WO2022050356A1 - 金属酸化物、酸素吸蔵材、酸素吸脱着装置、酸素吸脱着方法、酸素濃縮装置、及び酸素濃縮方法 - Google Patents

金属酸化物、酸素吸蔵材、酸素吸脱着装置、酸素吸脱着方法、酸素濃縮装置、及び酸素濃縮方法 Download PDF

Info

Publication number
WO2022050356A1
WO2022050356A1 PCT/JP2021/032311 JP2021032311W WO2022050356A1 WO 2022050356 A1 WO2022050356 A1 WO 2022050356A1 JP 2021032311 W JP2021032311 W JP 2021032311W WO 2022050356 A1 WO2022050356 A1 WO 2022050356A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
metal oxide
desorption
temperature
phase
Prior art date
Application number
PCT/JP2021/032311
Other languages
English (en)
French (fr)
Inventor
怜 西田
圭二 山原
輝樹 本橋
美和 齋藤
紗也佳 田村
Original Assignee
三菱ケミカル株式会社
学校法人神奈川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社, 学校法人神奈川大学 filed Critical 三菱ケミカル株式会社
Priority to JP2022546972A priority Critical patent/JPWO2022050356A1/ja
Publication of WO2022050356A1 publication Critical patent/WO2022050356A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron

Definitions

  • the present invention relates to a metal oxide, an oxygen storage material, an oxygen absorption / desorption device, an oxygen absorption / desorption method, an oxygen concentrator, and an oxygen concentrator method.
  • the present application claims priority based on Japanese Patent Application No. 2020-147524 filed in Japan on September 2, 2020, the contents of which are incorporated herein by reference.
  • Japanese Unexamined Patent Publication No. 2014-012619 Japanese Unexamined Patent Publication No. 2016-193815 Japanese Unexamined Patent Publication No. 2018-008871 Japanese Unexamined Patent Publication No. 2019-043833 Japanese Unexamined Patent Publication No. 2013-255911 Japanese Unexamined Patent Publication No. 2014-012619
  • Patent Documents 1 to 4 contain expensive metal elements as constituent elements, the cost of raw materials becomes a barrier to practical use.
  • the metal oxides described in Patent Documents 5 and 6 only inexpensive metal elements can be used as metal elements, but since the active temperature tends to be high, the heat resistance of devices such as oxygen gas concentrators is high. Considering the above, there was a problem in practical use. Further, even if the problem of heat resistance of the device can be solved, the applicable process is limited when the material is heated by using the waste heat.
  • An object of the present invention is to provide a metal oxide capable of adsorbing and desorbing oxygen in a relatively low temperature region without containing an expensive metal element, and having an excellent oxygen adsorption / desorption rate and maximum oxygen adsorption amount. That is.
  • the present inventors have made a phase transition from an oxygen-releasing phase to an oxygen-excessive phase by oxygen adsorption of an oxygen-deficient perovskite-type metal oxide containing Fe as a metal element, and the oxygen-excessive phase by oxygen desorption. Since it has a property of undergoing a phase transition to the oxygen-releasing phase and can solve the above-mentioned problems, the present invention has been achieved. That is, the gist of the present invention is as follows.
  • M2 represents one or more elements selected from the group consisting of alkali metals, alkaline earth metals other than Ba, rare earth metals other than Y, and transition metals other than Fe; x2, y2, z2, and ⁇ 2a satisfy the following equation.
  • RE represents one or more rare earth elements selected from the group consisting of Nd, Sm and Eu
  • M3 represents one or more elements selected from the group consisting of alkali metals, alkaline earth metals other than Ca, rare earth metals other than RE, and transition metals other than Fe
  • x3, y3, z3, and ⁇ 3a satisfy the following equation.
  • a method for absorbing and desorbing oxygen which comprises an oxygen desorption step of desorbing oxygen from the metal oxide by heating the metal oxide having oxygen adsorbed in the adsorption step at a temperature equal to or higher than the temperature at which oxygen desorption occurs and 700 ° C. or lower.
  • Oxygen absorption / desorption including an oxygen desorption step of desorbing oxygen from the metal oxide by placing the metal oxide having oxygen adsorbed in the oxygen adsorption step in an atmosphere having a lower oxygen partial pressure than the oxygen-containing gas.
  • An oxygen concentration method comprising an oxygen recovery step of recovering oxygen desorbed from the metal oxide by the oxygen absorption / desorption method according to [7] or [8].
  • a metal oxide capable of adsorbing and desorbing oxygen in a relatively low temperature region without containing an expensive metal element, and having an excellent oxygen adsorption / desorption rate and maximum oxygen adsorption amount. be able to.
  • This metal oxide can be used as an oxygen storage material, and can also be used in an oxygen absorption / desorption device and an oxygen concentrator.
  • FIG. 1 It is a figure which shows the oxygen absorption / desorption behavior by the atmospheric temperature swing under the air flow of the metal oxide obtained in Example 1.
  • FIG. It is a figure which shows the oxygen absorption / desorption behavior by the atmospheric temperature swing under the oxygen flow of the metal oxide obtained in Example 1.
  • FIG. It is a figure which shows the oxygen absorption / desorption behavior by the oxygen partial pressure swing at 290 degreeC of the metal oxide obtained in Example 1.
  • FIG. 1 It is a figure which shows the oxygen absorption / desorption behavior by the oxygen partial pressure swing at 320 degreeC of the metal oxide obtained in Example 1.
  • FIG. It is a figure which shows the oxygen absorption / desorption behavior by the oxygen partial pressure swing at 330 degreeC of the metal oxide obtained in Example 1.
  • FIG. It is a figure which shows the oxygen absorption / desorption behavior by the oxygen partial pressure swing at 340 ° C. of the metal oxide obtained in Example 1.
  • FIG. It is a figure which shows the oxygen absorption / desorption behavior by the oxygen partial pressure swing at 350 degreeC of the metal oxide obtained in Example 1.
  • FIG. It is a figure which shows the oxygen absorption / desorption behavior by the oxygen partial pressure swing at 360 degreeC of the metal oxide obtained in Example 1.
  • FIG. 1 It is a figure which shows the oxygen absorption / desorption behavior by the oxygen partial pressure swing at 370 ° C. of the metal oxide obtained in Example 1.
  • FIG. 2 It is a figure which shows the oxygen absorption / desorption behavior by the oxygen partial pressure swing at 380 ° C. of the metal oxide obtained in Example 1.
  • FIG. It is a figure which shows the result of the powder X-ray diffraction measurement of the metal oxide obtained in Example 1.
  • FIG. It is a figure which shows the oxygen absorption / desorption behavior by the oxygen partial pressure swing at 250 degreeC of the metal oxide obtained in Example 2.
  • FIG. It is a figure which shows the result of the powder X-ray diffraction measurement of the metal oxide obtained in Example 2.
  • FIG. 1 It is a figure which shows the oxygen absorption / desorption behavior by the oxygen partial pressure swing at 370 ° C. of the metal oxide obtained in Example 1.
  • FIG. It is a figure which shows the oxygen absorption / desorption behavior by the oxygen partial pressure swing
  • This phase transition is utilized because the ordering of both cation and anion sites in both the oxygen-releasing phase and the oxygen-rich phase exhibits a clear reversible phase transition induced by temperature and / or atmosphere. It can be applied to oxygen absorption / desorption, oxygen concentration, etc.
  • the metal oxide according to the first embodiment of the present invention is an oxygen-deficient perovskite-type metal oxide represented by the following formula (I).
  • M1 represents one or more elements selected from the group consisting of alkali metals, alkaline earth metals other than Ba and Ca, rare earth metals, and transition metals other than Fe;
  • x1, y1, z1, and ⁇ 1a satisfy the following equation. -2.0 ⁇ x1 ⁇ 2.0 0 ⁇ y1 ⁇ 0.5 -1.5 ⁇ z1 ⁇ 1.5 -1.5 ⁇ ⁇ 1a ⁇ 4.5 x1 + y1 + z1 ⁇ 0
  • ⁇ 1a indicates an oxygen indefinite ratio amount, and is not particularly limited as long as it satisfies the range of ⁇ 1.5 ⁇ ⁇ 1a ⁇ 4.5, and continuously changes according to the external environment such as atmosphere and temperature.
  • M1 is a site substitution element selected from Fe sites, Ba sites, and Ca sites, and can be appropriately contained within a range that does not impair the effects of the present invention.
  • the metal oxide of the formula (I) may contain other elements as long as the effect of the present invention is not impaired, and for example, M1 may contain other elements such as an unavoidable impurity element.
  • the metal element selected from Ba, Ca and Fe may be substituted with other sites.
  • x1 is preferably ⁇ 1.0 ⁇ x1 ⁇ 1.5, more preferably ⁇ 0.5 ⁇ x1 ⁇ 0.8, still more preferably 0 ⁇ x1 ⁇ 0.8, and particularly. It is preferably 0 ⁇ x 1 ⁇ 0.4.
  • y1 is preferably 0 ⁇ y1 ⁇ 0.4, more preferably 0 ⁇ y1 ⁇ 0.2, and further preferably 0 ⁇ y1 ⁇ 0.1.
  • z1 is preferably ⁇ 1.0 ⁇ z1 ⁇ 1.0, more preferably ⁇ 0.5 ⁇ z1 ⁇ 0.6, still more preferably 0 ⁇ z1 ⁇ 0.6, and particularly.
  • ⁇ 1a is preferably 0 ⁇ ⁇ 1a ⁇ 1.5 from the viewpoint of suppressing the formation of the impurity phase.
  • Examples of the metal oxide according to the present embodiment include Ba 4 CaFe 3 O 9.5 + ⁇ 1 .
  • the sites occupied by Fe, Ba, and Ca may be substituted with other elements as long as the effects of the present invention are not impaired, particularly as long as the order of cation sites and anion sites can be maintained.
  • This Ba 4 CaFe 3 O 9.5 + ⁇ 1 is an oxygen-deficient perovskite-type metal oxide.
  • ⁇ 1 indicates an oxygen indefinite ratio amount, and is not particularly limited as long as it satisfies the range of 0 ⁇ ⁇ 1 ⁇ 1.5, and continuously changes according to the external environment such as atmosphere and temperature.
  • the metal oxide according to the second embodiment of the present invention is an oxygen-deficient perovskite-type metal oxide represented by the following formula (II).
  • M2 represents one or more elements selected from the group consisting of alkali metals, alkaline earth metals other than Ba, rare earth metals other than Y, and transition metals other than Fe;
  • x2, y2, z2, and ⁇ 2a satisfy the following equation. -1.0 ⁇ x 2 ⁇ 1.0 -0.5 ⁇ y2 ⁇ 0.5 -0.5 ⁇ z2 ⁇ 0.5 -0.5 ⁇ ⁇ 2a ⁇ 1.5 x2 + y2 + z2 ⁇ 0
  • ⁇ 2a indicates an oxygen indefinite ratio amount, and is not particularly limited as long as it satisfies the range of ⁇ 0.5 ⁇ ⁇ 2a ⁇ 1.5, and continuously changes according to the external environment such as atmosphere and temperature.
  • M2 is a site substitution element selected from Fe sites, Ba sites, and Y sites, and can be appropriately contained within a range that does not impair the effects of the present invention.
  • the metal oxide of the formula (II) may contain other elements as long as the effect of the present invention is not impaired, and for example, M2 may contain other elements such as an unavoidable impurity element.
  • the metal element selected from Ba, Y and Fe may be substituted with other sites.
  • x2 is preferably ⁇ 0.6 ⁇ x2 ⁇ 0.8, more preferably ⁇ 0.4 ⁇ x2 ⁇ 0.4, still more preferably 0 ⁇ x2 ⁇ 0.4, and particularly. It is preferably 0 ⁇ x 2 ⁇ 0.2.
  • y2 is preferably ⁇ 0.4 ⁇ y2 ⁇ 0.4, more preferably ⁇ 0.2 ⁇ y2 ⁇ 0.2, still more preferably 0 ⁇ y2 ⁇ 0.2, and particularly.
  • z2 is preferably ⁇ 0.4 ⁇ z2 ⁇ 0.4, more preferably ⁇ 0.2 ⁇ z2 ⁇ 0.2, still more preferably 0 ⁇ z2 ⁇ 0.2, and particularly.
  • ⁇ 2a is preferably 0 ⁇ ⁇ 2a ⁇ 0.5 from the viewpoint of suppressing the formation of the impurity phase.
  • Examples of the metal oxide according to the present embodiment include Ba 2 YFeO 5 + ⁇ 2 .
  • the sites occupied by Fe, Ba, and Y may be substituted with other elements as long as the effects of the present invention are not impaired, and in particular, the order of cation sites and anion sites can be maintained.
  • This Ba 2 YFeO 5 + ⁇ 2 is an oxygen-deficient perovskite-type metal oxide.
  • ⁇ 2 indicates an oxygen indefinite ratio amount, and is not particularly limited as long as it satisfies the range of 0 ⁇ ⁇ 2 ⁇ 0.5, and continuously changes according to the external environment such as atmosphere and temperature.
  • the metal oxide according to the third embodiment of the present invention is an oxygen-deficient perovskite-type metal oxide represented by the following formula (III).
  • RE represents one or more rare earth elements selected from the group consisting of Nd, Sm and Eu
  • M3 represents one or more elements selected from the group consisting of alkali metals, alkaline earth metals other than Ca, rare earth metals other than RE, and transition metals other than Fe
  • x3, y3, z3, and ⁇ 3a satisfy the following equation. -0.5 ⁇ x3 ⁇ 0.5 -1.0 ⁇ y3 ⁇ 1.0 -1.5 ⁇ z3 ⁇ 1.5 -1.5 ⁇ ⁇ 3a ⁇ 2.8 x3 + y3 + z3 ⁇ 0
  • ⁇ 3a indicates an oxygen indefinite ratio amount, and is not particularly limited as long as it satisfies the range of ⁇ 1.5 ⁇ ⁇ 3a ⁇ 2.5, and continuously changes according to the external environment such as atmosphere and temperature.
  • M3 is a site substitution element selected from Fe sites, RE sites, and Ca sites, and can be appropriately contained within a range that does not impair the effects of the present invention.
  • the metal oxide of the formula (III) may contain other elements as long as the effect of the present invention is not impaired, and for example, M3 may contain other elements such as an unavoidable impurity element.
  • the metal element selected from RE, Ca and Fe may be substituted with other sites.
  • RE is preferably Sm from the viewpoint of element price or oxygen absorption / release performance.
  • x3 is preferably ⁇ 0.4 ⁇ x3 ⁇ 0.4, more preferably ⁇ 0.2 ⁇ x3 ⁇ 0.2, still more preferably 0 ⁇ x3 ⁇ 0.2, and particularly.
  • y3 is preferably ⁇ 0.6 ⁇ y2 ⁇ 0.8, more preferably ⁇ 0.4 ⁇ y2 ⁇ 0.4, still more preferably 0 ⁇ y3 ⁇ 0.4, and particularly. It is preferably 0 ⁇ y3 ⁇ 0.2.
  • z3 is preferably ⁇ 1.0 ⁇ z3 ⁇ 1.0, more preferably ⁇ 0.5 ⁇ z3 ⁇ 0.6, still more preferably 0 ⁇ z3 ⁇ 0.6, and particularly.
  • ⁇ 3a is preferably ⁇ 1.0 ⁇ ⁇ 3a ⁇ 2.5, more preferably ⁇ 0.5 ⁇ ⁇ 3a ⁇ 2.0, and more preferably 0 ⁇ ⁇ 3a ⁇ 1.5 from the viewpoint of suppressing the formation of impurity phases. be.
  • Examples of the metal oxide according to the present embodiment include RECa 2 Fe 3 O 8 + ⁇ 3 .
  • the sites occupied by Fe, Ca, and RE may be substituted with other elements as long as the effects of the present invention are not impaired, particularly as long as the order of cation sites and anion sites can be maintained.
  • RE represents one or more rare earth elements selected from the group consisting of Nd, Sm and Eu, and is preferably Sm from the viewpoint of element price or oxygen absorption / release performance.
  • ⁇ 3 indicates an oxygen indefinite ratio amount, and is not particularly limited as long as it satisfies the range of 0 ⁇ ⁇ 3 ⁇ 1.5, and continuously changes according to the external environment such as atmosphere and temperature.
  • the metal oxide according to the first to third embodiments described above may contain a dopant as long as the effect of the present invention is not impaired, particularly as long as the order of the cationic site and the anionic site can be maintained. It may not be contained.
  • the dopant include transition metal elements from the viewpoint of improving the oxygen adsorption / desorption rate and controlling the oxygen adsorption / desorption temperature.
  • the dopant one or more elements selected from the group consisting of Ru, Rh, Pd, Ag, Re, Ir, Pt and Au are preferable.
  • the oxygen adsorption / desorption rate and the oxygen adsorption / desorption temperature can also be controlled by adjusting the content of the dopant.
  • the content of the dopant is preferably 5 mol% or less, more preferably 2.5 mol% or less, based on the total amount of cations containing the dopant, from the viewpoint of maintaining the order of the cation site and the anion site.
  • the metal oxide according to the fourth embodiment of the present invention is a metal oxide containing Mn and in which both cation sites and anion sites are ordered in both an oxygen-releasing phase and an oxygen-rich phase. Oxide adsorption causes a phase transition from an oxygen-releasing phase to an oxygen-rich phase, and oxygen desorption (release) causes a phase transition from the oxygen-rich phase to the oxygen-releasing phase.
  • This metal oxide preferably has an average valence of Mn larger than divalent in the state of the excess oxygen phase.
  • the first to third embodiments of the present invention are made.
  • the morphology so is the effect on the apparent reversible phase transition induced by temperature and / or atmosphere.
  • the behavior of the Mn-containing metal oxide in the phase transition from the oxygen-releasing phase to the oxygen-rich phase is the same as that of the metal oxide according to the first to third embodiments of the present invention.
  • composition of the Mn-containing metal oxide according to the fourth embodiment of the present invention can be represented by, for example, the following formula (IV).
  • M4 One or more elements selected from the group consisting of alkali metals, alkaline earth metals other than Ba, rare earth metals, and transition metals other than Mn 0 ⁇ x4 ⁇ 1.0 0 ⁇ y4 ⁇ 0.5 0 ⁇ z4 ⁇ 1.0 -1.5 ⁇ ⁇ 4a ⁇ 1.0 Represents.
  • ⁇ 4a indicates an oxygen indefinite ratio amount, and is not particularly limited as long as it satisfies the range of ⁇ 1.5 ⁇ ⁇ 4a ⁇ 1.0, and continuously changes according to the external environment such as atmosphere and temperature.
  • M4 is a site substitution element selected from Ba sites, Mn sites, and Ge sites, and can be appropriately contained within a range that does not impair the effects of the present invention.
  • the metal oxide of the formula (IV) may contain other elements as long as the oxygen adsorption / desorption performance is not impaired, and for example, M4 may contain an unavoidable impurity element.
  • the metal element selected from Ba, Mn and Ge may be substituted with another site.
  • x4 is preferably 0 ⁇ x4 ⁇ 0.4, more preferably 0 ⁇ x4 ⁇ 0.2.
  • y4 is preferably 0 ⁇ y4 ⁇ 0.2, more preferably 0 ⁇ y4 ⁇ 0.1.
  • z4 is preferably 0 ⁇ z4 ⁇ 0.4, more preferably 0 ⁇ z4 ⁇ 0.2, from the viewpoint of suppressing the formation of the impurity phase.
  • ⁇ 4a is preferably ⁇ 0.3 ⁇ ⁇ 4a ⁇ 0.2 from the viewpoint of suppressing the formation of the impurity phase.
  • Examples of the metal oxide represented by the formula (IV) include Ba 2 MnGe 2 O 7 + ⁇ 4 .
  • the sites occupied by Ba, Mn, and Ge may be substituted with other elements within a range that does not impair the oxygen adsorption / desorption performance, particularly within a range that can maintain the order of cation sites and anion sites.
  • ⁇ 4 indicates an oxygen non-stoichiometric amount, and is not particularly limited as long as it satisfies the range of 0 ⁇ ⁇ 4 ⁇ 0.5, and is continuous according to the external environment such as atmosphere and temperature. Changes to.
  • the metal oxide according to the fifth embodiment of the present invention is a metal that undergoes a phase transition from an oxygen-releasing phase to an oxygen-rich phase due to oxygen adsorption and a phase transition from the oxygen-rich phase to the oxygen-releasing phase due to oxygen desorption (release). It is an oxide in which both cation sites and anion sites are ordered in both the oxygen-releasing phase and the oxygen-rich phase, and is selected from transition metal elements, alkali metal elements and alkaline earth metal elements. Contains elements.
  • the metal oxide according to the fifth embodiment of the present invention contains a transition metal element such as Fe, and an element selected from an alkali metal element and an alkaline earth metal element having a large ion radius with respect to the transition metal. ..
  • a transition metal element such as Fe
  • an element selected from an alkali metal element and an alkaline earth metal element having a large ion radius with respect to the transition metal ..
  • the reason why oxygen absorption / desorption induced by temperature change and oxygen partial pressure change in the atmosphere is possible is that the alkali metal element and / or the alkaline earth metal element having a large ionic radius form the skeleton of the crystal. It is presumed that this is because the diffusion of oxygen ions becomes easy.
  • Examples of the metal oxide according to the fifth embodiment of the present invention include the above-mentioned Ba 4 CaFe 3 O 9.5 + ⁇ 1 , Ba 2 YFeO 5 + ⁇ 2 , SmCa 2 Fe 3 O 8 + ⁇ 3 and the like.
  • the average primary particle size is measured by observation using a scanning electron microscope (SEM). Specifically, an SEM photograph having a magnification at which the particles can be confirmed, for example, a magnification of 5000 to 100,000 times, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to a horizontal straight line, is set for any 50 primary particles. It is calculated by calculating and taking the average value.
  • SEM scanning electron microscope
  • the specific surface area of the metal oxide according to the first to fifth embodiments of the present invention is not particularly limited. From the viewpoint of oxygen absorption / desorption rate, it is preferably 0.1 m 2 / g or more, more preferably 1 m 2 / g or more, and particularly preferably 10 m 2 / g or more. On the other hand, the higher the specific surface area, the higher the oxygen absorption / desorption rate. Therefore, it is not necessary to set an upper limit of the specific surface area, but it is usually 200 m 2 / g or less.
  • the specific surface area can be measured by the BET method, for example, using Tristar II 3000 manufactured by Micromeritics. Specifically, the metal oxide can be dried under reduced pressure at 150 ° C. for 1 hour, and then measured by the BET multipoint method (5 points in the range of relative pressure of 0.05 to 0.30) by adsorption of nitrogen gas.
  • the metal oxide according to the first to fifth embodiments of the present invention may be granulated in consideration of its handleability, strength at the time of filling into an apparatus, and ease of gas flow. Alternatively, it may be molded into an appropriate shape and used.
  • composition analysis of metal oxides> The composition of the metal oxide can be analyzed by measuring the content of each element in the metal oxide according to the first to fifth embodiments of the present invention by the following method.
  • the measuring method for determining the composition of the metal element in the metal oxide according to the first to fifth embodiments of the present invention is not particularly limited, and for example, inductively coupled plasma (ICP) emission spectroscopic analysis ( It can be measured by ICP analysis).
  • ICP inductively coupled plasma
