WO2022057380A1 - 半导体结构的形成方法及半导体结构 - Google Patents

半导体结构的形成方法及半导体结构 Download PDF

Info

Publication number
WO2022057380A1
WO2022057380A1 PCT/CN2021/103691 CN2021103691W WO2022057380A1 WO 2022057380 A1 WO2022057380 A1 WO 2022057380A1 CN 2021103691 W CN2021103691 W CN 2021103691W WO 2022057380 A1 WO2022057380 A1 WO 2022057380A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
region
material layer
oxide material
semiconductor structure
Prior art date
Application number
PCT/CN2021/103691
Other languages
English (en)
French (fr)
Inventor
陈文丽
蔡明蒲
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/467,635 priority Critical patent/US12010830B2/en
Publication of WO2022057380A1 publication Critical patent/WO2022057380A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices

Definitions

  • the present disclosure relates to the field of semiconductor technology, and in particular, to a method for forming a semiconductor structure and a semiconductor structure.
  • the existing dynamic random access memory DRAM
  • N node contact
  • some dummy node contacts will be formed at the edge portion
  • the silicon oxide in the holes of these invalid node contacts will have some unstable factors in the subsequent process, thereby causing unnecessary device failures.
  • the silicon oxide in the hole is eroded by hydrofluoric acid in the subsequent cleaning step, causing the subsequent conductive metal tungsten to fill the invalid node contact when filling the node contact and PC, so that the bit line (BL) and the bit line The parasitic capacitance of the line increases.
  • the invalid node contacts can be covered with a photoresist to prevent corrosion, but in the actual process, the coverage of the photoresist Or when the adhesion is poor, hydrofluoric acid will penetrate into the second region and erode the silicon oxide therein, which will cause the metal tungsten (W) of the PC/NC in the subsequent process to be filled into the holes of the invalid node contact, resulting in Bad bit line-bit line short.
  • W metal tungsten
  • a main purpose of the present disclosure is to overcome at least one of the above-mentioned defects of the prior art, and to provide a method for forming a semiconductor structure that can optimize the stability of the node contact in the second region.
  • Another main purpose of the present disclosure is to overcome at least one of the above-mentioned defects of the prior art, and to provide a semiconductor structure with better stability of the node contact in the second region.
  • a method for forming a semiconductor structure which includes the following steps:
  • a semiconductor substrate has a substrate and a first oxide material layer disposed on the substrate, wherein the first oxide material layer includes a first region provided with a bit line structure and a first region located in the first oxide material layer. a second area at the edge of an area;
  • a second material is backfilled in the first area and the second area, the second material is different from the material of the first oxide material layer, and the second material located in the first area forms an isolation line structure;
  • a layer of conductive material is formed within the via structure, thereby forming a semiconductor structure.
  • a semiconductor structure including a substrate, a plurality of bit line structures, a plurality of isolation line structures, and an ineffective isolation layer;
  • the substrate has a first region and a second two regions;
  • the plurality of bit line structures are disposed in the first region of the substrate;
  • the plurality of isolation line structures are disposed in the first region of the substrate, and the isolation line structures are located in adjacent two between the bit line structures, so that via structures exposing the substrate are formed on both sides of the bit line structures respectively;
  • the ineffective isolation layer is disposed in the second region of the substrate.
  • the method for forming a semiconductor structure proposed by the present disclosure can fill the second region with a second material different from oxide, so that the holes of the node contact in the second region are filled with nitride, thereby replacing the existing second region.
  • the oxide in the holes of the node contact in the region makes the instability of the node contact located in the second region greatly reduced in the node contact structure of the semiconductor structure fabricated by the method for forming the semiconductor structure proposed in the present disclosure, and improves the Stability and reliability of semiconductor structures.
  • FIG. 1 is a schematic diagram of a semiconductor structure in one step of a method for forming a semiconductor structure according to an exemplary embodiment
  • FIG. 2 is a schematic diagram of a semiconductor structure in another step of a method for forming a semiconductor structure according to an exemplary embodiment
  • FIG. 3 is a schematic diagram of a semiconductor structure in another step of a method for forming a semiconductor structure according to an exemplary embodiment
  • FIG. 4 is a schematic diagram of a semiconductor structure in another step of a method for forming a semiconductor structure according to an exemplary embodiment
  • FIG. 5 is a schematic diagram of a semiconductor structure in another step of a method for forming a semiconductor structure according to an exemplary embodiment
  • FIG. 6 is a schematic diagram of a semiconductor structure in another step of a method for forming a semiconductor structure according to an exemplary embodiment
  • FIG. 7 is a schematic diagram of a semiconductor structure in another step of a method for forming a semiconductor structure according to an exemplary embodiment
  • FIG. 8 is a schematic diagram of a semiconductor structure in another step of a method for forming a semiconductor structure according to an exemplary embodiment
  • FIG. 9 is a schematic diagram of a semiconductor structure in another step of a method for forming a semiconductor structure according to an exemplary embodiment
  • FIG. 10 is a schematic diagram of a semiconductor structure in another step of a method for forming a semiconductor structure according to an exemplary embodiment
  • FIG. 11 is a top view of the semiconductor structure in the step shown in FIG. 9;
  • FIG. 12 is a top view of the semiconductor structure in the step shown in FIG. 10 .
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments can be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the same reference numerals in the drawings denote the same or similar structures, and thus their detailed descriptions will be omitted.
  • the method for forming a semiconductor structure proposed by the present disclosure is described by taking the formation of a node contact applied to a dynamic random access memory as an example.
  • a node contact applied to a dynamic random access memory As an example.
  • Those skilled in the art can easily understand that, in order to apply the related designs of the present disclosure to the formation process of the node contacts of other types of semiconductor structures, various modifications, additions, substitutions, Deletions or other variations remain within the scope of the principles of the methods of forming semiconductor structures presented in this disclosure.
  • FIGS. 1 to 10 are respectively representative schematic diagrams of a semiconductor structure in one step of the method for forming a semiconductor structure proposed by the present disclosure.
  • FIG. 11 representatively shows a top view of the semiconductor structure in the step shown in FIG. 9 ;
  • FIG. 12 representatively shows the semiconductor structure in the step shown in FIG. 10 .
