WO2022055142A1 - 도전층이 형성된 분리막을 포함하는 전극조립체 및 이를 포함하는 전지셀 - Google Patents

도전층이 형성된 분리막을 포함하는 전극조립체 및 이를 포함하는 전지셀 Download PDF

Info

Publication number
WO2022055142A1
WO2022055142A1 PCT/KR2021/010924 KR2021010924W WO2022055142A1 WO 2022055142 A1 WO2022055142 A1 WO 2022055142A1 KR 2021010924 W KR2021010924 W KR 2021010924W WO 2022055142 A1 WO2022055142 A1 WO 2022055142A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
negative electrode
separator
conductive layer
electrode assembly
Prior art date
Application number
PCT/KR2021/010924
Other languages
English (en)
French (fr)
Inventor
김영재
김민지
채종현
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US18/021,880 priority Critical patent/US20230361428A1/en
Priority to CN202180059616.4A priority patent/CN116134674A/zh
Priority to JP2022579103A priority patent/JP2023531942A/ja
Priority to EP21867008.1A priority patent/EP4170775A4/en
Publication of WO2022055142A1 publication Critical patent/WO2022055142A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode assembly including a separator having a conductive layer formed thereon, and a battery cell including the same. Specifically, it relates to an electrode assembly including a separator with a conductive layer formed thereon, and a battery cell including the same, so as to compensate for the short circuit of the conductive network due to the damage of the negative electrode mixture layer due to expansion and contraction due to charging and discharging of the secondary battery .
  • a lithium secondary battery may be manufactured by inserting an electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode in a case of a metal can or laminate sheet, and injecting an electrolyte solution therein.
  • the thickness of the electrode mixture layer can be formed thin, so that the above problems can be solved.
  • Silicon has a greater degree of expansion and contraction during charging and discharging than other materials. For this reason, many surface cracks generate
  • Patent Document 1 relates to a non-aqueous electrolyte secondary battery with high safety that can prevent short circuit and explosion even in an overcharge state to which a high voltage is applied, and discloses a separator in which a conductive layer having a resistivity within a certain numerical range is formed.
  • Patent Document 1 recognizes the effect of preventing overcharging, but there is no recognition for solving the problem of dendrite formation in the negative electrode using the silicon active material, and the problems caused by overexpansion and overshrinkage of the silicon active material.
  • Patent Document 2 relates to a lithium secondary battery using a battery separator coated with a conductive layer, and when using a lithium metal negative electrode, it is a technology for preventing high reactivity dendrite lithium from being cut and separated from the negative electrode.
  • Patent Document 2 does not recognize a problem when using a silicon negative electrode, and does not suggest a solution to the problem.
  • Patent Document 1 Korean Patent Publication No. 2012-0062713 (2012.06.14)
  • Patent Document 2 Korean Patent Publication No. 1999-010035 (1999.02.05)
  • the present invention is to solve the above problems, and in order to prevent the conductive network from being destroyed by overexpansion and overshrinkage of the anode including the silicon active material, the surface to surround the silicon active material protruding from the surface of the anode mixture layer
  • An object of the present invention is to provide an electrode assembly including a separator having a conductive layer formed thereon, and a battery cell including the same.
  • An electrode assembly according to the present invention for achieving this object is a positive electrode having a positive electrode mixture layer formed on at least one surface of a positive electrode current collector, a negative electrode having a negative electrode mixture layer formed on at least one surface of the negative electrode current collector, and interposed between the positive electrode and the negative electrode a separator, wherein the negative electrode mixture layer includes a silicon active material, and a conductive layer is formed on at least one surface of the separator, and the thickness of the conductive layer may be greater than 50% of the D50 particle diameter of the silicon active material.
  • the separator may include a separator substrate made of a porous substrate, an inorganic material layer formed on at least one surface of the separator substrate, and a conductive layer formed on an outer surface of the inorganic material layer.
  • a first inorganic material layer is formed on one surface of the separator substrate and a second inorganic material layer is formed on the other surface of the separator substrate, and one of the first inorganic material layer and the second inorganic material layer faces the negative electrode
  • the conductive layer may be formed only on the inorganic material layer positioned in the direction.
  • the conductive layer may include a conductive material and a binder.
  • the thickness of the conductive layer may be formed in a size of 80% to 120% of the D50 particle diameter of the silicon active material.
  • the negative electrode active material included in the negative electrode mixture layer may be composed of 100% of the silicon active material.
  • the inorganic material layer may have a structure in which pores are formed.
  • the size of the pores formed in the inorganic layer may be smaller than the pores formed in the separator substrate.
  • the conductive layer may have a porous structure.
  • the loading amount of the positive electrode may be 4 to 10 times based on the loading amount of the negative electrode.
  • the present invention also provides a battery cell in which the electrode assembly is accommodated in a battery case made of a metal can or laminate sheet.
  • the present invention provides a battery pack including the battery cell as a unit cell.
  • the present invention can also be provided in various configurations that can be combined among the above inventions.
  • the conductive layer formed on the surface of the separator can function as a conductive network of the negative electrode mixture layer, and cracks in the negative electrode mixture layer due to overexpansion and overshrinkage of the negative electrode active material Even when it occurs, it is possible to prevent the electron movement path from being cut off.
  • the thickness of the conductive layer is a certain range, it is possible to prevent deterioration of ionic conductivity and output characteristics due to the addition of the conductive layer.
  • the thickness of the anode mixture layer can be formed thinner than when a carbon anode active material is used, compared to the case of using a carbon anode active material, and thus energy density can be improved by reducing the thickness of the battery cell.
  • the electrode assembly according to the present invention includes a positive electrode having a positive electrode mixture layer formed on at least one surface of a positive electrode current collector, a negative electrode having a negative electrode mixture layer formed on at least one surface of the negative electrode current collector, and a separator interposed between the positive electrode and the negative electrode,
  • the negative electrode mixture layer may include a silicon active material, and a conductive layer may be formed on at least one surface of the separator, and the thickness of the conductive layer may be greater than 50% of a D50 particle diameter of the silicon active material.
  • the electrode assembly is a stacked electrode assembly in which one or more positive electrodes and one or more negative electrodes are stacked with a separator interposed therebetween, stacked unit cells including positive and negative electrodes are wound by a separation sheet-folding electrode assembly, It can be a lamination-stacked electrode assembly in which stacked unit cells including a positive electrode and a negative electrode are stacked with a separator interposed therebetween, or a wound type electrode assembly in which one positive electrode and one negative electrode are wound with a separator interposed therebetween there is.
  • the positive electrode for example, is manufactured by coating a positive electrode mixture containing a positive electrode active material on a positive electrode current collector and then drying the positive electrode mixture, if necessary, a binder, a conductive material, a filler, etc. are optionally further added may be included.
  • the positive electrode current collector is generally made to have a thickness of 3 ⁇ m to 500 ⁇ m.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery, and for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or a surface of aluminum or stainless steel. Carbon, nickel, titanium, a surface-treated one with silver, etc. may be used.
  • the positive electrode current collector may increase the adhesive force of the positive electrode active material by forming fine irregularities on the surface, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven body are possible.
  • the conductive material is typically added in an amount of 1 wt% to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskers such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the binder is a component that assists in bonding of the active material and the conductive material and bonding to the current collector, and is usually added in an amount of 1 wt% to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , polypropylene, ethylene-propylene-diene terpolymer, styrene-butyrene rubber, fluororubber, and various copolymers.
  • the filler is optionally used as a component for suppressing the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing a chemical change in the battery.
  • a fibrous material such as glass fiber or carbon fiber is used.
  • the negative electrode for example, is manufactured by coating the negative electrode mixture containing the negative electrode active material on the negative electrode current collector and then drying, and the negative electrode mixture includes, if necessary, the conductive material, binder, filler, etc. as described above. components may be included.
  • the negative electrode current collector is generally made to have a thickness of 3 ⁇ m to 500 ⁇ m.
  • a negative current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel.
  • the surface treated with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. may be used.
  • the bonding strength of the negative electrode active material may be strengthened by forming fine irregularities on the surface, and may be used in various forms such as a film, sheet, foil, net, porous body, foam, non-woven body, and the like.
  • silicon-containing materials may be included in the present invention as long as it does not affect the desired effect, for example, SiO, SiO 2 or a mixture thereof; Sn-based materials such as Sn, SnO, and SnO 2 ; carbon-based materials such as artificial graphite, natural graphite, amorphous hard carbon, and low-crystalline soft carbon; metal composite oxides such as lithium titanium oxide; or a mixture of two or more thereof.
  • the silicon active material is a component causing an electrochemical reaction by combining with lithium ions moving from the positive electrode during the charging reaction, and has an excellent theoretical capacity of 4,200 mAh/g. Therefore, the higher the content of the silicon active material included in the negative electrode mixture, the higher the capacity of a battery cell can be manufactured. % or more, and more specifically, may be composed of 100% of the silicone active material.
  • the loading amount of the positive electrode is Based on the loading amount of the negative electrode may be formed in the range of 4 to 10 times, more specifically, it may be formed in the range of 4 to 6 times.
  • the D50 particle diameter of the silicon particles may range from 0.1 ⁇ m to 20 ⁇ m, alternatively from 0.2 ⁇ m to 15 ⁇ m, alternatively from 0.8 ⁇ m to 10 ⁇ m, alternatively from 1 ⁇ m to 8 ⁇ m, or from 2 ⁇ m to 7 ⁇ m. Silicon particles having a particle diameter of D50 in the above numerical range are advantageous in terms of forming a conductive network even when a conductive material is used in the same amount as compared to silicon particles having an average particle diameter larger or smaller than this.
  • the 'D50 particle size' is a representative diameter among two or more types of particles having different particle size sizes, and is a particle size corresponding to 50% of the weight percentage in the particle size distribution curve.
  • the D50 particle diameter refers to the diameter of the particle through which 50% of the accumulated weight passes in the particle size distribution curve, and is understood to have the same meaning as the particle diameter corresponding to the size of the sieve through which 50% of the total weight passes.
  • the average particle diameter of the silicon particles may be generally measured using X-ray diffraction (XRD) analysis or electron microscopy (SEM, TEM).
  • the binder, the conductive material, and components added as necessary are the same as described for the positive electrode.
  • viscosity modifiers and adhesion promoters may be further included optionally or as a combination of two or more.
  • the viscosity modifier is a component that adjusts the viscosity of the electrode mixture to facilitate the mixing process of the electrode mixture and the application process on the current collector thereof, and may be added up to 30% by weight based on the total weight of the negative electrode mixture.
  • examples of such a viscosity modifier include, but are not limited to, carboxymethylcellulose, polyvinylidene fluoride, and the like.
  • the adhesion promoter is an auxiliary component added to improve the adhesion of the active material to the current collector, and may be added in an amount of 10% by weight or less relative to the binder, for example, oxalic acid, adipic acid, and formic acid, an acrylic acid derivative, or an itaconic acid derivative.
  • the separation membrane includes a separation membrane substrate made of a porous substrate, an inorganic material layer formed on at least one surface of the separation membrane substrate, and a conductive layer formed on an outer surface of the inorganic material layer.
  • the separator substrate an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally 0.01 ⁇ m to 10 ⁇ m, and the thickness is generally 5 ⁇ m to 300 ⁇ m.
  • the separation membrane include olefin-based polymers such as chemical-resistant and hydrophobic polyethylene and polypropylene; A sheet or non-woven fabric made of glass fiber or polyethylene is used.
  • a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.
  • An inorganic material layer is formed by coating a mixture of inorganic particles and a binder polymer on the separation membrane substrate, and the porous inorganic material layer is formed on the porous separation membrane substrate.
  • a separator including such an inorganic material layer has an advantage of high heat resistance compared to a structure having only a conventional separator base material.
  • lithium ions that have migrated from the positive electrode to the negative electrode are plated on the surface of the negative electrode to form dendrites.
  • the dendrite grows and the anode and the cathode are connected, current flows and a self-discharge or low voltage phenomenon occurs. has an inhibitory effect.
  • the dendrite is The effect of inhibiting growth toward the anode can be further improved.