  • the plasma emission spectroscopic analyzer for example, ICP-AES "JY46P type" manufactured by JOBIN YVON can be used.
  • the measuring method for determining the amount of oxygen element in the metal oxide according to the first to fifth embodiments of the present invention is not particularly limited, but can be measured by, for example, an iodine titration method.
  • SEM observation and SEM-EDX> As described above, by using SEM, the average particle size of the metal oxide according to the first to fifth embodiments of the present invention can be evaluated.
  • the distribution state of the dopant in the metal oxide is evaluated by using SEM-EDX. Can be done.
  • the measurement conditions of SEM-EDX are not particularly limited, but for example, it can be measured by using EMAX X-act (manufactured by HORIBA) as an apparatus and mapping the contained elements at a pressurized voltage of 15 kV.
  • TG Thermogravimetric analysis
  • the measurement conditions of TG are not particularly limited, but for example, the oxygen absorption / desorption behavior due to the temperature swing uses Thermo Plus 8120 (manufactured by Rigaku) as a TG device under an air flow (oxygen partial pressure 20.9 kPa, flow rate 400 mL / min). ), The temperature is raised from room temperature (25 ° C.) to 800 ° C. at a temperature rising rate of 5 ° C./min, then the temperature is lowered from 800 ° C. to room temperature at a temperature lowering rate of 5 ° C./min, and the weight change during that period is measured. be able to.
  • the oxygen suction / desorption behavior by the oxygen partial pressure swing uses Thermo Plus 8120 (manufactured by Rigaku) as a TG device and reaches a specific temperature under a nitrogen stream (oxygen partial pressure 0.002 kPa or less, flow rate 400 mL / min).
  • the temperature is raised, the flowing gas is switched to air (oxygen partial pressure 20.9 kPa, flow rate 400 mL / min), and then the flowing gas is switched to nitrogen (oxygen partial pressure 0.002 kPa or less, flow rate 400 mL / min), during which time. It can be observed by measuring the change in the weight of.
  • the average Fe valence of the metal oxide can be calculated from the amount of change in weight during oxygen occlusion by TG measurement. From the amount of weight increase due to oxygen adsorption at the time of TG measurement, the molar amount of oxygen atoms adsorbed in the process of phase transition from the oxygen-releasing phase to the oxygen-excessive phase is obtained. It is assumed that a valence transition (increased valence) of Fe occurs in response to this increase in oxygen atoms (anions) so as to maintain electrical neutrality, and the average Fe valence in the oxygen excess phase is calculated.
  • the average Fe valence of the metal oxide can also be obtained by measuring the amount of oxygen contained in the metal oxide by cerium titration.
  • titrator for example, an automatic potentiometric titrator (Automatic Potentiometric Titrator, AT-710, manufactured by Kyoto Denshi Kogyo Co., Ltd.) can be used. More specifically, iron (II) chloride tetrahydrate and 3 mol / L hydrochloric acid are added to the metal oxide, and the mixture is heated and stirred for 5 minutes or more to dissolve the metal oxide. By this operation, the tetravalent iron ion that can be contained in the sample reacts with the divalent iron ion of iron chloride and is reduced to the trivalent iron ion.
  • Divalent iron ions derived from metal oxides or excess iron (II) chloride tetrahydrate are oxidized with an aqueous solution of cerium (IV) sulfate to titrate the amount of cerium ions required for oxidation of iron ions. Then, the average valence of iron is calculated from this result.
  • the aqueous solution of cerium (IV) sulfate is prepared by dissolving cerium (IV) sulfate tetrahydrate in pure water, and ammonium iron (II) sulfate hexahydrate can be used for standardization.
  • the average valence of Mn of the metal oxide can be measured by the iodine titration method.
  • a potentiometric titrator Automatic Potentiometric Titrator, AT-710, manufactured by Kyoto Denshi Kogyo Co., Ltd.
  • AT-710 Automatic Potentiometric Titrator, AT-710, manufactured by Kyoto Denshi Kogyo Co., Ltd.
  • Method for producing metal oxide according to the first to fifth embodiments of the present invention is not particularly limited and can be produced according to a known method for producing a metal oxide.
  • a known method for producing a metal oxide for example, the method described in JP-A-2011-121829 can be mentioned.
  • the aqueous solution B is added to the aqueous solution A under stirring, and the obtained mixed solution is heated (primary firing) to obtain a metal citric acid complex as a precursor.
  • the obtained precursor is heated (secondary firing) to obtain a powder obtained by burning an organic substance.
  • the firing temperature and the firing time are not particularly limited, but from the viewpoint of reducing the impurity phase, the firing temperature and the firing temperature at which the target phase is generated as the main phase or a single phase. It is preferably the firing time. Since the target phase is a main phase or a single phase, it is considered that the cation site and the anion site of the metal oxide are easily ordered in both the oxygen-releasing phase and the oxygen-rich phase. This is because the maximum amount of oxygen adsorbed per unit weight increases. Whether or not the target phase is the main phase or the single phase is determined by XRD measurement.
  • the treatment at a temperature 400 ° C. lower than the melting point of the target phase or higher and lower than the melting point is preferable.
  • the firing atmosphere is not particularly limited and can be appropriately selected according to the target metal oxide.
  • the final firing atmosphere may be, for example, an oxygen-inert gas mixed atmosphere or an inert gas atmosphere.
  • the metal oxide according to the first to fifth embodiments of the present invention can be used in fields related to energy production and environmental protection, for example, an oxygen storage material, a catalyst for concentrating oxygen gas, and a fuel cell. It can be used for positive electrode materials, oxygen absorption / desorption devices, oxygen concentrators, and the like.
  • the oxygen absorption / desorption device and the oxygen absorption / desorption method using the metal oxide according to any one of the first to fifth embodiments of the present invention, and the oxygen concentrator and the oxygen concentrator method will be described in detail.
  • the oxygen desorption device according to the sixth embodiment of the present invention is an oxygen desorption device including a metal oxide according to any one of the first to fifth embodiments of the present invention. Further, the oxygen absorption / desorption method according to the seventh embodiment of the present invention is an oxygen absorption / desorption method using a metal oxide according to any one of the first to fifth embodiments of the present invention.
  • the oxygen absorption / desorption method according to the seventh embodiment of the present invention includes an oxygen adsorption step of adsorbing oxygen to the metal oxide by contacting the oxygen-containing gas with the metal oxide at a temperature or lower at which oxygen adsorption occurs.
  • Examples thereof include a method (temperature swing adsorption method) including an oxygen desorption step of desorbing oxygen from the metal oxide at a temperature higher than the temperature at which oxygen desorption (release) occurs in the oxygen adsorption step.
  • the oxygen-containing gas used here is not particularly limited, and examples thereof include air and oxygen.
  • the oxygen adsorption temperature and the oxygen desorption temperature are selected according to the phase transition temperature of the metal oxide used.
  • the phase transition temperature varies depending on the composition of the metal oxide, the oxygen concentration in the oxygen-containing gas, and the like, and the preferable ranges of the oxygen adsorption temperature and the oxygen desorption temperature are specifically as follows.
  • the oxygen adsorption temperature is preferably 50 ° C. or higher, more preferably 100 ° C. or higher, further preferably 150 ° C. or higher, and further preferably 200 ° C. or higher in a range lower than the oxygen desorption temperature. Especially preferable.
  • the oxygen desorption temperature is preferably 700 ° C. or lower, more preferably 600 ° C. or lower, and more preferably 500 ° C. in a range higher than the oxygen adsorption temperature from the viewpoint of lowering the operating temperature and prolonging the life of the device.
  • the temperature difference between the oxygen adsorption temperature and the oxygen desorption temperature is preferably 300 ° C. or lower, more preferably 200 ° C. or lower, and even more preferably 100 ° C. or lower.
  • the oxygen absorption / desorption method using the metal oxide according to the seventh embodiment of the present invention not only the method using the vertical movement of the temperature as described above, but also the oxygen absorption by the vertical movement of the oxygen partial pressure.
  • a method using desorption pressure swing adsorption method, for example, at 200 ° C. or higher and 700 ° C. or lower, an oxygen-containing gas such as air is brought into contact with the metal oxide in a range where the oxygen partial pressure is larger than 0 kPa and 100 kPa or lower.
  • oxygen is desorbed from the metal oxide which has adsorbed oxygen in the oxygen adsorption step of adsorbing oxygen to the metal oxide and the oxygen adsorption step in an atmosphere where the oxygen partial pressure is less than 100 kPa and lower than the oxygen-containing gas.
  • Examples thereof include a method including an oxygen desorption step of causing the oxygen to be desorbed.
  • the oxygen partial pressure in the oxygen adsorption step is preferably 5 kPa or more, more preferably 10 kPa or more, and particularly preferably 15 kPa or more.
  • the oxygen partial pressure in the oxygen desorption step is usually 0 kPa or more, and it is preferable that the difference from the oxygen partial pressure at the time of adsorption is large from the viewpoint of the amount of oxygen desorption.
  • the oxygen concentrator according to the eighth embodiment of the present invention is an oxygen concentrator provided with the metal oxide according to any one of the first to fifth embodiments of the present invention.
  • the oxygen concentrating method according to the ninth embodiment of the present invention is an oxygen concentrating method using a metal oxide according to any one of the first to fifth embodiments of the present invention, and more specifically. , Is an oxygen concentration method including an oxygen recovery step of recovering oxygen desorbed from a metal oxide by the oxygen absorption / desorption method according to the seventh embodiment of the present invention.
  • the oxygen desorption step of desorbing (releasing) oxygen from the metal oxide at a temperature higher than the temperature at which oxygen adsorption occurs and in the oxygen desorption step, the oxygen desorbed from the metal oxide is selectively recovered.
  • a method of concentrating oxygen by an oxygen recovery step temperature swing adsorption method
  • the oxygen-containing gas used here is not particularly limited, and examples thereof include air and oxygen.
  • the oxygen concentration method using the metal oxide according to the ninth embodiment of the present invention is not limited to the method using the vertical movement of the temperature as described above, but also the oxygen absorption / desorption by the vertical movement of the oxygen partial pressure.
  • Pressure swing adsorption method for example, at 200 ° C. or higher and 700 ° C. or lower, an oxygen-containing gas such as air is brought into contact with the metal oxide in a range where the oxygen partial pressure is larger than 0 kPa and 100 kPa or lower.
  • oxygen adsorption step of adsorbing oxygen to the metal oxide and in the oxygen adsorption step in an atmosphere where the oxygen partial pressure is less than 100 kPa and lower than the oxygen-containing gas, oxygen is desorbed from the metal oxide which has adsorbed oxygen.
  • oxygen partial pressure in the oxygen adsorption step is preferably 5 kPa or more, more preferably 10 kPa or more, and particularly preferably 15 kPa or more.
  • the oxygen partial pressure in the oxygen desorption step is usually 0 kPa or more, and it is preferable that the difference from the oxygen partial pressure at the time of adsorption is large from the viewpoint of the amount of oxygen desorption.
  • the entire amount of the aqueous solution B was added to the aqueous solution A under stirring, and then the stirring was continued.
  • the obtained mixed solution was heat-treated at 120 ° C. to obtain a metal citrate complex gel.
  • the obtained gel was heated (primary firing) at 450 ° C. for 1 hour in an atmospheric atmosphere to burn organic substances to obtain a powder.
  • the obtained powder was crushed with a mortar and a pestle, transferred to an alumina crucible, and calcined at 800 ° C. for 5 hours (secondary calcining) in a muffle furnace under an air atmosphere.
  • firing was performed at 1000 ° C. for 5 hours in a highly airtight electric furnace under a nitrogen atmosphere.
  • the processed material was taken out from the electric furnace and pulverized with a mortar and a breast after cooling to room temperature while keeping the atmosphere in nitrogen to obtain a metal oxide (Ba 4 CaFe 3 O 9.5 ).
  • Example 1 ⁇ Observation of oxygen absorption / desorption behavior by atmospheric temperature swing> The behavior of oxygen adsorption / desorption by the atmospheric temperature swing of the metal oxide (Ba 4 CaFe 3 O 9.5 ) obtained in Example 1 was measured by thermogravimetric analysis (TG) using Thermo Plus 8120 (manufactured by Rigaku). Observed by. Specifically, first, the metal oxide obtained in Example 1 was refreshed at 800 ° C. in a nitrogen atmosphere to remove oxygen, water and the like adsorbed on the metal oxide.
  • TG thermogravimetric analysis
  • the obtained metal oxide undergoes a reversible phase transition under low temperature conditions near 400 ° C.
  • a metal oxide that causes a phase transition at such a low temperature can not only reduce the energy required for oxygen adsorption and desorption, but also when used in a general oxygen desorption device, oxygen concentrator, etc. Since oxygen can be absorbed and desorbed at a column (for example, a stainless steel tube) filled with a metal oxide at a temperature lower than the heat resistant temperature, it is highly practical as an oxygen storage material.
  • Example 1 For the metal oxide (Ba 4 CaFe 3 O 9.5 ) obtained in Example 1, the behavior of oxygen adsorption / desorption by the oxygen partial pressure swing was analyzed by thermogravimetric analysis (manufactured by Rigaku) using Thermoplus2 TG-8120 (manufactured by Rigaku). It was observed by TG) measurement. Specifically, first, the metal oxide obtained in Example 1 was refreshed at 800 ° C. in a nitrogen atmosphere to remove oxygen, water and the like adsorbed on the metal oxide.
  • the metal oxide was subjected to 290 ° C., 300 ° C., 310 ° C., 320 ° C., 330 ° C., 340 ° C., 350 ° C., 360 ° C. under a nitrogen stream (oxygen partial pressure 0.002 kPa or less, flow rate 400 mL / min).
  • the temperature was raised to 370 ° C or 380 ° C.
  • the flowing gas was switched to air (oxygen partial pressure 20.9 kPa, flow rate 400 mL / min) and held for 120 minutes. Subsequently, the flowing gas was switched to nitrogen (oxygen partial pressure 0.002 kPa or less, flow rate 400 mL / min).
  • the results of measuring the weight change of the metal oxide during this period are shown in FIGS. 3 to 12.
  • the lower the ambient temperature in the temperature range of 290 ° C to 380 ° C the greater the weight increase rate (that is, the oxygen adsorption rate) and the amount of oxygen adsorbed when the atmospheric gas is switched from nitrogen to air.
  • the weight loss rate (that is, the oxygen desorption rate) and the amount of oxygen released when the atmospheric gas is switched from air to nitrogen are small.
  • the higher the atmospheric temperature the opposite tendency can be seen. This indicates that the equilibrium between the oxygen-releasing phase and the oxygen-excessive phase changes in this temperature range.
  • XRD X-ray diffraction
  • the XRD pattern of the metal oxide immediately after production was in a state where the peak of the XRD pattern of Ba 4 CaFe 3 O 9.5 was split. That is, it was suggested that the crystal structure of the metal oxide (oxygen-releasing phase) immediately after production had low symmetry with respect to the crystal structure of Ba 4 CaFe 3 O 9.5 and was distorted. In the XRD pattern of the metal oxide in the oxygen-rich phase, only the peak attributed to Ba 4 CaFe 3 O 10.75 was confirmed, and the other phases were not confirmed. Furthermore, it was confirmed that the XRD pattern of the metal oxide after the refresh treatment was the same as that of the metal oxide immediately after production. From the above points, it was shown that the metal oxide obtained in the examples was Ba 4 CaFe 3 O 9.5 having a distorted crystal structure, and that a reversible phase transition and the accompanying desorption and desorption of oxygen occurred. rice field.
  • the Fe average valence of the metal oxide in the oxygen-releasing phase state immediately after production and the metal oxide in the oxygen excess phase state by raising the temperature in the above TG measurement was measured by the following method. First, the molar amount of oxygen atoms adsorbed in the process of phase transition from the oxygen-releasing phase to the oxygen-excessive phase was determined from the amount of weight increase accompanying oxygen adsorption during TG measurement. Then, in the metal oxide, Fe in the oxygen excess phase is assumed to cause a valence transition (increased valence) of Fe so as to maintain electrical neutrality with respect to an increase in oxygen anion due to oxygen adsorption. The average valence was calculated.
  • the metal oxide immediately after production is attributed to Ba 4 CaFe 3 O 9.5 , and the valences of the alkaline earth elements Ba and Ca are divalent, so that the average Fe valence is oxygen release. In the phase state, it was calculated as +3.0.
  • the oxygen excess phase was represented by Ba 4 CaFe 3 O 10.75 , and the Fe average valence at that time was It was +3.8.
  • the entire amount of the aqueous solution B was added to the aqueous solution A under stirring, and then the stirring was continued.
  • the obtained mixed solution was heat-treated at 120 ° C. to obtain a metal citrate complex gel.
  • the obtained gel was heated (primary firing) at 450 ° C. for 1 hour in an atmospheric atmosphere to burn organic substances to obtain a powder.
  • the obtained powder was crushed with a mortar and a pestle, transferred to an alumina crucible, and calcined (secondary calcining) at 1200 ° C. in a highly airtight electric furnace in a nitrogen atmosphere for 5 hours.
  • the processed material was taken out from the electric furnace and pulverized with a mortar and a breast after cooling to room temperature while keeping the atmosphere in nitrogen to obtain a metal oxide (Ba 2 YFeO 5 ).
  • the flowing gas was switched to oxygen (nitrogen partial pressure 0.002 kPa or less, flow rate 400 mL / min) and held for 60 minutes. Subsequently, the flowing gas was switched to nitrogen (oxygen partial pressure 0.002 kPa or less, flow rate 400 mL / min).
  • oxygen partial pressure 0.002 kPa or less, flow rate 400 mL / min oxygen partial pressure 0.002 kPa or less, flow rate 400 mL / min.
  • Example 2 From FIG. 14, it was shown that oxygen can be absorbed and desorbed even by an oxygen partial pressure swing close to the actual operating conditions of the oxygen desorption device and the oxygen concentrator, and the oxygen desorption rate is high. Further, even under a low temperature condition of 250 ° C., a steep weight increase was observed after switching the atmospheric gas from nitrogen to air, and it was confirmed that oxygen occlusion occurred. It was also confirmed that after the atmospheric gas was switched from air to nitrogen, the weight was reduced, and the weight returned to the weight before the atmospheric gas was switched from nitrogen to air due to the release of oxygen. From these results, it can be seen that the metal oxide obtained in Example 2 can operate as an oxygen storage material even under a low temperature condition of 250 ° C.
  • the entire amount of the aqueous solution B was added to the aqueous solution A under stirring, and then the stirring was continued.
  • the obtained mixed solution was heat-treated at 120 ° C. to obtain a metal citrate complex gel.
  • the obtained gel was heated (primary firing) at 450 ° C. for 1 hour in an atmospheric atmosphere to burn organic substances to obtain a powder.
  • the obtained powder was crushed with a mortar and pestle, transferred to an alumina crucible, and calcined (secondary calcining) at 1200 ° C. for 5 hours in a highly airtight electric furnace in an air atmosphere.
  • the processed material was taken out from the electric furnace and pulverized with a mortar and a breast after cooling to room temperature while keeping the atmosphere in the atmosphere to obtain a metal oxide (SmCa 2 Fe 3 O 8 ).
  • the metal oxides obtained in Examples 3-1 to 3-3 have a reversible phase transition under low temperature conditions of 500 ° C. or lower, and are obtained in Example 1. Similar to the metal oxides produced, it is highly practical as an oxygen storage material.
  • Comparative Examples 3-1 to 3-3 in which the rare earth elements in the metal oxides of Examples 3-1 to 3-3 were replaced with Yb, Y, Dy, Gd or La. It was shown that the metal oxide of No. 5 hardly undergoes oxygen adsorption / desorption due to temperature changes and does not cause a reversible phase transition.
  • XRD X-ray diffraction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

