法,如无特殊说明,都在室温、常规环境中进行,用于端氨基物质的织物为常规织物,未处理,具有亲水性。
下面结合附图和实施例对本发明技术方案做进一步描述。
织物的预处理:将氨基硅烷偶联剂氨丙基三乙氧基硅烷溶于水/乙醇的混合溶液(水和乙醇的体积比为1:9)中,用10%的氨水调节溶液pH至10,在室温下水解3h得到氨基硅烷偶联剂透明水解液,然后将一块300g圆形棉织物于上述400mL氨基硅烷偶联剂水解液中(氨基硅烷偶联剂用量为织物重量的6%)进行水浴反应,水浴温度50℃,反应时间为120min。反应完成后,取出织物,水洗三次,60℃烘干,120℃焙烘3min,得到氨基硅烷偶联剂预处理棉织物。
将上述棉织物更换为麻织物或者桑蚕丝织物,其余不变,得到氨基硅烷偶联剂预处理麻织物或者氨基硅烷偶联剂预处理丝织物。
实施例一。
(1)生成N-三氟甲苯基-N-叔丁氧羰基甘氨酸:2500mL单口烧瓶,配备磁力搅拌器。取52g N-三氟甲苯基氨基乙酸于800mL的水/1,4-二氧六环的混合溶液(水和二氧六环的体积比为1:1)中溶解至完全透明,再用注射器加入184mL的三乙胺溶液,滴加含有142g Boc酸酐的400mL 1,4-二氧六环溶液,40min滴加完成。反应在室温下搅拌16h后,用500mL正己烷萃取两次,再加入800mL的1 N HCl溶液使其呈酸性,再用2×300mL乙酸乙酯溶液萃取产物。合并有机相,用800mL的盐水洗涤有机层,去离子水水洗三次,无水硫酸镁干燥,过滤,减压蒸馏除去溶剂,得45.3g黑褐色粘稠状产物,产率61.1%。
(2)生成N-三氟甲苯胺基酸酐:在氮气氛围下,将上述(1)所得产物溶于900mL的无水二氯甲烷溶液中,将溶液在低温反应釜中冷却至0℃,通过注射器将46.0g的PCl 3溶液分三批(16g+15g+15g)加入到反应液中,间隔15min,反应液在0℃下搅拌1h,然后转移至室温下反应15小时。真空除去溶剂,将所得固体再溶于300mL的无水二氯甲烷,过滤,滤液蒸发后可得到约23.3g淡黄色粗产物固体,产率69%。将23.0g淡黄色固体在无水二氯甲烷/正己烷的混合溶液中进行重结晶,最后可得用于聚合的12.9g白色固体产物N-(p-三氟甲苯)胺基酸酐,产率49.1%。
实施例二。
(1)生成N-苯基-N-叔丁氧羰基甘氨酸:2500mL单口烧瓶,配备磁力搅拌器。取40g N-苯基氨基乙酸于800mL的水/1,4-二氧六环的混合溶液(水和二氧六环的体积比为1:1)中溶解至完全透明,再用注射器加入184mL的三乙胺溶液,滴加含有142g Boc酸酐的400mL 1,4-二氧六环溶液,40min滴加完成。反应在室温下搅拌16h后,溶液用500mL正己烷萃取两次,再加入800mL的1 N HCl溶液使其呈酸性,再用2×300mL乙酸乙酯溶液萃取产物。合并有机相,用800mL的盐水洗涤有机层,去离子水水洗三次,无水硫酸镁干燥,过滤,减压蒸馏除去溶剂,得42.4g黑褐色粘稠状产物,产率64.3%。
(2)生成N-苯胺基酸酐:在氮气氛围下,将上述(1)所得产物溶于900mL的无水三氯甲烷溶液中,将溶液在低温反应釜中冷却至0℃,通过注射器将46.0g的PCl 3溶液分三批(16g+15g+15g)加入到反应液中,间隔15min,反应液在0℃下搅拌1h,然后转移至室温下反应16小时。真空除去溶剂,将所得固体再溶于300mL的无水二氯甲烷,过滤,滤液蒸发后可得到约21.0g淡黄色粗产物固体,产率70%。将21.0g淡黄色固体在无水三氯甲烷/正己烷的混合溶液中进行重结晶,最后可得用于聚合的10.1g白色固体产物,产率47.6%。核磁图见图1,红外图见图2。