  • Top view The process, method and relationship of each main component step of the method for forming a semiconductor structure proposed by the present disclosure will be described in detail below with reference to the above drawings.
  • the method for forming a semiconductor structure proposed by the present disclosure includes the following steps:
  • a semiconductor substrate is provided.
  • the semiconductor substrate has a substrate 110 and a first oxide material layer 120 disposed on the substrate 110.
  • the first oxide material layer 120 includes a first region D1 where the bit line structure 130 is arranged and a first region D1 located in the first region.
  • the second area D2 at the edge of D1;
  • the first oxide material layer 120 is patterned and etched, and the first oxide material layer 120 in the second region D2 and a part of the first oxide material layer 120 in the first region D1 are removed, so that the remaining first oxide material layer 120 is in each An oxide line structure 140 is formed on both sides of the bit line structure 130;
  • the second material is backfilled in the first area D1 and the second area D2, and the second material is different from the material of the first oxide material layer 120.
  • the second material located in the first area D1 forms the isolation line structure 160, and the second material located in the second area D2 The second material forms the ineffective isolation layer 150;
  • the oxide line structure 140 is removed by patterning and etching, and the bit line structure 130 and the isolation line structures 160 on both sides together form a via structure 170 exposing the substrate 110;
  • a layer of conductive material is formed within the via structure 170 to form a semiconductor structure.
  • the patterned etching of the first oxide material layer 120 may specifically include the following steps:
  • a second mask layer 220 and a first mask layer 210 are sequentially arranged on the first oxide material layer 120;
  • a second oxide material layer 400 is provided on the surface of the first mask pattern M1 and the surface of the second mask layer 220;
  • the part of the organic silicon layer 500 located above the first mask pattern M1 is removed by patterned etching, and the part of the second oxide material layer 400 located on the top and both sides of the second region D2 and the first mask pattern M1 is removed, so as to forming a second mask pattern M2;
  • the first oxide material layer 120 is etched using the third mask pattern M3.
  • the patterned etching of the first oxide material layer 120 may also be implemented by other specific process steps, which is not limited to this embodiment.
  • FIG. 1 which representatively shows the semiconductor structure in “providing a semiconductor substrate”, “disposing the first mask layer 210 and the second mask layer 220” and “disposing the first photoresist” 300" in steps of an exemplary structure.
  • the semiconductor structure shown in the drawing includes a semiconductor substrate, a first mask layer 210 , a second mask layer 220 and a patterned first photoresist 300 .
  • the semiconductor substrate includes a substrate 110 , a first oxide material layer 120 and a plurality of bit line structures 130 .
  • the first oxide material layer 120 is disposed on the surface of the substrate 110
  • the bit line structure 130 is disposed on a portion of the first oxide material layer 120 corresponding to the first region D1 .
  • the second mask layer 220 is disposed on the surface of the semiconductor substrate (ie, the first oxide material layer 120 ).
  • the first mask layer 210 is disposed on the surface of the second mask layer 220 .
  • the first photoresist 300 is disposed on the surface of the first mask layer 210 .
  • the substrate 110 may be a silicon substrate 110 .
  • the first oxidized material may include silicon oxide (SiO 2 ).
  • the bit line structure 130 may include a metal layer (eg, tungsten metal, W), a plug (eg, titanium nitride, TiN), and a protective layer (eg, silicon nitride, Si 3 N 4 ) .
  • a metal layer eg, tungsten metal, W
  • a plug eg, titanium nitride, TiN
  • a protective layer eg, silicon nitride, Si 3 N 4
  • the first mask layer 210 may include polysilicon and silicon oxynitride.
  • the second mask layer 220 may include polycrystalline silicon and polycrystalline carbon.
  • FIG. 2 which representatively shows an exemplary structure of the semiconductor structure in the step of “forming the first mask layer 210 ”.
  • the semiconductor structure shown in the figure includes a substrate, a second mask layer 220 and a first mask pattern M1.
  • the first mask pattern M1 is the first mask layer 210 remaining after etching.
  • the step of "forming the first mask pattern M1" it may specifically include the following steps:
  • the first photoresist 300 is patterned, and the remaining first photoresists 300 correspond to the bit line structures 130 respectively.
  • the surface of the portion of the first mask layer 210 corresponding to the second region D2 is free of the first photoresist 300 . as shown in Figure 1;
  • the first photoresist 300 is used as a mask layer for etching, the part of the first mask layer 210 not covered by the first photoresist 300 is removed, and the remaining first mask layer 210 forms a first mask pattern M1 ,as shown in picture 2.
  • FIG. 3 which representatively shows an exemplary structure of the semiconductor structure in the step of “disposing the second oxide material layer 400 ”.
  • the semiconductor structure shown in the figure includes a substrate, a second mask layer 220 , the remainder of the first mask layer 210 and a second oxide material layer 400 .
  • the second oxide material layer 400 is disposed on the surface of the first mask pattern M1 and the surface of the second mask layer 220 (the portion not covered by the first mask pattern M1 ).
  • the material of the second oxide material layer 400 may include silicon oxide.
  • FIG. 4 which representatively shows an exemplary structure of the semiconductor structure in the steps of “disposing the organic silicon layer 500 ” and “disposing the second photoresist 600 ”.
  • the semiconductor structure shown in the figure includes a substrate, a second mask layer 220, the remaining part of the first mask layer 210, a second oxide material layer 400, an organic silicon layer 500, and a patterned second photoresist 600.
  • the organic silicon layer 500 is disposed on the surface of the second oxide material layer 400 , that is, the organic silicon layer 500 is filled between the gaps of the first mask pattern M1 and on the second oxide material layer 400 corresponding to the second region D2 part.
  • the second photoresist 600 is disposed on the surface of the organic silicon layer 500 .
  • the material of the organic silicon layer 500 may include organic carbon (SiOC).
  • FIG. 5 which representatively shows an exemplary structure of the semiconductor structure in the step of “etching and removing part of the organic silicon layer 500 by using the second photoresist 600 ”.
  • the semiconductor structure shown in this figure includes a substrate, a second mask layer 220 , the remaining part of the first mask layer 210 , the remaining part of the second oxide material layer 400 and the remaining part of the organic silicon layer 500 .
  • the portion of the organic silicon layer 500 corresponding to the second region D2 and the portion above the first mask pattern M1 are removed by etching, that is, the remaining portion of the organic silicon layer 500 is located in the gap of the remaining first mask layer 210 middle.
  • the portion of the second oxide material layer 400 corresponding to the second region D2 and the portion located on the top of the first mask pattern M1 are removed through etching.