  • the inorganic material constituting the inorganic material layer is not particularly limited as long as it is generally used in the manufacture of the inorganic material layer of the separator for secondary batteries, and (a) an inorganic material having piezoelectricity and (b) an inorganic material having lithium ion transfer ability. It may be one or more selected.
  • the inorganic material having piezoelectricity is an insulator at normal pressure, but refers to a material having properties that conduct electricity due to a change in internal structure when a certain pressure is applied.
  • tension or compression is applied by applying a pressure, an electric charge is generated so that one side is positively charged and the other side is negatively charged, thereby generating a potential difference between both surfaces.
  • an inorganic material having the above characteristics When an inorganic material having the above characteristics is used as a component of the porous active layer, if an internal short circuit between the positive and negative electrodes occurs due to an external impact such as a needle-shaped conductor, the positive and negative electrodes will not directly contact due to the inorganic layer coated on the separator. In addition, due to the piezoelectricity of the inorganic material, a potential difference is generated within the particle, which causes electron movement between the positive and negative electrodes, that is, the flow of a minute current, thereby reducing the voltage of the battery gently and improving the safety thereof.
  • Examples of the inorganic material having piezoelectricity include BaTiO 3 , Pb(Zr,Ti)O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), Pb (Mg 1/3 Nb 2/ 3 )O 3 -PbTiO 3 (PMN-PT), hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 ,TiO 2 , and may be at least one selected from the group consisting of SiC and mixtures thereof, but is not limited thereto.
  • the inorganic material having lithium ion transfer capability refers to an inorganic material that contains lithium element but does not store lithium and has a function of moving lithium ions.
  • the inorganic material having lithium ion transfer capability is a kind of defect present in the particle structure. Due to (defect), lithium ions can be transferred and moved, and lithium ion conductivity in the battery is improved, thereby improving battery performance.
  • Examples of the inorganic material having the lithium ion transport ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium aluminum titanium Phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 O 5 , etc.
  • LiAlTiP lithium lanthanide titanate
  • Li x La y TiO 3 Li 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3
  • Li 3.25 Lithium germanium thiophosphate such as Ge 0.25 P 0.75 S 4 (Li x Ge y P z S w , 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1,0 ⁇ w ⁇ 5)
  • Li Lithium nitride such as 3 N (Li x N y , 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 2)
  • Li 3 PO 4 -Li 2 S-SiS 2 SiS 2 series glass Li x Si y S z ) , 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 4)
  • P 2 S 5 series glass Li x P y S z , 0 ⁇ x ⁇ 3, It may be one or more selected from the group consisting of 0 ⁇
  • the inorganic material may be a metal hydroxide or a hydroxide of a metal oxide represented by the following formula.
  • M is B, Al, Mg, Co, Cu, Fe, Ni, Ti, Au, Hg, Zn, Sn, Zr or an oxide thereof, and x is an integer of 1 to 4)
  • the binder constituting the inorganic material layer is not particularly limited as long as it is generally used for manufacturing the inorganic material layer of the separator for secondary batteries, for example, polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co- Trichloroethylene, polymethyl methacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinyl acetate, polyethylene-co-vinyl acetate, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyano Any one binder polymer selected from the group consisting of ethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose, pullulan and carboxymethyl cellulose or a mixture of two or more thereof may be used.
  • N-methyl-2-pyrrolidone N-methyl-2-pyrrolidone
  • DMF dimethylformamide
  • THF tetrahydrofuran
  • MEK methyl Ethyl ketone
  • DMAC dimethylacetamide
  • DMSO dimethyl sulfoxide
  • the electrode assembly according to the present invention contains a silicon active material having a large volume change due to charging and discharging as an anode active material, cracks occur in the anode mixture layer, or the anode mixture layer is broken and easily separated from the anode current collector.
  • a problem in which the conductive network serving as a movement path of electrons is broken may occur. That is, when the negative electrode mixture layer is broken, the conductive network may be cut and the electron movement path may be blocked, and thus the performance of the battery may be deteriorated.
  • the conductive layer is formed on the outermost side of the separator in direct contact with the negative electrode. Accordingly, even if the negative electrode mixture layer is broken due to overexpansion and overshrinkage of the silicon active material, the conductive network function of the negative electrode mixture layer damaged by the conductive layer may be supplemented.
  • the conductive layer may basically include a conductive material having electrical conductivity.
  • the conductive layer may further include a binder in order to maintain a bonding state between the conductive materials and to secure adhesion to the inorganic material layer.
  • the conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskers such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the binder is a component that assists in bonding between conductive materials without causing a chemical change in the battery.
  • polyvinylidene fluoride polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxy propylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene ter polymer, styrene-butadiene rubber, fluororubber, various copolymers, and the like.
  • the thickness of the conductive layer may be formed in a size of 80% to 120% of the D50 particle diameter of the silicon active material.
  • the conductive network of the negative electrode mixture layer is highly likely to be maintained.
  • the distance between the electrodes increases as a result, the ionic conductivity decreases and the output characteristics of the battery cell decrease. There may be problems with reduction.
  • the conductive layer be added to surround the silicon active material.
  • the thickness of the conductive layer is formed to be smaller than the D50 particle diameter of the silicon active material, when the silicon active material is expanded to the maximum, the inorganic material layer can be enlarged, and thus it is expanded to the non-conductive inorganic material layer. The resistance of the silicon active material region increases rapidly.
  • the thickness of the conductive layer may be selectively formed in the range of 80% to 120% of the D50 particle size of the silicon active material.
  • a first inorganic material layer and a second inorganic material layer are formed on the other surface of the separator substrate on one surface of the separator substrate, and among the first inorganic material layer and the second inorganic material layer, in a direction facing the negative electrode A conductive layer may be formed only on the positioned inorganic material layer.
  • a dip coating method may be used as a method of forming the first inorganic layer and the second inorganic layer
  • a die coating or a slot coating method may be used as a method of forming the conductive layer.
  • the conductive layer is formed only in the direction facing the negative electrode among the inorganic layers of the separator, it is possible to compensate for the problem of cracking of the negative electrode mixture and at the same time minimize the increase in the thickness of the separator, so that the conductive layer In contrast to the case in which the first inorganic material layer and the second inorganic material layer are respectively formed, it is possible to prevent the energy density from being lowered.
  • the positive electrode mixture layer may be broken or cracked as the expansion and contraction are repeated, so the conductive layer is formed on each of the first and second inorganic layers In this case, even if the conductive network of the anode and the cathode is destroyed, this can be compensated.
  • the conductive layer may have a porous structure.
  • the negative electrode of the present invention includes a silicon active material having a large volume change, and by providing the conductive layer, the expanded silicon active material is prevented from expanding to the inorganic layer of the separator.
  • the conductive layer has a porous structure, when the silicone active material is expanded, the conductive layer contracts and the volume increase due to the expansion of the silicone active material can be buffered. An increase in thickness can be alleviated.
  • the conductive layer has a porous structure, there is an effect of preventing a decrease in the ionic conductivity of lithium ions.
  • the present invention also includes a battery cell accommodated in a metal can in which the electrode assembly is formed in a prismatic or cylindrical shape, and a battery cell accommodated in a pouch-type battery case in which the electrode assembly is made of a laminate sheet.
  • the present invention includes a battery pack including the battery cell as a unit cell and a device including the battery pack.
  • the device is, for example, a notebook computer, a netbook, a tablet PC, a mobile phone, an MP3, a wearable electronic device, a power tool, an electric vehicle (EV), a hybrid electric vehicle (HEV) , a Plug-in Hybrid Electric Vehicle (PHEV), an electric bicycle (E-bike), an electric scooter (E-scooter), an electric golf cart, or a system for power storage.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • PHEV Plug-in Hybrid Electric Vehicle
  • E-bike electric bicycle
  • E-scooter electric golf cart
  • a system for power storage or a system for power storage.
  • the present invention is not limited thereto.
  • a positive electrode In order to prepare a positive electrode, 97.5% by weight of lithium nickel cobalt manganese oxide as a positive electrode active material, 1.0% by weight of carbon black as a conductive material, and 1.5% by weight of polyvinylidene fluoride (PVdF) as a binder, N-methyl-2-pyrrolidone and mixed to prepare a positive electrode slurry.
  • PVdF polyvinylidene fluoride
  • a positive electrode was prepared by preparing an aluminum current collector having a thickness of 15 ⁇ m, and coating the aluminum current collector so that the loading amount of the positive electrode slurry was 600 mg/25 cm 2 .
  • the total thickness of the prepared anode was 162 ⁇ m.
  • the negative electrode 80 wt% of silicon (Si) having a D50 particle diameter of 3 ⁇ m as an anode active material, 10 wt% of carbon black as a conductive material, and 10 wt% of a binder were mixed in water to prepare a negative electrode slurry.
  • a copper current collector having a thickness of 8 ⁇ m was prepared, and a negative electrode was prepared by coating the copper current collector so that the loading amount of the negative electrode slurry was 100 mg/25 cm 2 .
  • the total thickness of the prepared negative electrode was 58 ⁇ m.
  • a polyolefin-based separator substrate having a porous structure and a thickness of 9 ⁇ m was prepared, and an inorganic layer was coated on both sides of the separator substrate using a dip coating method.
  • the sum of the thicknesses of the inorganic layers formed on both sides of the separator substrate was 8.5 ⁇ m.
  • Carbon black and polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) were mixed in acetone at a ratio of 9: 1 wt% to prepare a solution for a conductive layer.
  • the solution for the conductive layer was coated by a slot coating method such that only one side of the inorganic layers formed on both sides of the separator substrate had a thickness of 2.0 ⁇ m, thereby manufacturing a separator in which a conductive layer was formed on one side.
  • An electrode assembly was prepared by interposing a separator between the positive electrode and the negative electrode prepared as described above so that the surface on which the conductive layer was formed faces the negative electrode, and an electrolyte solution was injected to prepare a coin cell.
  • a battery cell was manufactured using the separator in which the conductive layer was formed in the same manner as in Example 1, except that the thickness of the conductive layer formed on one surface of the separator was 3.5 ⁇ m, and the total thickness of the separator was 21.0 ⁇ m.
  • a polyolefin-based separator substrate having a thickness of 9 ⁇ m was prepared, and an inorganic material layer was coated on both sides using a dip coating method.
  • a polyolefin-based separator substrate having a thickness of 9 ⁇ m was prepared, and an inorganic material layer was coated on both sides using a dip coating method.
  • a polyolefin-based separator substrate having a thickness of 9 ⁇ m was prepared, and an inorganic material layer was coated on both sides using a dip coating method.
  • each battery cell was charged to 4.2V at 1.0C and discharged to 3.2V at 0.5C for 100 cycles. and the results are shown in Table 1 below.
  • the separator including the conductive layer when used, it can be confirmed that the remaining capacity is 90% or more after 100 cycles of charging and discharging.
  • Example 2 Comparing Example 1 and Example 2, when silicon particles having a D50 of 3 ⁇ m are used as the negative electrode active material, cracks in the negative electrode active material when the conductive layer is formed to a thickness of 3.5 ⁇ m thicker than D50 as in Example 2 Even when this occurs, it can be seen that the conductive layer maintains high cycle characteristics by supplementing the conductive network function of the anode active material.
  • the thickness of the conductive layer is preferably applied in consideration of the D50 of the silicon particles.
  • Comparative Example 2 and Comparative Example 3 increase the thickness of the entire separator by forming the inorganic layer thick. Although it was the same as each of Example 1 and Example 2, it was measured that the cycle characteristic was remarkably low.
  • the conductive layer has a significant effect on maintaining high cycle characteristics of the battery.
  • the conductive layer formed on the surface of the separator can function as a conductive network of the negative electrode mixture layer, and cracks in the negative electrode mixture layer due to overexpansion and overshrinkage of the negative electrode active material Even when it occurs, it is possible to prevent the electron movement path from being cut off.
  • the thickness of the conductive layer is a certain range, it is possible to prevent deterioration of ionic conductivity and output characteristics due to the addition of the conductive layer.
  • the thickness of the anode mixture layer can be formed thinner than that of a carbon anode active material compared to the case of using a carbon anode active material, and thus energy density can be improved by reducing the thickness of the battery cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본원발명은 양극 집전체의 적어도 일면에 양극 합제층이 형성된 양극, 음극 집전체의 적어도 일면에 음극 합제층이 형성된 음극, 및 상기 양극 및 음극 사이에 개재되는 분리막을 포함하고, 상기 음극 합제층은 실리콘 활물질을 포함하며, 상기 분리막의 적어도 일면에는 도전층이 형성되어 있고, 상기 도전층의 두께는 상기 실리콘 활물질의 D50 입경의 50% 보다 큰 크기로 이루어진 전극조립체 및 이를 포함하는 전지셀에 관한 것이다.