实施例三: 取3.1g实施例一中的白色固体产物N-三氟甲苯胺基酸酐于450mL的N,N-二甲基甲酰胺(DMF)溶液中完全溶解,将氨基硅烷偶联剂预处理棉织物加入到DMF的溶液中,在室温下反应4h,后升温至50℃反应8h,再升温至60℃反应12h,最后升温至70℃反应12h,总接枝反应时间为48h。反应完成后,取出织物终止反应,水洗三次,常规超声波清洗15min,再60℃烘干,得到拒水性棉织物,结构示意图见图3,纤维表面聚氨基酸接枝链结构如下(波浪线为纤维,n为20~60)。
Figure 196801dest_path_image008
  实施例四:  取3.1g实施例二中的白色固体产物N-苯胺基酸酐于450mL的N,N-二甲基甲酰胺(DMF)溶液中完全溶解,将氨基硅烷偶联剂预处理麻织物加入到DMF的溶液中,在室温下反应4h,后升温至50℃反应8h,升温至60℃反应12h,最后升温至70℃反应12h,总接枝反应时间为48h。反应完成后,取出麻织物终止反应,水洗三次,常规超声波清洗15min,再60℃烘干,得到拒水性麻织物。测试织物表面红外光谱如图4,其中,3134.44cm -1为苯基取代基上C-H伸缩振动吸收峰,2935.56和2959.44cm -1处对应-CH 2-吸收峰,1838.67和1780.79 cm -1为氨基酸C=O吸收峰,1958cm -1为苯环骨架特征吸收峰,红外测试说明苯基聚氨基酸接枝链已经在形成。改性纤维表面接枝链结构如下(波浪线为纤维,n为50~90)。
Figure 574693dest_path_image009
实施例五: 取0.25gN-苯胺基酸酐(实施例二制备)溶解于45mL的四氢呋喃(THF)中,将氨基硅烷偶联剂预处理丝织物加入到THF溶液中,在室温下反应2h,后升温至30℃反应4h,升温至50℃反应12h,升温至60℃反应12h,总接枝反应时间为24h。反应完成后,取出织物终止反应,水洗三次,常规超声波清洗15min,于60℃烘干,得到拒水丝织物。纤维表面聚氨基酸接枝链结构如下(波浪线为纤维,n为30~70)。
Figure 706597dest_path_image010
性能测试:皂洗牢度测试:处理布样按照GB/T 3921-2008《纺织品色牢度实验耐皂洗色牢度》进行皂洗后,测试接枝改性的皂洗耐久性。
接触角测试: 接触角测试采用德国Krüss公司的DSA100型全自动微观液滴润湿性测量仪对皂洗前后的涂层织物润湿性能测试,选取水作为测试液滴,液滴体积为5μL,分别测试五次取其平均值。测得实施例三皂洗前后酸酐开环聚合法整理织物表面接触角分别为145.4°和141.6°,参见图3,皂洗后仍能表现出疏水性能,表明整理耐久性好。测得实施例四皂洗前后酸酐开环聚合法整理织物表面接触角分别为141.2°和140.1°,皂洗后仍能表现出疏水性能,参见图5,表明整理耐久性好。将实施例四的N-苯胺基酸酐更换为N-三氟甲苯胺基酸酐,其余不变,得到拒水性麻织物皂洗前后表面接触角分别为141.9°和139.3°。测得实施例五皂洗前后酸酐开环聚合法整理织物表面接触角分别为142.7°和139.8°,皂洗后仍能表现出疏水性能,参见图6,表明整理耐久性好。
降解性测试:拒水织物样品剪成直径大约10 mm的圆片,并依次以乙醇、去离子水清洗后,37℃下真空烘干24 h,备用。使用木瓜蛋白酶(Papain)作蛋白水解酶,蛋白酶在0.01M半胱氨酸,0.04M EDTA缓冲溶液中活化(pH8.0),浓度为lmg酶/ml溶液。使用移液管移取3mL酶溶液,加入相应的培养板小孔中,随后将上述圆片织物称重并放入培养板小孔中,保证样品完全浸入酶溶液中。降解一定时间后,取出样品用大量的去离子水清洗,随后于37℃下真空烘干24 h,并称重记录。
 失重率计算公式如下。
Figure 169939dest_path_image011