下記式(I)で表される、酸素欠損型ペロブスカイト型金属酸化物。 (Ba4-x1Ca1-y1Fe3-z1M1x1+y1+z1)O9.5+δ1a (I) (上記式(I)において、M1は、アルカリ金属、Ba及びCa以外のアルカリ土類金属、希土類金属、並びにFe以外の遷移金属からなる群より選択される1種以上の元素を表し;x1、y1、z1、及びδ1aは、-2.0≦x1≦2.0、0≦y1≦0.5、-1.5≦z1≦1.5、x1+y1+z1≧0、及び-1.5≦δ1a≦4.5を満たす。)

Description

金属酸化物、酸素吸蔵材、酸素吸脱着装置、酸素吸脱着方法、酸素濃縮装置、及び酸素濃縮方法
 本発明は、金属酸化物、酸素吸蔵材、酸素吸脱着装置、酸素吸脱着方法、酸素濃縮装置、及び酸素濃縮方法に関する。
 本願は、2020年9月2日に日本で出願された特願2020-147524号に基づく優先権を主張し、その内容をここに援用する。
 近年、エネルギー生産、環境保護等に関わる分野では、温度変化により酸素を可逆的に吸収及び放出する酸素吸蔵材が注目を集め、特に酸素吸脱着能を利用した酸素ガス濃縮器、酸素ガス製造システムへ等への応用が期待されている。このような酸素吸蔵材としては、例えばYBaCo7+δ(特許文献1~4)、CaAlMnO5+β(特許文献5、6)等の種々の金属酸化物が知られている。
特開2014-012619号公報 特開2016-193815号公報 特開2018-008871号公報 特開2019-043833号公報 特開2013-255911号公報 特開2014-012619号公報
 しかしながら、特許文献1~4に記載の金属酸化物は、構成元素に高価な金属元素を含有するため、原料コストが実用化の障壁となる。一方で、特許文献5、6に記載の金属酸化物においては、金属元素として安価な金属元素のみを使用できるが、活性温度が高くなる傾向にあるため、酸素ガス濃縮器等の装置の耐熱性を考慮すると、実用化上問題があった。また、装置の耐熱性の問題を解決できたとしても、排熱を利用して材を加熱する場合は、適用できるプロセスが限られる。
 本発明の課題は、高価な金属元素を含有せずとも、比較的低温領域で酸素の吸脱着が可能であり、かつ、酸素吸脱着速度及び最大酸素吸着量に優れた金属酸化物を提供することである。
 本発明者らは、鋭意検討した結果、金属元素としてFeを含有する酸素欠損型ペロブスカイト型金属酸化物が、酸素吸着により酸素放出相から酸素過剰相に相転移し、酸素脱着により前記酸素過剰相から前記酸素放出相に相転移する性質を有し、上記課題を解決できることを見出し、本発明を達成するに至った。すなわち、本発明の要旨は以下の通りである。
[1]
 下記式(I)で表される、酸素欠損型ペロブスカイト型金属酸化物。
 (Ba4-x1Ca1-y1Fe3-z1M1x1+y1+z1)O9.5+δ1a (I)
(上記式(I)において、
 M1は、アルカリ金属、Ba及びCa以外のアルカリ土類金属、希土類金属、並びにFe以外の遷移金属からなる群より選択される1種以上の元素を表し;
 x1、y1、z1、及びδ1aは、下記式を満たす。
 -2.0≦x1≦2.0
 0≦y1≦0.5
 -1.5≦z1≦1.5
 -1.5≦δ1a≦4.5
 x1+y1+z1≧0)
[2]
 下記式(II)で表される、酸素欠損型ペロブスカイト型金属酸化物。
(Ba2-x21-y2Fe1-z2M2x2+y2+z2)O5+δ2a (II)
(上記式(II)において、
 M2は、アルカリ金属、Ba以外のアルカリ土類金属、Y以外の希土類金属、及びFe以外の遷移金属からなる群より選択される1種以上の元素を表し;
 x2、y2、z2、及びδ2aは、下記式を満たす。
 -1.0≦x2≦1.0
 -0.5≦y2≦0.5
 -0.5≦z2≦0.5
 -0.5≦δ2a≦1.5
 x2+y2+z2≧0)
[3]
 下記式(III)で表される、酸素欠損型ペロブスカイト型金属酸化物。
(RE1-x3Ca2-y3Fe3-z3M3x3+y3+z3)O8+δ3a (III)
(上記式(III)において、
 REは、Nd、Sm及びEuからなる群より選択される1種以上の希土類元素を表し;
 M3は、アルカリ金属、Ca以外のアルカリ土類金属、RE以外の希土類金属、及びFe以外の遷移金属からなる群より選択される1種以上の元素を表し;
 x3、y3、z3、及びδ3aは、下記式を満たす。
 -0.5≦x3≦0.5
 -1.0≦y3≦1.0
 -1.5≦z3≦1.5
 -1.5≦δ3a≦2.8
 x3+y3+z3≧0)
[4]
 [1]~[3]のいずれかに記載の金属酸化物を含む、酸素吸蔵材。
[5]
 [1]~[3]のいずれかに記載の金属酸化物を備えた、酸素吸脱着装置。
[6]
 [1]~[3]のいずれかに記載の金属酸化物を備えた、酸素濃縮装置。
[7]
 [1]~[3]のいずれかに記載の金属酸化物と酸素含有ガスとを酸素吸着が生じる温度以下で接触させることにより、前記金属酸化物に酸素を吸着させる酸素吸着工程、及び前記酸素吸着工程において酸素を吸着させた前記金属酸化物を酸素脱着が生じる温度以上700℃以下の温度で加熱することにより、前記金属酸化物から酸素を脱着させる酸素脱着工程を含む、酸素吸脱着方法。
[8]
 [1]~[3]のいずれかに記載の金属酸化物と酸素分圧が0kPa超100kPa以下である酸素含有ガスとを接触させることにより、前記金属酸化物に酸素を吸着させる酸素吸着工程、及び前記酸素吸着工程において酸素を吸着させた前記金属酸化物を前記酸素含有ガスより酸素分圧が低い雰囲気下に置くことで前記金属酸化物から酸素を脱着させる酸素脱着工程を含む、酸素吸脱着方法。
[9]
 [7]又は[8]に記載の酸素吸脱着方法により前記金属酸化物から脱着した酸素を回収する酸素回収工程を含む、酸素濃縮方法。
 本発明によれば、高価な金属元素を含有せずとも、比較的低温領域で酸素の吸脱着が可能であり、かつ、酸素吸脱着速度及び最大酸素吸着量に優れた金属酸化物を提供することができる。
 この金属酸化物は、酸素吸蔵材として用いることができ、酸素吸脱着装置や酸素濃縮装置に用いることもできる。
実施例1で得た金属酸化物の空気気流下での雰囲気温度スイングによる酸素吸脱着挙動を示す図である。 実施例1で得た金属酸化物の酸素気流下での雰囲気温度スイングによる酸素吸脱着挙動を示す図である。 実施例1で得た金属酸化物の290℃における酸素分圧スイングによる酸素吸脱着挙動を示す図である。 実施例1で得た金属酸化物の300℃における酸素分圧スイングによる酸素吸脱着挙動を示す図である。 実施例1で得た金属酸化物の310℃における酸素分圧スイングによる酸素吸脱着挙動を示す図である。 実施例1で得た金属酸化物の320℃における酸素分圧スイングによる酸素吸脱着挙動を示す図である。 実施例1で得た金属酸化物の330℃における酸素分圧スイングによる酸素吸脱着挙動を示す図である。 実施例1で得た金属酸化物の340℃における酸素分圧スイングによる酸素吸脱着挙動を示す図である。 実施例1で得た金属酸化物の350℃における酸素分圧スイングによる酸素吸脱着挙動を示す図である。 実施例1で得た金属酸化物の360℃における酸素分圧スイングによる酸素吸脱着挙動を示す図である。 実施例1で得た金属酸化物の370℃における酸素分圧スイングによる酸素吸脱着挙動を示す図である。 実施例1で得た金属酸化物の380℃における酸素分圧スイングによる酸素吸脱着挙動を示す図である。 実施例1で得た金属酸化物の粉末X線回折測定の結果を示す図である。 実施例2で得た金属酸化物の250℃における酸素分圧スイングによる酸素吸脱着挙動を示す図である。 実施例2で得た金属酸化物の粉末X線回折測定の結果を示す図である。 実施例3-1で得た金属酸化物の空気気流下での雰囲気温度スイングによる酸素吸脱着挙動を示す図である。 実施例3-2で得た金属酸化物の空気気流下での雰囲気温度スイングによる酸素吸脱着挙動を示す図である。 実施例3-3で得た金属酸化物の空気気流下での雰囲気温度スイングによる酸素吸脱着挙動を示す図である。 比較例3-1で得た金属酸化物の空気気流下での雰囲気温度スイングによる酸素吸脱着挙動を示す図である。 比較例3-2で得た金属酸化物の空気気流下での雰囲気温度スイングによる酸素吸脱着挙動を示す図である。 比較例3-3で得た金属酸化物の空気気流下での雰囲気温度スイングによる酸素吸脱着挙動を示す図である。 比較例3-4で得た金属酸化物の空気気流下での雰囲気温度スイングによる酸素吸脱着挙動を示す図である。 比較例3-5で得た金属酸化物の空気気流下での雰囲気温度スイングによる酸素吸脱着挙動を示す図である。 実施例3-1~実施例3-3及び比較例3-1~比較例3-5で得た金属酸化物の粉末X線回折測定の結果を示す図である。
 以下に本発明の実施の形態を詳細に説明するが、これら説明は本発明の実施形態の一例(代表例)であり、本発明はその要旨を超えない限りこれらの内容に限定されない。
 本発明の第1~第3の実施形態に係る金属酸化物は、酸素吸着により酸素放出相から酸素過剰相に相転移し、酸素脱着(放出)により前記酸素過剰相から前記酸素放出相に相転移する金属酸化物であって、Feを含有する。この金属酸化物は、酸素欠損型ペロブスカイト型金属酸化物であり、前記酸素放出相及び前記酸素過剰相の両状態でカチオンサイト及びアニオンサイトがいずれも秩序化している。また、これらの金属酸化物は、さらに希土類金属、遷移金属元素、アルカリ金属元素、及びアルカリ土類金属元素から選択される1種以上の元素を含有していてもよく、また、これらの金属酸化物は、好適には前記酸素過剰相の状態で前記Feの平均価数が3価より大きい。
 ここで、「酸素放出相及び酸素過剰相の両状態でカチオンサイト及びアニオンサイトが秩序化している」とは、結晶を構成するカチオン及びアニオンの全てについて、存在する位置を明確に定義できることをいう。カチオン、アニオンの存在位置については、XRD測定により特定することができる。
 酸素放出相及び酸素過剰相の両状態でカチオンサイト及びアニオンサイトがいずれも秩序化していることにより、温度及び/又は雰囲気に誘起される明確な可逆的相転移を示すため、この相転移を利用した酸素吸脱着、酸素濃縮等への応用が可能となる。
 また、本実施形態に係る金属酸化物の酸素放出相から酸素過剰相への相転移においては、酸素放出相におけるカチオン-酸素イオンの結合関係が維持されたまま、吸着した酸素のイオンとカチオンとの結合が形成され、かつ、アニオンサイトの一部又は全てが前記吸着した酸素のイオンで占有されて金属の配位数が増加することが好ましい。したがって、酸素放出相と酸素吸蔵相は異なる秩序化状態であり、空間群が変化することが好ましい。ここで、「空間群が変化する」とは、XRDパターンのメインピーク強度に対して10%以上の強度のピーク数が、両状態で変化することを意味する。
<1.本発明の第1の実施形態に係る金属酸化物>
 本発明の第1の実施形態に係る金属酸化物は、下記式(I)で表される、酸素欠損型ペロブスカイト型金属酸化物である。
 (Ba4-x1Ca1-y1Fe3-z1M1x1+y1+z1)O9.5+δ1a (I)
上記式(I)において、
 M1は、アルカリ金属、Ba及びCa以外のアルカリ土類金属、希土類金属、並びにFe以外の遷移金属からなる群より選択される1種以上の元素を表し;
 x1、y1、z1、及びδ1aは、下記式を満たす。
 -2.0≦x1≦2.0
 0≦y1≦0.5
 -1.5≦z1≦1.5
 -1.5≦δ1a≦4.5
 x1+y1+z1≧0
 式(I)中、δ1aは、酸素不定比量を示し、-1.5≦δ1a≦4.5の範囲を満たせば特に制限されず、雰囲気や温度等の外部環境に応じて連続的に変化する。
 M1は、Feサイト、Baサイト、及びCaサイトから選択されるサイトの置換元素であり、本発明の効果を損なわない範囲で適宜含有させることができる。
 また、本発明の効果を損なわない範囲で、式(I)の金属酸化物は他の元素を含んでいてもよく、例えば、M1が不可避不純物元素等の他の元素を含んでいてもよい。
 さらに、Ba、Ca及びFeから選択される金属元素が他のサイトに置換していてもよい。
 x1は、不純物相生成抑制の観点から、好ましくは-1.0≦x1≦1.5、より好ましくは-0.5≦x1≦0.8、さらに好ましくは0≦x1≦0.8、特に好ましくは0≦x1≦0.4である。
 y1は、不純物相生成抑制の観点から、好ましくは0≦y1≦0.4、より好ましくは0≦y1≦0.2、さらに好ましくは0≦y1≦0.1である。
 z1は、不純物相生成抑制の観点から、好ましくは-1.0≦z1≦1.0、より好ましくは-0.5≦z1≦0.6、さらに好ましくは0≦z1≦0.6、特に好ましくは0≦z1≦0.3である。
 δ1aは、不純物相生成抑制の観点から、好ましくは0≦δ1a≦1.5である。
 本実施形態に係る金属酸化物としては、例えばBaCaFe9.5+δ1が挙げられる。なお、Fe、Ba、及びCaが占めるサイトは、本発明の効果を阻害しない範囲、特にカチオンサイト及びアニオンサイトの秩序を維持できる範囲で、他の元素により置換されていてもよい。
 このBaCaFe9.5+δ1は、酸素欠損型ペロブスカイト型金属酸化物である。組成式中、δ1は、酸素不定比量を示し、0≦δ1≦1.5の範囲を満たせば特に制限されず、雰囲気や温度等の外部環境に応じて連続的に変化する。
<2.本発明の第2の実施形態に係る金属酸化物>
 本発明の第2の実施形態に係る金属酸化物は、下記式(II)で表される、酸素欠損型ペロブスカイト型金属酸化物である。
(Ba2-x21-y2Fe1-z2M2x2+y2+z2)O5+δ2a (II)
上記式(II)において、
 M2は、アルカリ金属、Ba以外のアルカリ土類金属、Y以外の希土類金属、及びFe以外の遷移金属からなる群より選択される1種以上の元素を表し;
 x2、y2、z2、及びδ2aは、下記式を満たす。
 -1.0≦x2≦1.0
 -0.5≦y2≦0.5
 -0.5≦z2≦0.5
 -0.5≦δ2a≦1.5
 x2+y2+z2≧0
 式(II)中、δ2aは、酸素不定比量を示し、-0.5≦δ2a≦1.5の範囲を満たせば特に制限されず、雰囲気や温度等の外部環境に応じて連続的に変化する。
 M2は、Feサイト、Baサイト、及びYサイトから選択されるサイトの置換元素であり、本発明の効果を損なわない範囲で適宜含有させることができる。
 また、本発明の効果を損なわない範囲で、式(II)の金属酸化物は他の元素を含んでいてもよく、例えば、M2が不可避不純物元素等の他の元素を含んでいてもよい。
 さらに、Ba、Y及びFeから選択される金属元素が他のサイトに置換していてもよい。
 x2は、不純物相生成抑制の観点から、好ましくは-0.6≦x2≦0.8、より好ましくは-0.4≦x2≦0.4、さらに好ましくは0≦x2≦0.4、特に好ましくは0≦x2≦0.2である。
 y2は、不純物相生成抑制の観点から、好ましくは-0.4≦y2≦0.4、より好ましくは-0.2≦y2≦0.2、さらに好ましくは0≦y2≦0.2、特に好ましくは0≦y2≦0.1である。
 z2は、不純物相生成抑制の観点から、好ましくは-0.4≦z2≦0.4、より好ましくは-0.2≦z2≦0.2、さらに好ましくは0≦z2≦0.2、特に好ましくは0≦z2≦0.1である。