  • the step of “removing part of the organosilicon layer 500 by using the second photoresist 600” it may specifically include the following steps:
  • the second photoresist 600 is patterned, and the surface of the part of the organic silicon layer 500 corresponding to the second region D2 is free of the second photoresist 600, as shown in FIG. 4;
  • the part of the organic silicon layer 500 corresponding to the second region D2 and the part located above the first mask pattern M1 are removed, as shown in FIG. 5 .
  • FIG. 6 which typically shows an exemplary structure of the semiconductor structure in the step of “removing part of the second oxide material layer 400 to form the second mask pattern M2 ”.
  • the semiconductor structure shown in the drawing includes a substrate, a second mask layer 220 and a second mask pattern M2.
  • the remaining portion of the first mask layer 210 ie, the first mask pattern M1
  • the remaining portion of the second oxide material layer 400 and the remaining portion of the organic silicon layer 500 together form a second mask pattern M2 .
  • the etching of the second oxide material layer 400 may be divided into two steps, that is, the etching of the second oxide material layer 400 shown in FIG. 5
  • the part corresponding to the second region D2 and the part located on the top of the first mask pattern M1 are etched and removed, and the part of the second oxide material layer 400 located on both sides of the first mask pattern M1 shown in FIG. 6 is etched and removed .
  • the final remaining second oxide material layer 400 only includes the portion covered by the remaining portion of the organic silicon layer 500 .
  • FIG. 7 which representatively shows an exemplary structure of the semiconductor structure in the step of “forming the third mask pattern M3 using the second mask pattern M2 ”.
  • the semiconductor structure shown in the drawing includes a substrate and a third mask pattern M3.
  • the third mask pattern M3 is the second mask layer 220 remaining after the second mask pattern M2 is etched, and the third mask pattern M3 corresponds to the bit line structures 130 in the first region D1 respectively.
  • step of "using the second mask pattern M2 to form the third mask pattern M3" it may specifically include the following steps:
  • the part of the second mask layer 220 not covered by the second mask pattern M2 is removed, and the remaining second mask layer 220 forms the third mask pattern M3.
  • the above etching process The second mask pattern M2 is simultaneously removed, as shown in FIG. 7 .
  • FIG. 8 it representatively shows an exemplary structure of the semiconductor structure in the step of “removing part of the first oxide to form an oxide line structure 140 ”.
  • the semiconductor structure shown in the figure includes a substrate 110 and a plurality of oxide line structures 140 .
  • the oxide line structure 140 includes the remaining first oxide material layer 120 after being removed by etching, and the remaining first oxide material layer 120 is located on both sides of the bit line structure 130 .
  • the step of "removing part of the first oxide layer to form an oxide line structure 140" it may specifically include the following steps:
  • the third mask pattern M3 is used for etching to remove the portion of the first oxide material layer 120 that is not covered by the third mask pattern M3.
  • the remaining first oxide material layer 120 is located on both sides of the bit line structure 130, respectively.
  • the wire structures 140 are arranged at intervals, as shown in FIG. 8 .
  • FIGS. 9 and 11 which representatively show an exemplary structure of the semiconductor structure in the step of “backfilling the second material to form the isolation line structure 160 ”.
  • the semiconductor structure shown in the figure includes a substrate 110, a plurality of bit line structures 130, a plurality of oxide line structures 140, and a backfilled second material.
  • the second material is filled on the surface of the substrate 110 corresponding to the second region D2, so that the ineffective isolation layer 150 containing the second material is formed in the second region D2.
  • the second material is also filled in the gaps of the oxide line structures 140 , so that the isolation line structures 160 including the second material are formed in the gaps of the respective line structures 130 .
  • the material of the backfilled second material may include silicon nitride.
  • FIGS. 10 and 12 which representatively show an exemplary structure of the semiconductor structure in the step of “removing the oxide line structure 140 ”.
  • the semiconductor structure shown in the drawing includes a substrate 110 , a plurality of bit line structures 130 , an ineffective isolation layer 150 and a plurality of isolation line structures 160 .
  • the ineffective isolation layer 150 is located in the second region D2 of the substrate 110
  • the isolation line structure 160 is located in the gap of the bit line structure 130 .
  • the step of “removing the oxide line structure 140 ” may specifically include the following steps:
  • bit line structures 130 after backfilling with the second material are covered with the third photoresist 700;
  • the third photoresist 700 is patterned, and the part of the third photoresist 700 corresponding to the first region D1 is removed, that is, the third photoresist 700 is left on the surface of the invalid isolation layer 150, as shown in FIG. 9 and FIG. 11 ;
  • Etching with the third photoresist 700 removes the remaining first oxide material layer 120 . As shown in Figure 10 and Figure 12.
  • an etching solution such as a hydrofluoric acid solution, etc. may be used to rinse the remaining first oxide material layer 120. of removal.
  • the semiconductor structure proposed by the present disclosure includes a substrate 110 , a plurality of bit line structures 130 , a plurality of isolation line structures 160 , and an ineffective isolation layer 150 .
  • the substrate 110 has a first area D1 and a second area D2, and the first area D1 and the second area D2 may be an active area and an inactive area of the substrate 110, respectively.
  • a plurality of bit line structures 130 are disposed in the first region D1 of the substrate 110 .
  • a plurality of isolation line structures 160 are disposed in the first region D1 of the substrate 110 , and the isolation line structures 160 are located between two adjacent bit line structures 130 , so that via holes exposing the substrate 110 are formed on both sides of the bit line structures 130 respectively Structure 170.
  • the ineffective isolation layer 150 is disposed on the second region D2 of the substrate 110 .
  • the material of the isolation line structure 160 and the ineffective isolation layer 150 may respectively include a material different from the material of the first oxide material layer 120 of the substrate, such as silicon nitride or the like.
  • the method for forming a semiconductor structure proposed by the present disclosure can fill the second region with the second material, so that the holes of the node contact in the second region are filled with the second material, thereby replacing the existing first material.
  • the oxide in the holes of the node contact in the two regions makes the node contact in the second region greatly reduce the instability of the node contact in the node contact structure of the semiconductor structure fabricated by the method for forming the semiconductor structure proposed in the present disclosure, Improve the stability and reliability of semiconductor structures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Abstract