Description

도전층이 형성된 분리막을 포함하는 전극조립체 및 이를 포함하는 전지셀
본 출원은 2020년 9월 11일자 한국 특허 출원 제 2020-0116731 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본원발명은 도전층이 형성된 분리막을 포함하는 전극조립체 및 이를 포함하는 전지셀에 관한 것이다. 구체적으로, 이차전지의 충방전에 따른 팽창 및 수축으로 음극 합제층이 파손되어 도전 네트워크가 단락되는 것을 보완해줄 수 있도록, 도전층이 형성된 분리막을 포함하는 전극조립체 및 이를 포함하는 전지셀에 관한 것이다.
리튬 이차전지는 양극, 음극 및 상기 양극과 음극 사이에 개재되는 분리막으로 구성되는 전극조립체가 금속 캔 또는 라미네이트 시트의 케이스에 내장되고, 그 내부에 전해액을 주입하여 제조될 수 있다.
리튬 이차전지의 단위 부피당 에너지 용량을 증가하기 위한 연구는 현재도 계속 진행중이다. 음극 활물질로서 흑연을 사용하는 경우에는, 음극 합제층의 두께를 두껍게 하는 방법을 사용하였다. 이와 같은 경우, 상기 음극 합제층이 깨지는 문제, 코팅시 너울이 발생하는 문제, 및 집전체에서 음극 합제층이 탈리되는 문제 등이 발생하였다.
음극 활물질의 일부를 용량이 높은 실리콘(Si) 소재로 치환하여 사용하면, 전극 합제층의 두께를 얇게 형성할 수 있으므로, 상기와 같은 문제를 해결할 수 있다.
실리콘은 충방전 과정의 팽창과 수축 정도가 다른 물질보다 크다. 이 때문에 표면 균열이 많이 발생하고, 음극 합제층 내의 도전성 네트워크가 단락 된다. 이와 같은 현상은 전지셀의 저항을 증가시키는 원인이 된다.
특허문헌 1은 고전압이 인가되는 과충전 상태가 되더라도 단락, 폭발을 방지할 수 있는 안전성이 높은 비수계 전해액 2차 전지에 관한 것으로서, 저항률이 일정한 수치범위에 해당하는 도전층이 형성된 분리막을 개시한다.
특허문헌 1은 과충전을 방지하기 위한 효과를 인식하고 있으나, 실리콘 활물질을 사용하는 음극에서 덴드라이트가 형성되는 문제, 및 실리콘 활물질의 과팽창 및 과수축에 따른 문제점을 해결하기 위한 인식이 없다.
특허문헌 2는 도전층이 도포된 전지 분리막을 이용한 리튬 이차전지에 관한 것으로서, 리튬 금속 음극을 사용하는 경우, 반응성이 높은 수지상 금속 리튬이 절단되어 음극에서 분리되는 것을 방지하기 위한 기술이다.
특허문헌 2는 실리콘 음극을 사용할 때의 문제점을 인식하지 못하고 있으며, 상기 문제점에 관한 해결방안을 제시하지 못하고 있다.
이와 같이 팽창 및 수축의 정도가 심한 실리콘 음극을 사용하는 경우, 음극 합제층이 깨지거나 크랙이 발생함으로써 전지셀의 성능이 저하되는 것을 방지하기 위한 효과적인 해결 방안은 아직까지 제시되지 않았다.
(선행기술문헌)
(특허문헌 1) 한국 공개특허공보 제2012-0062713호 (2012.06.14)
(특허문헌 2) 한국 공개특허공보 제1999-010035호 (1999.02.05)
본원발명은 상기와 같은 문제를 해결하기 위한 것으로서, 실리콘 활물질을 포함하는 음극의 과팽창 및 과수축에 의해 도전성 네트워크가 파괴되는 것을 방지하기 위하여, 음극 합제층 표면에서 돌출되는 실리콘 활물질을 감싸도록 표면에 도전층이 형성된 분리막을 포함하는 전극조립체 및 이를 포함하는 전지셀을 제공하는 것을 목적으로 한다.
이러한 목적을 달성하기 위한 본원발명에 따른 전극조립체는, 양극 집전체의 적어도 일면에 양극 합제층이 형성된 양극, 음극 집전체의 적어도 일면에 음극 합제층이 형성된 음극, 및 상기 양극 및 음극 사이에 개재되는 분리막을 포함하고, 상기 음극 합제층은 실리콘 활물질을 포함하며, 상기 분리막의 적어도 일면에는 도전층이 형성되어 있고, 상기 도전층의 두께는 상기 실리콘 활물질의 D50 입경의 50% 보다 클 수 있다.
본원발명에 따른 전극조립체에 있어서, 상기 분리막은 다공성 기재로 이루어진 분리막 기재, 상기 분리막 기재의 적어도 일면에 형성된 무기물층 및 상기 무기물층의 외면에 형성된 도전층을 포함할 수 있다.
본원발명에 따른 전극조립체에 있어서, 상기 분리막 기재 일면에 제1무기물층, 상기 분리막 기재의 타면에 제2무기물층이 형성되고, 상기 제1무기물층 및 상기 제2무기물층 중 상기 음극과 대면하는 방향에 위치하는 무기물층에만 도전층이 형성될 수 있다.
본원발명에 따른 전극조립체에 있어서, 상기 도전층은 도전재 및 바인더를 포함할 수 있다.
본원발명에 따른 전극조립체에 있어서, 상기 도전층의 두께는 상기 실리콘 활물질의 D50 입경에 대해 80% 내지 120%의 크기로 형성될 수 있다.
본원발명에 따른 전극조립체에 있어서, 상기 음극 합제층에 포함된 음극 활물질은 실리콘 활물질 100%로 구성될 수 있다.
본원발명에 따른 전극조립체에 있어서, 상기 무기물층은 내부에 공극이 형성된 구조로 이루어질 수 있다.
본원발명에 따른 전극조립체에 있어서, 상기 무기물층에 형성된 공극의 크기가 상기 분리막 기재에 형성된 공극보다 작은 크기로 이루어질 수 있다.
본원발명에 따른 전극조립체에 있어서, 상기 도전층은 다공성 구조로 이루어질 수 있다.
본원발명에 따른 전극조립체에 있어서, 상기 양극의 로딩량은 음극의 로딩량을 기준으로 4배 내지 10배일 수 있다.
본원발명은 또한 상기 전극조립체가 금속 캔 또는 라미네이트 시트로 이루어진 전지케이스에 수용된 전지셀을 제공한다.
본원발명은 상기 전지셀을 단위셀로 포함하는 전지팩을 제공한다.
본원발명은 또한 상기 발명 중 조합이 가능한 다양한 구성으로도 제공이 가능하다.
이상에서 설명한 바와 같이, 본원발명에 따른 전극조립체는 분리막의 표면에 형성된 도전층이 음극 합제층의 도전성 네트워크로 기능할 수 있는 바, 음극 활물질의 과팽창 및 과수축에 의해 음극 합제층에 크랙이 발생하는 경우에도 전자 이동 경로가 단절되는 것을 막을 수 있다.
또한, 상기 도전층의 두께를 일정한 범위로 한정함으로써, 도전층의 부가로 인해 이온 전도도 및 출력 특성이 저하되는 것을 방지할 수 있다.
또한, 용량이 높은 실리콘 활물질을 사용하기 때문에, 탄소 음극 활물질을 사용하는 경우보다 동일 용량 대비 음극 합제층의 두께를 얇게 형성할 수 있는 바, 전지셀의 두께 감소로 에너지밀도를 향상시킬 수 있다.
이하 본원발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본원발명을 쉽게 실시할 수 있는 실시예를 상세히 설명한다. 다만, 본원발명의 바람직한 실시예에 관한 동작 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 관한 구체적인 설명이 본원발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
또한, 명세서 전체에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고, 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 포함한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 종속항에 기재된 한정사항은 본 명세서에 기재된 모든 실시예에 적용될 수 있다.
또한, 본원의 발명의 설명 및 청구범위 전반에 걸쳐서 단수로 표시된 것은 별도로 언급되지 않는 한 복수인 경우도 포함한다.
또한, 본원의 발명의 설명 및 청구범위 전반에 걸쳐서 "또는"은 별도로 언급되지 않는 한 "및"을 포함하는 것이다. 그러므로 "A 또는 B를 포함하는"은 A를 포함하거나, B를 포함하거나, 또는, A 및 B를 포함하는 상기 3가지 경우를 모두 의미한다.
또한, 모든 수치 범위는 명확하게 제외한다는 기재가 없는 한, 양 끝의 값과 그 사이의 모든 중간값을 포함한다.
본원발명에 따른 전극조립체는, 양극 집전체의 적어도 일면에 양극 합제층이 형성된 양극, 음극 집전체의 적어도 일면에 음극 합제층이 형성된 음극, 및 상기 양극 및 음극 사이에 개재되는 분리막을 포함하고, 상기 음극 합제층은 실리콘 활물질을 포함하며, 상기 분리막의 적어도 일면에는 도전층이 형성되어 있고, 상기 도전층의 두께는 상기 실리콘 활물질의 D50 입경의 50% 보다 큰 크기로 이루어질 수 있다.
상기 전극조립체는 분리막이 개재된 상태로 하나 이상의 양극과 하나 이상의 음극이 적층되어 있는 스택형 전극조립체, 양극과 음극을 포함하는 적층형 유닛셀들이 분리 시트에 의해 권취되어 있는 스택-폴딩형 전극조립체, 양극과 음극을 포함하는 적층형 유닛셀들이 분리막이 개재된 상태로 적층되어 있는 라미네이션-스택형 전극조립체, 또는 하나의 양극과 하나의 음극이 분리막이 개재된 상태로 권취되어 있는 권취형 전극조립체일 수 있다.