 δ2aは、不純物相生成抑制の観点から、好ましくは0≦δ2a≦0.5である。
 本実施形態に係る金属酸化物としては、例えばBaYFeO5+δ2が挙げられる。なお、Fe、Ba、及びYが占めるサイトは、本発明の効果を阻害しない範囲で、特にカチオンサイト及びアニオンサイトの秩序を維持できる範囲で、他の元素により置換されていてもよい。
 このBaYFeO5+δ2は、酸素欠損型ペロブスカイト型金属酸化物である。組成式中、δ2は、酸素不定比量を示し、0≦δ2≦0.5の範囲を満たせば特に制限されず、雰囲気や温度等の外部環境に応じて連続的に変化する。
<3.本発明の第3の実施形態に係る金属酸化物>
 本発明の第3の実施形態に係る金属酸化物は、下記式(III)で表される、酸素欠損型ペロブスカイト型金属酸化物である。
(RE1-x3Ca2-y3Fe3-z3M3x3+y3+z3)O8+δ3a (III)
上記式(III)において、
 REは、Nd、Sm及びEuからなる群より選択される1種以上の希土類元素を表し;
 M3は、アルカリ金属、Ca以外のアルカリ土類金属、RE以外の希土類金属、及びFe以外の遷移金属からなる群より選択される1種以上の元素を表し;
 x3、y3、z3、及びδ3aは、下記式を満たす。
 -0.5≦x3≦0.5
 -1.0≦y3≦1.0
 -1.5≦z3≦1.5
 -1.5≦δ3a≦2.8
 x3+y3+z3≧0
 式(III)中、δ3aは、酸素不定比量を示し、-1.5≦δ3a≦2.5の範囲を満たせば特に制限されず、雰囲気や温度等の外部環境に応じて連続的に変化する。
 M3は、Feサイト、REサイト、及びCaサイトから選択されるサイトの置換元素であり、本発明の効果を損なわない範囲で適宜含有させることができる。
 また、本発明の効果を損なわない範囲で、式(III)の金属酸化物は他の元素を含んでいてもよく、例えば、M3が不可避不純物元素等の他の元素を含んでいてもよい。
 さらに、RE、Ca及びFeから選択される金属元素が他のサイトに置換していてもよい。
 REは、元素の価格又は酸素吸放出性能の観点から、好ましくはSmである。
 x3は、不純物相生成抑制の観点から、好ましくは-0.4≦x3≦0.4、より好ましくは-0.2≦x3≦0.2、さらに好ましくは0≦x3≦0.2、特に好ましくは0≦x3≦0.1である。
 y3は、不純物相生成抑制の観点から、好ましくは-0.6≦y2≦0.8、より好ましくは-0.4≦y2≦0.4、さらに好ましくは0≦y3≦0.4、特に好ましくは0≦y3≦0.2である。
 z3は、不純物相生成抑制の観点から、好ましくは-1.0≦z3≦1.0、より好ましくは-0.5≦z3≦0.6、さらに好ましくは0≦z3≦0.6、特に好ましくは0≦z3≦0.3である。
 δ3aは、不純物相生成抑制の観点から、好ましくは-1.0≦δ3a≦2.5、より好ましは-0.5≦δ3a≦2.0、さらに好ましくは0≦δ3a≦1.5である。
 本実施形態に係る金属酸化物としては、例えばRECaFe8+δ3が挙げられる。なお、Fe、Ca、及びREが占めるサイトは、本発明の効果を阻害しない範囲、特にカチオンサイト及びアニオンサイトの秩序を維持できる範囲で、他の元素により置換されていてもよい。
 RECaFe8+δ3は、酸素欠損型ペロブスカイト型金属酸化物である。組成式中、REは、Nd、Sm及びEuからなる群より選択される1種以上の希土類元素を表し、元素の価格又は酸素吸放出性能の観点から、好ましくはSmである。また、δ3は、酸素不定比量を示し、0≦δ3≦1.5の範囲を満たせば特に制限されず、雰囲気や温度等の外部環境に応じて連続的に変化する。
 上記の第1~第3の実施形態に係る金属酸化物は、本発明の効果を損なわない範囲、特にカチオンサイト及びアニオンサイトの秩序を維持できる範囲で、ドーパントを含有してもよく、ドーパントを含有していなくてもよい。ドーパントとしては、酸素吸脱着速度向上や酸素吸脱着温度制御の観点から、例えば遷移金属元素が挙げられる。これらのうち、ドーパントとしては、Ru、Rh、Pd、Ag、Re、Ir、Pt及びAuからなる群より選択される1種以上の元素が好ましい。
 上記の第1~第3の実施形態では、ドーパントの含有量を調整することによっても、酸素吸脱着速度や酸素の吸脱着温度を制御することができる。ドーパントの含有量は、カチオンサイト及びアニオンサイトの秩序を維持する観点から、ドーパントを含む全カチオン量に対し5mol%以下であることが好ましく、2.5mol%以下であることがより好ましい。
 上記の第1~第3の実施形態に係る金属酸化物は、酸素過剰相の状態でFeの平均価数が、好ましくは3価超、より好ましくは3.1以上、また、好ましくは5.0以下、より好ましくは4.0以下である。
 Feの価数遷移域を上記範囲内とすることで、上記のような安価な金属の酸化物であっても、比較的低温での酸素吸脱着を可能とすることができる。
<4.本発明の第4の実施形態に係る金属酸化物>
 本発明の第4の実施形態に係る金属酸化物は、Mnを含有し、酸素放出相及び酸素過剰相の両状態でカチオンサイト及びアニオンサイトがいずれも秩序化している金属酸化物であって、酸素吸着により酸素放出相から酸素過剰相に相転移し、酸素脱着(放出)により前記酸素過剰相から前記酸素放出相に相転移する。この金属酸化物は、好適には前記酸素過剰相の状態で前記Mnの平均価数が2価より大きい。
 本発明の第4の実施形態に係る金属酸化物における「酸素放出相及び酸素過剰相の両状態でカチオンサイト及びアニオンサイトが秩序化している」については、本発明の第1~第3の実施形態と同様に定義され、温度及び/又は雰囲気に誘起される明確な可逆的相転移に与える影響も同様である。また、このMnを含有する金属酸化物の酸素放出相から酸素過剰相への相転移における挙動についても、本発明の第1~第3の実施形態に係る金属酸化物と同様である。
 本発明の第4の実施形態に係るMn含有金属酸化物の組成は、例えば下記式(IV)で表すことができる。
(Ba2-x4Mn1-y4Ge2-z4M4x4+y4+z4)O7+δ4a (IV)
上記式(IV)において、
 M4:アルカリ金属、Ba以外のアルカリ土類金属、希土類金属、及びMn以外の遷移金属からなる群より選択される1種以上の元素
 0≦x4≦1.0
 0≦y4≦0.5
 0≦z4≦1.0
 -1.5≦δ4a≦1.0
を表す。
 式(IV)中、δ4aは、酸素不定比量を示し、-1.5≦δ4a≦1.0の範囲を満たせば特に制限されず、雰囲気や温度等の外部環境に応じて連続的に変化する。
 M4は、Baサイト、Mnサイト、及びGeサイトから選択されるサイトの置換元素であり、本発明の効果を損なわない範囲で適宜含有させることができる。
 また、酸素吸脱着性能を損なわない範囲で、式(IV)の金属酸化物は他の元素を含んでいてもよく、例えば、M4が不可避不純物元素を含んでいてもよい。
 さらに、Ba、Mn及びGeから選択される金属元素が他のサイトに置換していてもよい。
 x4は、不純物相生成抑制の観点から、好ましくは0≦x4≦0.4、より好ましくは0≦x4≦0.2である。
 y4は、不純物相生成抑制の観点から、好ましくは0≦y4≦0.2、より好ましくは0≦y4≦0.1である。
 z4は、不純物相生成抑制の観点から、好ましくは0≦z4≦0.4、より好ましくは0≦z4≦0.2である。
 δ4aは、不純物相生成抑制の観点から、好ましくは-0.3≦δ4a≦0.2である。
 式(IV)で表される金属酸化物としては、例えばBaMnGe7+δ4が挙げられる。なお、Ba、Mn、及びGeが占めるサイトは、酸素吸脱着性能を損なわない範囲、特にカチオンサイト及びアニオンサイトの秩序を維持できる範囲で、他の元素により置換されていてもよい。
 BaMnGe7+δ4の組成式中、δ4は、酸素不定比量を示し、0≦δ4≦0.5の範囲を満たせば特に制限されず、雰囲気や温度等の外部環境に応じて連続的に変化する。
 本実施形態に係る金属酸化物は、酸素過剰相の状態でMnの平均価数が、好ましくは2価超、より好ましくは2.1以上であり、また、好ましくは4.0以下、より好ましくは3.0以下である。
 Mnの価数遷移域を上記範囲内とすることで、上記のような安価な金属の酸化物であっても、酸素吸脱着を可能とすることができる。
<5.本発明の第5の実施形態に係る金属酸化物>
 本発明の第5の実施形態に係る金属酸化物は、酸素吸着により酸素放出相から酸素過剰相に相転移し、酸素脱着(放出)により前記酸素過剰相から前記酸素放出相に相転移する金属酸化物であって、前記酸素放出相及び前記酸素過剰相の両状態でカチオンサイト及びアニオンサイトがいずれも秩序化しており、遷移金属元素と、アルカリ金属元素及びアルカリ土類金属元素から選択される元素とを含有する。
 本発明の第5の実施形態における「酸素放出相及び酸素過剰相の両状態でカチオンサイト及びアニオンサイトが秩序化している」については、本発明の第1~第3の実施形態と同様に定義され、温度及び/又は雰囲気に誘起される明確な可逆的相転移に与える影響も同様である。また、本発明の第5の実施形態に係る金属酸化物の酸素放出相から酸素過剰相への相転移における挙動についても、本発明の第1~第3の実施形態に係る金属酸化物と同様である。
 本発明の第5の実施形態に係る金属酸化物は、Fe等の遷移金属元素と、遷移金属に対してイオン半径の大きいアルカリ金属元素及びアルカリ土類金属元素から選択される元素とを含有する。かかる構成により、温度変化や雰囲気の酸素分圧変化に誘起される酸素吸脱着が可能となる理由としては、イオン半径の大きいアルカリ金属元素及び/又はアルカリ土類金属元素が結晶の骨格を形成することで、酸素イオンの拡散が容易になるためであると推測される。
 本発明の第5の実施形態に係る金属酸化物としては、上述のBaCaFe9.5+δ1、BaYFeO5+δ2、SmCaFe8+δ3等が挙げられる。
<6.金属酸化物の形態>
<6-1.平均一次粒子径>
 本発明の第1~第5の実施形態に係る金属酸化物の平均一次粒子径は、特に制限されない。酸素吸脱着速度(酸素吸放出速度)の観点から、体積基準の平均一次粒子径で、100μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることが特に好ましい。一方、粒子径の減少により比表面積が増加し、酸素の吸脱着速度が向上するため、平均一次粒子径の下限を設けることは要しないが、取り扱い性の観点から、通常1nm以上である。
 平均一次粒子径は、走査型電子顕微鏡(SEM)を用いた観察により測定される。具体的には、粒子が確認できる倍率、例えば5000~100000倍の倍率のSEM写真、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
<6-2.比表面積>
 本発明の第1~第5の実施形態に係る金属酸化物の比表面積は、特に制限されない。酸素吸脱着速度の観点から、0.1m/g以上であることが好ましく、1m/g以上であることがより好ましく、10m/g以上であることが特に好ましい。一方、比表面積が高いほど酸素吸脱着速度が向上するため、比表面積の上限を設けることは要しないが、通常200m/g以下である。
 比表面積はBET法により測定でき、例えば、マイクロメリティックス社製 トライスターII3000を用いて測定することができる。具体的には、金属酸化物を150℃で1時間減圧乾燥した後、窒素ガス吸着によるBET多点法(相対圧0.05~0.30の範囲において5点)により測定することができる。
<6-3.形状>
 本発明の第1~第5の実施形態に係る金属酸化物は、その取扱い性を向上させたり、装置への充填時の強度や、ガスの流通しやすさを考えて、造粒したり、あるいは適当な形状に成形したりして用いてもよい。
<7.金属酸化物の評価>
<7-1.金属酸化物の組成分析>
 以下の方法により、本発明の第1~第5の実施形態に係る金属酸化物中の各元素の含有量を測定することにより、金属酸化物の組成を分析することができる。
<7-1-1.金属元素の分析>
 本発明の第1~第5の実施形態に係る金属酸化物中の金属元素の組成を求めるための測定方法は特段制限されないが、例えば、誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析(ICP分析)により測定することができる。プラズマ発光分光分析装置としては、例えば、JOBIN YVON社製のICP-AES「JY46P型」を用いることができる。
<7-1-2.酸素元素の分析>
 本発明の第1~第5の実施形態に係る金属酸化物中の酸素元素量を求めるための測定方法は、特段制限されないが、例えば、ヨウ素滴定法により測定することができる。
<7-2.粉末X線回折測定>
 粉末X線回折(XRD)測定により、本発明の第1~第5の実施形態に係る金属酸化物の結晶構造を評価することができる。当該測定の方法は特段制限されないが、例えば、X’Pert Pro MPD(PANalytical社製)を用い、下記の条件で測定することができる。
 線源:CuKα
 測定範囲:2θが5°から90°の角度
 測定間隔:0.02°
 電圧:45kV
 電流:30mA
<7-3.SEM観察及びSEM-EDX>
 上述したように、SEMを用いることにより、本発明の第1~第5の実施形態に係る金属酸化物の平均粒子径を評価することができる。
 また、本発明の第1~第5の実施形態に係る金属酸化物が置換元素やドーパントを含有する場合は、SEM-EDXを用いることにより、金属酸化物中のドーパントの分布状態を評価することができる。SEM-EDXの測定条件は特段制限されないが、例えば、装置としてEMAX X-act(HORIBA製)を用い、加圧電圧15kVにおいて、含有元素についてのマッピングを行うことで測定できる。
<7-4.熱重量分析(TG)>
 TG装置を用いることにより、本発明の第1~第5の金属酸化物の酸素吸着挙動の観察、並びに酸素吸着量及び相転移温度の測定を行うことができる。
 TGの測定条件は特段制限されないが、例えば、温度スイングによる酸素吸脱着挙動は、TG装置としてThermo Plus 8120(Rigaku社製)を用い、空気気流下(酸素分圧20.9kPa、流量400mL/min)、室温(25℃)から800℃まで昇温速度5℃/minで昇温し、次いで800℃から室温まで降温速度5℃/minで降温させ、その間の重量変化を計測することにより観察することができる。
 また、例えば、酸素分圧スイングによる酸素吸脱着挙動は、TG装置としてThermo Plus 8120(Rigaku社製)を用い、窒素気流下(酸素分圧0.002kPa以下、流量400mL/min)で特定温度まで昇温し、フローするガスを空気(酸素分圧20.9kPa、流量400mL/min)へ切り替え、その後、フローするガスを窒素(酸素分圧0.002kPa以下、流量400mL/min)へ切り換え、その間の重量変化を計測することにより観察することができる。
<7-5.平均価数の測定>
 金属酸化物のFe平均価数は、TG測定による酸素吸蔵時の重量変化量から算出することができる。TG測定時の酸素吸着に伴う重量増加量より、酸素放出相から酸素過剰相へ相転移する過程で吸着した酸素原子のモル量を求める。この酸素原子(アニオン)の増加に対して、電気的中性を維持するようにFeの価数遷移(価数増加)が生じるとし、酸素過剰相中のFe平均価数を算出する。