                         (1)。
其中W 0为织物降解前的质量,W i为降解后的质量。
    测得实施例三拒水织物降解72h后,质量残留率为30.3%。测得实施例四拒水织物降解72h后,质量残留率为38.1%。测得实施例五拒水丝织物降解72h后,质量残留率为22.8%,参见图7,为下行示意图。
对比例一。
(1)制备拒水性丝织物:取从3M公司购得的含氟拒水整理剂E-061,用去离子水开稀成质量浓度为30 g/L的整理液,将桑蚕丝织物用蒸馏水润湿后投入到整理液中(浴比1∶20),浸渍15 min。
整理工艺流程:二浸二扎(轧余率为80%)→预烘(90 ℃,3 min)→焙烘(155 ℃,2 min)→整理丝织物。
(2)皂洗牢度测试。
处理布样按照GB/T 3921-2008《纺织品色牢度实验耐皂洗色牢度》进行皂洗后,测试接枝改性丝织物的皂洗耐久性。
(3)接触角测试。
     接触角测试采用德国Krüss公司的DSA100型全自动微观液滴润湿性测量仪对皂洗前后的涂层织物润湿性能测试,选取水作为测试液滴,液滴体积为5μL,分别测试五次取其平均值。测得皂洗前后整理织物表面接触角分别为136.8°和108.1°,皂洗后接触角下降很多、疏水性能下降,整理耐久性欠佳。
(4)降解性测试。
拒水织物样品剪成直径大约10 mm的圆片,并依次以乙醇、去离子水清洗后,37℃下真空烘干24 h,备用。使用木瓜蛋白酶(Papain)作蛋白水解酶,蛋白酶在0.01M半胱氨酸,0.04M EDTA缓冲溶液中活化(pH8.0),浓度为lmg酶/ml溶液。使用移液管移取3mL酶溶液,加入相应的培养板小孔中,随后将上述圆片织物称重并放入培养板小孔中,保证样品完全浸入酶溶液中。降解一定时间后,取出样品用大量的去离子水清洗,随后于37℃下真空烘干24 h,并称重记录。
 失重率计算公式如下。
Figure 45491dest_path_image012
                         (1)。
其中W 0为织物降解前的质量,W i为降解后的质量。
测得拒水丝织物降解72h后,质量残留率为98.1%,基本不降解,参见图7,为上行示意图。
未处理的桑蚕丝织物降解72h后,质量残留率为16.1%。
将上述桑蚕丝织物更换为氨基硅烷偶联剂预处理丝织物,其余不变,得到的E-061处理丝织物皂洗前后整理织物表面水接触角分别为137.3°和106.5°,皂洗后接触角下降很多、疏水性能下降,整理耐久性欠佳。
对比例二。
在实施例四的基础上,将在室温下反应4h,后升温至50℃反应8h,升温至60℃反应12h,最后升温至70℃反应12h,总接枝反应时间为48h更换为室温反应48h;其余不变,得到的拒水麻织物皂洗前后整理织物表面水接触角分别为134.7°和130.5°。
在实施例四的基础上,将在室温下反应4h,后升温至50℃反应8h,升温至60℃反应12h,最后升温至70℃反应12h,总接枝反应时间为48h更换为60℃反应48h;其余不变,得到的拒水麻织物皂洗前后整理织物表面水接触角分别为130.9°和122.3°。
本发明首次公开了苯胺基酸酐,可以开环聚合形成接枝链,具有良好的拒水性能,尤其是耐水洗性以及可降解性优异。现有开环聚合法对材料表面进行接枝改性主要是关于硅基材料或者金属材料表面的接枝改性,鲜有文献报道关于在纤维表面利用开环聚合法获得改性和功能性的研究。本发明开环聚合由环状化合物单体经过开环反应转变成线型聚合物,反应条件较为温和;副反应比缩聚反应少,易于得到高分子量聚合物,开环聚合也不像加成反应时释放出那样多能量,其聚合过程的热效应是环张力的变化造成的,可以控制基底材料表面的化学组成并由此获得改性和功能性。

Claims (10)

  1. 苯胺基酸酐,具有如下化学结构式:
      
    Figure 697624dest_path_image001
    其中,R 1、R 2、R 3独立的选自H、-CH 3、-CH 2CH 3 或-CF 3;R 4为-CH 3或-CH 2CH 3
  2. 权利要求1所述苯胺基酸酐的制备方法,其特征在于,包括以下步骤,在缚酸剂存在下,N-苯基氨基酸与Boc酸酐进行加成-消去反应,得到N-苯基-叔丁氧碳基甘氨酸;氮气保护下,N-苯基-叔丁氧碳基甘氨酸环化反应,得到苯胺基酸酐;所述N-苯基-叔丁氧碳基甘氨酸如下:
    Figure 254507dest_path_image002
  3. 根据权利要求2所述苯胺基酸酐的制备方法,其特征在于,所述缚酸剂为三乙胺或吡啶;所述加成-消去反应的温度为5~45℃,时间为0.1~24h。
  4. 根据权利要求2所述苯胺基酸酐的制备方法,其特征在于,环化反应的温度为5~45℃,时间为0.1~48h。
  5. 权利要求1所述苯胺基酸酐在制备拒水聚氨基酸接枝链中的应用或者在制备拒水整理剂中的应用。
  6. 根据权利要求5所述的应用,其特征在于,苯胺基酸酐制备拒水聚氨基酸接枝链时,反应的温度为0~80℃,时间为1~120h。
  7. 聚氨基酸接枝链,所述聚氨基酸接枝链的化学结构如下:
                   
    Figure 318278dest_path_image003
       其中,R 1、R 2、R 3独立的选自H、-CH 3、-CH 2CH 3 或-CF 3;R 4为-CH 3或-CH 2CH 3;R 5为-CH 2-或-CH 2CH 2CH 2NH-;X为O或NH;n=3~200。
  8. 权利要求7所述聚氨基酸接枝链的制备方法,其特征在于,包括以下步骤,在缚酸剂存在下,N-苯基氨基酸与Boc酸酐反应,得到N-苯基-叔丁氧碳基甘氨酸;氮气保护下,N-苯基-叔丁氧碳基甘氨酸环化反应,得到苯胺基酸酐;将端氨基物质与苯胺基酸酐混合反应,得到所述聚氨基酸接枝改性拒水织物;所述苯胺基酸酐如下:
    Figure 251599dest_path_image004
    其中,R 1、R 2、R 3独立的选自H、-CH 3、-CH 2CH 3 或-CF 3;R 4为-CH 3或-CH 2CH 3
  9. 根据权利要求8所述聚氨基酸接枝链的制备方法,其特征在于,所述反应的温度为0~80℃,时间为1~120h;所述端氨基物质为氨基硅烷偶联剂或者氨基硅烷偶联剂处理的物质。
  10. 根据权利要求9所述聚氨基酸接枝链的制备方法,其特征在于,所述反应温度为四级阶梯升温。
PCT/CN2021/074017 2020-09-28 2021-01-27 苯胺基酸酐及其制备方法与聚氨基酸接枝链 WO2022062288A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/028,542 US20230357171A1 (en) 2020-09-28 2021-01-27 Aniline acid anhydride, preparation method therefor, and polyamino acid-grafted chain

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011045890.X 2020-09-28
CN202011045890.XA CN112194638B (zh) 2020-09-28 2020-09-28 苯胺基酸酐及其制备方法与聚氨基酸接枝链

Publications (1)

Publication Number Publication Date
WO2022062288A1 true WO2022062288A1 (zh) 2022-03-31

Family

ID=74007761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074017 WO2022062288A1 (zh) 2020-09-28 2021-01-27 苯胺基酸酐及其制备方法与聚氨基酸接枝链

Country Status (3)

Country Link
US (1) US20230357171A1 (zh)
CN (1) CN112194638B (zh)
WO (1) WO2022062288A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112127157B (zh) * 2020-09-28 2021-11-09 苏州大学 一种聚氨基酸接枝改性拒水织物及其制备方法
CN112194638B (zh) * 2020-09-28 2022-07-19 苏州大学 苯胺基酸酐及其制备方法与聚氨基酸接枝链

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260832A (ja) * 2009-05-11 2010-11-18 Sumitomo Chemical Co Ltd アミノ酸−n−カルボキシ無水物の製造方法
CN105199098A (zh) * 2015-11-10 2015-12-30 南京工业大学 类多肽的合成方法
CN110938087A (zh) * 2018-09-21 2020-03-31 浙江大学 具有亲电亲核双功能的有机无金属催化剂及其制备方法和应用
CN112127157A (zh) * 2020-09-28 2020-12-25 苏州大学 一种聚氨基酸接枝改性拒水织物及其制备方法
CN112194638A (zh) * 2020-09-28 2021-01-08 苏州大学 苯胺基酸酐及其制备方法与聚氨基酸接枝链
CN112390819A (zh) * 2019-08-19 2021-02-23 浙江大学 一种有机催化剂及制备方法和应用
CN112387307A (zh) * 2019-08-19 2021-02-23 浙江大学 一种亲电亲核双功能的有机催化剂及制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB555129A (en) * 1942-01-30 1943-08-05 Alfred William Baldwin Manufacture of surface-active compounds
BR0316878B1 (pt) * 2002-12-23 2012-08-21 polìmeros hidrofobicamente modificados, produto de limpeza, formulação de processo têxtil, auxiliares de tingimento ou impressão e/ou agentes de acabamento, e método para processamento têxtil.
CN101157750B (zh) * 2007-10-19 2011-06-08 东华大学 含氟聚醚接枝改性水性聚氨酯及其制备和应用
CN104292251B (zh) * 2014-09-12 2017-02-15 苏州大学 一种防水剂、制备方法及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260832A (ja) * 2009-05-11 2010-11-18 Sumitomo Chemical Co Ltd アミノ酸−n−カルボキシ無水物の製造方法
CN105199098A (zh) * 2015-11-10 2015-12-30 南京工业大学 类多肽的合成方法
CN110938087A (zh) * 2018-09-21 2020-03-31 浙江大学 具有亲电亲核双功能的有机无金属催化剂及其制备方法和应用
CN112390819A (zh) * 2019-08-19 2021-02-23 浙江大学 一种有机催化剂及制备方法和应用
CN112387307A (zh) * 2019-08-19 2021-02-23 浙江大学 一种亲电亲核双功能的有机催化剂及制备方法和应用
CN112127157A (zh) * 2020-09-28 2020-12-25 苏州大学 一种聚氨基酸接枝改性拒水织物及其制备方法
CN112194638A (zh) * 2020-09-28 2021-01-08 苏州大学 苯胺基酸酐及其制备方法与聚氨基酸接枝链

Also Published As

Publication number Publication date
CN112194638A (zh) 2021-01-08
US20230357171A1 (en) 2023-11-09
CN112194638B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
WO2022062287A1 (zh) 一种聚氨基酸接枝改性拒水织物及其制备方法
WO2022062288A1 (zh) 苯胺基酸酐及其制备方法与聚氨基酸接枝链
CN111472171B (zh) 一种超疏水织物及其制备方法
CN106637959A (zh) 一种基于紫外光固化反应的棉织物无氟拒水整理方法
CN105778153B (zh) 一种笼形聚倍半硅氧烷接枝碳纤维增强体的制备方法
CN102408570B (zh) 一种用于棉织物的新型有机硅油拒水剂的制备方法
CN102977291A (zh) 一种可交联型含氟聚合物及其在制备超双疏表面中的应用
CN111593570B (zh) 一种防水布面柔性复合材料及其制备方法
CN103665386B (zh) 一种氟硅树脂、制备方法及其应用
CN111910439B (zh) 一种无机纳米SiO2杂化有机硅无氟防水剂及其制备方法
CN103214629A (zh) 一种用于涤纶织物的抗静电剂及其制备方法
CN103724558A (zh) 一种草莓型结构的无机/有机含氟微球及其制备方法与应用
CN105367697A (zh) 一种核壳结构硅丙乳液及其制备方法
CN103709882A (zh) 一种具有普适性的超双疏表面及其制备方法
CN102199263B (zh) 一种双疏性含氟可交联嵌段共聚物及其制备方法与应用
CN107129557B (zh) 一种含氟自清洁聚合物及其在疏水抗污涂料中的应用
CN110218330A (zh) 一种自修复改性硅橡胶及其制备方法
CN106702738B (zh) 功能性真丝织物的制备方法
CN110938940B (zh) 一种超疏水纳米纤维膜的制备方法
CN115094627B (zh) 一种耐久疏水聚酯纤维制品的制备方法
CN115595032A (zh) 透明可拉伸超疏水涂层的制备与应用
CN112646062B (zh) 一种具有温度响应型织物整理剂的制备方法和应用
CN112481725A (zh) 一种光致变色的螺噁嗪化合物接枝腈纶纤维的制法和应用
CN106924996B (zh) 一种超疏水/超亲油有机-无机杂化材料及其制备方法和应用
CN107460733B (zh) 一种持久疏水织物的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21870678

Country of ref document: EP

Kind code of ref document: A1