상기 양극은, 예를 들어, 양극 집전체 상에 양극 활물질을 포함하고 있는 양극 합제를 도포한 후 건조하여 제조되며, 상기 양극 합제에는, 필요에 따라, 바인더, 도전재, 충진재 등이 선택적으로 더 포함될 수도 있다.
상기 양극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또한, 양극 집전체는, 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 양극 활물질은 전기화학적 반응을 일으킬 수 있는 물질로서, 리튬 전이금속 산화물로서, 2 이상의 전이금속을 포함하고, 예를 들어, 1 또는 그 이상의 전이금속으로 치환된 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물; 1 또는 그 이상의 전이금속으로 치환된 리튬 망간 산화물; 화학식 LiNi1-yMyO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B, Cr, Zn 또는 Ga 이고 상기 원소 중 하나 이상의 원소를 포함, 0.01≤y≤0.8 임)으로 표현되는 리튬 니켈계 산화물; Li1+zNi1/3Co1/3Mn1/3O2, Li1+zNi0.4Mn0.4Co0.2O2 등과 같이 Li1+zNibMncCo1-(b+c+d)MdO(2-e)Ae (여기서, -0.5≤z≤0.5, 0.1≤b≤0.8, 0.1≤c≤0.8, 0≤d≤0.2, 0≤e≤0.2, b+c+d<1 임, M = Al, Mg, Cr, Ti, Si 또는 Y 이고, A = F, P 또는 Cl 임)으로 표현되는 리튬 니켈 코발트 망간 복합산화물; 화학식 Li1+xM1-yM'yPO4-zXz(여기서, M = 전이금속, 바람직하게는 Fe, Mn, Co 또는 Ni 이고, M' = Al, Mg 또는 Ti 이고, X = F, S 또는 N 이며, -0.5≤x≤0.5, 0≤y≤0.5, 0≤z≤0.1 임)로 표현되는 올리빈계 리튬 금속 포스페이트 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 중량% 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 중량% 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머, 스티렌 부티렌 고무, 불소 고무, 다양한 공중합제 등을 들 수 있다.
상기 충진재는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합제; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 음극은, 예를 들어, 음극 집전체 상에 음극 활물질을 포함하고 있는 음극 합제를 도포한 후 건조하여 제조되며, 상기 음극 합제에는, 필요에 따라, 앞서 설명한 바와 같은 도전재, 바인더, 충진재 등의 성분들이 포함될 수 있다.
상기 음극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께로 만든다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질은, 예를 들어, 실리콘; 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me= Mn, Fe, Pb, Ge; Me'= Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있으며, 상세하게는 실리콘(Si)을 사용할 수 있다.
추가적으로, 상기 실리콘 활물질 이외에, 본원발명에서 목적하는 효과에 영향을 주지 않는 한도에서, 다른 실리콘 함유 물질을 포함할 수 있는 바, 예를 들어, SiO, SiO2 또는 이들의 혼합물; Sn, SnO 및 SnO2 등의 Sn계 물질; 인조흑연, 천연흑연, 비정질 하드카본 및 저결정질 소프트카본 등의 탄소계 물질; 리튬 티타늄 산화물과 같은 금속 복합 산화물; 또는 이들 중 2 이상의 혼합물을 포함할 수 있다.
구체적으로, 상기 실리콘 활물질은 충전 반응시에 양극에서 이동하는 리튬 이온과 결합하여 전기화학적 반응을 일으키는 성분으로서, 4,200 mAh/g의 우수한 이론용량을 갖는다. 따라서, 상기 음극 합제 내에 포함되는 상기 실리콘 활물질의 함량이 높을 수록 고용량의 전지셀을 제조할 수 있는 바, 상기 음극 합제에 포함되는 음극 활물질은 실리콘 활물질이 80% 이상 포함될 수 있고, 상세하게는 90% 이상 포함될 수 있으며, 더욱 상세하게는 실리콘 활물질 100%로 구성될 수 있다.
한편, 전극조립체 제조시, 양극과 음극의 불균일이 발생하여 불필요하게 낭비되는 양극 또는 음극이 발생하는 것을 방지하기 위하여, 상기 실리콘 활물질의 고용량을 고려해야 하는 바, 상세하게는, 상기 양극의 로딩량은 음극의 로딩량을 기준으로 4배 내지 10배의 범위로 형성될 수 있고, 더욱 상세하게는, 4배 내지 6배의 범위로 형성될 수 있다.
상기 실리콘 입자의 D50 입경은 0.1 ㎛ 내지 20 ㎛, 또는 0.2 ㎛ 내지 15 ㎛, 또는 0.8 ㎛ 내지 10 ㎛, 또는 1 ㎛ 내지 8 ㎛, 또는 2 ㎛ 내지 7 ㎛ 범위일 수 있다. 상기 수치범위의 D50 입경을 갖는 실리콘 입자는, 이보다 크거나 적은 평균입경을 갖는 실리콘 입자와 비교할 때, 동일한 함량으로 도전재를 사용하더라도 도전 네트워크 형성 측면에서 유리하다.
본원 명세서에서 'D50 입경'이라 함은 입경 크기가 다른 2종류 이상의 입자들 가운데 대표 지름으로서, 입도분포곡선에서 중량 백분율의 50%에 해당하는 입경이다. 즉, D50 입경은 입도분포곡선에서 누적중량의 50%가 통과하는 입자의 직경을 말하며, 전체에서 50%를 통과시킨 체의 크기에 해당하는 입자의 직경과 같은 의미로 이해한다.
상기 실리콘 입자의 평균 입경은 일반적으로 X-선 회절(XRD) 분석 또는 전자현미경(SEM, TEM) 등을 이용하여 측정할 수 있다.
상기 바인더와 도전재 및 필요에 따라 첨가되는 성분들은 양극에서의 설명과 동일하다.
또한, 점도 조절제, 접착 촉진제 등의 기타의 성분들이 선택적으로 또는 둘 이상의 조합으로서 더 포함될 수 있다.
상기 점도 조절제는 전극 합제의 혼합 공정과 그것의 집전체 상의 도포 공정이 용이할 수 있도록 전극 합제의 점도를 조절하는 성분으로서, 음극 합제 전체 중량을 기준으로 30 중량%까지 첨가될 수 있다. 이러한 점도 조절제의 예로는, 카르복시메틸셀룰로우즈, 폴리비닐리덴 플루오라이드 등이 있지만, 이들만으로 한정되는 것은 아니다.
상기 접착 촉진제는 집전체에 대한 활물질의 접착력을 향상시키기 위해 첨가되는 보조성분으로서, 바인더 대비 10 중량% 이하로 첨가될 수 있으며, 예를 들어 옥살산 (oxalic acid), 아디프산(adipic acid), 포름산(formic acid), 아크릴산(acrylic acid) 유도체, 또는 이타콘산(itaconic acid) 유도체 등을 들 수 있다.
상기 분리막은 다공성 기재로 이루어진 분리막 기재, 상기 분리막 기재의 적어도 일면에 형성된 무기물층, 및 상기 무기물층의 외면에 형성된 도전층을 포함한다.
상기 분리막 기재는 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ㎛ ~ 10 ㎛이고, 두께는 일반적으로 5 ㎛ ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리에틸렌, 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 분리막 기재 상에 무기물 입자와 바인더 고분자의 혼합물을 코팅하여 무기물층을 형성하는 바, 다공성 분리막 기재 상에 다공성 무기물층이 형성된다. 이와 같은 무기물층을 포함하는 분리막은 종래의 분리막 기재만 있는 구조와 대비하여, 내열성이 높은 장점이 있다.
일반적으로, 리튬 이차전지는 양극에서 음극으로 이동한 리튬 이온이 음극 표면에서 플레이팅(plating)되어 덴드라이트가 형성될 수 있다. 상기 덴드라이트가 성장하여 양극과 음극이 연결되면 전류가 흘러서 자가 방전이 일어나거나 저전압 현상이 일어나는데, 상기 분리막 기재 및 무기물층과 같이 내부에 불규칙한 공극이 형성된 다공성 구조를 포함하는 경우에는 덴드라이트의 성장을 억제하는 효과가 있다.
또한, 상기 무기물층에 형성된 공극의 크기가 상기 분리막 기재에 형성된 공극보다 작은 크기로 이루어진 경우, 즉, 상기 분리막 기재보다 상기 무기물층에서 공극 구조를 더 작고, 더 복잡하게 만드는 경우에는 상기 덴드라이트가 양극쪽으로 성장하는 것을 억제하는 효과를 더욱 향상시킬 수 있다.