 また、セリウム滴定により、金属酸化物中の含有酸素量を測定することによっても金属酸化物のFe平均価数を求めることができる。滴定装置としては、例えば電位差自動滴定装置(Automatic Potentiometric Titrator,AT-710,京都電子工業製)を用いることができる。より具体的には、金属酸化物に、塩化鉄(II)四水和物と3mol/L塩酸を加え、5分間以上加熱撹拌し金属酸化物を溶解させる。この操作により、試料に含まれ得る4価の鉄イオンは塩化鉄の2価の鉄イオンと反応し、3価の鉄イオンへ還元される。金属酸化物又は過剰の塩化鉄(II)四水和物に由来する2価の鉄イオンは、硫酸セリウム(IV)水溶液で酸化することにより、鉄イオンの酸化に要したセリウムイオンの量を滴定し、この結果から鉄の平均価数を算出する。ここで、硫酸セリウム(IV)水溶液は、硫酸セリウム(IV)四水和物を純水に溶解させ調製し、標定には硫酸アンモニウム鉄(II)六水和物を用いることができる。
 また、金属酸化物のMnの平均価数は、ヨウ素滴定法により測定することができる。滴定装置としては、例えば電位差自動滴定装置(Automatic Potentiometric Titrator,AT-710, 京都電子工業製)を用いることができる。
 より具体的には、金属酸化物に純水、ヨウ化カリウム、及び3mol/L塩酸を加え、5分間以上加熱撹拌し金属酸化物を溶解させる。その後、チオ硫酸ナトリウム用いて反応により遊離したヨウ素を滴定し、Mnの還元に用いられたヨウ化ナトリウムを求め、Mn元素量からMnの価数を算出する。
<8.本発明の第1~第5の実施形態に係る金属酸化物の製造方法>
 本発明の第1~第5の実施形態に係る金属酸化物の製造方法は、特段制限されず、公知の金属酸化物の製造方法に準じて製造することができる。公知の金属酸化物の製造方法としては、例えば、特開2011-121829号公報に記載の方法が挙げられる。
 出発原料として、鉄含有化合物、マンガン含有化合物、アルカリ金属含有化合物、アルカリ土類金属含有化合物、置換元素含有化合物等の金属酸化物に含まれる各金属の化合物、及び必要に応じてドーパント元素含有化合物を純水に溶解して硝酸塩水溶液(水溶液A)を調製する。また、クエン酸を純水に溶解して、クエン酸水溶液(水溶液B)を別途調製する。
 次いで、撹拌下の水溶液Aに、水溶液Bを加え、得られた混合溶液を加熱(一次焼成)し、金属クエン酸錯体を前駆体として得る。この得られた前駆体を加熱(二次焼成)し、有機物を燃焼させた粉末を得る。得られた粉末を粉砕した後、より高温での加熱(三次焼成)を行うことで、本発明の第1~第5の実施形態に係る金属酸化物が得られる。
 なお、上記のように、原料を溶液に溶解させる方法を採用する場合、前述した金属の化合物及びドーパント元素含有化合物としては、塩化物、酸化物、硝酸塩、硫酸塩、シュウ酸塩、サリチル酸塩、酢酸塩、炭酸塩、水酸化物等が挙げられ、生成物の組成制御の観点から、塩化物、硝酸塩、硫酸塩、酢酸塩であることが好ましく、特に硝酸塩であることが好ましい。上記出発原料がこれら塩である場合、金属酸化物の製造に伴う副生成物は、窒素、酸素、塩素、炭素、硫黄等を含有するガス又は水であり、容易に系外に排除できるからである。
 上記のように溶液法で合成した前駆体に対し焼成処理を行う方法以外に、出発原料として、鉄含有化合物、マンガン含有化合物、アルカリ金属含有化合物、アルカリ土類金属含有化合物、置換元素含有化合物等の金属酸化物に含まれる各金属の化合物、及び必要に応じてドーパント元素含有化合物の粉末を混合し、焼成処理を行う、固相法によって合成することも可能である。
 一般的に、固相法で合成する場合は溶液法よりも前駆体の段階、及び焼成後の段階で各元素の組成分布の偏りが生じやすいため、原料粉末の粒度制御、及び粉体の均一混合を行うことが重要である。例えば、小粒子径かつ凝集の少ない原料粉を使用すること、ボールミル等により混合すること等が有効である。
 上記の製造方法のように、焼成を行う方法を採用する場合、焼成温度及び焼成時間は特段制限されないが、不純物相低減の観点から、目的相が主相又は単一相として生成する焼成温度及び焼成時間であることが好ましい。目的相が主相又は単一相であることにより、金属酸化物は、酸素放出相及び酸素過剰相の両状態でカチオンサイト及びアニオンサイトが秩序化しやすいと考えられるから、また、金属酸化物の単位重量当たりの最大酸素吸着量が増加するからである。なお、目的相が主相又は単一相であるか否かは、XRD測定により判断される。
 一方で、焼結による比表面積の低下抑制及びるつぼとの副反応低減の観点から、目的相の融点より400℃低い温度以上融点以下での処理が好ましい。
 また、上記の製造方法のように、焼成を行う方法を採用する場合、その焼成雰囲気は特段制限されず、目的の金属酸化物に応じて適宜選択することができる。最終的な焼成雰囲気は、例えば、酸素-不活性ガス混合雰囲気であってもよく、不活性ガス雰囲気であってもよい。
<9.金属酸化物の用途>
 本発明の第1~第5の実施形態に係る金属酸化物は、エネルギー生産や環境保護に関わる分野で用いることができ、例えば、酸素吸蔵材、酸素ガスを濃縮する際の触媒、燃料電池の正極材料、酸素吸脱着装置、酸素濃縮装置等の用途に利用することができる。以下に、本発明の第1~第5のいずれかの実施形態に係る金属酸化物を用いた酸素吸脱着装置及び酸素吸脱着方法、並びに酸素濃縮装置及び酸素濃縮方法について詳細に説明する。
<9-1.酸素吸脱着装置及び酸素吸脱着方法>
 本発明の第6の実施形態に係る酸素吸脱着装置は、本発明の第1~第5のいずれかの実施形態に係る金属酸化物を備えた酸素吸脱着装置である。また、本発明の第7の実施形態に係る酸素吸脱着方法は、本発明の第1~第5のいずれかの実施形態に係る金属酸化物を用いた酸素吸脱着方法である。
 本発明の第7の実施形態に係る酸素吸脱着方法としては、酸素含有ガスを酸素吸着が生じる温度以下で金属酸化物に接触させることで、金属酸化物に酸素を吸着させる酸素吸着工程、及び酸素吸着工程において酸素を吸着させた金属酸化物を酸素脱着(放出)が生じる温度以上で金属酸化物から酸素を脱着させる酸素脱着工程を含む方法(温度スイング吸着法)を挙げることができる。ここで用いられる酸素含有ガスは特に限定されるものではないが、例えば空気、酸素等を挙げることができる。酸素吸着温度及び酸素脱着温度は使用する金属酸化物の相転移温度によって選択される。相転移温度は、金属酸化物の組成、酸素含有ガス中の酸素濃度等により変動するが、酸素吸着温度及び酸素脱着温度の好ましい範囲は、具体的には次の通りである。酸素吸着温度は、酸素脱着温度より低温の範囲で、50℃以上であることが好ましく、100℃以上であることがより好ましく、150℃以上であることがさらに好ましく、200℃以上であることが特に好ましい。酸素脱着温度は、運転温度低下の観点及び装置寿命の長期化等の観点から、酸素吸着温度より高温の範囲で、700℃以下であることが好ましく、600℃以下であることがより好ましく、500℃以下であることがさらに好ましい。また、金属酸化物を酸素吸着温度に降温する時間、酸素脱着温度に昇温する時間を短縮するために、また熱交換に要する負荷を低減させるために、酸素吸着温度と酸素脱着温度の温度差は、小さいほど好ましい。具体的には、当該温度差は、300℃以下であることが好ましく、200℃以下であることがより好ましく、100℃以下であることがさらに好ましい。
 また、本発明の第7の実施形態に係る金属酸化物を用いた酸素吸脱着方法としては、上記のように温度の上下動を利用した方法のみでなく、酸素分圧の上下動による酸素吸脱着を利用した方法(圧力スイング吸着法)、例えば、200℃以上700℃以下において、酸素分圧が0kPaより大きく100kPa以下となる範囲で、空気等の酸素含有ガスを前記金属酸化物に接触させることにより、前記金属酸化物に酸素を吸着させる酸素吸着工程、及び酸素分圧が100kPa未満かつ前記酸素含有ガスより低い雰囲気下で酸素吸着工程において酸素を吸着させた前記金属酸化物から酸素を脱着させる酸素脱着工程を含む方法を挙げることができる。この場合、酸素吸着量の観点から、酸素吸着工程における酸素分圧は、5kPa以上であることが好ましく、10kPa以上であることがより好ましく、15kPa以上であることが特に好ましい。また、酸素脱着工程における酸素分圧は、通常0kPa以上であり、酸素脱着量の観点から吸着時の酸素分圧との差が大きいほど好ましい。
<9-2.酸素濃縮装置及び酸素濃縮方法>
 本発明の第8の実施形態に係る酸素濃縮装置は、本発明の第1~第5のいずれかの実施形態に係る金属酸化物を備えた酸素濃縮装置である。また、本発明の第9の実施形態に係る酸素濃縮方法は、本発明の第1~第5のいずれかの実施形態に係る金属酸化物を用いた酸素濃縮方法であって、より詳細には、本発明の第7の実施形態に係る酸素吸脱着方法により金属酸化物から脱着した酸素を回収する酸素回収工程を含む酸素濃縮方法である。
 本発明の第9の実施形態に係る酸素濃縮方法としては、酸素含有ガスを酸素吸着が生じる温度以下で金属酸化物に接触させることで、金属酸化物に酸素を吸着させる酸素吸着工程、酸素吸着工程において酸素を吸着させた金属酸化物を酸素吸着が生じる温度以上で金属酸化物から酸素を脱着(放出)させる酸素脱着工程、及び酸素脱着工程において金属酸化物から脱着した酸素を選択的に回収する酸素回収工程により酸素を濃縮する方法(温度スイング吸着法)を挙げることができる。ここで用いられる酸素含有ガスは特に限定されるものではないが、例えば空気、酸素等を挙げることができる。酸素吸着温度及び酸素脱着温度は使用する金属酸化物の相転移温度によって選択される。相転移温度は、金属酸化物の組成、酸素含有ガス中の酸素濃度等により変動するが、酸素吸着温度及び酸素脱着温度の好ましい範囲は、具体的には次の通りである。酸素吸着温度は、酸素脱着温度より低温の範囲で、50℃以上であることが好ましく、100℃以上であることがより好ましく、150℃以上であることがさらに好ましく、200℃以上であることが特に好ましい。酸素脱着温度は、運転温度低下の観点及び装置寿命の長期化等の観点から、酸素吸着温度より高温の範囲で、700℃以下であることが好ましく、600℃以下であることがより好ましく、500℃以下であることがさらに好ましい。
 また、本発明の第9の実施形態に係る金属酸化物を用いた酸素濃縮方法としては、上記のように温度の上下動を利用した方法のみでなく、酸素分圧の上下動による酸素吸脱着を利用した方法(圧力スイング吸着法)、例えば、200℃以上700℃以下において、酸素分圧が0kPaより大きく100kPa以下となる範囲で、空気等の酸素含有ガスを前記金属酸化物に接触させることにより、前記金属酸化物に酸素を吸着させる酸素吸着工程、及び酸素分圧が100kPa未満かつ前記酸素含有ガスより低い雰囲気下で酸素吸着工程において酸素を吸着させた前記金属酸化物から酸素を脱着させる酸素脱着工程、及び酸素脱着工程において前記金属酸化物から脱着した酸素を選択的に回収する酸素回収工程を含む方法を挙げることができる。この場合、酸素吸着量の観点から、酸素吸着工程における酸素分圧は、5kPa以上であることが好ましく、10kPa以上であることがより好ましく、15kPa以上であることが特に好ましい。また、酸素脱着工程における酸素分圧は、通常0kPa以上であり、酸素脱着量の観点から吸着時の酸素分圧との差が大きいほど好ましい。
 以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
 また、実施例及び比較例で得た金属酸化物の組成は、原料仕込み比から求めたものである。
[実施例1]
 出発原料として、硝酸バリウム(Ba(NO)、硝酸カルシウム四水和物(Ca(NO・4HO)及び硝酸鉄(III)九水和物(Fe(NO・9HO)を、Ba:Ca:Fe=4:1:3のモル比となるように秤量し、純水に溶解して、硝酸塩水溶液を調製した(水溶液A)。総金属モル量の5倍モルのクエン酸一水和物を秤量し、純水に溶解して、クエン酸水溶液を調製した(水溶液B)。撹拌下の水溶液Aに、水溶液Bを全量添加し、その後攪拌を継続した。得られた混合溶液を120℃で熱処理し、金属クエン酸錯体ゲルを得た。得られたゲルを大気雰囲気下450℃で1時間加熱(一次焼成)することにより、有機物を燃焼させ粉末を得た。得られた粉末を乳鉢と乳棒で粉砕した後、アルミナ製坩堝へ移し、大気雰囲気下のマッフル炉中、800℃で5時間焼成(二次焼成)した。続いて、気密性の高い電気炉中、窒素雰囲気下、1000℃で5時間焼成(三次焼成)した。その後、雰囲気を窒素に保ったまま室温まで冷却し、電気炉から処理物を取り出して乳鉢と乳房で粉砕することで、金属酸化物(BaCaFe9.5)を得た。
<雰囲気温度スイングによる酸素吸脱着挙動の観察>
 実施例1で得られた金属酸化物(BaCaFe9.5)の雰囲気温度スイングによる酸素吸脱着の挙動を、Thermo Plus 8120(Rigaku社製)を用いた熱重量分析(TG)測定により観察した。
 具体的には、まず、実施例1で得られた金属酸化物を、窒素雰囲気下、800℃でリフレッシュ処理することで、金属酸化物に吸着した酸素や水分等を除去した。次に、空気気流下(酸素分圧20.9kPa、流量400mL/min)又は酸素気流下(酸素分圧101kPa、流量400mL/min)、金属酸化物約30mgを室温(25℃)から800℃まで昇温速度5℃/minで昇温し、次いで800℃から100℃まで降温速度5℃/minで降温させ、その間の重量変化を計測した。空気及び酸素気流下でのTG測定により得られたグラフを、それぞれ図1及び図2に示す。また、TG測定により求めた金属酸化物の最大酸素吸着量は、2.2質量%であった。
 図1及び図2より、昇温過程で酸素の吸着に起因する重量増加が確認された。一方で、昇温を続けると、やがて重量が減少に転じることが確認された。これは、試料温度の上昇に伴って酸素過剰相から酸素放出相への相転移が生じ、吸着していた酸素を放出したためである。800℃からの降温過程では、再度特定の温度から急激な重量増加が確認され、酸素放出相から酸素過剰相への相転移による酸素吸着が生じていることが確認された。
 また、実施例1で得られた金属酸化物の最大酸素吸着量が大きいことが示された。
 さらに、図1及び図2より、得られた金属酸化物は、400℃付近の低温条件で可逆的な相転移が生じることがわかる。このような低温で相転移を生じる金属酸化物は、酸素の吸着及び脱着に必要なエネルギーを低減することができるだけでなく、一般的な酸素吸脱着装置、酸素濃縮装置等に使用する場合には、金属酸化物を充填するカラム(例えば、ステンレス管)の耐熱温度未満での酸素の吸脱着が可能であるため、酸素吸蔵材としての実用性が高い。
<酸素分圧スイングによる酸素吸脱着挙動の観察>
 実施例1で得られた金属酸化物(BaCaFe9.5)について、酸素分圧スイングによる酸素吸脱着の挙動を、Thermoplus2 TG-8120(Rigaku社製)を用いた熱重量分析(TG)測定により観察した。
 具体的には、まず、実施例1で得られた金属酸化物を、窒素雰囲気下、800℃でリフレッシュ処理することで、金属酸化物に吸着した酸素や水分等を除去した。次に、金属酸化物を、窒素気流下(酸素分圧0.002kPa以下、流量400mL/min)で290℃、300℃、310℃、320℃、330℃、340℃、350℃、360℃、370℃又は380℃まで昇温した。温度が安定した段階で、フローするガスを空気(酸素分圧20.9kPa、流量400mL/min)に切り替えて120分保持した。続いて、フローするガスを窒素(酸素分圧0.002kPa以下、流量400mL/min)に切り換えた。この間の金属酸化物の重量変化を測定した結果を図3~図12に示す。
 図3~12より、酸素吸脱着装置及び酸素濃縮装置の実運転条件に近い酸素分圧スイングによっても、酸素の吸脱着が可能であり、酸素吸脱着速度も速いことが示された。
 また、いずれの温度でも、雰囲気ガスを窒素から空気に切り替えた後に急峻な重量増加が認められ、いずれの温度においても、2分以内に酸素の吸蔵が完了することが確認された。また、雰囲気ガスを空気から窒素に切り替えた後は、逆に重量減少が生じ、5分程度で酸素の放出によって雰囲気ガスを窒素から空気に切り替える前の重量へと戻ることが確認された。
 さらに、雰囲気温度が290℃~380℃の温度範囲内において低温であるほど、雰囲気ガスを窒素から空気に切り替えた際の重量増加速度(すなわち、酸素吸着速度)及び酸素吸着量が大きく、かつ、雰囲気ガスを空気から窒素に切り替えた際の重量減少速度(すなわち、酸素脱着速度)と酸素放出量が小さい。一方、雰囲気温度が高温であるほど、逆の傾向が見られる。これは、かかる温度域で酸素放出相と酸素過剰相の平衡が変化していることを示している。
<粉末X線回折(XRD)測定>
 製造直後の酸素放出相の状態にある金属酸化物、上記TG測定において昇温により酸素過剰相の状態とした金属酸化物、及びTG測定後に窒素雰囲気下、800℃でのリフレッシュ処理を行った金属酸化物について、粉末XRD測定を行った。粉末XRD測定条件は、以下の通りである。得られたXRDパターンを図13に示す。なお、図13には、参考のため、BaCaFe9.5、BaCaFe10.75、及びBaFeOのXRDパターンを併せて示す。
(粉末XRD測定条件)
 装置:X’Pert Pro MPD(PANalytical社製)
 線源:CuKα
 測定範囲:2θが5°から90°の角度
 測定間隔:0.02°
 電圧:45kV
 電流:30mA
 図13より、製造直後の金属酸化物のXRDパターンは、BaCaFe9.5のXRDパターンのピークが分裂した状態のものあった。すなわち、製造直後の金属酸化物(酸素放出相)の結晶構造は、BaCaFe9.5の結晶構造に対し、対称性が低く、歪んでいることが示唆された。
 酸素過剰相の状態とした金属酸化物のXRDパターンは、BaCaFe10.75に帰属されるピークのみが確認され、その他の相は確認されなかった。
 さらに、リフレッシュ処理後の金属酸化物のXRDパターンは、製造直後の金属酸化物と同様のパターンであることが確認された。
 以上の点から、実施例で得た金属酸化物は、歪んだ結晶構造のBaCaFe9.5であり、可逆的な相転移、及びそれに伴う酸素の吸脱着が生じることが示された。
<Fe平均価数の測定>
 製造直後の酸素放出相の状態にある金属酸化物及び上記TG測定において昇温により酸素過剰相の状態とした金属酸化物におけるFe平均価数を、以下の手法により測定した。
 まず、TG測定時の酸素吸着に伴う重量増加量より、酸素放出相から酸素過剰相へ相転移する過程で吸着した酸素原子のモル量を求めた。そして、金属酸化物においては、酸素吸着に伴う酸素アニオンの増加に対して、電気的中性を維持するようにFeの価数遷移(価数増加)が生じるものとして、酸素過剰相中のFe平均価数を算出した。
 上述の通り、製造直後の金属酸化物はBaCaFe9.5に帰属され、アルカリ土類元素のBa、及びCaの価数は2価であることから、Fe平均価数は酸素放出相の状態では+3.0と算出された。一方、図1より、空気中での最大酸素吸着量は2.2質量%であったことから、酸素過剰相はBaCaFe10.75で表され、その時のFe平均価数は、+3.8であった。
[実施例2]
 出発原料として、硝酸バリウム(Ba(NO)、硝酸イットリウム六水和物(Y(NO・6HO)及び硝酸鉄九水和物(Fe(NO・9HO)を、Ba:Y:Fe=2:1:1のモル比となるように秤量し、純水に溶解して、硝酸塩水溶液を調製した(水溶液A)。総金属モル量の5倍モルのクエン酸一水和物を秤量し、純水に溶解して、クエン酸水溶液を調製した(水溶液B)。撹拌下の水溶液Aに、水溶液Bを全量添加し、その後攪拌を継続した。得られた混合溶液を120℃で熱処理し、金属クエン酸錯体ゲルを得た。得られたゲルを大気雰囲気下450℃で1時間加熱(一次焼成)することにより、有機物を燃焼させ粉末を得た。得られた粉末を乳鉢と乳棒で粉砕した後、アルミナ製坩堝へ移し、気密性の高い電気炉中、窒素雰囲気下、1200℃で5時間焼成(二次焼成)した。その後、雰囲気を窒素に保ったまま室温まで冷却し、電気炉から処理物を取り出して乳鉢と乳房で粉砕することで、金属酸化物(BaYFeO)を得た。
<酸素分圧スイングによる酸素吸脱着挙動の観察>
 実施例2で得られた金属酸化物(BaYFeO)について、酸素分圧スイングによる酸素吸脱着の挙動を、Thermoplus2 TG-8120(Rigaku社製)を用いた熱重量分析(TG)測定により観察した。
 具体的には、まず、実施例2で得られた金属酸化物を、窒素雰囲気下、600℃でリフレッシュ処理することで、金属酸化物に吸着した酸素や水分等を除去した。次に、金属酸化物を、窒素気流下(酸素分圧0.002kPa以下、流量400mL/min)で250℃まで昇温した。温度が安定した段階で、フローするガスを酸素(窒素分圧0.002kPa以下、流量400mL/min)に切り替えて60分保持した。続いて、フローするガスを窒素(酸素分圧0.002kPa以下、流量400mL/min)に切り換えた。この間の金属酸化物の重量変化を測定した結果を図14に示す。また、TG測定により求めた金属酸化物の最大酸素吸着量は、0.748質量%であった。
 図14より、酸素吸脱着装置及び酸素濃縮装置の実運転条件に近い酸素分圧スイングによっても、酸素の吸脱着が可能であり、酸素吸脱着速度も速いことが示された。
 また、250℃の低温条件下でも、雰囲気ガスを窒素から空気に切り替えた後に急峻な重量増加が認められ、酸素の吸蔵が生じることが確認された。また、雰囲気ガスを空気から窒素に切り替えた後は、逆に重量減少が生じ、酸素の放出によって雰囲気ガスを窒素から空気に切り替える前の重量へと戻ることが確認された。これらの結果から、実施例2で得られた金属酸化物は、250℃という低温条件下でも酸素吸蔵材として動作可能であることがわかる。
<粉末X線回折(XRD)測定>
 製造直後の酸素放出相の状態にある金属酸化物(BaYFeO)を、窒素雰囲気下、600℃でリフレッシュ処理した後、粉末XRD測定を行った。粉末XRD測定条件は、実施例1における粉末XRDの測定条件と同様である。得られたXRDパターンを図15に示す。
 製造直後の金属酸化物のXRDパターンのピークは、いずれもBaYFeOに帰属されるものであった。
<Fe平均価数の測定>
 製造直後の酸素放出相の状態にある金属酸化物及び上記TG測定において昇温により酸素過剰相の状態とした金属酸化物におけるFe平均価数を、実施例1と同様の方法により測定した。
 測定の結果、Fe平均価数は、酸素放出相の状態では+3.0であり、酸素過剰相の状態では+3.5であった。
[実施例3-1]
 出発原料として、硝酸サマリウム六水和物(Sm(NO・6HO)、硝酸カルシウム四水和物(Ca(NO・4HO)及び硝酸鉄九水和物(Fe(NO・9HO)を、Sm:Ca:Fe=1:2:3のモル比となるように秤量し、純水に溶解して、硝酸塩水溶液を調製した(水溶液A)。総金属モル量の5倍モルのクエン酸一水和物を秤量し、純水に溶解して、クエン酸水溶液を調製した(水溶液B)。撹拌下の水溶液Aに、水溶液Bを全量添加し、その後攪拌を継続した。得られた混合溶液を120℃で熱処理し、金属クエン酸錯体ゲルを得た。得られたゲルを大気雰囲気下450℃で1時間加熱(一次焼成)することにより、有機物を燃焼させ粉末を得た。得られた粉末を乳鉢と乳棒で粉砕した後、アルミナ製坩堝へ移し、気密性の高い電気炉中、大気雰囲気下、1200℃で5時間焼成(二次焼成)した。その後、雰囲気を大気に保ったまま室温まで冷却し、電気炉から処理物を取り出して乳鉢と乳房で粉砕することで、金属酸化物(SmCaFe)を得た。
[実施例3-2]
 出発原料として、硝酸ユウロピウム六水和物(Eu(NO・6HO)、硝酸カルシウム四水和物(Ca(NO・4HO)及び硝酸鉄九水和物(Fe(NO・9HO)を、Eu:Ca:Fe=1:2:3のモル比となるように秤量し、純水に溶解して、硝酸塩水溶液(水溶液A)を調製した以外は、実施例3-1と同様にして金属酸化物(EuCaFe)を得た。
[実施例3-3]
 出発原料として、硝酸ネオジム六水和物(Nd(NO・6HO)、硝酸カルシウム四水和物(Ca(NO・4HO)及び硝酸鉄九水和物(Fe(NO・9HO)を、Nd:Ca:Fe=1:2:3のモル比となるように秤量し、純水に溶解して、硝酸塩水溶液(水溶液A)を調製した以外は、実施例3-1と同様にして金属酸化物(NdCaFe)を得た。
[比較例3-1]
 出発原料として、硝酸イッテルビウムn水和物(Yb(NO・nHO、n:3~5)、硝酸カルシウム四水和物(Ca(NO・4HO)及び硝酸鉄九水和物(Fe(NO・9HO)を、Yb:Ca:Fe=1:2:3のモル比となるように秤量し、純水に溶解して、硝酸塩水溶液(水溶液A)を調製した以外は、実施例3-1と同様にして金属酸化物(YbCaFe)を得た。
[比較例3-2]
 出発原料として、硝酸イットリウム六水和物(Y(NO・6HO)、硝酸カルシウム四水和物(Ca(NO・4HO)及び硝酸鉄九水和物(Fe(NO・9HO)を、Y:Ca:Fe=1:2:3のモル比となるように秤量し、純水に溶解して、硝酸塩水溶液(水溶液A)を調製した以外は、実施例3-1と同様にして金属酸化物(YCaFe)を得た。
[比較例3-3]
 出発原料として、硝酸ジスプロシウム六水和物(Dy(NO・6HO)、硝酸カルシウム四水和物(Ca(NO・4HO)及び硝酸鉄九水和物(Fe(NO・9HO)を、Dy:Ca:Fe=1:2:3のモル比となるように秤量し、純水に溶解して、硝酸塩水溶液(水溶液A)を調製した以外は、実施例3-1と同様にして金属酸化物(DyCaFe)を得た。
[比較例3-4]
 出発原料として、硝酸ガドリニウム六水和物(Gd(NO・6HO)、硝酸カルシウム四水和物(Ca(NO・4HO)及び硝酸鉄九水和物(Fe(NO・9HO)を、Gd:Ca:Fe=1:2:3のモル比となるように秤量し、純水に溶解して、硝酸塩水溶液(水溶液A)を調製した以外は、実施例3-1と同様にして金属酸化物(GdCaFe)を得た。
[比較例3-5]
 出発原料として、硝酸ランタン六水和物(La(NO・6HO)、硝酸カルシウム四水和物(Ca(NO・4HO)及び硝酸鉄九水和物(Fe(NO・9HO)を、La:Ca:Fe=1:2:3のモル比となるように秤量し、純水に溶解して、硝酸塩水溶液(水溶液A)を調製した以外は、実施例3-1と同様にして金属酸化物(LaCaFe)を得た。
<雰囲気温度スイングによる酸素吸脱着挙動の観察>
 実施例3-1~実施例3-3及び比較例3-1~比較例3-5で得られた金属酸化物の雰囲気温度スイングによる酸素吸脱着の挙動を、Thermo Plus 8120(Rigaku社製)を用いた熱重量分析(TG)測定により観察した。
 具体的には、まず、実施例3-1~実施例3-3及び比較例3-1~比較例3-5で得られた金属酸化物を、窒素雰囲気下、800℃でリフレッシュ処理し、金属酸化物に吸着した酸素や水分等を除去した。次に、空気気流下(酸素分圧20.9kPa、流量400mL/min)、金属酸化物約30mgを室温(25℃)から800℃まで昇温速度5℃/minで昇温し、次いで800℃から100℃まで降温速度5℃/minで降温させ、その間の重量変化を計測した。空気及び酸素気流下でのTG測定により得られたグラフを、それぞれ図16~23に示す。
 図16~18より、実施例3-1~実施例3-3で得られた金属酸化物では、昇温過程で酸素の吸着に起因する重量増加が確認された。一方で、昇温を続けると、やがて重量が減少に転じることが確認された。これは、試料温度の上昇に伴って酸素過剰相から酸素放出相への相転移が生じ、吸着していた酸素を放出したためである。800℃からの降温過程では、再度特定の温度から急激な重量増加が確認され、酸素放出相から酸素過剰相への相転移による酸素吸着が生じていることが確認された。
 また、TG測定結果より、実施例3-1~実施例3-3で得られた金属酸化物は、いずれも2.5質量%と大きい最大酸素吸着量を示すことがわかった。
 さらに、図16~18より、実施例3-1~実施例3-3で得られた金属酸化物は、500℃以下の低温条件で可逆的な相転移が生じており、実施例1で得られた金属酸化物と同様、酸素吸蔵材としての実用性が高い。
 一方、図19~23より、実施例3-1~実施例3-3の金属酸化物中の希土類元素をYb、Y、Dy、Gd又はLaに代えた比較例3-1~比較例3-5の金属酸化物は、温度変化による酸素吸脱着がほとんど生じておらず、可逆的な相転移が生じないことが示された。
<粉末X線回折(XRD)測定>
 製造直後の酸素放出相の状態にある金属酸化物を、窒素雰囲気下、800℃でリフレッシュ処理した後、粉末XRD測定を行った。粉末XRD測定条件は、実施例1における粉末XRDの測定条件と同様である。得られたXRDパターンを図24に示す。なお、なお、図24には、参考のため、YbFeO、NdCaFe、LaCaFe、及びCaFeのXRDパターンを併せて示す。
 REがLa、Nd、Sm、及びEuの場合には、全ての回折パターンがGrenier相に帰属された。一方で、REがYb、Y、Dy、Gdの場合には、REFeOで表されるペロブスカイト構造のピークも確認され、不純物相が混在していることが確認された。上記結果より、REのイオン半径がEu以下の元素の場合にはGrenier相が単一相として生成し易い一方、Euよりもイオン半径が大きな元素を使用した場合には、Grenier相の結晶構造を維持できず、異相が生成することが示唆された。
<Fe平均価数の測定>
 製造直後の酸素放出相の状態にある金属酸化物及び上記TG測定において昇温により酸素過剰相の状態とした金属酸化物におけるFe平均価数を、実施例1と同様の方法により測定した。
 測定の結果、実施例3-1の金属酸化物のFe平均価数は、酸素放出相の状態では+3.0、酸素過剰相の状態では+3.6であり;実施例3-2の金属酸化物のFe平均価数は、酸素放出相の状態では+3.0、酸素過剰相の状態では+3.6であり;実施例3-3の金属酸化物のFe平均価数は、酸素放出相の状態では+3.0、酸素過剰相の状態では+3.5であった。

Claims (9)

  1.  下記式(I)で表される、酸素欠損型ペロブスカイト型金属酸化物。
     (Ba4-x1Ca1-y1Fe3-z1M1x1+y1+z1)O9.5+δ1a (I)
    (上記式(I)において、
     M1は、アルカリ金属、Ba及びCa以外のアルカリ土類金属、希土類金属、並びにFe以外の遷移金属からなる群より選択される1種以上の元素を表し;
     x1、y1、z1、及びδ1aは、下記式を満たす。
     -2.0≦x1≦2.0
     0≦y1≦0.5
     -1.5≦z1≦1.5
     -1.5≦δ1a≦4.5
     x1+y1+z1≧0)
  2.  下記式(II)で表される、酸素欠損型ペロブスカイト型金属酸化物。
    (Ba2-x21-y2Fe1-z2M2x2+y2+z2)O5+δ2a (II)
    (上記式(II)において、
     M2は、アルカリ金属、Ba以外のアルカリ土類金属、Y以外の希土類金属、及びFe以外の遷移金属からなる群より選択される1種以上の元素を表し;
     x2、y2、z2、及びδ2aは、下記式を満たす。
     -1.0≦x2≦1.0
     -0.5≦y2≦0.5
     -0.5≦z2≦0.5
     -0.5≦δ2a≦1.5
     x2+y2+z2≧0)
  3.  下記式(III)で表される、酸素欠損型ペロブスカイト型金属酸化物。
    (RE1-x3Ca2-y3Fe3-z3M3x3+y3+z3)O8+δ3a (III)
    (上記式(III)において、
     REは、Nd、Sm及びEuからなる群より選択される1種以上の希土類元素を表し;
     M3は、アルカリ金属、Ca以外のアルカリ土類金属、RE以外の希土類金属、及びFe以外の遷移金属からなる群より選択される1種以上の元素を表し;
     x3、y3、z3、及びδ3aは、下記式を満たす。
     -0.5≦x3≦0.5
     -1.0≦y3≦1.0
     -1.5≦z3≦1.5
     -1.5≦δ3a≦2.8
     x3+y3+z3≧0)
  4.  請求項1~3のいずれか1項に記載の金属酸化物を含む、酸素吸蔵材。
  5.  請求項1~3のいずれか1項に記載の金属酸化物を備えた、酸素吸脱着装置。
  6.  請求項1~3のいずれか1項に記載の金属酸化物を備えた、酸素濃縮装置。
  7.  請求項1~3のいずれか1項に記載の金属酸化物と酸素含有ガスとを酸素吸着が生じる温度以下で接触させることにより、前記金属酸化物に酸素を吸着させる酸素吸着工程、及び前記酸素吸着工程において酸素を吸着させた前記金属酸化物を酸素脱着が生じる温度以上700℃以下の温度で加熱することにより、前記金属酸化物から酸素を脱着させる酸素脱着工程を含む、酸素吸脱着方法。
  8.  請求項1~3のいずれか1項に記載の金属酸化物と酸素分圧が0kPa超100kPa以下である酸素含有ガスとを接触させることにより、前記金属酸化物に酸素を吸着させる酸素吸着工程、及び前記酸素吸着工程において酸素を吸着させた前記金属酸化物を前記酸素含有ガスより酸素分圧が低い雰囲気下に置くことで前記金属酸化物から酸素を脱着させる酸素脱着工程を含む、酸素吸脱着方法。
  9.  請求項7又は8に記載の酸素吸脱着方法により前記金属酸化物から脱着した酸素を回収する酸素回収工程を含む、酸素濃縮方法。
PCT/JP2021/032311 2020-09-02 2021-09-02 金属酸化物、酸素吸蔵材、酸素吸脱着装置、酸素吸脱着方法、酸素濃縮装置、及び酸素濃縮方法 WO2022050356A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022546972A JPWO2022050356A1 (ja) 2020-09-02 2021-09-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020147524 2020-09-02
JP2020-147524 2020-09-02

Publications (1)

Publication Number Publication Date
WO2022050356A1 true WO2022050356A1 (ja) 2022-03-10

Family

ID=80491120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032311 WO2022050356A1 (ja) 2020-09-02 2021-09-02 金属酸化物、酸素吸蔵材、酸素吸脱着装置、酸素吸脱着方法、酸素濃縮装置、及び酸素濃縮方法

Country Status (2)

Country Link
JP (1) JPWO2022050356A1 (ja)
WO (1) WO2022050356A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986928A (ja) * 1994-10-04 1997-03-31 Nissan Motor Co Ltd Aサイト欠損型ペロブスカイト複合酸化物及びそれを用いた触媒
JP2009227553A (ja) * 2008-03-25 2009-10-08 Ngk Insulators Ltd 酸素濃縮装置
JP2011016684A (ja) * 2009-07-08 2011-01-27 Hokkaido Univ 酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物、該金属酸化物を含む排ガス浄化触媒及び機能セラミックス、及び、該金属酸化物を用いる方法及び装置
JP2012164672A (ja) * 2006-02-10 2012-08-30 Nippon Shokubai Co Ltd 固体酸化物形燃料電池用空気極材料
JP2012198990A (ja) * 2010-03-25 2012-10-18 Ngk Insulators Ltd 電極材料及びそれを含む燃料電池セル
JP2019130467A (ja) * 2018-01-31 2019-08-08 大日精化工業株式会社 酸素吸蔵材の製造方法、酸素吸蔵材、酸素吸蔵成形物、及び酸素吸蔵成形物の製造方法
JP2019160729A (ja) * 2018-03-16 2019-09-19 株式会社東芝 活物質、電極、二次電池、電池パック、及び車両
JP2019166450A (ja) * 2018-03-22 2019-10-03 エヌ・イーケムキャット株式会社 排ガス浄化用触媒、及びその製造方法、並びに一体構造型排ガス浄化用触媒

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986928A (ja) * 1994-10-04 1997-03-31 Nissan Motor Co Ltd Aサイト欠損型ペロブスカイト複合酸化物及びそれを用いた触媒
JP2012164672A (ja) * 2006-02-10 2012-08-30 Nippon Shokubai Co Ltd 固体酸化物形燃料電池用空気極材料
JP2009227553A (ja) * 2008-03-25 2009-10-08 Ngk Insulators Ltd 酸素濃縮装置
JP2011016684A (ja) * 2009-07-08 2011-01-27 Hokkaido Univ 酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物、該金属酸化物を含む排ガス浄化触媒及び機能セラミックス、及び、該金属酸化物を用いる方法及び装置
JP2012198990A (ja) * 2010-03-25 2012-10-18 Ngk Insulators Ltd 電極材料及びそれを含む燃料電池セル
JP2019130467A (ja) * 2018-01-31 2019-08-08 大日精化工業株式会社 酸素吸蔵材の製造方法、酸素吸蔵材、酸素吸蔵成形物、及び酸素吸蔵成形物の製造方法
JP2019160729A (ja) * 2018-03-16 2019-09-19 株式会社東芝 活物質、電極、二次電池、電池パック、及び車両
JP2019166450A (ja) * 2018-03-22 2019-10-03 エヌ・イーケムキャット株式会社 排ガス浄化用触媒、及びその製造方法、並びに一体構造型排ガス浄化用触媒

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANDERON, Mark T. et al. Chem. Mater. 1993, vol. 5, no. 2, pp. 151-165 *
WOODWARD, Patrick M. et al. Inorg. Chem. 2003, 42, pp. 1121-1129 *

Also Published As

Publication number Publication date
JPWO2022050356A1 (ja) 2022-03-10

Similar Documents

Publication Publication Date Title
JP6242807B2 (ja) 複合酸化物、その製造方法、および排ガス精製用の触媒
Fabbrini et al. Sr1–xAgxTiO3±δ (x= 0, 0.1) perovskite-structured catalysts for the flameless combustion of methane
JP6223354B2 (ja) 複合酸化物、それの製造方法、および排ガス精製用の触媒
JP2017081812A (ja) マンガン−ジルコニウム系複合酸化物及びその製造方法、並びにその用途
US10618029B2 (en) Oxygen storage material and method for producing the same
WO2022050356A1 (ja) 金属酸化物、酸素吸蔵材、酸素吸脱着装置、酸素吸脱着方法、酸素濃縮装置、及び酸素濃縮方法
JP6797710B2 (ja) 酸素貯蔵材料及びその製造方法
CN107552059B (zh) 一种铁掺杂铈基固溶体烟气脱硝催化剂的制备方法
JP6680180B2 (ja) 低温作動可能なペロブスカイト型酸化物およびその製造法
US10220368B2 (en) Oxygen storage material and method of producing the same
JP7097766B2 (ja) 酸素貯蔵材料及びその製造方法
JP7237048B2 (ja) 酸素貯蔵材料及びその製造方法
US10625246B2 (en) Oxygen storage material and method for producing the same
WO2020217830A1 (ja) 希土類元素を含む水酸化チタン及び二酸化チタンの製造方法
US10668449B2 (en) Oxygen storage material and method for producing the same
JP6800127B2 (ja) 酸素貯蔵材料及びその製造方法
JP2017141123A (ja) 低温作動可能なペロブスカイト型酸化物吸着材およびその製造法
JP7310228B2 (ja) 酸素過剰金属酸化物
Jung et al. BaxSr1− xO/MgO nano-composite sorbents for tuning the transition pressure of oxygen: Application to air separation
WO2021039904A1 (ja) 金属酸化物、酸素吸脱着装置、酸素濃縮装置及び金属酸化物の製造方法
JP7387043B1 (ja) ジルコニア含有アルミナ系複合酸化物、及び、ジルコニア含有アルミナ系複合酸化物の製造方法
JP2020142194A (ja) 酸素吸着剤
JP2018095524A (ja) ペロブスカイト型複合酸化物の製造方法
JP2023143084A (ja) 酸素貯蔵材料及びその製造方法
JP6498094B2 (ja) プラセオジム−ジルコニウム系複合酸化物およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864409

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864409

Country of ref document: EP

Kind code of ref document: A1