本公开提出一种半导体结构的形成方法及半导体结构,半导体结构的形成方法包含以下步骤:提供一半导体基底,半导体基底具有衬底和设置于衬底上的第一氧化材料层,第一氧化材料层中包含设置有位线结构的第一区域和位于第一区域边缘的第二区域;图形化刻蚀第一氧化材料层,去除第二区域的第一氧化材料层和第一区域的部分第一氧化材料层,以使剩余的第一氧化材料层在每个位线结构两侧形成氧化线结构;回填第二材料,位于第一区域的第二材料形成隔离线结构,位于第二区域的第二材料形成无效隔离层;图形化刻蚀去除氧化线结构,位线结构与两侧的隔离线结构共同形成露出衬底的通孔结构;在通孔结构内形成导电材料层,以此形成半导体结构。

Description

半导体结构的形成方法及半导体结构
相关申请的交叉引用
本公开要求基于2020年9月15日提交的申请号为202010966605.1的中国申请“半导体结构的形成方法及半导体结构”的优先权,通过援引将其全部内容并入本文中。
技术领域
本公开涉及半导体技术领域,尤其涉及一种半导体结构的形成方法及半导体结构。
背景技术
现有的动态随机存取存储器(DRAM)在形成节点接触(NC)的工艺步骤时,为了保证有效节点接触的制程过程中的均匀性,会在边缘部分形成一些无效(dummy)的节点接触,但是这些无效的节点接触的孔洞中的氧化硅在后续的制程中会存在一些不稳定的因素,从而造成不必要的器件失效。比如孔洞中的氧化硅在后续的清洗步骤中被氢氟酸侵蚀,造成后续的导电金属钨在填充节点接触和PC时,也会填充到无效的节点接触中,使得位线(BL)与位线的寄生电容增加。再如,在将有效的节点接触的孔洞中的氧化硅利用氢氟酸清洗去除时,可以将无效的节点接触采用光阻遮盖而防止被侵蚀,但是在实际工艺制程中,光阻的覆盖性或者黏附性不佳时,氢氟酸会往外渗透到第二区域而侵蚀其中的氧化硅,进而造成后续工艺中的PC/NC的金属钨(W)填充到无效的节点接触的孔洞中,造成位线-位线短路不良。
发明内容
本公开的一个主要目的在于克服上述现有技术的至少一种缺陷,提供一种能够优化第二区域的节点接触的稳定性的半导体结构的形成方法。
本公开的另一个主要目的在于克服上述现有技术的至少一种缺陷,提供一种第二区域的节点接触的稳定性较佳的半导体结构。
为实现上述目的,本公开采用如下技术方案:
根据本公开的一个方面,提供一种半导体结构的形成方法,其中,包含以下步骤:
提供一半导体基底,所述半导体基底具有衬底和设置于所述衬底上的第一氧化材料层,所述第一氧化材料层中包含设置有位线结构的第一区域和位于所述第一区域边缘的第 二区域;
图形化刻蚀所述第一氧化材料层,去除所述第二区域的所述第一氧化材料层和所述第一区域的部分所述第一氧化材料层,以使剩余的所述第一氧化材料层在每个所述位线结构两侧形成氧化线结构;
在所述第一区域和所述第二区域回填第二材料,所述第二材料与第一氧化材料层的材料不同,位于所述第一区域的所述第二材料形成隔离线结构;
图形化刻蚀去除所述氧化线结构,所述位线结构与两侧的所述隔离线结构共同形成露出所述衬底的通孔结构;
在所述通孔结构内形成导电材料层,以此形成半导体结构。
根据本公开的另一个方面,提供一种半导体结构,其中,所述半导体结构包含衬底、多个位线结构、多个隔离线结构、无效隔离层;所述衬底具有第一区域和第二区域;所述多个位线结构设置于所述衬底的第一区域;所述多个隔离线结构设置于所述衬底的第一区域,所述隔离线结构位于相邻两个所述位线结构之间,以使所述位线结构两侧分别形成露出所述衬底的通孔结构;所述无效隔离层设置于所述衬底的第二区域。
由上述技术方案可知,本公开提出的半导体结构的形成方法及半导体结构的优点和积极效果在于:
本公开提出的半导体结构的形成方法,能够在第二区域的填充不同于氧化物的第二材料,从而使得第二区域的节点接触的孔洞中被氮化物填充,据此替代现有的第二区域的节点接触的孔洞中的氧化物,使得在经由本公开提出的半导体结构的形成方法制成的半导体结构的节点接触结构中,位于第二区域中的节点接触的不稳定性大幅降低,提升半导体结构的稳定性和可靠性。
附图说明
图1是根据一示例性实施方式示出的一种半导体结构的形成方法的其中一个步骤中的半导体结构的示意图;
图2是根据一示例性实施方式示出的一种半导体结构的形成方法的其中另一个步骤中的半导体结构的示意图;
图3是根据一示例性实施方式示出的一种半导体结构的形成方法的其中另一个步骤中的半导体结构的示意图;
图4是根据一示例性实施方式示出的一种半导体结构的形成方法的其中另一个步骤 中的半导体结构的示意图;
图5是根据一示例性实施方式示出的一种半导体结构的形成方法的其中另一个步骤中的半导体结构的示意图;
图6是根据一示例性实施方式示出的一种半导体结构的形成方法的其中另一个步骤中的半导体结构的示意图;
图7是根据一示例性实施方式示出的一种半导体结构的形成方法的其中另一个步骤中的半导体结构的示意图;
图8是根据一示例性实施方式示出的一种半导体结构的形成方法的其中另一个步骤中的半导体结构的示意图;
图9是根据一示例性实施方式示出的一种半导体结构的形成方法的其中另一个步骤中的半导体结构的示意图;
图10是根据一示例性实施方式示出的一种半导体结构的形成方法的其中另一个步骤中的半导体结构的示意图;
图11是图9示出的步骤中的半导体结构的俯视图;
图12是图10示出的步骤中的半导体结构的俯视图。
附图标记说明如下:
110.衬底;
120.第一氧化材料层;
130.位线结构;
140.氧化线结构;
150.无效隔离层;
160.隔离线结构;
210.第一掩膜层;
220.第二掩膜层;
300.第一光刻胶;
400.第二氧化材料层;
500.有机硅层;
600.第二光刻胶;
700.第三光刻胶;
D1.第一区域;
D2.第二区域;
M1.第一掩膜图案;
M2.第二掩膜图案;
M3.第三掩膜图案。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
在该示例性实施方式中,本公开提出的半导体结构的形成方法,是以应用于动态随机存取存储器的节点接触的形成为例进行说明的。本领域技术人员容易理解的是,为将本公开的相关设计应用于其他类型的半导体结构的节点接触的形成工艺中,而对下述的具体实施方式做出多种改型、添加、替代、删除或其他变化,这些变化仍在本公开提出的半导体结构的形成方法的原理的范围内。
参阅图1至10,其分别代表性地示出了本公开提出的半导体结构的形成方法的其中一个步骤中的半导体结构的示意图。配合参阅图11和图9,图11中代表性地示出了图9示出的步骤中的半导体结构的俯视图;图12中代表性地示出了图10示出的步骤中的半导体结构的俯视图。以下将结合上述附图,对本公开提出的半导体结构的形成方法的各主要组成步骤的工艺、方法和关系进行详细说明。
如图1至图10所示,在本实施方式中,本公开提出的半导体结构的形成方法包含以下步骤:
提供一半导体基底,半导体基底具有衬底110和设置于衬底110上的第一氧化材料层120,第一氧化材料层120中包含设置有位线结构130的第一区域D1和位于第一区域D1边缘的第二区域D2;
图形化刻蚀第一氧化材料层120,去除第二区域D2的第一氧化材料层120和第一区域D1的部分第一氧化材料层120,以使剩余的第一氧化材料层120在每个位线结构130两侧形成氧化线结构140;
在第一区域D1和第二区域D2回填第二材料,第二材料与第一氧化材料层120的材料不同,位于第一区域D1的第二材料形成隔离线结构160,位于第二区域D2的第二材料 形成无效隔离层150;
图形化刻蚀去除氧化线结构140,位线结构130与两侧的隔离线结构160共同形成露出衬底110的通孔结构170;
在通孔结构170内形成导电材料层,以此形成半导体结构。
可选地,如图1至图8所示,在本实施方式中,对第一氧化材料层120的图形化刻蚀可以具体包含以下步骤:
在第一氧化材料层120上依次设置第二掩膜层220和第一掩膜层210;
图形化刻蚀第一掩膜层210,形成第一掩膜图案M1;
在第一掩膜图案M1表面和第二掩膜层220表面设置第二氧化材料层400;
在第二氧化材料层400上设置有机硅层500;
图形化刻蚀去除有机硅层500的位于第一掩膜图案M1上方的部分,并去除第二氧化材料层400的位于第二区域D2和第一掩膜图案M1顶部与两侧的部分,以形成第二掩膜图案M2;
利用第二掩膜图案M2刻蚀去除部分第二掩膜层220,形成第三掩膜图案M3;
利用第三掩膜图案M3刻蚀第一氧化材料层120。
需说明的是,在符合本公开设计构思的任意示例性实施方式中,对第一氧化材料层120的图形化刻蚀,亦可通过其他具体工艺步骤实现,并不以本实施方式为限。
具体地,如图1所示,其代表性地示出了半导体结构在“提供一半导体基底”、“设置第一掩膜层210和第二掩膜层220”以及“设置第一光刻胶300”的步骤中的示例性结构。其中,该附图示出的半导体结构包含半导体基底、第一掩膜层210、第二掩膜层220以及图形化的第一光刻胶300。半导体基底包含衬底110、第一氧化材料层120以及多个位线结构130。第一氧化材料层120设置于衬底110的表面,位线结构130设置于第一氧化材料层120的对应于第一区域D1的部分。第二掩膜层220设置于半导体基底(即第一氧化材料层120)的表面。第一掩膜层210设置于第二掩膜层220的表面。第一光刻胶300设置于第一掩膜层210的表面。
可选地,在本实施方式中,衬底110可以为硅衬底110。
可选地,在本实施方式中,第一氧化成的材质可以包含氧化硅(SiO 2)。
可选地,在本实施方式中,位线结构130可以包含金属层(例如金属钨,W)、插塞(例如氮化钛,TiN)以及保护层(例如氮化硅,Si 3N 4)。
可选地,在本实施方式中,第一掩膜层210可以包含多晶硅和氮氧化硅。
可选地,在本实施方式中,第二掩膜层220可以包含多晶硅和多晶碳。
具体地,如图2所示,其代表性地示出了半导体结构在“形成第一掩膜层210”的步骤中的示例性结构。其中,该附图示出的半导体结构包含基底、第二掩膜层220以及第一掩膜图案M1。第一掩膜图案M1即为经由刻蚀剩余的第一掩膜层210。
可选地,如图1和图2所示,在本实施方式中,对于“形成第一掩膜图案M1”的步骤而言,其可以具体包含以下步骤:
在第一掩膜层210表面覆盖第一光刻胶300;
图形化第一光刻胶300,剩余的第一光刻胶300分别对应于各位线结构130,第一掩膜层210的对应于第二区域D2的部分的表面无第一光刻胶300,如图1所示;以及
利用第一光刻胶300为掩膜层进行刻蚀,去除第一掩膜层210的未被第一光刻胶300覆盖的部分,剩余的第一掩膜层210形成第一掩膜图案M1,如图2所示。
具体地,如图3所示,其代表性地示出了半导体结构在“设置第二氧化材料层400”的步骤中的示例性结构。其中,该附图示出的半导体结构包含基底、第二掩膜层220、第一掩膜层210的剩余部分以及第二氧化材料层400。第二氧化材料层400是设置于第一掩膜图案M1的表面和第二掩膜层220(未被第一掩膜图案M1覆盖的部分)的表面。
可选地,在本实施方式中,第二氧化材料层400的材质可以包含氧化硅。
具体地,如图4所示,其代表性地示出了半导体结构在“设置有机硅层500”和“设置第二光刻胶600”的步骤中的示例性结构。其中,该附图示出的半导体结构包含基底、第二掩膜层220、第一掩膜层210的剩余部分、第二氧化材料层400、有机硅层500以及图形化的第二光刻胶600。有机硅层500是设置于第二氧化材料层400的表面,即,有机硅层500是填充于第一掩膜图案M1的间隙之间以及第二氧化材料层400上的对应于第二区域D2的部分。第二光刻胶600是设置于有机硅层500的表面。
可选地,在本实施方式中,有机硅层500的材质可以包含有机碳(SiOC)。
具体地,如图5所示,其代表性地示出了半导体结构在“利用第二光刻胶600刻蚀去除部分有机硅层500”的步骤中的示例性结构。其中,该附图示出的半导体结构包含基底、第二掩膜层220、第一掩膜层210的剩余部分、第二氧化材料层400的剩余部分以及有机硅层500的剩余部分。有机硅层500的对应于第二区域D2的部分以及位于第一掩膜图案M1上方的部分经由刻蚀被去除,即,有机硅层500的剩余部分位于剩余的第一掩膜层210的间隙中。并且,第二氧化材料层400的对应于第二区域D2的部分以及位于第一掩膜图案M1顶部的部分经由刻蚀被去除。
可选地,如图4和图5所示,在本实施方式中,对于“利用第二光刻胶600刻蚀去除部分有机硅层500”的步骤而言,其可以具体包含以下步骤:
在有机硅层500表面覆盖第二光刻胶600;
