WO2022057438A1 - 一种位线感测电路及存储器 - Google Patents

一种位线感测电路及存储器 Download PDF

Info

Publication number
WO2022057438A1
WO2022057438A1 PCT/CN2021/107924 CN2021107924W WO2022057438A1 WO 2022057438 A1 WO2022057438 A1 WO 2022057438A1 CN 2021107924 W CN2021107924 W CN 2021107924W WO 2022057438 A1 WO2022057438 A1 WO 2022057438A1
Authority
WO
WIPO (PCT)
Prior art keywords
sense amplifier
memory cell
bit lines
group
word line
Prior art date
Application number
PCT/CN2021/107924
Other languages
English (en)
French (fr)
Inventor
池性洙
王佳
汪瑛
金书延
张凤琴
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to EP21868267.2A priority Critical patent/EP4231301A1/en
Priority to US17/476,583 priority patent/US11862239B2/en
Publication of WO2022057438A1 publication Critical patent/WO2022057438A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/38Response verification devices
    • G11C29/42Response verification devices using error correcting codes [ECC] or parity check
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4091Sense or sense/refresh amplifiers, or associated sense circuitry, e.g. for coupled bit-line precharging, equalising or isolating
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4094Bit-line management or control circuits

Definitions

  • the embodiments of the present application relate to, but are not limited to, a bit line sensing circuit and a memory.
  • DRAM Dynamic Random Access Memory
  • Each memory cell includes a transistor and a capacitor.
  • the transistor acts as a switch between the capacitor and the bit line and can be activated by a word line coupled to the control terminal of the transistor.
  • the memory cell is capable of storing binary information as a charge on the capacitor.
  • the sense amplifier is connected with the storage unit, and can amplify the weak signal stored in the storage unit, so that the data stored in the storage unit can be correctly written or read.
  • DRAM can correct data errors in the memory through an error detection and correction circuit (Error Correcting Code, ECC), but ECC can only correct a one-bit error (1bit error), and the above two-bit error exceeds the error correction capability of ECC.
  • ECC Error Correcting Code
  • An embodiment of the present application provides a bit line sensing circuit, including: L memory cell groups, each of the memory cell groups including H bit lines, and the L and the H are both positive integers greater than or equal to 2 M sense amplifier groups, configured to write storage data to the bit lines in the storage cell group or read storage data from the bit lines in the storage cell group, the M sense amplifier groups and The L memory cell groups are electrically connected, and the M is an integer multiple of the L or the L is an integer multiple of the M; wherein, two adjacent bit lines in the H bit lines are connected to different sets of the sense amplifiers.
  • An embodiment of the present application also provides a memory, including: the bit line sensing circuit in any of the above embodiments of the present application; each of the memory cell groups further includes a word line, the word line and all
  • the H bit lines also correspond to H transistors and H capacitors, the 1 word line controls the turning on or off of the H transistors, and the H bit lines correspond to the corresponding H transistors of the H transistors.
  • One end is connected, the second ends of the H transistors are connected to the corresponding first ends of the H capacitors, and the second ends of the H capacitors are connected to a fixed voltage.
  • FIG. 1 is a schematic circuit diagram of a bit line sensing circuit storage array provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a bit line sensing circuit storage array provided by an embodiment of the present application
  • Fig. 3 is the partial enlarged schematic diagram of area A in Fig. 2;
  • Fig. 4 is the partial enlarged schematic diagram of area A in Fig. 1;
  • FIG. 5 is a schematic structural diagram of another bit line sensing circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a comparative example of a bit line sensing circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another bit line sensing circuit provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another bit line sensing circuit provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another bit line sensing circuit provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a first sense amplifier or a second sense amplifier provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a memory provided by an embodiment of the present application.
  • the bit line sensing circuit includes a memory cell array
  • the memory cell array includes memory cells arranged along the word line direction and the bit line direction, the memory cells connected to the same word line, and each adjacent multi-bit storage
  • the cells form a memory cell group, for example, 8 adjacent memory cells form one memory cell group.
  • the word line and the bit line are intersected, each word line is connected with a corresponding row of memory cells to turn on the memory cells in the row, and each bit line is connected with a corresponding column of memory cells to write or read data.
  • the bit line sensing circuit includes a memory cell array arranged along the word line direction X and the bit line direction Y , the memory cell array includes a plurality of memory cells 11, and the bit line sensing circuit also includes a plurality of word lines 12 and a plurality of bit lines 13, the word lines 12 extend along the word line direction X, and the memory cells 11 corresponding to each word line 12 , is used to turn on the corresponding memory cell 11 , the bit line 13 extends along the bit line direction Y, and each bit line 13 is connected to the corresponding memory cell 11 to write or read data to the corresponding memory cell 11 .
  • each word line 12 and multiple bit lines 13 intersect to define the area of each memory cell 11.
  • the bit line sensing circuit in FIG. The six word lines WL0 to WL5 arranged and the sixteen bit lines BL0 to BL15 arranged in sequence along the word line direction X define the respective memory cells 11 by crossing them.
  • memory cells 11 connected to the same word line 12 can be defined, and each adjacent n-bit memory cell 11 forms a memory cell group, where n is an integer greater than 1.
  • each adjacent 8-bit storage unit 11 can be defined to form a storage unit group, which is convenient for detection and amplification processing. That is, every adjacent 8-bit storage unit 11 in each row of storage units 11 forms a storage unit group.
  • each row of memory cells refers to memory cells 11 arranged in sequence along the extending direction of the word line direction X, and each memory cell may be arranged directly or in a curved line.
  • FIG. 2 is a schematic structural diagram of a bit line sensing circuit memory array provided by an embodiment of the present application.
  • FIG. 1 only a simplified illustration of each memory cell is shown in the form of circuit symbols, while FIG. 2 shows the circuit layout in the form of circuit symbols. form presented.
  • FIG. 2 shows the circuit layout in the form of circuit symbols. form presented.
  • FIG. 2 shows the circuit layout in the form of circuit symbols. form presented.
  • FIG. 2 shows the circuit layout in the form of circuit symbols. form presented.
  • FIG. 2 shows the circuit layout in the form of circuit symbols. form presented.
  • FIG. 2 shows the circuit layout in the form of circuit symbols. form presented.
  • FIG. 2 shows the circuit layout in the form of circuit symbols. form presented.
  • FIG. 2 shows the circuit layout in the form of circuit symbols. form presented.
  • FIG. 2 shows the circuit layout in the form of circuit symbols. form presented.
  • FIG. 2 shows the circuit layout in the form of circuit symbols. form presented.
  • FIG. 2 shows the circuit layout in the form of circuit
  • FIG. 3 is a partially enlarged schematic diagram of the area A in FIG. 2
  • FIG. 4 is a partially enlarged schematic diagram of the area A in FIG. 1 , in FIG. storage unit 11.
  • each memory cell 11 may include a second transistor T2 and a capacitor C1; the second transistor T2 includes a control terminal, a first terminal and a second terminal; the second The control end of the transistor T2 is connected to the corresponding word line 12, namely WL1, and is used to turn on and off under the control of the level on the word line 12; the first end of the second transistor T2 is connected to the corresponding bit line 13, and the second transistor T2 is connected to the corresponding bit line 13.
  • the second end of the two transistors T2 is connected to the capacitor C1 of the storage unit 11, and is used to connect the bit line 13 to the capacitor C1 in the on state, so as to write the data on the bit line 13 into the capacitor C1, or The data stored in the read capacitor C1 is transferred to the bit line 13 .