상기 무기물층을 구성하는 무기물은 일반적으로 이차전지용 분리막 무기물층 제조시 사용되는 것이라면 특별히 한정되지 않으며, (a) 압전성(piezoelectricity)을 갖는 무기물 및 (b) 리튬 이온 전달 능력을 갖는 무기물로 구성된 군으로부터 선택된 1종 이상일 수 있다.
상기 압전성(piezoelectricity)을 갖는 무기물은 상압에서는 부도체이나, 일정 압력이 인가되었을 경우 내부 구조 변화에 의해 전기가 통하는 물성을 갖는 물질을 의미하는 것으로서, 유전율 상수가 100 이상인 고유전율 특성을 나타낼 뿐만 아니라 일정 압력을 인가하여 인장 또는 압축되는 경우, 전하가 발생하여 한 면은 양으로 대전되고 반대편은 음으로 대전됨으로써, 양쪽 면 간에 전위차가 발생하는 기능을 갖는 물질이다.
상기와 같은 특징을 갖는 무기물을 다공성 활성층 성분으로 사용하는 경우, 침상 도체와 같은 외부 충격에 의해 양극 및 음극의 내부 단락이 발생하는 경우 분리막에 코팅된 무기물층으로 인해 양극과 음극이 직접 접촉하지 않을 뿐만 아니라, 무기물의 압전성으로 인해 입자 내 전위차가 발생하게 되고 이로 인해 양극 및 음극 간의 전자 이동, 즉 미세한 전류의 흐름이 이루어짐으로써, 완만한 전지의 전압 감소 및 이로 인한 안전성 향상을 도모할 수 있다.
상기 압전성을 갖는 무기물의 예로는 BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3 (PLZT), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), hafnia (HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3,TiO2, SiC 및 이들의 혼합물로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다.
상기 리튬 이온 전달 능력을 갖는 무기물은 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물을 지칭하는 것으로서, 상기 리튬 이온 전달 능력을 갖는 무기물은 입자 구조 내부에 존재하는 일종의 결함(defect)으로 인해 리튬 이온을 전달 및 이동시킬 수 있는 바, 전지 내 리튬 이온 전도도가 향상되고, 이로 인해 전지 성능을 향상시킬 수 있다.
상기 리튬 이온 전달 능력을 갖는 무기물의 예로는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0<x<2, 0<y<3), 리튬알루미늄티타늄포스페이트 (LixAlyTiz(PO4)3, 0<x<2, 0<y<1, 0<z<3), 14Li2O-9Al2O3-38TiO2-39P2O5 등과 같은 (LiAlTiP)xOy 계열 glass(0<x<4, 0<y<13), 리튬란탄티타네이트 (LixLayTiO3, 0<x<2, 0<y<3), Li3.25Ge0.25P0.75S4 등과 같은 리튬게르마니움티오포스페이트 (LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1,0<w<5), Li3N 등과 같은 리튬나이트라이드 (LixNy, 0<x<4, 0<y<2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 glass(LixSiySz, 0<x<3, 0<y<2, 0<z<4), LiI-Li2S-P2S5 등과 같은 P2S5 계열 glass(LixPySz, 0<x<3, 0<y< 3,0<z<7) 및 이들의 혼합물로 이루어진 군으로부터 선택된 1종 이상일 수 있으나 이에 한정되는 것은 아니다.
또한, 상기 무기물은 하기와 같은 식으로 표현되는 금속 수산화물 또는 금속산화물의 수산화물일 수 있다.
M(OH)x (상기 식에서, M은 B, Al, Mg, Co, Cu, Fe, Ni, Ti, Au, Hg, Zn, Sn, Zr 또는 이들의 산화물이고, x는 1 내지 4의 정수임)
상기 무기물층을 구성하는 바인더는 일반적으로 이차전지용 분리막의 무기물층 제조시 사용되는 것이라면 특별히 한정되지 않으며, 예를 들어 폴리비닐리덴 플루오라이드-co-헥사플루오로프로필렌, 폴리비닐리덴 플루오라이드-co-트리클로로에틸렌, 폴리메틸메타크릴레이트, 폴리아크릴로니트릴, 폴리비닐피롤리돈, 폴리비닐아세테이트, 폴리에틸렌-co-비닐 아세테이트, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부티레이트, 셀룰로오스 아세테이트 프로피오네이트, 시아노에틸풀루란, 시아노에틸폴리비닐알콜, 시아노에틸셀룰로오스, 시아노에틸수크로오스, 풀루란 및 카르복시메틸셀룰로오스로 이루어진 군으로부터 선택된 어느 하나의 바인더 고분자 또는 이들 중 2종 이상의 혼합물을 사용할 수 있다.
상기 무기물층을 조성하기 위한 용매로는 N-메틸-2-피롤리돈(NMP, N-Methyl-2-pyrrolidone), 디메틸포름아마이드(DMF, dimethylformamide), 테트라하이드로퓨란(THF, tetrahydrofuran), 메틸에틸케톤(MEK, methylethylketone), 디메틸아세트아미드(DMAC, dimethylacetamide) 또는 디메틸설폭사이드(DMSO, dimethyl sulfoxide)를 사용할 수 있다.
본원발명에 따른 전극조립체는 충방전에 따른 부피 변화가 큰 실리콘 활물질을 음극 활물질로 포함하기 때문에, 음극 합제층에 크랙이 발생하거나, 상기 음극 합제층이 깨져서 음극 집전체에서 분리되기 쉽다. 이와 같이 음극 합제층의 형태 안정성이 떨어지는 결과, 전자의 이동 경로가 되는 도전성 네트워크가 깨지는 문제가 발생할 수 있다. 즉, 음극 합제층이 깨지는 경우에는, 도전성 네트워크가 끊어지면서 전자의 이동 경로가 차단될 수 있는 바, 전지의 성능이 저하되는 문제가 발생할 수 있다.
이와 같이, 음극 합제층의 도전성 네트워크가 깨지는 것을 보완하기 위하여, 음극과 직접적으로 접촉하는 분리막의 최외측에 도전층을 형성한다. 따라서, 상기 실리콘 활물질의 과팽창 및 과수축에 의해 음극 합제층이 깨지는 현상이 발생하더라도, 상기 도전층에 의해 손상된 음극 합제층의 도전성 네트워크 기능이 보완될 수 있다.
상기 도전층은 기본적으로 전기전도도가 있는 도전재를 포함할 수 있다. 또한, 상기 도전층은 상기 도전재들 간의 결합 상태를 유지하고 상기 무기물층에 대한 접착력을 확보하기 위하여 추가적으로 바인더를 더 포함할 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 당해 전지에 화학적 변화를 유발하지 않으면서 도전재 간의 결합에 조력하는 성분으로서, 예를 들어, 폴리비닐리덴 플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
하나의 구체적인 예에서, 상기 도전층의 두께는 상기 실리콘 활물질의 D50 입경에 대해 80% 내지 120%의 크기로 형성될 수 있다.
상기 도전층의 두께가 두꺼울수록 음극 합제층의 도전성 네트워크가 유지될 가능성이 높은 장점이 있으나, 분리막의 전체적인 두께가 증가되기 때문에 전극 간의 거리가 멀어지는 결과, 이온 전도도가 낮아지고 전지셀의 출력 특성이 감소하는 문제가 생길 수 있다.
한편, 음극 합제층의 표면쪽에 전류 밀도가 집중되기 때문에, 주로 음극 합제층의 표면에서 깨짐 현상이 발생하는 점, 및 실리콘 활물질은 약 130% 내지 150% 정도 팽창되는 점을 고려할 때, 만충전시 실리콘 활물질이 팽창되서 돌출되는 경우 상기 도전층이 상기 실리콘 활물질을 감싸는 형태로 부가되는 것이 바람직하다.
또한, 상기 도전층의 두께가 실리콘 활물질의 D50 입경 보다 작은 크기로 형성되는 경우에는, 상기 실리콘 활물질이 최대로 팽창했을 때 상기 무기물층까지 커질 수 있는 바, 이와 같이 전도성이 없는 무기물층까지 확대된 실리콘 활물질 영역은 저항이 급격히 증가하게 된다.
따라서, 상기 도전층의 두께는 상기 실리콘 활물질의 D50 입경에 대해 80% 내지 120%의 범위에서 선택적으로 형성될 수 있다.
하나의 구체적인 예에서, 상기 분리막 기재 일면에 제1무기물층, 상기 분리막 기재의 타면에 제2무기물층이 형성되고, 상기 제1무기물층 및 상기 제2무기물층 가운데, 상기 음극과 대면하는 방향에 위치하는 무기물층에만 도전층이 형성될 수 있다.
예를 들어, 상기 제1무기물층 및 제2무기물층의 형성 방법으로서 딥코팅 방법을 사용할 수 있으며, 상기 도전층의 형성 방법으로서 다이 코팅 또는 슬롯(slot) 코팅 방법을 사용할 수 있다.