图形化第二光刻胶600,有机硅层500对应于第二区域D2的部分的表面无第二光刻胶600,如图4所示;以及
利用第二光刻胶600刻蚀,去除有机硅层500的对应于第二区域D2的部分以及位于第一掩膜图案M1上方的部分,如图5所示。
具体地,如图6所示,其代表性地示出了半导体结构在“去除部分第二氧化材料层400,形成第二掩膜图案M2”的步骤中的示例性结构。其中,该附图示出的半导体结构包含基底、第二掩膜层220以及第二掩膜图案M2。第一掩膜层210的剩余部分(即第一掩膜图案M1)、第二氧化材料层400的剩余部分以及有机硅层500的剩余部分共同形成第二掩膜图案M2。
可选地,如图5和图6所示,在本实施方式中,第二氧化材料层400的刻蚀可以分为两个步骤,即,图5示出的对第二氧化材料层400的对应于第二区域D2的部分以及位于第一掩膜图案M1顶部的部分刻蚀去除,图6示出的对第二氧化材料层400的位于第一掩膜图案M1两侧的部分刻蚀去除。通过上述刻蚀工艺,最终剩余的第二氧化材料层400仅包含被有机硅层500的剩余部分覆盖的部分。
具体地,如图7所示,其代表性地示出了半导体结构在“利用第二掩膜图案M2形成第三掩膜图案M3”的步骤中的示例性结构。其中,该附图示出的半导体结构包含基底以及第三掩膜图案M3。第三掩膜图案M3即为经由第二掩膜图案M2刻蚀后剩余的第二掩膜层220,且第三掩膜图案M3分别于第一区域D1内的各位线结构130分别对应。
可选地,图7所示,在本实施方式中,对于“利用第二掩膜图案M2形成第三掩膜图案M3”的步骤而言,其具体可以包含以下步骤:
利用第二掩膜图案M2刻蚀,去除第二掩膜层220的未被第二掩膜图案M2覆盖的部分,剩余的第二掩膜层220形成第三掩膜图案M3,上述刻蚀过程中第二掩膜图案M2同时被去除,如图7所示。
具体地,如图8所示,其代表性地示出了半导体结构在“去除部分第一氧化成,形成氧化线结构140”的步骤中的示例性结构。其中,该附图示出的半导体结构包含衬底110以及多个氧化线结构140。氧化线结构140包含经由刻蚀去除后剩余的第一氧化材料层120,且剩余的第一氧化材料层120位于位线结构130的两侧。
可选地,如图8所示,对于“去除部分第一氧化层,形成氧化线结构140”的步骤而言,其具体可以包含以下步骤:
利用第三掩膜图案M3刻蚀,去除第一氧化材料层120的未被第三掩膜图案M3覆盖的部分,剩余的第一氧化材料层120分别位于各位线结构130的两侧,各氧化线结构140间隔布置,如图8所示。
具体地,如图9和图11所示,其代表性地示出了半导体结构在“回填第二材料,形成隔离线结构160”的步骤中的示例性结构。其中,该附图示出的半导体结构包含衬底110、多个位线结构130、多个氧化线结构140以及回填的第二材料。第二材料填充于衬底110的对应于第二区域D2的表面上,从而在第二区域D2形成材质包含第二材料的无效隔离层150。同时,第二材料还填充于各氧化线结构140的间隙中,从而在各位线结构130的间隙中形成材质包含第二材料的隔离线结构160。
可选地,在本实施方式中,回填的第二材料的材质可以包含氮化硅。
具体地,如图10和图12所示,其代表性地示出了半导体结构在“去除氧化线结构140”的步骤中的示例性结构。其中,该附图示出的半导体结构包含衬底110、多个位线结构130、无效隔离层150以及多个隔离线结构160。无效隔离层150位于衬底110的第二区域D2,隔离线结构160位于位线结构130的间隙中。
可选地,如图9至图12所示,在本实施方式中,对于“去除氧化线结构140”的步骤而言,其具体可以包含以下步骤:
在回填第二材料之后的各位线结构130的表面覆盖第三光刻胶700;
图形化第三光刻胶700,去除第三光刻胶700的对应于第一区域D1的部分,即无效隔离层150表面留有第三光刻胶700,如图9和图11所示;
利用第三光刻胶700刻蚀,去除剩余的第一氧化材料层120。如图10和图12所示。
进一步地,在本实施方式中,对于“去除剩余的第一氧化材料层120”的步骤而言,可以利用刻蚀溶液(例如氢氟酸溶液等)冲洗实现对剩余的第一氧化材料层120的去除。
在此应注意,附图中示出而且在本说明书中描述的半导体结构的形成方法仅仅是能够采用本公开原理的许多种形成方法中的几个示例。应当清楚地理解,本公开的原理绝非仅限于附图中示出或本说明书中描述的半导体结构的形成方法的任何细节或任何步骤。
基于上述对本公开提出的半导体结构的形成方法的一示例性实施方式的详细说明,以下将配合图10和图12,对本公开提出的半导体结构的一示例性实施方式进行说明。
如图10和图12所示,在本实施方式中,本公开提出的半导体结构包含衬底110、多 个位线结构130、多个隔离线结构160、无效隔离层150。具体而言,衬底110具有第一区域D1和第二区域D2,第一区域D1和第二区域D2可以分别为衬底110的有效区域和无效区域。多个位线结构130设置于衬底110的第一区域D1。多个隔离线结构160设置于衬底110的第一区域D1,隔离线结构160位于相邻两个位线结构130之间,以使位线结构130两侧分别形成露出衬底110的通孔结构170。无效隔离层150设置于衬底110的第二区域D2。其中,隔离线结构160与无效隔离层150的材质可以分别包含不同于衬底的第一氧化材料层120的材料,例如氮化硅等。
在此应注意,附图中示出而且在本说明书中描述的半导体结构仅仅是能够采用本公开原理的许多种半导体结构中的几个示例。应当清楚地理解,本公开的原理绝非仅限于附图中示出或本说明书中描述的半导体结构的任何细节或半导体结构的任何部件。
综上所述,本公开提出的半导体结构的形成方法,能够在第二区域的填充第二材料,从而使得第二区域的节点接触的孔洞中被第二材料填充,据此替代现有的第二区域的节点接触的孔洞中的氧化物,使得在经由本公开提出的半导体结构的形成方法制成的半导体结构的节点接触结构中,位于第二区域中的节点接触的不稳定性大幅降低,提升半导体结构的稳定性和可靠性。
虽然已参照几个典型实施例描述了本公开,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本公开能够以多种形式具体实施而不脱离公开的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (10)

  1. 一种半导体结构的形成方法,其中,包含以下步骤:
    提供一半导体基底,所述半导体基底具有衬底和设置于所述衬底上的第一氧化材料层,所述第一氧化材料层中包含设置有位线结构的第一区域和位于所述第一区域边缘的第二区域;
    图形化刻蚀所述第一氧化材料层,去除所述第二区域的所述第一氧化材料层和所述第一区域的部分所述第一氧化材料层,以使剩余的所述第一氧化材料层在每个所述位线结构两侧形成氧化线结构;
    在所述第一区域和所述第二区域回填第二材料,所述第二材料与第一氧化材料层的材料不同,位于所述第一区域的所述第二材料形成隔离线结构,位于所述第二区域的所述第二材料形成无效隔离层;
    图形化刻蚀去除所述氧化线结构,所述位线结构与两侧的所述隔离线结构共同形成露出所述衬底的通孔结构;
    在所述通孔结构内形成导电材料层,以此形成半导体结构。
  2. 根据权利要求1所述的半导体结构的形成方法,其中,对所述第一氧化材料层的图形化刻蚀包含以下步骤:
    在所述第一氧化材料层上依次设置第二掩膜层和第一掩膜层;
    图形化刻蚀所述第一掩膜层,形成第一掩膜图案;
    在所述第一掩膜图案表面和所述第二掩膜层表面设置第二氧化材料层;
    在所述第二氧化材料层上设置有机硅层;
    图形化刻蚀去除所述有机硅层的位于所述第一掩膜图案上方的部分,并去除所述第二氧化材料层的位于所述第二区域和所述第一掩膜图案顶部与两侧的部分,以形成第二掩膜图案;
    利用所述第二掩膜图案刻蚀去除部分所述第二掩膜层,形成第三掩膜图案;
    利用所述第三掩膜图案刻蚀所述第一氧化材料层。
  3. 根据权利要求2所述的半导体结构的形成方法,其中,图形化刻蚀所述第一掩膜层包含以下步骤:
    在所述第一掩膜层表面设置第一光刻胶;
    图形化所述第一光刻胶;
    利用所述第一光刻胶刻蚀所述第一掩膜层。
  4. 根据权利要求2所述的半导体结构的形成方法,其中,形成所述第二掩膜图案包含以下步骤:
    在所述有机硅层表面设置第二光刻胶;
    图形化所述第二光刻胶,保留位于所述第一区域的所述第二光刻胶;
    利用所述第二光刻胶刻蚀,形成所述第二掩膜图案。
  5. 根据权利要求4所述的半导体结构的形成方法,其中,利用所述第二光刻胶刻蚀包含以下步骤:
    去除位于所述第二区域和所述第一掩膜图案上方的所述有机硅层以及位于所述第二区域及所述第一掩膜图案顶部的所述第二氧化材料层;
    去除位于所述第一掩膜图案两侧的所述第二氧化材料层。
  6. 根据权利要求2所述的半导体结构的形成方法,其中,所述有机硅层的材质包含有机碳。
  7. 根据权利要求1所述的半导体结构的形成方法,其中,图形化去除所述氧化线结构的步骤包含:
    回填所述第二材料之后,在所述第一氧化材料层和所述第二材料的表面覆盖第三光刻胶;
    图形化所述第三光刻胶,去除位于所述第一区域的所述第三光刻胶;
    利用所述第三光刻胶刻蚀,去除各所述氧化线结构。
  8. 根据权利要求7所述的半导体结构的形成方法,其中,去除剩余的所述第一氧化材料层,是利用刻蚀溶液冲洗去除所述第一氧化材料层。
  9. 根据权利要求1所述的半导体结构的形成方法,其中,所述第二材料的材质包含氮 化硅。
  10. 一种半导体结构,其中,所述半导体结构包含:
    衬底,具有第一区域和第二区域;
    多个位线结构,设置于所述衬底的第一区域;
    多个隔离线结构,设置于所述衬底的第一区域,所述隔离线结构位于相邻两个所述位线结构之间,以使所述位线结构两侧分别形成露出所述衬底的通孔结构;
    无效隔离层,设置于所述衬底的第二区域。
PCT/CN2021/103691 2020-09-15 2021-06-30 半导体结构的形成方法及半导体结构 WO2022057380A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/467,635 US12010830B2 (en) 2020-09-15 2021-09-07 Method of manufacturing a semiconductor structure by forming a node contact between a bit line and an isolation line

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010966605.1 2020-09-15
CN202010966605.1A CN114188283A (zh) 2020-09-15 2020-09-15 半导体结构的形成方法及半导体结构

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/467,635 Continuation US12010830B2 (en) 2020-09-15 2021-09-07 Method of manufacturing a semiconductor structure by forming a node contact between a bit line and an isolation line

Publications (1)

Publication Number Publication Date
WO2022057380A1 true WO2022057380A1 (zh) 2022-03-24

Family

ID=80601176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103691 WO2022057380A1 (zh) 2020-09-15 2021-06-30 半导体结构的形成方法及半导体结构

Country Status (2)

Country Link
CN (1) CN114188283A (zh)
WO (1) WO2022057380A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090140437A1 (en) * 2007-11-29 2009-06-04 Katsutoshi Saeki Semiconductor device and fabrication method thereof
CN103247577A (zh) * 2012-02-01 2013-08-14 爱思开海力士有限公司 包括精细图案的半导体器件的制造方法
CN103811554A (zh) * 2012-11-13 2014-05-21 三星电子株式会社 半导体器件及其制造方法
CN107393918A (zh) * 2016-05-04 2017-11-24 三星电子株式会社 半导体器件和形成半导体器件的方法
CN108933136A (zh) * 2018-08-22 2018-12-04 长鑫存储技术有限公司 半导体结构、存储器结构及其制备方法
CN110943085A (zh) * 2018-09-21 2020-03-31 三星电子株式会社 半导体装置和形成该半导体装置的方法
CN110970351A (zh) * 2018-09-29 2020-04-07 长鑫存储技术有限公司 半导体存储器电容接点结构及制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100338781B1 (ko) * 2000-09-20 2002-06-01 윤종용 반도체 메모리 소자 및 그의 제조방법
US6563162B2 (en) * 2001-03-21 2003-05-13 Samsung Electronics Co., Ltd. Semiconductor memory device for reducing parasitic bit line capacitance and method of fabricating the same
US20060148168A1 (en) * 2005-01-06 2006-07-06 Sheng-Chin Li Process for fabricating dynamic random access memory
CN100356552C (zh) * 2005-02-08 2007-12-19 联华电子股份有限公司 动态随机存取存储器的制造方法
US7232724B1 (en) * 2005-04-25 2007-06-19 Advanced Micro Devices, Inc. Radical oxidation for bitline oxide of SONOS
KR100875654B1 (ko) * 2006-09-28 2008-12-26 주식회사 하이닉스반도체 반도체 소자의 스토리지노드콘택 형성 방법
KR102452290B1 (ko) * 2015-09-04 2022-12-01 에스케이하이닉스 주식회사 반도체구조물 및 그 제조 방법
CN108022880A (zh) * 2016-11-04 2018-05-11 中芯国际集成电路制造(上海)有限公司 半导体结构的形成方法
CN108257919B (zh) * 2016-12-29 2020-10-27 联华电子股份有限公司 随机动态处理存储器元件的形成方法
US10950663B2 (en) * 2018-04-24 2021-03-16 Micron Technology, Inc. Cross-point memory array and related fabrication techniques
CN108546912B (zh) * 2018-05-03 2020-09-18 中芯集成电路(宁波)有限公司 掩膜版及其制作方法
CN110707083B (zh) * 2018-08-23 2022-02-01 联华电子股份有限公司 半导体存储装置及其形成方法
CN111106106A (zh) * 2018-10-26 2020-05-05 长鑫存储技术有限公司 半导体器件制造方法与半导体器件
CN111403276A (zh) * 2020-03-24 2020-07-10 长江存储科技有限责任公司 半导体结构的制备方法
CN116056453A (zh) * 2023-02-10 2023-05-02 福建省晋华集成电路有限公司 一种半导体结构及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090140437A1 (en) * 2007-11-29 2009-06-04 Katsutoshi Saeki Semiconductor device and fabrication method thereof
CN103247577A (zh) * 2012-02-01 2013-08-14 爱思开海力士有限公司 包括精细图案的半导体器件的制造方法
CN103811554A (zh) * 2012-11-13 2014-05-21 三星电子株式会社 半导体器件及其制造方法
CN107393918A (zh) * 2016-05-04 2017-11-24 三星电子株式会社 半导体器件和形成半导体器件的方法
CN108933136A (zh) * 2018-08-22 2018-12-04 长鑫存储技术有限公司 半导体结构、存储器结构及其制备方法
CN110943085A (zh) * 2018-09-21 2020-03-31 三星电子株式会社 半导体装置和形成该半导体装置的方法
CN110970351A (zh) * 2018-09-29 2020-04-07 长鑫存储技术有限公司 半导体存储器电容接点结构及制备方法

Also Published As

Publication number Publication date
CN114188283A (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
JP2924771B2 (ja) 蓄積容量部形成方法
JP2011142214A (ja) 半導体装置およびその製造方法
JP3999403B2 (ja) Dramセルキャパシタの製造方法
JP2001217200A (ja) 半導体装置の製造方法
JP4791768B2 (ja) 半導体素子のストレージノードコンタクトの形成方法
WO2022057380A1 (zh) 半导体结构的形成方法及半导体结构
KR0183764B1 (ko) 랜딩 패드 형성방법
JP5019890B2 (ja) 半導体素子の製造方法
US7910485B2 (en) Method for forming contact hole using dry and wet etching processes in semiconductor device
JP2007184532A (ja) 半導体素子のキャパシタの製造方法
JPH11284060A (ja) 半導体装置及びその製造方法
WO2022057381A1 (zh) 半导体结构的形成方法及半导体结构
US12010830B2 (en) Method of manufacturing a semiconductor structure by forming a node contact between a bit line and an isolation line
JP2007081347A (ja) 半導体装置の製造方法
US20220085033A1 (en) Method for forming semiconductor structure and semiconductor structure
JP2003023070A (ja) 半導体装置およびその製造方法
KR100687882B1 (ko) 비트라인을 구비한 반도체 소자 및 그 제조 방법
JPH11330400A (ja) ダイナミックramセルキャパシタの製造方法
KR100218735B1 (ko) 반도체 소자의 콘택홀 형성방법
KR100525967B1 (ko) 반도체 장치 및 반도체 장치의 제조 방법
KR100345066B1 (ko) 에스램소자의제조방법
KR101035644B1 (ko) 반도체 소자의 제조방법
KR930010082B1 (ko) 고집적 소자용 콘택제조방법
KR100783637B1 (ko) 반도체장치의 제조 방법
KR20040011245A (ko) 반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868209

Country of ref document: EP

Kind code of ref document: A1