  • the memory cell 11 is connected to the bit line BL1 through a BLC (Bit Line Contact, bit line contact hole).
  • an embodiment of the present application provides a bit line sensing circuit, including: L memory cell groups 15 , each of the memory cell groups 15 includes H bit lines 13 , the L and the H is a positive integer greater than or equal to 2; M sense amplifier groups 14 are configured to write storage data to the bit lines in the memory cell group 15 or read out from the bit lines in the memory cell group 15 To store data, the M sense amplifier groups 14 are electrically connected to the L memory cell groups 15, and the M is an integer multiple of the L or the L is an integer multiple of the M; wherein, the Adjacent two of the H bit lines are connected to different sets of the sense amplifiers 14 .
  • the H is an integer multiple of 8, and the M is equal to the L. In one embodiment, H is equal to 8, and both M and L are equal to 2 as an example.
  • each of the sense amplifier groups 14 includes a first sense amplifier 14a and a second sense amplifier 14b; the L memory cell groups 15 are arranged side by side along the word line 12 direction, The word line 12 is perpendicular to the bit line 13 ; the first sense amplifier 14 a is located on one side of the memory cell group 15 , and the second sense amplifier 14 b is located on the opposite side of the memory cell group 15 The other side.
  • FIG. 5 is a schematic structural diagram of a bit line sensing circuit provided by an embodiment of the present application.
  • the bit line sensing circuit further includes a plurality of sense amplifier groups 14 , and each sense amplifier group 14 corresponds to a plurality of sense amplifier groups 14 .
  • the bit lines 13 are connected, and the sense amplifier group 14 is connected to the corresponding plurality of bit lines 13 , so as to amplify the data stored in the memory cells 11 connected to the bit lines 13 .
  • the sense amplifier group Sense Amplifier ⁇ n> corresponds to 8 bit lines 13 (BL2, BL4, BL6, BL8, BL9, BL11, BL13 and BL15), and is connected to the corresponding 8 bit lines 13;
  • the sense amplifier group Sense Amplifier ⁇ n-1> corresponds to the other 8 bit lines 13 ( BL1 , BL3 , BL5 , BL7 , BL10 , BL12 , BL14 and BL16 ), and is connected to the corresponding other 8 bit lines 13 .
  • each adjacent two bit lines 13 are connected to different sense amplifier groups 14 , as shown in FIG.
  • BL12, BL14, BL16 are connected to the sense amplifier group Sense Amplifier ⁇ n-1>, while BL9, BL11, BL13, BL15 are connected to the sense amplifier group Sense Amplifier ⁇ n>.
  • BL10 and BL11 have errors at the same time
  • the above two bits of erroneous data are connected to different sense amplifier groups 14 .
  • DRAM when DRAM is read, it is performed in units of 14 sense amplifier groups.
  • the sense amplifier group Sense Amplifier ⁇ n-1> reads 8 bits (BL1, BL3, BL5, BL7, BL10, BL12 , BL14, BL16), and then the sense amplifier group Sense Amplifier ⁇ n-1> sends the output data to the ECC module or to the ECC module after other processing circuits.
  • ECC has the ability to detect and correct one-bit errors. Then when there is an adjacent two-bit error, because the adjacent two bit lines are connected to different sense amplifier groups, the two-bit error can be read twice, and only one bit error is read at a time, so that one bit at a time Errors can be detected and corrected so that adjacent two-bit errors are detected and corrected.
  • FIG. 6 is a schematic structural diagram of a comparative example of a bit line sensing circuit provided by an embodiment of the present application.
  • BL9, BL10, BL11, BL12, BL13, BL14, BL15 corresponding to the memory cell group 15' , BL16 are connected to the sense amplifier group Sense Amplifier ⁇ n>.
  • the above two error data are connected to the sense amplifier group Sense Amplifier ⁇ n>.
  • DRAM when DRAM is read, it is carried out in units of 14 sense amplifier groups.
  • ECC has the ability to detect and correct one-bit errors. Then, when two adjacent bit errors occur, the detection and correction capabilities of the existing ECC are exceeded, resulting in DRAM read errors.
  • each sense amplifier group 14 may include a first sense amplifier 14a and a second sense amplifier 14b; the first sense amplifier 14a is located along the memory cell array. The first side in the line direction X; the second sense amplifier 14b is located on the second side of the memory cell array opposite the first side in the word line direction X.
  • the first sense amplifier and the second sense amplifier are both connected to the P bit lines, and the H is a positive even multiple of the P, for example, the first sense amplifier 14a of Sense Amplifier ⁇ n> It is connected to four bit lines of BL9, BL11, BL13, and BL15, and the second sense amplifier 14b of Sense Amplifier ⁇ n> is connected to four bit lines of BL2, BL4, BL6, and BL8.
  • the sense amplifier group 14 can be divided into two parts: the first sense amplifier 14a and the second sense amplifier 14b, the first sense amplifier 14b. 14a and the second sense amplifier 14b are disposed on opposite sides of the memory cell array in the word line direction X, respectively.
  • the first sense amplifier 14a is disposed on the first side of the memory cell array
  • the second sense amplifier 14b is disposed on the second side of the memory cell array
  • the first sense amplifier 14a is connected to the sense amplifier group 14 (Sense Amplifier ⁇ n- 1>)
  • the second sense sensor 14b is connected to the other half of the bit lines corresponding to the sense amplifier group 14 (Sense Amplifier ⁇ n-1>), such as BL10, BL12 , BL14, BL16.
  • the first sense amplifier 14a of the sense amplifier group Sense Amplifier ⁇ n> is connected to the four bit lines 13 of bit lines BL2, BL4, BL6 and BL8, and the sense amplifier group Sense Amplifier ⁇ n>
  • the second sense amplifier 14b connects the four bit lines 13 of the bit lines BL9, BL11, BL13 and BL15.
  • the staggered arrangement of the first sense amplifier 14a and the second sense amplifier 14b of each sense amplifier group 14 is convenient for each The first sense amplifier 14a and the second sense amplifier 14b of the sense amplifier group 14 are connected to the bit lines 13 of different memory cell groups. Referring to FIG.
  • the first sense amplifier 14a of Sense Amplifier ⁇ n> is connected to 4 bit lines of BL9, BL11, BL13 and BL15
  • the second sense amplifier 14b of Sense Amplifier ⁇ n> is connected to BL2
  • BL4, BL6 and BL8 have a total of 4 bit lines, project the first sense amplifier 14a and the second sense amplifier 14b of Sense Amplifier ⁇ n> to the word line WL0, the two do not overlap, that is, they are staggered along the word line direction X
  • the first sense amplifier 14a and the second sense amplifier 14b of Sense Amplifier ⁇ n-1> are projected onto the word line WL0, and the two do not overlap, that is, they are staggered along the word line direction X.
  • the number of sense amplifier groups 14 and the number of memory cell groups in each row may be the same; the first sense amplifier 14a of each sense amplifier group 14 is the same as the The odd-numbered or even-numbered columns in the bit lines of the corresponding memory cell groups are connected, and the second sense amplifiers 14b of each sense amplifier group 14 are connected to the even-numbered or odd-numbered columns in the bit lines of the corresponding memory cell groups in each row; In the same row of memory cell groups, the memory cell group corresponding to the first sense amplifier 14a of each sense amplifier group 14 is different from the memory cell group corresponding to the second sense amplifier 14b.
  • a certain memory cell group 16 corresponds to bit lines BL1 to BL8
  • another memory cell group 15 corresponds to bit lines BL9 to BL16 .
  • the number of sense amplifier groups 14 is related to each row. The number of memory cell groups can be the same, the first sense amplifiers 14a of the sense amplifier group 14 can be connected to the odd-numbered columns in the bit lines of the corresponding memory cell group, and the second sense amplifier 14b is connected to the corresponding memory cell group.
  • the even-numbered columns in the bit lines are connected, or, the first sense amplifiers 14a of the sense amplifier group 14 can be connected to the even-numbered columns in the bit lines of the corresponding memory cell group, then the second sense amplifiers 14b are connected to the corresponding memory cell groups. Odd column connections in bit lines.
  • the memory cell group connected to the first sense amplifier 14a of each sense amplifier group 14 is different from the memory cell group connected to the second sense amplifier 14b, thereby transmitting adjacent 2-bit errors to different In the sense amplifier group, for example, the first sense amplifier 14a of Sense Amplifier ⁇ n> is connected to the memory cell group 15, and the second sense amplifier 14b of Sense Amplifier ⁇ n> is connected to the memory cell group 16.
  • the first sense amplifier 14a of the sense amplifier group Sense Amplifier ⁇ n-1> is connected to the corresponding bit lines BL2, BL4, BL6 and BL8 of a memory cell group, and the sense amplifier group Sense Amplifier ⁇ n-1>
  • the second sense amplifier 14b is connected to the corresponding bit lines BL9, BL11, BL13 and BL15 of another memory cell group.
  • FIG. 7 is a schematic structural diagram of another bit line sensing circuit provided by an embodiment of the present application.
  • the first sense amplifier 14a is disposed at The first side of the memory cell array, and set sequentially, for example, set Sense Amplifier ⁇ n-2>, Sense Amplifier ⁇ n-1>, Sense Amplifier ⁇ n>, Sense Amplifier ⁇ n+1> in sequence;
  • the second sense amplifier 14b is set on the second side opposite to the first side, and set in sequence, for example, set Sense Amplifier ⁇ n-1>, Sense Amplifier ⁇ n>, Sense Amplifier ⁇ n+1>, Sense Amplifier ⁇ n+2> in sequence .
  • the same sense amplifier group 14, such as Sense Amplifier ⁇ n> includes the first sense amplifier and the second amplifier are still staggered in the word line direction X.
  • the first sense amplifiers 14a of the nth sense amplifier group 14 are connected to the odd-numbered columns or the bit lines of the nth memory cell group along the word line direction X Even-numbered columns; the second sense amplifiers 14b of the n+i-th sense amplifier group 14 are connected to the even-numbered or odd-numbered columns in the bit lines connected to the n-th memory cell group along the word line direction X.
  • n and i are integers. For example, when i is 1, as shown in FIG. 7 , it should be noted that i may also be 2 or 3 or other integers, which are not limited here.
  • the first sense amplifiers 14a of the nth sense amplifier group 14 can be connected to the odd or even columns of the bit lines of the nth memory cell group, n+1th
  • the second sense amplifiers 14b of the sense amplifier groups 14 are connected to the even or odd columns of bit lines of the nth memory cell group.
  • the first sense amplifier 14a and the second sense amplifier 14b of each sense amplifier group 14 are staggered along the word line direction X. As shown in FIG.
  • the first sense amplifiers 14a of the sense amplifier group Sense Amplifier ⁇ n> and the second sense amplifiers 14b of the sense amplifier group Sense Amplifier ⁇ n> do not overlap in the word line direction x, that is, they are arranged staggered.
  • FIG. 8 is a schematic structural diagram of another bit line sensing circuit provided by an embodiment of the present application.
  • the first sense amplifier of the nth sense amplifier group 14 14a connects the odd-numbered or even-numbered columns in the bit lines of the n-1 th memory cell group along the word line direction;
  • the second sense amplifier 14b of the n-1 th sense amplifier group 14 connects the second sense amplifiers 14 b along the word line direction.
  • the second sense amplifier 14b of the n-th sense amplifier group 14 is connected to the bit lines of the n-th memory cell group along the word line direction X
  • the first sense amplifiers 14a of the n-1th sense amplifier group 14 connect the odd-numbered or even-numbered columns in the bit lines of the nth memory cell group along the word line direction X; wherein n is a positive integer.
  • the first sense amplifier 14a of Sense Amplifier ⁇ n> is connected to the even columns (BL2, BL4, BL6 and BL8) of the n-1th memory cell group, and the second sense amplifier of Sense Amplifier ⁇ n-1> 14b is connected to the odd-numbered columns (BL1, BL3, BL5 and BL7) of the n-1th memory cell group; the second sense amplifier 14b of Sense Amplifier ⁇ n> is connected to the odd-numbered columns (BL9, BL11) of the n-th memory cell group , BL13 and BL15) are connected, and the first sense amplifier 14a of the Sense Amplifier ⁇ n> is connected to the even columns (BL10, BL12, BL14 and BL16) of the nth memory cell group.
  • FIG. 9 is a schematic structural diagram of another bit line sensing circuit provided by an embodiment of the present application.
  • a plurality of memory cell arrays AA are arranged in sequence;
  • the opposite sides of each memory cell array AA are respectively provided with a first sense amplifier 14a and a second sense amplifier 14b;
  • the first sense amplifier of the t-th memory cell array AA The amplifier 14a can be multiplexed as the second sense amplifier 14a of the t+1th memory cell array AA, for example, there are 8 sense amplifiers in the first sense amplifier 14a of the sense amplifier group Sense Amplifier ⁇ n> in FIG.
  • the first sense amplifier of Sense Amplifier ⁇ n> 14a as a whole can be multiplexed by its upper and lower memory cell arrays AA; the first sense amplifier 14a of the t+1th memory cell array AA is multiplexed into the second sense amplifier of the t+2th memory cell array AA.
  • Test amplifier 14b; t is a positive integer.
  • FIG. 10 is a schematic structural diagram of a first sense amplifier or a second sense amplifier provided by an embodiment of the present application
  • FIG. 11 is a schematic structural diagram of a column selection unit provided by an embodiment of the present application.
  • both the first sense amplifier and the second sense amplifier include a column selection unit 141 and a sense amplifier 142; the column selection unit 141 may include a control terminal, a first terminal and a second terminal; the column selection unit The first end of the unit 141 is electrically connected to the corresponding sensitive amplifier 142, the second end of the column selection unit 141 is connected to other circuits, such as a second-stage sensitive amplifier or a conversion circuit, and the control end of the column selection unit 141 is connected to the decoding circuit. .
  • the column selection unit 141 may include first transistors T1; each of the first transistors T1 includes a control terminal, a first terminal and a second terminal. Taking FIG. 10 as an example, the column selection unit 141 includes four first transistors T1 , and each transistor T1 is connected to the sense amplifier 142 . For another example, if each memory cell group includes 8 memory cells, the column selection unit 141 is provided with the first terminals corresponding to the four bit lines of the corresponding memory cell group one-to-one or the four input and output terminals of the sense amplifier 142 are connected, It is configured to control the input and output of data of the sense amplifier 142 .
  • a memory is also provided, referring to FIG. 1 , FIG. 2 , FIG. 3 , FIG. 4 , and FIG. 11 , including the technical features of the bit line sensing circuit provided by any embodiment of the present application, and having the benefits of the technical features. Effect.
  • Each of the memory cell groups further includes 1 word line, the 1 word line and the H bit lines also correspond to H transistors and H capacitors, and the 1 word line controls the H transistors is turned on or off, the H bit lines are connected to the corresponding first ends of the H transistors, the second ends of the H transistors are connected to the corresponding first ends of the H capacitors, so The second terminals of the H capacitors are connected to a fixed voltage.
  • H is an integer of 8, and both M and the L are 2.
  • ECC error detection and correction circuit
  • Sense Amplifier sense amplifier group
  • This embodiment realizes the detection and correction of two-bit errors in the memory without changing the error correction capability of the existing ECC, and improves the performance of the memory.
  • Embodiments of the present application provide a bit line sensing circuit and a memory.
  • the bit line sensing circuit includes: L memory cell groups, each of which includes H bit lines, and the L and the H are both A positive integer greater than or equal to 2; M sense amplifier groups, configured to write storage data to the bit lines in the storage cell group or read storage data from the bit lines in the storage cell group, the M The sense amplifier groups are electrically connected to the L memory cell groups, and the M is an integer multiple of the L or the L is an integer multiple of the M; wherein, adjacent ones of the H bit lines The two bit lines are connected to different sets of the sense amplifiers.
  • the technical solution provided by the present application enables two adjacent bit lines to be connected to different sense amplifier groups, and when a read error occurs on the two adjacent bit lines at the same time, the erroneous data can be detected and corrected by an error detection and correction circuit.
  • the technical solution provided by the present application realizes the detection and correction of two-bit errors in the memory without changing the existing ECC error correction capability, and improves the performance of the memory.

Abstract

一种位线感测电路及存储器,位线感测电路包括:L个存储单元组,每个所述存储单元组包括H条位线,所述L和所述H均为大于等于2的正整数;M个感测放大器组,被配置为向所述存储单元组中的位线写入存储数据或从所述存储单元组中的位线读出存储数据,所述M个感测放大器组与所述L个存储单元组电连接,所述M为所述L的整数倍或所述L为所述M的整数倍;其中,所述H条位线中的相邻两条位线连接到不同的所述感测放大器组。通过将相邻两条位线连接到不同的感测放大器组,当相邻两条位线同时出现读取错误时,错误数据可以被检错纠错电路检测和纠正。

Description

一种位线感测电路及存储器
相关申请的交叉引用
本申请基于申请号为202010987632.7、申请日为2020年09月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于一种位线感测电路及存储器。
背景技术
动态随机存储器(Dynamic Random Access Memory,DRAM)包括阵列排布的存储单元(存储位)。每个存储单元包括一个晶体管和一个电容器,晶体管作为电容器和位线之间的开关,并可以被耦合到晶体管的控制端的字线激活,存储单元能够将二进制信息存储为电容器上的电荷。并且感测放大器与存储单元连接,能够对存储单元中存储的微弱信号进行放大,使得存储单元中存储的数据可以被正确的写入或者读出。
但是在存储器存储阵列的制造过程中,由工艺原因导致相邻存储单元的电容容易同时产生缺陷,称为两比特错误(2bits error)。
DRAM可通过检错纠错电路(Error Correcting Code,ECC)来纠正存储器中的数据错误,但ECC只能纠正一比特错误(1bit error),而上述两比特错误超出了ECC的纠错能力。
发明内容
本申请实施例提供了一种位线感测电路,包括:L个存储单元组,每个所述存储单元组包括H条位线,所述L和所述H均为大于等于2的正整数;M个感测放大器组,被配置为向所述存储单元组中的位线写入存储数据或从所述存储单元组中的位线读出存储数据,所述M个感测放大器组与所述L个存储单元组电连接,所述M为所述L的整数倍或所述L为所述M的整数倍;其中,所述H条位线中的相邻两条位线连接到不同的所述感测放大器组。
本申请实施例还提供了一种存储器,包括:上述本申请任一实施例中的位线感测电路;每个所述存储单元组还包括1条字线,所述1条字线和所述H条位线还对应的H个晶体管和H个电容,所述1条字线控制所述H个晶体管的开启或关断,所述H条位线与对应的所述H个晶体管的第一端连接,所述H个晶体管的第二端与对应的所述H个电容的第一端连接,所述H个电容的第二端接一固定电压。
附图说明
图1是本申请实施例提供的一种位线感测电路存储阵列的电路示意图;
图2是本申请实施例提供的一种位线感测电路存储阵列的结构示意图;
图3是图2中区域A的局部放大示意图;
图4是图1中区域A的局部放大示意图;
图5是本申请实施例提供的另一种位线感测电路的结构示意图;
图6是本申请实施例提供的一种位线感测电路的对比实施例的结构示意图;
图7是本申请实施例提供的另一种位线感测电路的结构示意图;
图8是本申请实施例提供的另一种位线感测电路的结构示意图;
图9是本申请实施例提供的另一种位线感测电路的结构示意图;
图10是本申请实施例提供的一种第一感测放大器或第二感测放大器的结构示意图;
图11是本申请实施例提供的存储器示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下,所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例中,位线感测电路包括存储单元阵列,存储单元阵列包括沿字线方向和位线方向排布的存储单元,连接到同一字线的存储单元,每相邻多位存储单元形成存储单元组,例如相邻的8个存储单元形成1个存储单元组。字线和位线相交设置,每条字线与对应的一行存储单元连接以开启该行存储单元,每条位线与对应的一列存储单元连接以写入或读取数据。
图1是本申请实施例提供的一种位线感测电路存储阵列的电路示意图,如图1所示,位线感测电路包括沿字线方向X和位线方向Y排布的存储单元阵列,存储单元阵列包括多个存储单元11,位线感测电路还包括多条字线12 和多条位线13,字线12沿字线方向X延伸,每条字线12对应的存储单元11,用于开启对应的存储单元11,位线13沿位线线方向Y延伸,每条位线13与对应的存储单元11连接,以对相对应的存储单元11写入或读取数据。上述多条字线12和多条位线13交叉限定出各个存储单元11的区域,示例性的,如图1所示,图1中位线感测电路示出了沿位线方向Y依次排布的6条字线WL0~WL5和沿字线方向X依次排布的16条位线BL0~BL15,其交叉限定出各个存储单元11。本实施例中,可限定连接到同一字线12的存储单元11,每相邻n位存储单元11组成一个存储单元组,n为大于1的整数,例如,在通过位线感测电路实现数据存储时,往往每8位存储单元进行一个数据的存储,所以本实施例可限定每相邻8位存储单元11组成一个存储单元组,便于进行检测和放大处理。也即,每行存储单元11中每相邻8位存储单元11组成一个存储单元组。需要注意的是,每行存储单元指的是排布方向沿字线方向X的延伸方向依次排布的存储单元11,各个存储单元可以呈直接排布,也可以呈曲线排布。
图2是本申请实施例提供的一种位线感测电路存储阵列的结构示意图,图1中仅对各个存储单元进行简化图示,以电路符号的形式呈现,而图2则以电路版图的形式呈现。实际位线感测电路的制作过程中,其结构示意图如图2所示,可知图1中示出的相邻的两个存储单元实际上并不是连接在同一字线或同一位线。在图2中,在Y方向上,相邻两个存储单元实际上连接相邻的两条位线上,例如A区域上部的存储单元连接位线BL1,而在Y方向上其相邻的存储单元连接位线BL2,再例如B区域的存储单元B1连接到位线BL2,B区域的存储单元B2连接到位线BL3,存储单元B1和存储单元B2为Y方向的相邻存储单元。如图3和图4所示,图3是图2中区域A的局部放大示意图,图4是图1中区域A的局部放大示意图,图4中连接同一条位线BL1的相邻设置的两个存储单元11。
如图4所示,在本申请的一些实施例中,每个存储单元11可以包括一个第二晶体管T2和一个电容器C1;第二晶体管T2包括控制端、第一端和第二端;第二晶体管T2的控制端与对应的字线12即WL1连接,用于在字线12 上电平的控制下导通和关断;第二晶体管T2的第一端与对应的位线13连接,第二晶体管T2的第二端与所处存储单元11的电容器C1连接,用于在导通状态下,将位线13与电容器C1连接,从而将位线13上的数据写入电容器C1中,或者读取电容器C1中存储的数据传到位线13。如图3和图4所示,存储单元11通过BLC(Bit Line Contact,位线接触孔)连接在位线BL1上。
如图5所示,本申请实施例提供了一种位线感测电路,包括:L个存储单元组15,每个所述存储单元组15包括H条位线13,所述L和所述H均为大于等于2的正整数;M个感测放大器组14,被配置为向所述存储单元组15中的位线写入存储数据或从所述存储单元组15中的位线读出存储数据,所述M个感测放大器组14与所述L个存储单元组15电连接,所述M为所述L的整数倍或所述L为所述M的整数倍;其中,所述H条位线中的相邻两条位线连接到不同的所述感测放大器组14。
在本申请的一些实施例中,所述H为8的整数倍,所述M等于所述L,在一种实施例中,将以H等于8,M和L均等于2为例。
在本申请的一些实施例中,每个所述感测放大器组14均包括第一感测放大器14a和第二感测放大器14b;所述L个存储单元组15沿字线12方向并排设置,所述字线12与所述位线13垂直;所述第一感测放大器14a位于所述存储单元组15的一侧,所述第二感测放大器14b位于所述存储单元组15的相对的另一侧。
图5是本申请实施例提供的一种位线感测电路的结构示意图,如图5所示,位线感测电路还包括多个感测放大器组14,每个感测放大器组14对应多条位线13,并且感测放大器组14与对应的多条位线13连接,从而对位线13所连接的存储单元11存储的数据进行放大处理。以图5为例,感测放大器组Sense Amplifier<n>对应8条位线13(BL2、BL4、BL6、BL8、BL9、BL11、BL13和BL15),并与对应的8条位线13连接;感测放大器组Sense Amplifier<n-1>对应另外8条位线13(BL1、BL3、BL5、BL7、BL10、BL12、BL14和BL16),并与对应的另外8条位线13连接。存储单元组15对应的8条位线13(BL9~BL16)中,每相邻两条位线13连接到不同的感测放大器组 14,如图5所示,存储单元组15对应的BL10、BL12、BL14、BL16连接到感测放大器组Sense Amplifier<n-1>,而BL9、BL11、BL13、BL15连接到感测放大器组Sense Amplifier<n>。如此设置,当存储单元组15中出现相邻两位错误数据时,例如BL10和BL11同时出错,上述两位错误数据连接不同的感测放大器组14。以DRAM为例,在DRAM读取时,是以敏感放大器组14为单位进行的,例如敏感放大器组Sense Amplifier<n-1>一次性读取8bit(BL1、BL3、BL5、BL7、BL10、BL12、BL14、BL16),然后敏感放大器组Sense Amplifier<n-1>将输出数据送到ECC模块或经过其他处理电路后送到ECC模块,ECC具有检测和纠正一比特错误的能力。那么当出现相邻两比特错误时,因为相邻两条位线连接到不同的敏感放大器组,就可以将两比特错误分两次读取,一次只读取一比特错误,这样每次一比特错误都可以被检测和纠正,从而使得相邻两比特错误被检测和纠正。
图6是本申请实施例提供的一种位线感测电路的对比实施例的结构示意图,在对比实施例中,存储单元组15’对应的BL9、BL10、BL11、BL12、BL13、BL14、BL15、BL16均连接到感测放大器组Sense Amplifier<n>。当出现相邻两比特错误时,例如BL10和BL11同时出错,上述两位错误数据都连接到感测放大器组Sense Amplifier<n>。以DRAM为例,在DRAM读取时,是以敏感放大器组14为单位进行的,例如敏感放大器组Sense Amplifier<n>一次性读取8bit(BL9、BL10、BL11、BL12、BL13、BL14、BL15、BL16),然后敏感放大器组Sense Amplifier<n>将输出数据送到ECC模块或经过其他处理电路后送到ECC模块,ECC具有检测和纠正一比特错误的能力。那么当出现相邻两比特错误时,就超出了现有ECC的检测和纠正能力,从而导致DRAM读取错误。
继续参考图5,在本申请的一些实施例中,每个感测放大器组14均可以包括第一感测放大器14a和第二感测放大器14b;第一感测放大器14a位于存储单元阵列沿字线方向X上的第一侧;第二感测放大器14b位于存储单元阵列沿字线方向X上与第一侧相对的第二侧。所述第一感测放大器与所述第二感测放大器均连接P条所述位线,所述H为所述P的正偶数倍,例如,Sense  Amplifier<n>的第一感测放大器14a连接到BL9、BL11、BL13、BL15共4条位线,Sense Amplifier<n>的第二感测放大器14b连接到BL2、BL4、BL6、BL8共4条位线。
为了防止感测放大器组14与位线13连接的输入端设置过于密集,可将感测放大器组14分为两部分:第一感测放大器14a和第二感测放大器14b,第一感测放大器14a和第二感测放大器14b分别设置于存储单元阵列字线方向X的的相对两侧。第一感测放大器14a设置于存储单元阵列的第一侧,第二感测放大器14b设置于存储单元阵列的第二侧,第一感测放大器14a连接感测放大器组14(Sense Amplifier<n-1>)对应的一半位线,例如BL1、BL3、BL5、BL7,第二感测传感器14b连接感测放大器组14(Sense Amplifier<n-1>)对应的另一半位线,例如BL10、BL12、BL14、BL16。再例如,如图5所示,感测放大器组Sense Amplifier<n>的第一感测放大器14a连接位线BL2、BL4、BL6和BL8四条位线13,感测放大器组Sense Amplifier<n>的第二感测放大器14b连接位线BL9、BL11、BL13和BL15四条位线13。
在本申请的一些实施例中,继续参考图5,在沿字线方向X上,每个感测放大器组14的第一感测放大器14a和第二感测放大器14b的错开设置,便于每个感测放大器组14的第一感测放大器14a和第二感测放大器14b连接不同存储单元组的位线13。参考图5,例如Sense Amplifier<n>的第一感测放大器14a连接到BL9、BL11、BL13、BL15共4条位线,Sense Amplifier<n>的第二感测放大器14b连接到BL2、BL4、BL6、BL8共4条位线,将Sense Amplifier<n>的第一感测放大器14a和第二感测放大器14b投影到字线WL0上,二者不重叠,即沿字线方向X上错开设置;Sense Amplifier<n-1>的第一感测放大器14a和第二感测放大器14b投影到字线WL0上,二者也不重叠,即沿字线方向X上错开设置。
在本申请的一些实施例中,继续参考图5,感测放大器组14的个数与每行中存储单元组的个数可以相同;每个感测放大器组14的第一感测放大器14a与对应存储单元组的位线中的奇数列或偶数列连接,每个感测放大器组14的第二感测放大器14b与每行中对应存储单元组的位线中的偶数列或奇数列连 接;在同一行存储单元组中,每个感测放大器组14的第一感测放大器14a对应的存储单元组,与第二感测放大器14b对应的存储单元组不同。
如图5所示,在每行存储单元中,某一存储单元组16对应位线BL1~BL8,另一存储单元组15对应位线BL9~BL16,感测放大器组14的个数与每行中存储单元组的个数可以相同,感测放大器组14的第一感测放大器14a可与对应存储单元组的位线中的奇数列连接,则第二感测放大器14b与对应存储单元组的位线中的偶数列连接,或者,感测放大器组14的第一感测放大器14a可与对应存储单元组的位线中的偶数列连接,则第二感测放大器14b与对应存储单元组的位线中的奇数列连接。需要注意的是,每个感测放大器组14的第一感测放大器14a连接的存储单元组与第二感测放大器14b连接的存储单元组是不同的,从而将相邻2比特错误传输到不同的感测放大器组中,例如Sense Amplifier<n>的第一感测放大器14a的连接到存储单元组15,Sense Amplifier<n>的第二感测放大器14b的连接到存储单元组16。示例性的,感测放大器组Sense Amplifier<n-1>的第一感测放大器14a与一存储单元组对应位线BL2、BL4、BL6和BL8连接,感测放大器组Sense Amplifier<n-1>的第二感测放大器14b与另一存储单元组对应位线BL9、BL11、BL13和BL15连接。
参考图7,图7是本申请实施例提供的另一种位线感测电路的结构示意图,在本申请的一些实施例中,在沿字线方向X上,第一感测放大器14a设置于存储单元阵列的第一侧,并顺序设置,例如依次设置Sense Amplifier<n-2>、Sense Amplifier<n-1>、Sense Amplifier<n>、Sense Amplifier<n+1>;第二感测放大器14b设置于与第一侧相对位置的第二侧,并顺序设置,例如依次设置Sense Amplifier<n-1>、Sense Amplifier<n>、Sense Amplifier<n+1>、Sense Amplifier<n+2>。同一感测放大器组14,例如Sense Amplifier<n>,包括的第一感测放大器和第二放大器在字线方向X上仍然错开设置。
继续参考图7,在本申请的一些实施例中,第n个感测放大器组14的第一感测放大器14a连接沿字线方向X上第n个存储单元组的位线中的奇数列或偶数列;第n+i个感测放大器组14的第二感测放大器14b连接沿字线方向X上第n个存储单元组所连位线中的偶数列或奇数列。其中,n和i均为整数, 例如i为1时则如图7所示,需要注意的是,i也可以为2或3或其他整数,在此不做限制。
继续参考图7,沿字线方向X上,可使得第n个感测放大器组14的第一感测放大器14a连接第n个存储单元组的位线的奇数列或偶数列,第n+1个感测放大器组14的第二感测放大器14b连接第n个存储单元组的位线的偶数列或奇数列。每个感测放大器组14的第一感测放大器14a和第二感测放大器14b在沿字线方向X上错开设置。例如,感测放大器组Sense Amplifier<n>的第一感测放大器14a与感测放大器组Sense Amplifier<n>的第二感测放大器14b在沿字线方向x上不重叠,即错开设置。
如图8所示,图8是本申请实施例提供的另一种位线感测电路的结构示意图,在本申请的一些实施例中,第n个感测放大器组14的第一感测放大器14a连接沿字线方向上第n-1个存储单元组的位线中的奇数列或偶数列;第n-1个感测放大器组14的第二感测放大器14b连接沿字线方向上第n-1个存储单元组的位线中的偶数列或奇数列;第n个感测放大器组14的第二感测放大器14b连接沿字线方向X上第n个存储单元组的位线中的偶数列或奇数列;第n-1个感测放大器组14的第一感测放大器14a连接沿字线方向X上第n个存储单元组的位线中的奇数列或偶数列;其中n为正整数。例如,Sense Amplifier<n>的第一感测放大器14a与第n-1个存储单元组的偶数列(BL2、BL4、BL6和BL8)连接,Sense Amplifier<n-1>的第二感测放大器14b与第n-1个存储单元组的奇数列(BL1、BL3、BL5和BL7)连接;Sense Amplifier<n>的第二感测放大器14b与第n个存储单元组的奇数列(BL9、BL11、BL13和BL15)连接,Sense Amplifier<n>的第一感测放大器14a与第n个存储单元组的偶数列(BL10、BL12、BL14和BL16)连接。
图9是本申请实施例提供的另一种位线感测电路的结构示意图,在本申请的一些实施例中,沿位线方向Y上,依次设置有多个存储单元阵列AA;沿位线方向Y上,每个存储单元阵列AA的相对两侧分别设置有第一感测放大器14a和第二感测放大器14b;沿位线方向Y上,第t个存储单元阵列AA的第一感测放大器14a可复用为第t+1个存储单元阵列AA的第二感测放大器 14a,例如图9中的感测放大器组Sense Amplifier<n>的第一感测放大器14a中有8个敏感放大器,其中4个敏感放大器与其上方存储单元阵列AA区的4条位线连接,另外4个敏感放大器与其下方存储单元阵列AA区的4条位线连接,Sense Amplifier<n>的第一感测放大器14a作为一个整体可以被其上下两个存储单元阵列AA进行复用;第t+1个存储单元阵列AA的第一感测放大器14a复用为第t+2个存储单元阵列AA的第二感测放大器14b;t为正整数。
图10是本申请实施例提供的一种第一感测放大器或第二感测放大器的结构示意图,图11是本申请实施例提供的一种列选择单元的结构示意图。在本申请的一些实施例中,第一感测放大器与第二感测放大器均包括列选择单元141和敏感放大器142;列选择单元141可以包括控制端、第一端和第二端;列选择单元141的第一端与对应的敏感放大器142电连接,列选择单元141的第二端连接于其他电路,例如第二级敏感放大器或转换电路,列选择单元141的控制端连接于译码电路。列选择单元141可以包括第一晶体管T1;每个第一晶体管T1包括控制端、第一端和第二端。以图10为例,列选择单元141包括4个第一晶体管T1,每一个晶体管T1均与敏感放大器142连接。再例如,若每个存储单元组包括8个存储单元,列选择单元141设置有与对应存储单元组的4条位线一一对应的第一端或敏感放大器142的4个输入输出端连接,被配置为控制敏感放大器142的数据的输入输出。
示例性的,还提供一种存储器,参考图1、图2、图3、图4和图11,包括本申请任意实施例提供的位线感测电路的技术特征,具备技术特征所具备的有益效果。每个所述存储单元组还包括1条字线,所述1条字线和所述H条位线还对应的H个晶体管和H个电容,所述1条字线控制所述H个晶体管的开启或关断,所述H条位线与对应的所述H个晶体管的第一端连接,所述H个晶体管的第二端与对应的所述H个电容的第一端连接,所述H个电容的第二端接一固定电压。其中H为8的整数,M和所述L均为2。
示例性的,继续参考图11,还包括检错纠错电路(ECC),与所述感测放大器组(Sense Amplifier)连接,被配置为检测所述感测放大器组输出的所述存储数据的正确性,并纠正错误的所述存储数据。本实施例在不改变现有ECC 纠错能力的情况下,实现了对存储器中的两比特错误的检测和纠正,提高了存储器性能。
注意,上述仅为本申请的较佳实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。
工业实用性
本申请实施例提供一种位线感测电路及存储器,位线感测电路包括:L个存储单元组,每个所述存储单元组包括H条位线,所述L和所述H均为大于等于2的正整数;M个感测放大器组,被配置为向所述存储单元组中的位线写入存储数据或从所述存储单元组中的位线读出存储数据,所述M个感测放大器组与所述L个存储单元组电连接,所述M为所述L的整数倍或所述L为所述M的整数倍;其中,所述H条位线中的相邻两条位线连接到不同的所述感测放大器组。本申请提供的技术方案,使得相邻两条位线连接到不同的感测放大器组,当相邻两条位线同时出现读取错误时,错误数据可以被检错纠错电路检测和纠正。本申请提供的技术方案,在不改变现有ECC纠错能力的情况下,实现了对存储器中的两比特错误的检测和纠正,提高了存储器性能。

Claims (16)

  1. 一种位线感测电路,包括:
    L个存储单元组,每个所述存储单元组包括H条位线,所述L和所述H均为大于等于2的正整数;
    M个感测放大器组,被配置为向所述存储单元组中的位线写入存储数据或从所述存储单元组中的位线读出存储数据,所述M个感测放大器组与所述L个存储单元组电连接,所述M为所述L的整数倍或所述L为所述M的整数倍;
    其中,所述H条位线中的相邻两条位线连接到不同的所述感测放大器组。
  2. 根据权利要求1所述的位线感测电路,其中,所述H为8的整数倍,所述M等于所述L。
  3. 根据权利要求1所述的位线感测电路,其中,每个所述感测放大器组均包括第一感测放大器和第二感测放大器;
    所述L个存储单元组沿字线方向并排设置,所述字线与所述位线垂直;
    所述第一感测放大器位于所述存储单元组的一侧,所述第二感测放大器位于所述存储单元组的相对的另一侧。
  4. 根据权利要求3所述的位线感测电路,其中,所述第一感测放大器与所述第二感测放大器均连接P条所述位线,所述H为所述P的正偶数倍。
  5. 根据权利要求3所述的位线感测电路,其中,位于同一所述感测放大器组的所述第一感测放大器和所述第二感测放大器,沿所述字线方向错开设置。
  6. 根据权利要求3所述的位线感测电路,其中,位于不同所述感测放大器组的所述第一感测放大器,沿所述字线方向并排设置;位于不同所述感测放大器组的所述第二感测放大器,沿所述字线方向并排设置;位于同一所述感测放大器组的所述第一感测放大器和所述第二感测放大器,沿所述字线方 向错开设置。
  7. 根据权利要求6所述的位线感测电路,其中,位于不同所述感测放大器组的所述第一感测放大器,沿所述字线方向上顺序排布;位于不同所述感测放大器组的所述第二感测放大器,沿所述字线方向上顺序排布。
  8. 根据权利要求6所述的位线感测电路,其中,位于两个所述感测放大器组的相邻的两个所述第一感测放大器与相邻的两个所述第二感测放大器呈交叉排布。
  9. 根据权利要求6所述的位线感测电路,其中,同一所述感测放大器组的第一感测放大器与对应的所述位线中的奇数列或偶数列连接,同一所述感测放大器组的第二感测放大器与对应的所述位线中的偶数列或奇数列连接。
  10. 根据权利要求3所述的位线感测电路,其中,连接于同一条所述字线的所述存储单元组中,所述第一感测放大器对应的存储单元组,与同一所述感测放大器组的所述第二感测放大器对应的存储单元组不同。
  11. 根据权利要求3所述的位线感测电路,其中,第n个所述感测放大器组的第一感测放大器沿所述字线方向上连接第n个所述存储单元组的位线中的奇数列或偶数列;第n+i个所述感测放大器组的第二感测放大器沿所述字线方向上连接第n个存储单元组所连位线中的偶数列或奇数列;所述n和i均为大于等于1且小于等于L的整数。
  12. 根据权利要求3所述的位线感测电路,其中,第n个所述感测放大器组的第一感测放大器沿所述字线方向上连接第n个存储单元组的位线中的奇数列或偶数列;第n-1个所述感测放大器组的第二感测放大器沿所述字线方向上连接第n个存储单元组的位线中的偶数列或奇数列;第n-1个所述感测放大器组的第一感测放大器沿所述字线方向上连接第n-1个存储单元组的位线中的奇数列或偶数列;第n个所述感测放大器组的第二感测放大器沿所述字线方向上连接第n-1个存储单元组的位线中的偶数列或奇数列;所述n为大于等于2且小于等于L的整数。
  13. 根据权利要求3所述的位线感测电路,其中,所述第一感测放大器与所述第二感测放大器均包括H/2个列选择单元和H/2个敏感放大器,所述H为偶数,所述敏感放大器与所述位线一一对应,所述敏感放大器与所述列选择单元一一对应;
    所述敏感放大器与所述位线连接,被配置为对所述写入存储数据进行放大或对所述读出存储数据进行放大;
    所述列选择单元与所述敏感放大器连接,被配置为控制所述存储数据的传输。
  14. 一种存储器,包括:
    上述权利要求1-13任一项所述的位线感测电路;
    每个所述存储单元组还包括1条字线,所述1条字线和所述H条位线还对应的H个晶体管和H个电容,所述1条字线控制所述H个晶体管的开启或关断,所述H条位线与对应的所述H个晶体管的第一端连接,所述H个晶体管的第二端与对应的所述H个电容的第一端连接,所述H个电容的第二端接一固定电压。
  15. 根据权利要求14所述的存储器,还包括:
    检错纠错电路,与所述感测放大器组连接,被配置为检测所述感测放大器组输出的所述存储数据的正确性,并纠正错误的所述存储数据。
  16. 根据权利要求14所述的存储器,其中,所述H为8的整数,所述M和所述L均为2。
PCT/CN2021/107924 2020-09-18 2021-07-22 一种位线感测电路及存储器 WO2022057438A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21868267.2A EP4231301A1 (en) 2020-09-18 2021-07-22 Bit-line sense circuit, and memory
US17/476,583 US11862239B2 (en) 2020-09-18 2021-09-16 Bit line sense circuit and memory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010987632.7A CN114203247B (zh) 2020-09-18 2020-09-18 一种位线感测电路及存储器
CN202010987632.7 2020-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/476,583 Continuation US11862239B2 (en) 2020-09-18 2021-09-16 Bit line sense circuit and memory

Publications (1)

Publication Number Publication Date
WO2022057438A1 true WO2022057438A1 (zh) 2022-03-24

Family

ID=80645076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107924 WO2022057438A1 (zh) 2020-09-18 2021-07-22 一种位线感测电路及存储器

Country Status (2)

Country Link
CN (1) CN114203247B (zh)
WO (1) WO2022057438A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11869610B2 (en) 2021-06-01 2024-01-09 Changxin Memory Technologies, Inc. Storage device
US11935612B2 (en) 2021-06-01 2024-03-19 Changxin Memory Technologies, Inc. Memory using dual sense amplifiers for error detection and correction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136242A (zh) * 2006-09-01 2008-03-05 奇梦达股份公司 存储电路
US20110085364A1 (en) * 2009-10-08 2011-04-14 Renesas Electronics Corporation Semiconductor signal processing apparatus
CN105931666A (zh) * 2015-02-26 2016-09-07 株式会社东芝 半导体存储装置及存储系统
CN107430879A (zh) * 2015-05-08 2017-12-01 桑迪士克科技有限责任公司 非易失性储存装置的数据映射

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4754050B2 (ja) * 1999-08-31 2011-08-24 富士通セミコンダクター株式会社 1対のセルにデータを記憶するdram
JP3966718B2 (ja) * 2001-11-28 2007-08-29 富士通株式会社 半導体記憶装置
JP2004062997A (ja) * 2002-07-29 2004-02-26 Elpida Memory Inc 半導体記憶装置
JP4400497B2 (ja) * 2005-03-31 2010-01-20 エルピーダメモリ株式会社 半導体記憶装置
JP2008041188A (ja) * 2006-08-08 2008-02-21 Elpida Memory Inc 半導体メモリ装置
JP5114894B2 (ja) * 2006-08-31 2013-01-09 富士通セミコンダクター株式会社 半導体記憶装置の試験方法及びその半導体記憶装置
FR2972838B1 (fr) * 2011-03-18 2013-04-12 Soitec Silicon On Insulator Memoire a semi-conducteurs comportant des amplificateurs de lecture decales associes a un decodeur de colonne local
US8988946B1 (en) * 2014-07-07 2015-03-24 Sandisk Technologies Inc. Selective sense amplifier enablement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136242A (zh) * 2006-09-01 2008-03-05 奇梦达股份公司 存储电路
US20110085364A1 (en) * 2009-10-08 2011-04-14 Renesas Electronics Corporation Semiconductor signal processing apparatus
CN105931666A (zh) * 2015-02-26 2016-09-07 株式会社东芝 半导体存储装置及存储系统
CN107430879A (zh) * 2015-05-08 2017-12-01 桑迪士克科技有限责任公司 非易失性储存装置的数据映射

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11869610B2 (en) 2021-06-01 2024-01-09 Changxin Memory Technologies, Inc. Storage device
US11935612B2 (en) 2021-06-01 2024-03-19 Changxin Memory Technologies, Inc. Memory using dual sense amplifiers for error detection and correction

Also Published As

Publication number Publication date
CN114203247B (zh) 2024-03-26
CN114203247A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2022057539A1 (zh) 一种列选择信号单元电路、位线感测电路及存储器
EP1286359B1 (en) Memory controller for multilevel cell memory
EP4231301A1 (en) Bit-line sense circuit, and memory
WO2022057438A1 (zh) 一种位线感测电路及存储器
US8078938B2 (en) Semiconductor memory, semiconductor memory system, and error correction method for semiconductor memory
US20080235557A1 (en) Semiconductor memory device
US8824231B2 (en) Reduced noise DRAM sensing
US7765455B2 (en) Semiconductor memory device
US20240145022A1 (en) Memory with error checking and correcting unit
WO2022057417A1 (zh) 存储器
US10846168B1 (en) Memory with error correction circuit
TWI689935B (zh) 具糾錯電路的記憶體
JPH01158694A (ja) 半導体ダイナミックram
KR102194914B1 (ko) 에러 정정 회로를 가지는 메모리
JP6862487B2 (ja) エラー訂正回路を有するメモリ
CN111913828B (zh) 具纠错电路的存储器
US11887656B2 (en) Memory for improving efficiency of error correction
US20230206994A1 (en) Memory bank and memory
WO2023115953A1 (zh) 一种存储块及存储器
WO2024040694A1 (zh) 存储器及其存储系统
US20230207046A1 (en) Memory bank and memory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021868267

Country of ref document: EP

Effective date: 20230418