이와 같이, 분리막의 무기물층 가운데, 음극과 대면하는 방향에만 도전층이 형성되는 경우에는, 음극 합제의 깨짐에 따른 문제를 보완할 수 있는 동시에, 분리막의 두께 증가를 최소화할 수 있으므로, 상기 도전층이 상기 제1무기물층 및 상기 제2무기물층 각각에 형성되는 경우와 대비할 때, 에너지밀도가 낮아지는 것을 방지할 수 있다.
다만, 전지셀의 반복적인 충전과 방전 과정에서 양극 합제층도 팽창과 수축이 반복되면서 깨지거나 크랙이 생길 수 있는 바, 상기 도전층을 상기 제1무기물층 및 상기 제2물기물층 각각에 형성하는 경우에는 양극 및 음극의 도전성 네트워크가 파괴되더라도, 이를 보완할 수 있다.
하나의 구체적인 예에서, 상기 도전층은 다공성 구조로 이루어질 수 있다.
본원발명의 음극은 부피 변화가 큰 실리콘 활물질을 포함하는 바, 상기 도전층을 구비함으로써 팽창된 실리콘 활물질이 분리막의 무기물층까지 확대되는 것을 방지하고 있다. 이에 추가적으로 상기 도전층이 다공성 구조로 이루어지는 경우에는, 실리콘 활물질이 팽창되면 상기 도전층이 수축되면서 실리콘 활물질의 팽창에 따른 부피 증가를 완충활 수 있는 바, 상기 팽창된 실리콘 활물질에 의해 전체적인 전극조립체의 두께가 증가되는 것을 완화할 수 있다.
따라서, 전지셀의 충방전에 따라 발생하는 전극조립체의 두께 변화의 폭을 줄일 수 있다.
또한, 상기 도전층이 다공성 구조로 이루어지기 때문에 리튬 이온의 이온전도도가 저하되는 것을 방지할 수 있는 효과가 있다.
본원발명은, 또한, 상기 전극조립체가 각형 또는 원통형으로 이루어지진 금속 캔에 수용된 전지셀, 및 상기 전극조립체가 라미네이트 시트로 이루어진 파우치형 전지케이스에 수용된 전지셀을 포함한다.
또한, 본원발명은, 상기 전지셀을 단위셀로 포함하는 전지팩 및 상기 전지팩을 포함하는 디바이스를 포함한다.
상기 디바이스는, 예를 들어, 노트북 컴퓨터, 넷북, 태블릿 PC, 휴대폰, MP3, 웨어러블 전자기기, 파워 툴(power tool), 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV), 전기 자전거(E-bike), 전기 스쿠터(E-scooter), 전기 골프 카트(electric golf cart), 또는 전력저장용 시스템일 수 있지만, 이들만으로 한정되지 않음은 물론이다.
상기와 같은 전지팩 및 디바이스는 당업계에 공지되어 있으므로, 본 명세서에서는 그에 관한 구체적인 설명을 생략한다.
이하에서는, 본원발명의 실시예를 참조하여 설명하지만, 이는 본원발명의 더욱 용이한 이해를 위한 것으로, 본원발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실시예 1>
양극 제조
양극을 제조하기 위하여, 양극 활물질로서 리튬 니켈 코발트 망간 산화물 97.5 중량%, 도전재로서 카본블랙 1.0 중량%, 바인더로서 폴리비닐리덴 플루오라이드(PVdF) 1.5 중량%를 N-메틸-2-피롤리돈에 넣고 혼합하여 양극 슬러리를 제조하였다.
두께가 15 ㎛인 알루미늄 집전체를 준비하고, 상기 양극 슬러리의 로딩량이 600 ㎎/25㎠가 되도록 상기 알루미늄 집전체에 코팅하여 양극을 제조하였다. 제조된 양극의 전체 두께는 162 ㎛이다.
음극 제조
음극을 제조하기 위하여, 음극 활물질로서 D50 입경이 3 ㎛인 실리콘(Si) 80 중량%, 도전재로서 카본블랙 10 중량%, 바인더 10 중량%를 물에 넣고 혼합하여 음극 슬러리를 제조하였다.
두께가 8 ㎛인 구리 집전체를 준비하고, 상기 음극 슬러리의 로딩량이 100 ㎎/25㎠가 되도록 상기 구리 집전체에 코팅하여 음극을 제조하였다. 제조된 음극의 전체 두께는 58 ㎛이다.
분리막 제조
다공성 구조로 이루어지고 두께가 9 ㎛인 폴리올레핀계 분리막 기재를 준비하고, 상기 분리막 기재의 양면에 딥코팅 방식을 사용하여 무기물층을 코팅하였다.
상기 분리막 기재의 양면에 형성된 무기물층들의 두께의 합이 8.5 ㎛가 되도록 하였다.
카본블랙과 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(PVdF-HFP)을 9 : 1 중량%비율로 아세톤에 혼합하여 도전층용 용액을 제조하였다.
상기 도전층용 용액을 상기 분리막 기재의 양면에 형성된 무기물층들 중 어느 한측면에만 두께가 2.0 ㎛가 되도록 slot 코팅 방법으로 코팅하여 도전층이 일면에 형성된 분리막을 제조하였다.
따라서, 분리막의 전체 두께가 19.5 ㎛인 분리막을 제조하였다.
전지셀 제조
상기와 같이 제조된 양극과 음극 사이에, 도전층이 형성된 면이 음극과 대면하도록 분리막을 개재하여 전극조립체를 제조하고, 전해액을 주액하여 코인셀을 제조하였다.
<실시예 2>
상기 분리막의 일면에 형성된 도전층의 두께가 3.5 ㎛로서, 분리막의 전체 두께가 21.0 ㎛인 점을 제외하고 상기 실시예 1과 동일한 방법으로 도전층이 형성된 분리막을 이용하여 전지셀을 제조하였다.
<비교예 1>
두께가 9 ㎛인 폴리올레핀계 분리막 기재를 준비하고, 양면에 딥코팅 방식을 사용하여 무기물층을 코팅하였다.
상기 분리막 기재의 양면에 형성된 무기물층들의 두께의 합이 8.5 ㎛인 바, 분리막의 전체 두께가 17.5 ㎛인 분리막을 제조하였다.
<비교예 2>
두께가 9 ㎛인 폴리올레핀계 분리막 기재를 준비하고, 양면에 딥코팅 방식을 사용하여 무기물층을 코팅하였다.
상기 분리막 기재의 양면에 형성된 무기물층들의 두께의 합이 10.5 ㎛인 바, 분리막의 전체 두께가 19.5 ㎛인 분리막을 제조하였다.
<비교예 3>
두께가 9 ㎛인 폴리올레핀계 분리막 기재를 준비하고, 양면에 딥코팅 방식을 사용하여 무기물층을 코팅하였다.
상기 분리막 기재의 양면에 형성된 무기물층들의 두께의 합이 12 ㎛인 바, 분리막의 전체 두께가 21.0 ㎛인 분리막을 제조하였다.
<실험예>
상기 실시예 1, 2와 비교예 1 내지 3에서 제조된 전지셀들의 수명 평가를 진행하기 위하여, 각 전지셀들을 1.0C로 4.2V까지 충전하고 0.5C로 3.2V까지 방전하는 과정을 100 cycle 진행하였고, 그 결과를 하기 표 1에 나타내었다.
분리막 전체 두께 (㎛) 초기 용량 대비 잔존 용량 (%)
실시예 1 19.5 90.0
실시예 2 21.0 91.1
비교예 1 17..5 81.2
비교예 2 19.5 79.0
비교예 3 21.0 77.7
상기 표 1을 참조하면, 도전층을 포함하는 분리막을 사용한 경우에는 100 cycle 충방전 이후에 90 % 이상의 잔존 용량을 확인할 수 있다.
실시예 1과 실시예 2를 비교하면, D50이 3㎛인 실리콘 입자를 음극 활물질로 사용하는 경우, 실시예 2와 같이 D50 보다 두꺼운 3.5 ㎛의 두께로 도전층을 형성했을 때, 음극 활물질에 크랙이 발생하더라도 상기 도전층이 음극 활물질의 도전성 네트워크 기능을 보완함으로써 사이클 특성이 높게 유지되는 것을 알 수 있다.
따라서, 도전층의 두께는 실리콘 입자의 D50을 고려하여 적용되는 것이 바람직하다.
또한, 분리막 전체의 두께가 동일한 실시예 1과 비교예 2, 그리고 실시예 2와 비교예 3을 비교하면, 비교예 2 및 비교예 3은 무기물층의 두께를 두껍게 형성함으로써 분리막 전체의 두께가 실시예 1 및 실시예 2 각각과 동일하지만, 사이클 특성은 현저히 낮은 것을 측정되었다.
따라서, 분리막 기재에 무기물층 뿐 아니라 도전층이 더 형성된 분리막을 사용하는 경우에는, 상기 도전층이 전지의 사이클 특성을 높게 유지하는 데 현저한 영향을 주는 것을 확인할 수 있다.
또한, 분리막 기재의 두께는 동일하나, 무기물층의 두께가 다른 비교예 1 내지 3을 비교하면, 무기물층이 두꺼울수록 리튬이온의 이온 전도성에 대한 저항이 증가하기 때문에, 사이클 특성이 낮아지는 것을 확인할 수 있다.
본원발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본원발명의 범주내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본원발명에 따른 전극조립체는 분리막의 표면에 형성된 도전층이 음극 합제층의 도전성 네트워크로 기능할 수 있는 바, 음극 활물질의 과팽창 및 과수축에 의해 음극 합제층에 크랙이 발생하는 경우에도 전자 이동 경로가 단절되는 것을 막을 수 있다.
또한, 상기 도전층의 두께를 일정한 범위로 한정함으로써, 도전층의 부가로 인해 이온 전도도 및 출력 특성이 저하되는 것을 방지할 수 있다.
또한, 용량이 높은 실리콘 활물질을 사용하기 때문에, 탄소 음극 활물질을 사용하는 경우보다 동일 용량 대비 음극 합제층의 두께를 얇게 형성할 수 있는 바, 전지셀의 두께 감소로 에너지밀도를 향상시킬 수 있다.

Claims (10)

  1. 양극 집전체의 적어도 일면에 양극 합제층이 형성된 양극;
    음극 집전체의 적어도 일면에 음극 합제층이 형성된 음극; 및
    상기 양극 및 음극 사이에 개재되는 분리막;
    을 포함하고,
    상기 음극 합제층은 실리콘 활물질을 포함하며,
    상기 분리막의 적어도 일면에는 도전층이 형성되어 있고,
    상기 도전층의 두께는 상기 실리콘 활물질의 D50 입경의 50% 보다 큰 전극조립체.
  2. 제1항에 있어서, 상기 분리막은
    다공성 기재로 이루어진 분리막 기재;
    상기 분리막 기재의 적어도 일면에 형성된 무기물층; 및
    상기 무기물층의 외면에 형성된 도전층;
    을 포함하는 전극조립체.
  3. 제2항에 있어서, 상기 분리막 기재 일면에 제1무기물층, 상기 분리막 기재의 타면에 제2무기물층이 형성되고,
    상기 제1무기물층 및 상기 제2무기물층 중 상기 음극과 대면하는 방향에 위치하는 무기물층에만 도전층이 형성되는 전극조립체.
  4. 제1항에 있어서, 상기 도전층은 도전재 및 바인더를 포함하는 전극조립체.
  5. 제1항에 있어서, 상기 음극 합제층에 포함된 음극 활물질은 실리콘 활물질 100%로 구성되는 전극조립체.
  6. 제2항에 있어서, 상기 무기물층은 내부에 공극이 형성된 구조로 이루어진 전극조립체.
  7. 제2항에 있어서, 상기 무기물층에 형성된 공극의 크기가 상기 분리막 기재에 형성된 공극보다 작은 크기로 이루어진 전극조립체.
  8. 제1항에 있어서, 상기 도전층은 다공성 구조로 이루어진 전극조립체.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 전극조립체가 금속 캔 또는 라미네이트 시트로 이루어진 전지케이스에 수용된 전지셀.
  10. 제9항에 따른 전지셀을 단위셀로 포함하는 전지팩.
PCT/KR2021/010924 2020-09-11 2021-08-18 도전층이 형성된 분리막을 포함하는 전극조립체 및 이를 포함하는 전지셀 WO2022055142A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/021,880 US20230361428A1 (en) 2020-09-11 2021-08-18 Electrode assembly including separator having conductive layer formed thereon and battery cell including the same
CN202180059616.4A CN116134674A (zh) 2020-09-11 2021-08-18 包括具有形成在其上的导电层的隔板的电极组件和包括该电极组件的电池电芯
JP2022579103A JP2023531942A (ja) 2020-09-11 2021-08-18 導電層が形成された分離膜を含む電極組立体及びこれを含む電池セル
EP21867008.1A EP4170775A4 (en) 2020-09-11 2021-08-18 ELECTRODE ASSEMBLY COMPRISING A SEPARATOR HAVING A CONDUCTIVE LAYER FORMED THEREON, AND BATTERY CELL COMPRISING SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0116731 2020-09-11
KR1020200116731A KR102630852B1 (ko) 2020-09-11 2020-09-11 도전층이 형성된 분리막을 포함하는 전극조립체 및 이를 포함하는 전지셀

Publications (1)

Publication Number Publication Date
WO2022055142A1 true WO2022055142A1 (ko) 2022-03-17

Family

ID=80630352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010924 WO2022055142A1 (ko) 2020-09-11 2021-08-18 도전층이 형성된 분리막을 포함하는 전극조립체 및 이를 포함하는 전지셀

Country Status (6)

Country Link
US (1) US20230361428A1 (ko)
EP (1) EP4170775A4 (ko)
JP (1) JP2023531942A (ko)
KR (1) KR102630852B1 (ko)
CN (1) CN116134674A (ko)
WO (1) WO2022055142A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997625A (ja) * 1995-09-29 1997-04-08 Seiko Instr Inc 非水電解質二次電池およびその製造方法
KR19990010035A (ko) 1997-07-14 1999-02-05 성재갑 전도성 층이 도포된 전지 분리막을 이용한 리튬 이차전지
JP2006196247A (ja) * 2005-01-12 2006-07-27 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびリチウム二次電池
KR20120062713A (ko) 2009-08-19 2012-06-14 미쓰비시 쥬시 가부시끼가이샤 비수계 전해액 2 차 전지용 세퍼레이터 및 비수계 전해액 2 차 전지
KR20130123568A (ko) * 2012-05-03 2013-11-13 주식회사 엘지화학 전기화학소자용 분리막, 이의 제조방법 및 이를 포함하는 전기화학소자
KR20180034120A (ko) * 2016-09-27 2018-04-04 삼성전자주식회사 금속공기전지용 양극 및 이를 포함하는 금속공기전지
KR20190120800A (ko) * 2017-03-26 2019-10-24 인테셀스, 엘엘씨 대기압 플라즈마 증착법에 의한 애노드 구성요소를 제조하는 방법, 애노드 구성요소, 및 구성요소를 함유하는 리튬 이온 전지 및 배터리
KR20200116731A (ko) 2019-04-02 2020-10-13 주식회사 이볼케이노 컨셉 이미지를 이용한 자발적 단어 습득 시스템

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165624A1 (ja) * 2011-06-03 2012-12-06 富士シリシア化学株式会社 セパレータ、電気化学素子、及びセパレータの製造方法
KR101745631B1 (ko) * 2012-12-07 2017-06-09 주식회사 엘지화학 평균입경이 다른 무기물 입자의 이중 다공성 코팅층을 포함하는 이차전지용 분리막, 이를 포함하는 이차전지, 및 상기 분리막의 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997625A (ja) * 1995-09-29 1997-04-08 Seiko Instr Inc 非水電解質二次電池およびその製造方法
KR19990010035A (ko) 1997-07-14 1999-02-05 성재갑 전도성 층이 도포된 전지 분리막을 이용한 리튬 이차전지
JP2006196247A (ja) * 2005-01-12 2006-07-27 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびリチウム二次電池
KR20120062713A (ko) 2009-08-19 2012-06-14 미쓰비시 쥬시 가부시끼가이샤 비수계 전해액 2 차 전지용 세퍼레이터 및 비수계 전해액 2 차 전지
KR20130123568A (ko) * 2012-05-03 2013-11-13 주식회사 엘지화학 전기화학소자용 분리막, 이의 제조방법 및 이를 포함하는 전기화학소자
KR20180034120A (ko) * 2016-09-27 2018-04-04 삼성전자주식회사 금속공기전지용 양극 및 이를 포함하는 금속공기전지
KR20190120800A (ko) * 2017-03-26 2019-10-24 인테셀스, 엘엘씨 대기압 플라즈마 증착법에 의한 애노드 구성요소를 제조하는 방법, 애노드 구성요소, 및 구성요소를 함유하는 리튬 이온 전지 및 배터리
KR20200116731A (ko) 2019-04-02 2020-10-13 주식회사 이볼케이노 컨셉 이미지를 이용한 자발적 단어 습득 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4170775A4

Also Published As

Publication number Publication date
KR102630852B1 (ko) 2024-01-30
EP4170775A4 (en) 2024-10-09
CN116134674A (zh) 2023-05-16
KR20220034409A (ko) 2022-03-18
EP4170775A1 (en) 2023-04-26
JP2023531942A (ja) 2023-07-26
US20230361428A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
WO2017039385A1 (ko) 점착력이 상이한 점착 코팅부들을 포함하는 분리막 및 이를 포함하는 전극조립체
WO2015065118A1 (ko) 전극조립체 및 그를 포함하는 리튬 이차전지
WO2014092471A1 (ko) 이차전지용 전극, 그를 포함하는 이차전지 및 케이블형 이차전지
WO2019009564A1 (ko) 분리막, 이를 채용한 리튬전지 및 분리막의 제조 방법
WO2012093864A2 (ko) 비대칭 코팅된 분리막을 포함하는 전극조립체 및 상기 전극조립체를 포함하는 전기화학소자
WO2019203571A1 (ko) 비대칭 구조의 이차전지용 난연 분리막
WO2020159296A1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2022211447A1 (ko) 2종의 고체전해질층을 포함하는 전고체전지
WO2022098151A1 (ko) 코팅층과 이온 전달층을 포함하는 전고체전지용 음극 및 이를 포함하는 리튬 이차전지.
WO2020091400A1 (ko) 무기물 코팅층이 형성된 가교 폴리올레핀 분리막 및 이를 포함한 고출력 이차 전지
WO2021172774A1 (ko) 탭 상에 형성된 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2019182361A1 (ko) 음극의 제조방법 및 이로부터 제조된 음극
WO2021221397A1 (ko) 리튬 친화물질이 코팅된 리튬 이차전지용 음극 및 이의 제조방법
WO2021225316A1 (ko) 수분과의 반응성이 완화된 고-니켈 전극 시트 및 이의 제조방법
WO2021133127A1 (ko) 수계 양극용 슬러리, 양극 조성물 및 이 양극 조성물을 포함하는 리튬 이온 이차전지, 그리고 이들의 제조 방법
WO2021034060A1 (ko) 내열층을 포함하는 전기화학소자용 분리막 및 이를 포함하는 이차 전지
WO2020050559A1 (ko) 분리막 기재가 없는 이차전지용 분리막
WO2020159083A1 (ko) 절연층이 형성되어 있는 전극을 포함하는 스택형 전극조립체 및 이를 포함하는 리튬 이차전지
WO2019088698A2 (ko) 분리막 기재가 없는 분리막 및 이를 포함하는 전기화학소자
WO2022108202A1 (ko) 전극의 압연 장치 및 전극의 압연 방법
WO2019022474A1 (ko) 불산을 저감하는 물질을 포함하는 전지 분리막
WO2022098049A1 (ko) 음극보다 면적이 넓은 양극을 포함하는 전고체전지 및 이의 제조방법
WO2021167353A1 (ko) 음극의 전리튬 방법, 전리튬화 음극, 및 이를 포함하는 리튬 이차전지
WO2022055142A1 (ko) 도전층이 형성된 분리막을 포함하는 전극조립체 및 이를 포함하는 전지셀
WO2021054653A1 (ko) 두께 방향에 따라 공극률 차이가 있는 분리막 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21867008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579103

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021867008

Country of ref document: EP

Effective date: 20230119

WWE Wipo information: entry into national phase

Ref document number: 202317008060

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE