WO2022050191A1 - 導電性2次元粒子およびその製造方法 - Google Patents

導電性2次元粒子およびその製造方法 Download PDF

Info

Publication number
WO2022050191A1
WO2022050191A1 PCT/JP2021/031565 JP2021031565W WO2022050191A1 WO 2022050191 A1 WO2022050191 A1 WO 2022050191A1 JP 2021031565 W JP2021031565 W JP 2021031565W WO 2022050191 A1 WO2022050191 A1 WO 2022050191A1
Authority
WO
WIPO (PCT)
Prior art keywords
mxene
conductive
layer
less
dimensional
Prior art date
Application number
PCT/JP2021/031565
Other languages
English (en)
French (fr)
Inventor
宙樹 坂本
雅史 小柳
章麿 ▲柳▼町
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2022546293A priority Critical patent/JP7487783B2/ja
Priority to CN202180053101.3A priority patent/CN116096669A/zh
Publication of WO2022050191A1 publication Critical patent/WO2022050191A1/ja
Priority to US18/175,981 priority patent/US20230207152A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the present invention relates to conductive two-dimensional particles and a method for producing the same.
  • MXene has been attracting attention as a new material with conductivity.
  • MXene is a kind of so-called two-dimensional material, and is a layered material having the form of one or a plurality of layers as described later.
  • MXene has the form of particles of such layered material, which may include powders, flakes, nanosheets, and the like.
  • Non-Patent Document 1 for the purpose of realizing a stretchable electrode, a stable Ti 3 C 2 Tx MXene dispersion in an organic solvent is prepared for mixing with a non-polar polymer matrix soluble in an organic medium. It is shown to do.
  • Ti 3 C 2 Tx flakes adsorbed on the surface of alkylphosphonic acid (RP ( O) (OH 2 ). These Ti 3 C 2 Tx flakes dissolve LiF in HCl. It is produced by etching Ti 3 Al C 2 using the etching solution, and —F, —Cl, —O, and —OH are present on the surface of Ti 3 C 2 .
  • Non-Patent Document 2 states that MXene is a new two-dimensional (2D) nanomaterial as a promising electrode material for energy storage devices, and that Mo 2 Ga 2 C is used as a method for producing MXene . It has been shown that Mo 2 C can be obtained as MXene by adding it to PO 4 and stirring it while irradiating with UV to etch Ga. Further, it has been shown that sonication is performed to exfoliate the multilayer MXene to obtain a single layer MXene. The obtained Mo 2 C has P and O on the surface, and the flake size is 100 nm or less.
  • Non-Patent Document 3 discloses a multilayer MXene (multilayer Ti 3C 2 ) synthesized by etching Ti 3 AlC 2 with HF + H 3 PO 4 , HF + HI, or HF + H 2 SO 4 .
  • Nonpolar Organic Dispersion of 2D Ti3C2Tx MXene Flakes via Simultaneous Interfacial Chemical Grafting and Phase Transfer Method ACS Nano 2019, 13, 12, 13818-13828 Two-dimensional fluorine-free mesoporous Mo2C MXene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustainable Materials and Technologies Volume 25, September 2020, e00156 Anion Adsorption, Ti3C2Tz MXene Multilayers, and They Effect on Claylike Swelling J. Phys. Chem. C 2018, 122, 40, 23172-23179
  • halogen-free In the electronic equipment industry, etc., as part of green procurement, it is required that the content of chlorine and bromine among halogens is suppressed to a certain level or less, that is, so-called "halogen-free". Specifically, it is required that the chlorine content is 900 mass ppm or less, the bromine content is 900 mass ppm or less, and the total content of chlorine and bromine is 1500 mass ppm or less.
  • Non-Patent Document 1 -Cl is present on the surface of Ti 3 C 2 Tx, and the amount of chlorine exceeds 1500 mass ppm. Therefore, it cannot be used in the above-mentioned applications that require halogen-free. Further, an alkyl group having low conductivity is adsorbed on the surface of Ti 3 C 2 Tx, and it is considered that the film obtained by laminating this Ti 3 C 2 Tx has low conductivity.
  • Non-Patent Document 2 in order to peel off the multilayer MXene to obtain a single-layer MXene, the multilayer MXene is subjected to ultrasonic treatment having a strong shearing force. As a result, the size of the obtained single-layer MXene is small.
  • the MXene obtained in Non-Patent Document 3 is a multi-layer MXene.
  • a certain amount of binder is indispensable for producing a film using this multilayer MXene.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a highly conductive film having a chlorine and bromine content of a certain level or less and suitable for halogen-free applications, and without using a binder. It is an object of the present invention to provide conductive two-dimensional particles which can be formed and a method for producing the same.
  • Conductive two-dimensional particles of a layered material comprising one layer, or comprising one layer and a plurality of layers.
  • the layer has the following formula: M m X n (In the formula, M is at least one group 3, 4, 5, 6, 7 metal, and X is a carbon atom, a nitrogen atom or a combination thereof, n is 1 or more and 4 or less, m is greater than n and less than or equal to 5)
  • the layer body represented by and the modification or termination T existing on the surface of the layer body (T is at least one selected from the group consisting of a hydroxyl group, a fluorine atom, a chlorine atom, an oxygen atom and a hydrogen atom).
  • Including and M of the layer and at least one selected from the group consisting of PO 4 3- , I, and SO 4 2- are bound to each other.
  • the total content of chlorine and bromine is 1500 mass ppm or less,
  • conductive two-dimensional particles having an average value of the major axis of the two-dimensional surface of the conductive two-dimensional particles of 1.0 ⁇ m or more.
  • A The following formula: M m AX n (In the formula, M is at least one group 3, 4, 5, 6, 7 metal, and X is a carbon atom, a nitrogen atom or a combination thereof, A is at least one group 12th, 13th, 14th, 15th, and 16th group element. n is 1 or more and 4 or less, m is greater than n and less than or equal to 5)
  • the precursor represented by (b) is prepared, and (b) the A atom is etched from the precursor using the etching solution, and the etching solution has an H 3 PO 4 concentration of 5.5 M or more.
  • a method for producing conductive two-dimensional particles comprising satisfying at least one selected from the group consisting of a HI concentration of 5.0 M or higher and an H 2 SO 4 concentration of 5.0 M or higher is provided.
  • the conductive two-dimensional particles are formed of a predetermined layered material (also referred to as "MXene" in the present specification), and the M of the layer and PO 4 3- , I, and SO 4 2- . At least one selected from the group consisting of two is bonded, the total content of chlorine and bromine is 1500 mass ppm or less, and the average value of the major axis of the two-dimensional surface of the conductive two-dimensional particles is 1.0 ⁇ m or more.
  • a predetermined precursor is selected from the group consisting of an H 3 PO 4 concentration of 5.5 M or more, a HI concentration of 5.0 M or more, and an H 2 SO 4 concentration of 5.0 M or more.
  • the conductive two-dimensional particles can be produced by etching the precursor with an etching solution that satisfies at least one of them.
  • the conductive two-dimensional particles in this embodiment are Conductive two-dimensional particles of a layered material, comprising one layer, or comprising one layer and a plurality of layers.
  • the layer has the following formula: M m X n (In the formula, M is at least one group 3, 4, 5, 6, 7 metal, and X is a carbon atom, a nitrogen atom or a combination thereof, n is 1 or more and 4 or less, m is greater than n and less than or equal to 5)
  • the layer body represented by (the layer body may have a crystal lattice in which each X is located in an octahedral array of M) and the surface of the layer body (more specifically, facing each other of the layer body). Includes a modification or termination T (T is at least one selected from the group consisting of a hydroxyl group, a fluorine atom, a chlorine atom, an oxygen atom and a hydrogen atom) present on at least one of the two surfaces.
  • the layered material can be understood as a layered compound and is also expressed as "M m X n T s ", where s is an arbitrary number and, conventionally, x or z may be used instead of s. Typically, n can be 1, 2, 3 or 4, but is not limited to this.
  • M is preferably at least one selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and Mn, preferably from Ti, V, Cr and Mo. More preferably, it is at least one selected from the group.
  • M can be titanium or vanadium and X can be a carbon atom or a nitrogen atom.
  • the MAX phase is Ti 3 AlC 2 and MXene is Ti 3 C 2 T s (in other words, M is Ti, X is C, n is 2, and m is 3). Is).
  • MXene may contain a relatively small amount of residual A atom, for example, 10% by mass or less with respect to the original A atom.
  • the residual amount of A atom can be preferably 8% by mass or less, more preferably 6% by mass or less.
  • the residual amount of A atom exceeds 10% by mass, there may be no problem depending on the use and usage conditions of the conductive two-dimensional particles.
  • the conductive two-dimensional particles of the present embodiment are an aggregate containing MXene10a (single-layer MXene) of one layer schematically exemplified in FIG.
  • the MXene 10a is more specifically a layer body (M m X n layer) 1a represented by M m X n and a surface of the layer body 1a (more specifically, at least two surfaces facing each other in each layer).
  • M m X n layer layer body
  • M X n a layer body
  • a surface of the layer body 1a more specifically, at least two surfaces facing each other in each layer.
  • MXene layer 7a with modifications or terminations T3a and 5a present in. Therefore, the MXene layer 7a is also expressed as "M m X n T s ", and s is an arbitrary number.
  • the conductive two-dimensional particles of the present embodiment may include a plurality of layers together with one layer.
  • MXene multilayer MXene
  • two layers of MXene10b can be mentioned, but the present invention is not limited to these examples.
  • 1b, 3b, 5b, and 7b in FIG. 2 are the same as 1a, 3a, 5a, and 7a of FIG. 1 described above.
  • Two adjacent MXene layers (eg, 7a and 7b) of a multilayer MXene may not necessarily be completely separated, but may be partially in contact with each other.
  • the MXene10a may be a mixture of the single-layer MXene10a and the multilayer MXene10b in which the multilayer MXene10b is individually separated and exists in one layer, and the unseparated multilayer MXene10b remains.
  • each layer of MXene is, for example, 0.8 nm or more and 5 nm or less, particularly 0.8 nm or more and 3 nm or less (mainly). In addition, it may vary depending on the number of M atomic layers contained in each layer).
  • the interlayer distance is, for example, 0.8 nm or more and 10 nm or less, particularly 0.8 nm or more and 5 nm or less, more particularly about. It is 1 nm and the total number of layers can be 2 or more and 20,000 or less.
  • the conductive two-dimensional particles of the present embodiment are preferably MXene having a small number of layers obtained by undergoing delamination treatment for the multilayer MXene that can be contained.
  • the above-mentioned "small number of layers” means that, for example, the number of layers of MXene is 6 or less.
  • the thickness of the multilayer MXene having a small number of layers in the stacking direction is preferably 10 nm or less.
  • this "multilayer MXene with a small number of layers” may be referred to as "small layer MXene”.
  • the single layer MXene and the small layer MXene may be collectively referred to as "single layer / small layer MXene”.
  • the conductive two-dimensional particles of the present embodiment preferably include a single-layer MXene and a small-layer MXene, that is, a single-layer / small-layer MXene.
  • the ratio of the single-layer / small-layer MXene having a thickness of 10 nm or less is preferably 90% by volume or more, and more preferably 95% by volume or more.
  • the conductive two-dimensional particles of the present embodiment are at least one selected from the group consisting of M in the layer and PO 4 3- (phosphate ion), I (iodine), and SO 4 2- (sulfate ion). It is bound to the seed.
  • the PO 4 3- , I, and SO 4 2- in the conductive two-dimensional particles of the present embodiment are each H 3 PO contained in the etching solution used during the etching process for the MAX phase which is the precursor of MXene. It can be derived from 4 (phosphoric acid), HI (hydrogen iodide), and H 2 SO 4 (sulfuric acid).
  • M of the layer is bound to PO 4 3- , SO 4 2- , and the like.
  • the conductive two-dimensional particle of the present embodiment is at least one selected from the group consisting of a phosphorus atom derived from PO 4 3- , an iodine atom derived from I, and a sulfur atom derived from SO 4 2- .
  • the conductive two-dimensional particles of the present embodiment more preferably contain a phosphorus atom derived from the H 3 PO 4 (phosphoric acid) and further derived from the PO 4 3- .
  • the conductive two-dimensional particles of the present embodiment have a phosphorus atom content of 0.20% by mass or more and 14% by mass or less, an iodine atom content of 1.0% by mass or more and 60% by mass or less, and the sulfur content. It is more preferable that the atom content satisfies at least one selected from the group consisting of 0.03% by mass or more and 18% by mass or less.
  • the inclusion of at least one selected from the group consisting of the phosphorus atom, iodine atom and sulfur atom, and the content of each atom are, for example, inductively coupled plasma emission spectroscopy (eg ICP-AES), fluorescent X. It can be measured by line analysis (XRF) or the like.
  • ICP-AES inductively coupled plasma emission spectroscopy
  • fluorescent X It can be measured by line analysis (XRF) or the like.
  • the conductive two-dimensional particles of this embodiment have a total content of chlorine and bromine of 1500 mass ppm or less. Since the conductive two-dimensional particles of the present embodiment contain chlorine and bromine, they can be applied to applications requiring halogen-free.
  • the total content of chlorine and bromine is preferably 900 mass ppm or less, and most preferably 0 mass ppm or less. That is, in the present disclosure, "the conductive two-dimensional particles have a total content of chlorine and bromine of 1500 mass ppm or less" includes those that do not contain chlorine and bromine at all.
  • the conductive two-dimensional particles of the present embodiment have an average value of the major axis of the two-dimensional surface of 1.0 ⁇ m or more. That is, in the single-layer / small-layer MXene according to the present embodiment, the average value of the major axis of the two-dimensional surface is 1.0 ⁇ m or more.
  • the average value of the major axis of the two-dimensional surface may be referred to as "average flake size".
  • Table 1 below separately confirms the relationship between the average flake size of MXene and the conductivity of a film produced using this MXene (Table 1 below shows the relationship). It was confirmed only, and HCl was used for the etching solution, and it was not intended to reduce the chlorine concentration in MXene). As shown in Table 1, the larger the average flake size, the higher the conductivity of the film, and a film with high conductivity can be obtained.
  • the average value of the major axis of the two-dimensional surface is preferably 1.5 ⁇ m or more, more preferably 2.5 ⁇ m or more. From the viewpoint of etching time (manufacturing cost), it is preferably 20 ⁇ m or less. Since the conductive two-dimensional particles of the present embodiment have a large average value (average flake size) of the major axis of the two-dimensional surface of 1.0 ⁇ m or more, a film formed by using the conductive two-dimensional particles, for example, this The film obtained by laminating conductive two-dimensional particles has high conductivity.
  • the major axis of the two-dimensional surface refers to the major axis when each MXene particle is approximated to an elliptical shape in an electron micrograph, and the average value of the major axis of the two-dimensional surface is 80 particles or more. Refers to the number average of the above major axis.
  • a scanning electron microscope (SEM) and a transmission electron microscope (TEM) photograph can be used.
  • the average value of the major axis of the conductive two-dimensional particles of the present embodiment can be measured by dissolving the conductive film containing the conductive two-dimensional particles in a solvent and dispersing the conductive two-dimensional particles in the solvent. good. Alternatively, it may be measured from the SEM image of the conductive film.
  • the average value of the thickness of the conductive two-dimensional particles of this embodiment is 10 nm or less.
  • the thickness is preferably 7 nm or less, more preferably 5 nm or less.
  • the lower limit of the thickness of the conductive two-dimensional particles can be 1.0 nm.
  • the average value of the thicknesses of the conductive two-dimensional particles is obtained as a number average dimension (for example, at least 40 number averages) based on an atomic force microscope (AFM) photograph or a transmission electron microscope (TEM) photograph.
  • AFM atomic force microscope
  • TEM transmission electron microscope
  • the conductive two-dimensional particles of the present embodiment do not have an alkyl group having low conductivity adsorbed on the surface of MXene. If an organic molecule having a bulky alkyl group having no conductivity is present on the surface of the two-dimensional material, the conductivity is lowered. On the other hand, since the conductive two-dimensional particles of the present embodiment do not have a structure in which organic molecules having an alkyl group are adsorbed on the surface, the conductivity of the film produced by laminating is high.
  • the method for producing conductive two-dimensional particles of the present embodiment is as follows. (A) Preparing a predetermined precursor, and (b) etching an A atom from the precursor using an etching solution, wherein the etching solution has an H 3 PO 4 concentration of 5.5 M.
  • the above includes satisfying at least one selected from the group consisting of a HI concentration of 5.0 M or higher and an H 2 SO 4 concentration of 5.0 M or higher.
  • a predetermined precursor is prepared.
  • the predetermined precursor that can be used in this embodiment is the MAX phase, which is a precursor of MXene.
  • n is 1 or more and 4 or less, m is greater than n and less than or equal to 5 It is represented by.
  • A is at least one Group 12, 13, 14, 15, 16 element, usually a Group A element, typically Group IIIA and Group IVA, more specifically Al, Ga, In, It may contain at least one selected from the group consisting of Tl, Si, Ge, Sn, Pb, P, As, S and Cd, preferably Al.
  • the MAX phase is a crystal in which a layer composed of A atoms is located between two layers represented by M m X n (each X may have a crystal lattice located in an octahedral array of M).
  • M m X n a layer
  • a atom layer a layer of A atoms
  • the MAX phase can be produced by a known method. For example, TiC powder, Ti powder and Al powder are mixed by a ball mill, and the obtained mixed powder is fired in an Ar atmosphere to obtain a fired body (block-shaped MAX phase). Then, the obtained fired body can be pulverized with an end mill to obtain a powdery MAX phase for the next step.
  • An etching solution is used to etch (remove and optionally layer) A atoms (and possibly some M atoms) from the precursor.
  • an etching solution satisfying at least one selected from the group consisting of an H 3 PO 4 concentration of 5.5 M or more, an HI concentration of 5.0 M or more, and an H 2 SO 4 concentration of 5.0 M or more. Use.
  • PO present in the etching solution is present on the surface of the exposed MmXn layer after etching (removing and optionally layer separation) A atoms (and possibly a part of M atoms) from the MAX phase. At least one selected from the group consisting of 4 3- , I, and SO 4 2- is adsorbed and bound. It is considered that when these PO 4 3- and the like are adsorbed on the surface of the M M X n layer, the distance between the MXene layers is widened due to steric hindrance, and the van der Waals force between the M M X n layers is weakened.
  • the Mm Xn layer can be easily made into a single layer without applying strong shear to the multi-layered Mm Xn layer. Further, since it is not necessary to apply strong shear, the fracture of the Mm Xn layer in the plane is suppressed, and as a result, a single MmXn layer having a large two-dimensional surface can be obtained.
  • the etching solution does not contain hydrochloric acid, which has been used in conventional etching solutions, that is, it does not contain chlorine atoms.
  • chlorine atom-free in the etching solution means that the chlorine concentration in the etching solution is 10 mass ppm or less when measured by, for example, combustion-ion chromatography.
  • the etching solution does not contain the conventionally used hydrochloric acid and may contain at least one of the predetermined amounts of H 3 PO 4 and the like, and other configurations of the etching solution are not particularly limited and are known conditions. Can be adopted. For example, it can be carried out using an etching solution further containing F ⁇ , and examples thereof include a method using a mixed solution of hydrofluoric acid (HF) and at least one of the above-mentioned predetermined amounts of H 3 PO 4 .
  • the concentration of hydrofluoric acid in this mixed solution may be 1% by mass or more and 50% by mass or less.
  • the upper limit thereof is not particularly limited. Can be 6.5 M or less, and the H 2 SO 4 concentration can be 16.5 M or less.
  • the above-mentioned etching differs only in the composition of the above-mentioned etching solution from the conventional one, and other etching conditions may be adopted as the conventional conditions.
  • the process after the etching is not particularly limited, and conductive two-dimensional particles (MXene two-dimensional particles) can be obtained by a known method.
  • the slurry after etching may be washed by repeating centrifugation-removal of supernatant liquid-addition of pure water to the remaining precipitate-centrifugation again, and then performing intercalation treatment and delamination treatment. ..
  • the inorganic acid used in the etching solution and the Li compound of the inorganic acid are added to the water medium clay of MXene obtained by the washing, and the mixture is stirred at room temperature, for example. Can be mentioned.
  • the delamination treatment for example, the slurry after the intercalation is centrifuged to discard the supernatant, and then pure water is added to the remaining precipitate-for example, stirring by hand shake-centrifugation-single layer / small amount. Recovery of the supernatant liquid containing the layer MXene may be repeated a plurality of times to obtain MXene two-dimensional particles.
  • Examples of the use of the conductive two-dimensional particles of the present embodiment include a conductive film containing the conductive two-dimensional particles.
  • the conductive film of this embodiment will be described with reference to FIG. FIG. 3 illustrates the conductive film 30 obtained by laminating only the conductive two-dimensional particles 10, but the present invention is not limited to this.
  • the conductive film may contain additives such as a binder added at the time of film formation, if necessary.
  • the additive is preferably 30% by volume or less, more preferably 10% by volume or less, still more preferably 5% by volume or less, and most preferably 0% by volume in proportion to the conductive film (when dried). ..
  • a conductive film is produced by suction-filtering the supernatant liquid containing the conductive two-dimensional particles obtained by the above delamination. Can be done.
  • the filter is not particularly limited, but a membrane filter or the like may be used.
  • a coating method for example, a method of spray coating using a nozzle such as a 1-fluid nozzle, a 2-fluid nozzle, or an airbrush, a table coater, a comma coater, a slit coat using a bar coater, screen printing, metal mask printing, etc. Methods, spin coats, dip coats, drips and the like can be mentioned. After suction filtration or application to the substrate, it can be appropriately dried to obtain a conductive film.
  • the conductive two-dimensional particles of the present embodiment do not have a structure in which organic molecules having an alkyl group having a small conductivity are adsorbed on the surface of MXene, the conductivity of the conductive film obtained by laminating the conductive two-dimensional particles Is expensive.
  • the conductive two-dimensional particles of the present embodiment include a conductive paste containing the conductive two-dimensional particles and a conductive composite material containing the conductive two-dimensional particles and a resin. These are also suitable for halogen-free applications and applications that require high conductivity.
  • the resin include hydrophilic polymers having a polar group, wherein the polar group is a group that forms a hydrogen bond with the modification or termination T of the layer.
  • the polymer include one or more polymers selected from the group consisting of water-soluble polyurethane, polyvinyl alcohol, sodium alginate, acrylic acid-based water-soluble polymer, polyacrylamide, polyaniline sulfonic acid, and nylon. The polymer may be more than 0% by volume, preferably 30% by volume or less, in proportion to the conductive composite material film (when dried).
  • the conductive two-dimensional particles in one embodiment of the present invention have been described in detail through the manufacturing method thereof, but various modifications are possible.
  • the conductive two-dimensional particles of the present invention may be produced by a method different from the production method in the above-described embodiment, and the method for producing the conductive two-dimensional particles of the present invention is in the above-mentioned embodiment. It should be noted that it is not limited to those that provide conductive two-dimensional particles.
  • Example preparation In Examples 1-6, the preparation of (1) precursor (MAX), (2) etching of precursor, (3) cleaning, (4) intercalation and (5) delamination, which will be described in detail below. Five steps were carried out in order to prepare MXene two-dimensional particles. Further, in Comparative Examples 1 and 2, MXene was produced in the same manner as in the above Examples except that the concentration of H 3 PO 4 in the etching solution in the etching of the precursor was changed.
  • precursor (MAX) TiC powder, Ti powder and Al powder (all manufactured by High Purity Chemical Laboratory Co., Ltd.) are put into a ball mill containing zirconia balls at a molar ratio of 2: 1: 1. And mixed for 24 hours. The obtained mixed powder was calcined at 1350 ° C. for 2 hours in an Ar atmosphere. The fired body (block-shaped MAX) thus obtained was pulverized with an end mill to a maximum size of 40 ⁇ m or less. As a result, Ti 3 AlC 2 particles were obtained as a precursor (MAX).
  • yield of single layer / small layer MXene The yield of single layer / small layer MXene was calculated from the following formula. The results are shown in Table 2.
  • the major axis (flake size) of the two-dimensional surface of MXene obtained in Example 2 was measured by SEM. Specifically, MXene slurry was applied to an alumina porous substrate, dried, and a scanning electron microscope (SEM) photograph was taken for measurement. Specifically, MXene particles of 80 or more particles that can be visually confirmed in the visual field of an SEM image having a magnification of 2,000 times and a visual field size of 60 ⁇ m ⁇ 60 ⁇ m were targeted. When a porous substrate is used as the substrate, the fine black spots in the micrograph may be derived from the substrate.
  • the porous part of the background was erased by image processing, and then image analysis was performed using SEM image analysis software "A image-kun” (registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd.).
  • image analysis the major axis when each MXene particle was approximated to an elliptical shape was obtained, and the number average thereof was taken as the average value of the major axis of the two-dimensional surface.
  • FIG. 5 The classification of the flake size on the horizontal axis in FIG. 5, for example, the display of "0 to 1" indicates that it is "more than 0 and 1 or less".
  • FIGS. 8 and 10 From the result of FIG. 5, the average value of the major axis of the two-dimensional plane of MXene was 3.0 ⁇ m.
  • No. 1 in Table 1 with an average flake size of 1.00 ⁇ m.
  • the SEM photograph of 2 is shown in FIG.
  • No. 1 in Table 1 In No. 2 HCl is used as the etching solution, and the chlorine concentration in MXene is not reduced.
  • the black particles are MXene particles.
  • the thickness of MXene obtained in Example 2 was measured using an atomic force microscope (AFM) of Dimensin FastScan manufactured by Burker. Specifically, the MXene slurry was applied to a silicon substrate and dried, an atomic force microscope (AFM) photograph was taken, and the thickness was determined from the image. The results are shown in FIG. The classification of the flake thickness on the horizontal axis in FIG. 6, for example, the display of "1 to 3" indicates that it is "more than 1 or less than 3". Hereinafter, the same applies to FIGS. 9 and 11. From the results of FIG. 6, the average value of the thickness of MXene was 3.9 nm.
  • the chlorine concentration and the bromine concentration in MXene obtained in Example 2 were measured using a combustion ion chromatography apparatus (Dionex ICS-5000) manufactured by Thermo Fisher Scientific. As a result, the chlorine concentration was 50 mass ppm or less, the bromine concentration was 50 mass ppm or less, that is, the total content of chlorine and bromine was 100 mass ppm or less.
  • the MXene two-dimensional particles obtained in this embodiment have a total content of chlorine and bromine of 100 mass ppm or less, they can be used for halogen-free applications.
  • the MXene two-dimensional particles obtained in this embodiment had an average value of the major axis of the two-dimensional surface of 1.0 ⁇ m or more and an average value of thickness of 5 nm or less.
  • most of the MXene two-dimensional particles obtained in this embodiment had a flake size of 1.0 ⁇ m or more and a thickness of 5 nm or less. Therefore, using the MXene two-dimensional particles obtained in the present embodiment, a film that can be handled can be produced without adding a binder. Further, since the flake size is as large as 1.0 ⁇ m or more, a film having high conductivity can be obtained as shown below.
  • MXene film [Making MXene film] Using the MXene of Example 2, a film was prepared by suction-filtering the supernatant liquid containing 0.09 g of MXene two-dimensional particles and 40 mL of pure water obtained by the above (5) delamination. .. A membrane filter (Merck Co., Ltd., Durapore, pore diameter 0.45 ⁇ m) was used as the suction filtration filter. Two MXene films, film 1 and film 2, were prepared by this method. Then, the density and conductivity of the obtained MXene film were measured as follows.
  • the conductivity of the obtained MXene film was determined.
  • the conductivity As for the conductivity, the resistivity ( ⁇ ) and the thickness ( ⁇ m) are measured at three points per sample, the conductivity (S / cm) is calculated from these measured values, and the three conductivitys obtained by this are calculated. The average value of the rate was adopted.
  • the surface resistivity of the film was measured by the 4-terminal method using a simple low resistivity meter (Roresta AX MCP-T370 manufactured by Mitsubishi Chemical Analytical Corporation). A micrometer (Mitutoyo Co., Ltd., MDH-25MB) was used for the thickness measurement. Then, the volume resistivity was obtained from the obtained surface resistance and the film thickness, and the conductivity was obtained by taking the reciprocal of the values. The results are shown in Table 3.
  • the MXene film produced using the MXene two-dimensional particles of the present embodiment without adding a binder had a conductivity of 5000 S / cm or more and showed high conductivity.
  • Example preparation In Examples 7 to 12, (1) preparation of the precursor (MAX) and (2) preparation of the precursor are carried out in the same manner as in Examples 1 to 6 except that the etching conditions and the Li intercalation conditions are as follows. Five steps of etching, (3) washing, (4) intercalation and (5) precursoring were carried out in order to prepare MXene two-dimensional particles. Further, in Comparative Examples 3 and 4, the same procedure as in the above Example was carried out except that the HI concentration in the etching solution in the etching of the precursor was changed.
  • the MXene two-dimensional particles obtained in this embodiment have a total content of chlorine and bromine of 100 mass ppm or less, they can be used for halogen-free applications.
  • the MXene two-dimensional particles obtained in this embodiment had an average value of the major axis of the two-dimensional surface of 1.0 ⁇ m or more and an average value of thickness of 5 nm or less.
  • most of the MXene two-dimensional particles obtained in this embodiment had a flake size of 1.0 ⁇ m or more and a thickness of 5 nm or less. Therefore, using the MXene two-dimensional particles obtained in the present embodiment, a film that can be handled can be produced without adding a binder. Further, since the flake size is as large as 1.0 ⁇ m or more, a film having high conductivity can be obtained as shown below.
  • the density and conductivity of the prepared film were measured in the same manner as in the case of the film of Example 2. As a result, the film density of the film was 2.82 g / cm 3 , and the conductivity was 8000 S / cm.
  • the MXene film produced by using the MXene two-dimensional particles of the present embodiment without adding a binder achieved a conductivity of 5000 S / cm or more, further 7000 S / cm or more, and showed high conductivity. ..
  • Example preparation In Examples 13 to 15, (1) preparation of the precursor (MAX) and (2) preparation of the precursor are carried out in the same manner as in Examples 1 to 6 except that the etching conditions and the Li intercalation conditions are as follows. Five steps of etching, (3) washing, (4) intercalation and (5) precursoring were carried out in order to prepare MXene two-dimensional particles. Further, in Comparative Examples 5 and 6, the same procedure as in the above Example was carried out except that the H 2 SO 4 concentration in the etching solution in the etching of the precursor was changed.
  • the MXene two-dimensional particles obtained in this embodiment have a total content of chlorine and bromine of 100 mass ppm or less, they can be used for halogen-free applications.
  • the MXene two-dimensional particles obtained in this embodiment had an average value of the major axis of the two-dimensional surface of 1.0 ⁇ m or more and an average value of thickness of 5 nm or less.
  • most of the MXene two-dimensional particles obtained in this embodiment had a flake size of 1.0 ⁇ m or more and a thickness of 5 nm or less. Therefore, using the MXene two-dimensional particles obtained in the present embodiment, a film that can be handled can be produced without adding a binder. Further, since the flake size is as large as 1.0 ⁇ m or more, a film having high conductivity can be obtained as shown below.
  • the density and conductivity of the prepared film were measured in the same manner as in the case of the film of Example 2. As a result, the density of the film was 1.58 g / cm 3 and the conductivity was 5130 S / cm.
  • the MXene film produced by using the MXene two-dimensional particles of the present embodiment without adding a binder achieved a conductivity of 5000 S / cm or more and showed high conductivity.
  • the paste and conductive film of the present invention can be used in any suitable application, and can be particularly preferably used as an electrode in, for example, an electric device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

塩素と臭素の含有率が一定以下でハロゲンフリー用途に適しており、更に、バインダーを用いずに高導電性フィルムを形成できる、導電性2次元粒子およびその製造方法を提供する。上記導電性2次元粒子は、1つの層を含む、または1つの層と複数の層とを含む、層状材料の導電性2次元粒子であって、前記層が、以下の式:Mmn(式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、Xは、炭素原子、窒素原子またはそれらの組み合わせであり、nは1以上4以下であり、mはnより大きく5以下である)で表される層本体と、該層本体の表面に存在する修飾または終端T(Tは、水酸基、フッ素原子、塩素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含み、前記層のMと、PO4 3-、I、およびSO4 2-からなる群より選択される少なくとも1種とが結合し、塩素と臭素の合計含有率が1500質量ppm以下であり、前記2次元粒子の2次元面の長径の平均値が1.0μm以上である。

Description

導電性2次元粒子およびその製造方法
 本発明は、導電性2次元粒子およびその製造方法に関する。
 近年、導電性を有する新規材料としてMXeneが注目されている。MXeneは、いわゆる2次元材料の1種であり、後述するように、1つまたは複数の層の形態を有する層状材料である。一般的に、MXeneは、かかる層状材料の粒子(粉末、フレーク、ナノシート等を含み得る)の形態を有する。
 現在、種々の電気デバイスへのMXeneの応用に向けて様々な研究がなされている。上記応用に向け、MXeneを含む材料の導電性をより高めることが求められている。
 非特許文献1には、例えば伸縮性電極の実現を目的として、有機媒体に可溶な非極性高分子マトリックスとの混合のため、有機溶媒中で安定したTi32Tx MXene分散液を調製することが示されている。詳細には、アルキルホスホン酸(R-P(=O)(OH2)を表面に吸着したTi32Txフレークが示されている。このTi32Txフレークは、HClにLiFを溶解したエッチング液を用い、Ti3AlC2をエッチングして作製しており、Ti32の表面には、-F、-Cl、-O、-OHが存在している。
 非特許文献2には、MXeneが、エネルギー貯蔵デバイス用の有望な電極材料としての、新しい2次元(2D)ナノ材料であること、上記MXeneの製造方法として、Mo2Ga2Cを、H3PO4に添加し、UV照射しながら撹拌してGaのエッチングを行うことにより、MXeneとしてMo2Cを得ることが示されている。更に、多層MXeneを剥離して、単層MXeneを得るために、超音波処理を実施することが示されている。得られたMo2Cは、表面にP、Oが存在し、フレークサイズは100nm以下である。
 非特許文献3には、Ti3AlC2を、HF+H3PO4、HF+HI、またはHF+H2SO4でエッチングして合成した多層MXene(多層Ti32)が示されている。
Nonpolar Organic Dispersion of 2D Ti3C2Tx MXene Flakes via Simultaneous Interfacial Chemical Grafting and Phase Transfer Method. ACS Nano 2019, 13, 12, 13818-13828 Two-dimensional fluorine-free mesoporous Mo2C MXene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustainable Materials and Technologies Volume25, September 2020, e00156 Anion Adsorption, Ti3C2Tz MXene Multilayers, and Their Effect on Claylike Swelling J. Phys. Chem. C 2018, 122, 40, 23172-23179
 電子機器業界等では、グリーン調達の一環として、ハロゲンのうち、塩素と臭素の含有率が一定以下に抑えられていること、いわゆる「ハロゲンフリー」であることが求められている。具体的に、塩素の含有率が900質量ppm以下、かつ臭素の含有率が900質量ppm以下、かつ塩素と臭素の合計含有率が1500質量ppm以下であることが求められている。
 非特許文献1は、Ti32Txの表面に-Clが存在しており、塩素量が1500質量ppmを超えている。よって、上記ハロゲンフリーが求められる用途に使用できない。更にTi32Txの表面に、導電性の低いアルキル基が吸着しており、このTi32Txを積層して得られるフィルムは導電率が低いと考えられる。
 非特許文献2では、多層MXeneを剥離して単層MXeneを得るために、多層MXeneに対して、せん断力の強い超音波処理を行っている。その結果、得られる単層MXeneのサイズは小さくなっている。
 非特許文献3で得られたMXeneは、多層MXeneである。この多層MXeneを用いてフィルムを製造するにはある程度の量のバインダーが必須となる。
 本発明は、上記事情に鑑みてなされたものであって、その目的は、塩素と臭素の含有率が一定以下でハロゲンフリー用途に適しており、更に、バインダーを用いずに高導電性フィルムを形成できる、導電性2次元粒子およびその製造方法を提供することにある。
 本発明の1つの要旨によれば、
 1つの層を含む、または1つの層と複数の層とを含む、層状材料の導電性2次元粒子であって、
 前記層が、以下の式:
  Mmn
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  nは、1以上4以下であり、
  mは、nより大きく、5以下である)
で表される層本体と、該層本体の表面に存在する修飾または終端T(Tは、水酸基、フッ素原子、塩素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含み、
 前記層のMと、PO4 3-、I、およびSO4 2-からなる群より選択される少なくとも1種とが結合し、
 塩素と臭素の合計含有率が1500質量ppm以下であり、
 前記導電性2次元粒子の2次元面の長径の平均値が1.0μm以上である、導電性2次元粒子が提供される。
 本発明のもう1つの要旨によれば、
(a)以下の式:
  MmAXn
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  Aは、少なくとも1種の第12、13、14、15、16族元素であり、
  nは、1以上4以下であり、
  mは、nより大きく、5以下である)
で表される前駆体を準備すること、および
 (b)エッチング液を用いて、前記前駆体からA原子をエッチングすることであって、前記エッチング液は、H3PO4濃度が5.5M以上、HI濃度が5.0M以上、およびH2SO4濃度が5.0M以上からなる群より選択される少なくとも1つを満たすこと
を含む、導電性2次元粒子の製造方法が提供される。
 本発明によれば、導電性2次元粒子が、所定の層状材料(本明細書において「MXene」とも言う)で形成され、前記層のMと、PO4 3-、I、およびSO4 2-からなる群より選択される少なくとも1種とが結合し、塩素と臭素の合計含有率が1500質量ppm以下であり、前記導電性2次元粒子の2次元面の長径の平均値が1.0μm以上であり、これにより、MXeneを含み、かつ、ハロゲンフリー用途に適しており、更に、バインダーを用いずに高導電性フィルムを形成できる、導電性2次元粒子が提供される。また本発明によれば、所定の前駆体を、H3PO4濃度が5.5M以上、HI濃度が5.0M以上、およびH2SO4濃度が5.0M以上からなる群より選択される少なくとも1つを満たすエッチング液を用いて、前記前駆体をエッチングすることにより、前記導電性2次元粒子を製造することができる。
本発明の1つの実施形態における層状材料である単層MXeneを示す概略模式断面図である。 本発明の1つの実施形態における層状材料である多層MXeneを示す概略模式断面図である。 本発明の1つの実施形態における導電性フィルムを示す概略模式断面図である。 実施例2で製造したMXene粒子の走査型電子顕微鏡写真である。 実施例2で製造したMXene粒子の2次元面の長径の測定結果を示すグラフである。 実施例2で製造したMXene粒子の厚さの測定結果を示すグラフである。 実施例2で製造したMXene粒子のP2pナロースペクトル測定結果である。 実施例7で製造したMXene粒子の2次元面の長径の測定結果を示すグラフである。 実施例7で製造したMXene粒子の厚さの測定結果を示すグラフである。 実施例13で製造したMXene粒子の2次元面の長径の測定結果を示すグラフである。 実施例13で製造したMXene粒子の厚さの測定結果を示すグラフである。
 (実施形態1:導電性2次元粒子)
 以下、本発明の1つの実施形態における導電性2次元粒子について詳述するが、本発明はかかる実施形態に限定されるものではない。
 本実施形態における導電性2次元粒子は、
1つの層を含む、または1つの層と複数の層とを含む、層状材料の導電性2次元粒子であって、
 前記層が、以下の式:
  Mmn
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  nは、1以上4以下であり、
  mは、nより大きく、5以下である)
で表される層本体(該層本体は、各XがMの八面体アレイ内に位置する結晶格子を有し得る)と、該層本体の表面(より詳細には、該層本体の互いに対向する2つの表面の少なくとも一方)に存在する修飾または終端T(Tは、水酸基、フッ素原子、塩素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含む。
 上記層状材料は、層状化合物として理解され得、「Mmns」とも表され、sは任意の数であり、従来、sに代えてxまたはzが使用されることもある。代表的には、nは、1、2、3または4であり得るが、これに限定されない。
 MXeneの上記式中、Mは、Ti、Zr、Hf、V、Nb、Ta、Cr、MoおよびMnからなる群より選択される少なくとも1つであることが好ましく、Ti、V、CrおよびMoからなる群より選択される少なくとも1つであることがより好ましい。
 MXeneは、上記の式:Mmnが、以下のように表現されるものが知られている。
 Sc2C、Ti2C、Ti2N、Zr2C、Zr2N、Hf2C、Hf2N、V2C、V2N、Nb2C、Ta2C、Cr2C、Cr2N、Mo2C、Mo1.3C、Cr1.3C、(Ti,V)2C、(Ti,Nb)2C、W2C、W1.3C、Mo2N、Nb1.3C、Mo1.30.6C(上記式中、「1.3」および「0.6」は、それぞれ約1.3(=4/3)および約0.6(=2/3)を意味する。)、
 Ti32、Ti32、Ti3(CN)、Zr32、(Ti,V)32、(Ti2Nb)C2、(Ti2Ta)C2、(Ti2Mn)C2、Hf32、(Hf2V)C2、(Hf2Mn)C2、(V2Ti)C2、(Cr2Ti)C2、(Cr2V)C2、(Cr2Nb)C2、(Cr2Ta)C2、(Mo2Sc)C2、(Mo2Ti)C2、(Mo2Zr)C2、(Mo2Hf)C2、(Mo2V)C2、(Mo2Nb)C2、(Mo2Ta)C2、(W2Ti)C2、(W2Zr)C2、(W2Hf)C2
 Ti43、V43、Nb43、Ta43、(Ti,Nb)43、(Nb,Zr)43、(Ti2Nb2)C3、(Ti2Ta2)C3、(V2Ti2)C3、(V2Nb2)C3、(V2Ta2)C3、(Nb2Ta2)C3、(Cr2Ti2)C3、(Cr22)C3、(Cr2Nb2)C3、(Cr2Ta2)C3、(Mo2Ti2)C3、(Mo2Zr2)C3、(Mo2Hf2)C3、(Mo22)C3、(Mo2Nb2)C3、(Mo2Ta2)C3、(W2Ti2)C3、(W2Zr2)C3、(W2Hf2)C3、(Mo2.71.3)C3(上記式中、「2.7」および「1.3」は、それぞれ約2.7(=8/3)および約1.3(=4/3)を意味する。)
 代表的には、上記の式において、Mがチタンまたはバナジウムであり、Xが炭素原子または窒素原子であり得る。例えば、MAX相は、Ti3AlC2であり、MXeneは、Ti32sである(換言すれば、MがTiであり、XがCであり、nが2であり、mが3である)。
 なお、本発明において、MXeneは、残留するA原子を比較的少量、例えば元のA原子に対して10質量%以下で含んでいてもよい。A原子の残留量は、好ましくは8質量%以下、より好ましくは6質量%以下であり得る。しかしながら、A原子の残留量は、10質量%を超えていたとしても、導電性2次元粒子の用途や使用条件によっては問題がない場合もあり得る。
 本実施形態の導電性2次元粒子は、図1に模式的に例示する1つの層のMXene10a(単層MXene)を含む集合物である。MXene10aは、より詳細には、Mmnで表される層本体(Mmn層)1aと、層本体1aの表面(より詳細には、各層にて互いに対向する2つの表面の少なくとも一方)に存在する修飾または終端T3a、5aとを有するMXene層7aである。よって、MXene層7aは、「Mmns」とも表され、sは任意の数である。
 本実施形態の導電性2次元粒子は、1つの層と共に複数の層を含みうる。複数の層のMXene(多層MXene)として、図2に模式的に示す通り、2つの層のMXene10bが挙げられるが、これらの例に限定されない。図2中の、1b、3b、5b、7bは、前述の図1の1a、3a、5a、7aと同じである。多層MXeneの、隣接する2つのMXene層(例えば7aと7b)は、必ずしも完全に離間していなくてもよく、部分的に接触していてもよい。前記MXene10aは、上記多層MXene10bが個々に分離されて1つの層で存在するものであり、分離されていない多層MXene10bが、残存し、上記単層MXene10aと多層MXene10bの混合物である場合がある。
 本実施形態を限定するものではないが、MXeneの各層(上記のMXene層7a、7bに相当する)の厚さは、例えば0.8nm以上5nm以下、特に0.8nm以上3nm以下である(主に、各層に含まれるM原子層の数により異なり得る)。含まれうる多層MXeneの、個々の積層体について、層間距離(または空隙寸法、図2中にΔdにて示す)は、例えば0.8nm以上10nm以下、特に0.8nm以上5nm以下、より特に約1nmであり、層の総数は、2以上、20,000以下でありうる。
 本実施形態の導電性2次元粒子は、上記含みうる多層MXeneが、層間剥離処理を経て得られた、層数の少ないMXeneであることが好ましい。前記「層数が少ない」とは、例えばMXeneの積層数が6層以下であることをいう。また、層数の少ない多層MXeneの積層方向の厚みは、10nm以下であることが好ましい。以下、この「層数の少ない多層MXene」を「少層MXene」ということがある。また、単層MXeneと少層MXeneを併せて「単層・少層MXene」ということがある。
 本実施形態の導電性2次元粒子は、好ましくは、単層MXeneと少層MXene、すなわち単層・少層MXeneを含む。本実施形態の導電性2次元粒子は、厚みが10nm以下である単層・少層MXeneの割合が、90体積%以上であることが好ましく、より好ましくは95体積%以上である。
 本実施形態の導電性2次元粒子は、前記層のMと、PO4 3-(リン酸イオン)、I(ヨウ素)、およびSO4 2-(硫酸イオン)からなる群より選択される少なくとも1種とが結合している。本実施形態の導電性2次元粒子における前記PO4 3-、I、SO4 2-はそれぞれ、MXeneの前駆体であるMAX相に対してエッチング処理時に使用のエッチング液に含まれる、H3PO4(リン酸)、HI(ヨウ化水素)、およびH2SO4(硫酸)に由来しうる。
 前記層のMと、PO4 3-、SO4 2-等が結合していることは、X線光電子分光装置を用い、高分解能分析(ナロースキャン分析)を行って確認することができる。
 本実施形態の導電性2次元粒子は、前記PO4 3-に由来するリン原子、前記Iに由来するヨウ素原子および前記SO4 2-に由来する硫黄原子からなる群より選択される少なくとも1種を含みうる。本実施形態の導電性2次元粒子は、より好ましくは前記H3PO4(リン酸)に由来する、更には前記PO4 3-に由来する、リン原子を含むことである。本実施形態の導電性2次元粒子は、前記リン原子の含有率が0.20質量%以上14質量%以下、前記ヨウ素原子の含有率が1.0質量%以上60質量%以下、および前記硫黄原子の含有率が0.03質量%以上18質量%以下からなる群より選択される少なくとも1つを満たしていることがより好ましい。
 上記リン原子、ヨウ素原子および硫黄原子からなる群より選択される少なくとも1種を含むこと、および上記各原子の含有率は、例えば、誘導結合プラズマ発光分光分析法(例えばICP-AES)、蛍光X線分析(XRF)などにより測定可能である。
 本実施形態の導電性2次元粒子は、塩素と臭素の合計含有率が1500質量ppm以下である。本実施形態の導電性2次元粒子は、塩素と臭素が抑えられているため、ハロゲンフリーが求められる用途に適用できる。塩素と臭素の合計含有率は、好ましくは900質量ppm以下であり、最も好ましくは0質量ppm以下である。すなわち、本開示において、「導電性2次元粒子は、塩素と臭素の合計含有率が1500質量ppm以下」とは、塩素と臭素とを実質的に全く含有しないものを含む。
 (導電性2次元粒子の2次元面の長径の平均値)
 本実施形態の導電性2次元粒子は、2次元面の長径の平均値が1.0μm以上である。すなわち本実施形態に係る単層・少層MXeneは、2次元面の長径の平均値が1.0μm以上である。以下、2次元面の長径の平均値を「平均フレークサイズ」ということがある。
 下記の表1は、本発明者らが、MXeneの平均フレークサイズとこのMXeneを用いて作成されたフィルムの導電率との関係を別途確認したものである(なお、下記表1は前記関係についてのみ確認したものであって、エッチング液にHClを使用しており、MXene中の塩素濃度低減を図ったものではない)。この表1に示す通り、平均フレークサイズが大きいほど、フィルムの導電率は大きくなり、高導電率のフィルムを得ることができる。
Figure JPOXMLDOC01-appb-T000001
 上記2次元面の長径の平均値は、好ましくは1.5μm以上、より好ましくは2.5μm以上である。エッチング時間(製造コスト)の観点から、好ましくは20μm以下である。本実施形態の導電性2次元粒子は、2次元面の長径の平均値(平均フレークサイズ)が1.0μm以上であり大きいため、この導電性2次元粒子を用いて形成されたフィルム、例えばこの導電性2次元粒子を積層させて得られるフィルムは導電率が高い。
 上記2次元面の長径は、後記の実施例に示す通り、電子顕微鏡写真において、各MXene粒子を楕円形状に近似したときの長径をいい、上記2次元面の長径の平均値は、80粒子以上の上記長径の個数平均をいう。電子顕微鏡として、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)写真を用いることができる。
 本実施形態の導電性2次元粒子の長径の平均値は、該導電性2次元粒子を含む導電性フィルムを溶媒に溶解させ、上記導電性2次元粒子を該溶媒に分散させて測定してもよい。または、前記導電性フィルムのSEM画像から測定してもよい。
 (導電性2次元粒子の厚みの平均値)
 本実施形態の導電性2次元粒子の厚さの平均値は、10nm以下である。前記厚さは、好ましくは7nm以下であり、より好ましくは5nm以下である。一方、単層MXeneの厚みを考慮すると、導電性2次元粒子の厚みの下限は1.0nmとなりうる。
 上記導電性2次元粒子の厚みの平均値は、原子間力顕微鏡(AFM)写真または透過型電子顕微鏡(TEM)写真に基づく数平均寸法(例えば少なくとも40個の数平均)として求められる。
 本実施形態の導電性2次元粒子は、非特許文献1の様に、MXeneの表面に導電性の低いアルキル基が吸着していない。2次元材料の表面に、導電性を有さない嵩高いアルキル基を有する有機分子が存在すると導電率が下がる。これに対して、本実施形態の導電性2次元粒子は、表面にアルキル基を有する有機分子が吸着した構造でないため、積層して作製したフィルムの導電率は高い。
 (実施形態2:導電性2次元粒子の製造方法)
 以下、本発明の1つの実施形態における導電性2次元粒子の製造方法について詳述するが、本発明はかかる実施形態に限定されるものではない。
 本実施形態の導電性2次元粒子の製造方法は、
 (a)所定の前駆体を準備すること、および
 (b)エッチング液を用いて、前記前駆体からA原子をエッチングすることであって、前記エッチング液は、H3PO4濃度が5.5M以上、HI濃度が5.0M以上、およびH2SO4濃度が5.0M以上からなる群より選択される少なくとも1つを満たすこと
を含む。
・工程(a)
 まず、所定の前駆体を準備する。本実施形態において使用可能な所定の前駆体は、MXeneの前駆体であるMAX相であり、
以下の式:
  MmAXn
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  Aは、少なくとも1種の第12、13、14、15、16族元素であり、
  nは、1以上4以下であり、
  mは、nより大きく、5以下である)
で表される。
 上記M、X、nおよびmは、MXeneで説明した通りである。Aは、少なくとも1種の第12、13、14、15、16族元素であり、通常はA族元素、代表的にはIIIA族およびIVA族であり、より詳細にはAl、Ga、In、Tl、Si、Ge、Sn、Pb、P、As、SおよびCdからなる群より選択される少なくとも1種を含み得、好ましくはAlである。
 MAX相は、Mmnで表される2つの層(各XがMの八面体アレイ内に位置する結晶格子を有し得る)の間に、A原子により構成される層が位置した結晶構造を有する。MAX相は、代表的にm=n+1の場合、n+1層のM原子の層の各間にX原子の層が1層ずつ配置され(これらを合わせて「Mmn層」とも称する)、n+1番目のM原子の層の次の層としてA原子の層(「A原子層」)が配置された繰り返し単位を有するが、これに限定されない。
 上記MAX相は、既知の方法で製造することができる。例えばTiC粉末、Ti粉末およびAl粉末を、ボールミルで混合し、得られた混合粉末をAr雰囲気下で焼成し、焼成体(ブロック状のMAX相)を得る。その後、得られた焼成体をエンドミルで粉砕して次工程用の粉末状MAX相を得ることができる。
・工程(b)
 エッチング液を用いて、前記前駆体からA原子(および場合によりM原子の一部)をエッチング(除去および場合により層分離)する。前記エッチング液として、H3PO4濃度が5.5M以上、HI濃度が5.0M以上、およびH2SO4濃度が5.0M以上からなる群より選択される少なくとも1つを満たすエッチング液を用いる。
 従来の塩酸を用いた方法では、エッチング液中に存在するCl-が、立体障害を生じさせる役割を担っていたと考えている。しかし前述のハロゲンフリーを達成するため、塩酸を使用しない方法が望まれていた。上記塩酸をエッチング液に用いない方法では、容易に単層化することが難しく、超音波処理などのせん断力が非常に強い処理が必要であった。しかし、強いせん断力を受けて得られる単層MXeneは、前述の通り平面内での破壊が生じて、2次元面の小さな単層MXeneしか得られなかった。
 本実施形態では、MAX相からA原子(および場合によりM原子の一部)をエッチング(除去および場合により層分離)後の露出したMmn層の表面に、エッチング液中に存在するPO4 3-、I、およびSO4 2-からなる群より選択される少なくとも1種が吸着結合する。これらPO4 3-等がMmn層の表面に吸着することで、立体障害によりMXene層間距離が広がり、Mmn層間のファンデルワールス力が弱まると考えられる。その結果、多層のMmn層に対して強いせん断を与えなくとも、Mmn層を容易に単層化できると考えられる。また、強いせん断を与える必要がないため、Mmn層の平面内での破壊が抑制され、その結果、2次元面の大きな単層のMmn層を得ることができる。
 上記エッチング液は、従来のエッチング液で使用されてきた塩酸を含まず、すなわち塩素原子を含まない。なお、エッチング液の「塩素原子を含まない」とは、エッチング液中の塩素濃度が、例えば燃焼-イオンクロマトグラフィーで測定したときに10質量ppm以下であることをいう。
 上記エッチング液は、従来使用されてきた塩酸を含まず、上記所定量のH3PO4等の少なくともいずれかを含んでいればよく、エッチング液のその他の構成は特に限定されず、既知の条件を採用することができる。例えば、F-を更に含むエッチング液を用いて実施され得、例えば、フッ酸(HF)と上記所定量のH3PO4等の少なくともいずれかとの混合液を用いた方法が挙げられる。この混合液中のフッ酸の濃度は1質量%以上、50質量%以下とすればよい。
 上記エッチング液中の、H3PO4濃度、HI濃度、H2SO4濃度は高ければ高いほど好ましいため、その上限は特に限定されないが、例えばH3PO4濃度は13.2M以下、HI濃度は6.5M以下、H2SO4濃度は16.5M以下とすることができる。
 上記エッチングは、上記エッチング液の組成が従来と異なるのみで、その他のエッチングの条件は、従来行われている条件を採用すればよい。
 上記エッチング後の工程は特に限定されず、既知の方法で、導電性2次元粒子(MXene2次元粒子)を得ることができる。例えば、上記エッチング後のスラリーを、遠心分離-上澄み液除去-残りの沈殿物に純水添加-再度遠心分離を繰り返して洗浄し、次いでインターカレーション処理、およびデラミネーション処理を行うことが挙げられる。
 前記インターカレーション処理では、例えば、上記洗浄して得られたMXeneの水分媒体クレイに対して、上記エッチング液で使用した無機酸と、その無機酸のLi化合物を加え、例えば室温で撹拌することが挙げられる。前記デラミネーション処理では、例えば、上記インターカレーション後のスラリーを、遠心分離して上澄み液を廃棄した後に、残りの沈殿物に純水添加-例えばハンドシェイクによる撹拌-遠心分離-単層・少層MXeneを含む上澄み液の回収を複数回繰り返して、MXene2次元粒子を得ることが挙げられる。
 本実施形態の製造方法では、非特許文献2と異なり、エッチング後にデラミネーションとして超音波処理を行わない。
 (実施形態3:導電性フィルム)
 本実施形態の導電性2次元粒子の用途として、導電性2次元粒子を含有する導電性フィルムが挙げられる。図3を参照して、本実施形態の導電性フィルムを説明する。図3では導電性2次元粒子10のみが積層して得られた導電性フィルム30を例示しているが、これに限定されない。導電性フィルムは、必要に応じて、フィルム形成時に添加されるバインダー等の添加物が含まれていてもよい。前記添加物は、導電性フィルム(乾燥時)に占める割合で好ましくは30体積%以下、更に好ましくは10体積%以下、より更に好ましくは5体積%以下であり、最も好ましくは0体積%である。
 前記バインダー等を使用せずに導電性フィルムを作製する方法として、上記デラミネーションにて得られた、導電性2次元粒子を含む上澄み液を、吸引ろ過することで、導電性フィルムを作製することができる。フィルターは、特に限定されないが、メンブレンフィルターなどを使用し得る。上記吸引ろ過以外に、導電性2次元粒子を含む上澄み液またはクレイ(前記バインダー、後述する樹脂等を含む場合は、それらも含む)を、基材に塗布して導電性フィルムを作製する方法が挙げられる。塗布方法として、例えば、1流体ノズル、2流体ノズル、エアブラシ等のノズルを用いて、スプレー塗布を行う方法、テーブルコーター、コンマコーター、バーコーターを用いたスリットコート、スクリーン印刷、メタルマスク印刷等の方法、スピンコート、ディップコート、滴下等が挙げられる。上記吸引ろ過後または基材に塗布後は適宜、乾燥させて、導電性フィルムを得ることができる。
 本実施形態の導電性2次元粒子は、MXeneの表面に導電率の小さいアルキル基を有する有機分子が吸着した構造でないため、導電性2次元粒子を積層して得られた導電性フィルムの導電率は高い。
 本実施形態の導電性2次元粒子を用いたその他の用途として、前記導電性2次元粒子を含有する導電性ペースト、前記導電性2次元粒子と樹脂を含有する導電性複合材料が挙げられる。これらもハロゲンフリー用途、高導電率が求められる用途に適している。前記樹脂(ポリマー)として、例えば、極性基を有する親水性ポリマーであって、前記極性基が、前記層の修飾または終端Tと水素結合を形成する基であるものが挙げられる。前記ポリマーとして例えば、水溶性ポリウレタン、ポリビニルアルコール、アルギン酸ナトリウム、アクリル酸系水溶性ポリマー、ポリアクリルアミド、ポリアニリンスルホン酸、およびナイロンよりなる群から選択される1種類以上のポリマーが挙げられる。前記ポリマーは、導電性複合材料フィルム(乾燥時)に占める割合で、0体積%超であって、好ましくは30体積%以下とすることができる。
 以上、本発明の1つの実施形態における導電性2次元粒子について、その製造方法を通じて詳述したが、種々の改変が可能である。なお、本発明の導電性2次元粒子は、上述の実施形態における製造方法とは異なる方法によって製造されてもよく、また、本発明の導電性2次元粒子の製造方法は、上述の実施形態における導電性2次元粒子を提供するもののみに限定されないことに留意されたい。
 [実施例1~6、および比較例1,2]
 〔試料の調製〕
 実施例1~6では、以下に詳述する、(1)前駆体(MAX)の準備、(2)前駆体のエッチング、(3)洗浄、(4)インターカレーションおよび(5)デラミネーションの5つの工程を順に実施して、MXene2次元粒子を作製した。また比較例1,2では、前記前駆体のエッチングにおけるエッチング液中のH3PO4濃度を変更した以外は上記実施例と同様にして、MXeneを作製した。
 (1)前駆体(MAX)の準備
 TiC粉末、Ti粉末およびAl粉末(いずれも株式会社高純度化学研究所製)を2:1:1のモル比で、ジルコニアボールを入れたボールミルに投入して24時間混合した。得られた混合粉末をAr雰囲気下にて1350℃で2時間焼成した。これにより得られた焼成体(ブロック状MAX)をエンドミルで最大寸法40μm以下まで粉砕した。これにより、前駆体(MAX)としてTi3AlC2粒子を得た。
 (2)前駆体のエッチング
 上記方法で調製したTi3AlC2粒子(粉末)を用い、下記エッチング条件でエッチングを行って、Ti3AlC2粉末に由来する固体成分を含む固液混合物(スラリー)を得た。
 (エッチング条件)
 ・前駆体:Ti3AlC2(目開き45μmふるい通し)
 ・エッチング液組成:HF濃度とH3PO4濃度が下記表2に記載の通りである水溶液
 ・前駆体投入量:3.0g
 ・エッチング容器:100mLアイボーイ
 ・エッチング温度:35℃
 ・エッチング時間:24h
 ・スターラー回転数:400rpm
 (3)洗浄
 上記スラリーを2分割して、50mL遠沈管2本にそれぞれ挿入し、遠心分離機を用いて3500Gの条件で遠心分離を行った後、上澄み液を廃棄した。(i)各遠沈管において、遠心分離により沈降したクレイに純水40mLを追加し、混合してスラリー化させ、(ii)再度3500Gで遠心分離を行って、上澄み液を分離除去する工程を、11回繰り返した。そして最終遠心分離後に、上澄み液を廃棄し、残りの沈殿物としてTi32s-水分媒体クレイを得た。
 (4)インターカレーション
 上記方法で調製したTi32s-水分媒体クレイに対し、Li3PO4、H3PO4および純水を加え、20℃以上25℃以下で15時間撹拌して、Liインターカレーションを行った。Liインターカレーションの詳細な条件は以下の通りである。
 (Liインターカレーションの条件)
 ・Ti32s-水分媒体クレイ(洗浄後MXene):固形分0.75g
 ・Li3PO4:0.68g
 ・85質量%H3PO4:3.1mL
 ・H2O:31.9mL
 ・インターカレーション容器:100mLアイボーイ
 ・温度:20℃以上25℃以下(室温)
 ・時間:15h
 ・スターラー回転数:800rpm
 (5)デラミネーション
 Liインターカレーション後のスラリーを、50mL遠沈管に投入し、遠心分離機を用いて3500Gの条件で遠心分離を行った後、上澄み液を廃棄した。次いで、上澄みを除いた残りの沈殿物に純水40mLを追加してからシェーカーで15分間撹拌後に、3500Gで遠心分離し、上澄み液を、単層・少層MXene含有液として回収する操作を、4回繰り返して、単層・少層MXene含有試料を得た。
 〔評価〕
 得られたMXene含有試料を用い、単層・少層MXeneの収率、MXene中のリン濃度の測定、MXeneの2次元面の長径と厚みの測定、MXene中の塩素濃度と臭素濃度の測定、およびXPSによるナロースキャン分析を下記に示す通り行った。
 (単層・少層MXeneの収率)
 単層・少層MXeneの収率は下記式から求めた。その結果を表2に示す。なお、下記式において、「単層化しなかったMXene」とは、上記(5)デラミネーションの工程で、遠心分離で最後まで沈降したままのものをいう。
 単層・少層MXeneの収率(%)=[単層・少層MXene乾燥重量/(単層・少層MXene乾燥重量+単層化しなかったMXene乾燥重量)]×100
 (MXene中のリン濃度の測定)
 MXene中のP濃度は、サーモフィッシャーサイエンティフィック社製iCAP6300を用い、ICP発光分光分析法で測定した。その結果を表2に示す。
 (MXeneの2次元面の長径と厚みの測定)
 実施例2で得られたMXeneの2次元面の長径(フレークサイズ)をSEMで測定した。詳細には、アルミナポーラス基板にMXeneスラリーを塗布して乾燥させ、走査型電子顕微鏡(SEM)写真を撮影して測定を行った。詳細には、倍率2,000倍で、1視野サイズが60μm×60μmのSEM画像の視野において、目視で確認できる80粒子以上のMXene粒子を対象とした。基板にポーラス基板を用いた場合、顕微鏡写真における微細な黒点は基板由来である場合がある。バックグラウンドのポーラスの部分を画像処理で消して、その後に、SEM画像解析ソフト「A像くん」(登録商標、旭化成エンジニアリング(株)製)を用いて画像解析を行った。画像解析では、各MXene粒子を楕円形状に近似したときの長径を求め、その個数平均を、2次元面の長径の平均値とした。
 測定結果を図5に示す。図5における横軸のフレークサイズの区分、例えば「0~1」の表示は「0超、1以下」であることを示す。以下、図8および図10についても同じである。図5の結果から、MXeneの2次元面の長径の平均値は3.0μmであった。
 また参考までに、平均フレークサイズが1.00μmの表1のNo.2のSEM写真を図4に示す。なお、前述の通り、表1のNo.2では、エッチング液にHClを使用しており、MXene中の塩素濃度低減を図ったものではない。図4において、黒色の粒子がMXene粒子である。
 また、実施例2で得られたMXeneの厚みを、Burker社製Dimensin FastScanの原子間力顕微鏡(AFM)を用いて測定した。詳細には、シリコン基板にMXeneスラリーを塗布して乾燥させ、原子間力顕微鏡(AFM)写真を撮影し、その画像から厚みを求めた。その結果を図6に示す。図6における横軸のフレーク厚みの区分、例えば「1~3」の表示は「1超、3以下」であることを示す。以下、図9および図11についても同じである。図6の結果から、MXeneの厚みの平均値は3.9nmであった。
 (MXene中の塩素濃度と臭素濃度の測定)
 実施例2で得られたMXene中の塩素濃度と臭素濃度を、サーモフィッシャーサイエンティフィック社製の燃焼イオンクロマトグラフィー装置(Dionex ICS-5000)を用いて測定した。その結果、塩素濃度は50質量ppm以下であり、臭素濃度も50質量ppm以下、すなわち、塩素と臭素の合計含有率は100質量ppm以下であった。
 (XPSによるナロースキャン分析)
 実施例2のMXeneにおける原子間の化学結合状態として、P2pナロースペクトルを、アルバック・ファイ社製VersaProbeX線光電子分光装置を用いて、下記の条件でXPS測定を行い、高分解能分析(ナロースキャン分析)を行って得た。その結果を図7に示す。図7において、矢印Aで示す上段のスペクトルが単層・少層MXeneのスペクトル、矢印Bで示す下段のスペクトルが単層化しなかった多層MXeneのスペクトルを示す。また、破線部分は、TiPのP2pの結合エネルギー位置を示し、図面中央のピーク位置は、リン酸チタンのP2pの結合エネルギー位置を示す。この図7から、MXeneを構成するTiは、リン酸と結合していることがわかる。
(XPS測定条件)
入射X線:単色化AlKα
X線出力:25.6W
測定面積:直径100μm
光電子取込角度:45.0度
パスエネルギー:23.50eV
Figure JPOXMLDOC01-appb-T000002
 これらの結果から、次のことがわかる。比較例1、2では、エッチング液中のH3PO4濃度が低く、フレークサイズが1.0μm以上で単層・少層のMXene粒子が得られなかった。非特許文献3のエッチング液中のH3PO4濃度は4.5Mであるのに対し、本実施形態によれば、エッチング液中のH3PO4濃度が5.5M以上13.2M以下の範囲で単層化が起こり、H3PO4濃度が高いほど、単層・少層MXeneの収率が高くなることが分かった。
 本実施形態で得られたMXene2次元粒子は、塩素と臭素の合計含有率は100質量ppm以下であるため、ハロゲンフリー用途に使用できる。本実施形態で得られたMXene2次元粒子は、2次元面の長径の平均値が1.0μm以上であり、かつ厚みの平均値が5nm以下であった。特に図5および図6から、本実施形態で得られたMXene2次元粒子は、大半がフレークサイズ1.0μm以上であり、かつ厚みが5nm以下であった。よって、本実施形態で得られたMXene2次元粒子を用い、バインダーを添加することなく、ハンドリングが可能なフィルムを作製できる。更に、フレークサイズが1.0μm以上と大きいため、下記に示す通り、高導電率のフィルムが得られる。
 〔MXeneフィルムの作製〕
 実施例2のMXeneを用い、上記(5)デラミネーションにて得られた、MXene2次元粒子が固形分で0.09g、純水40mLを含む上澄み液を、吸引ろ過することで、フィルムを作製した。吸引ろ過のフィルターには、メンブレンフィルター(メルク株式会社製、デュラポア、孔径0.45μm)を用いた。該方法でフィルム1とフィルム2の2枚のMXeneフィルムを作製した。そして、得られたMXeneフィルムの密度と導電率を、以下の通り測定した。
 (フィルムの密度の測定)
 フィルムをパンチで直径12mmの円盤状に打ち抜き、電子天秤で重量を測定し、マイクロメーターで厚みを測定した。そしてこれらの測定値からフィルム密度を算出した。その結果を表3に示す。
 (フィルムの導電率の測定)
 得られたMXeneフィルムの導電率を求めた。導電率は、1サンプルにつき3箇所で、抵抗率(Ω)および厚さ(μm)を測定して、これら測定値から導電率(S/cm)を算出し、これにより得られた3つの導電率の平均値を採用した。抵抗率測定には、簡易型低抵抗率計(株式会社三菱ケミカルアナリティック製、ロレスタAX MCP-T370)を用いてフィルムの表面抵抗を4端子法にて測定した。厚さ測定には、マイクロメーター(株式会社ミツトヨ製、MDH-25MB)を用いた。そして、得られた表面抵抗とフィルム厚みから体積抵抗率を求め、その値の逆数を取ることで導電率を求めた。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 上記表3の結果から、本実施形態のMXene2次元粒子を用い、バインダーを添加することなく作製したMXeneフィルムは、導電率が5000S/cm以上であり、高い導電率を示した。
 [実施例7~12および比較例3、4]
 〔試料の調製〕
 実施例7~12では、エッチング条件とLiインターカレーション条件を下記の通りとする以外は、実施例1~6と同様にして(1)前駆体(MAX)の準備、(2)前駆体のエッチング、(3)洗浄、(4)インターカレーションおよび(5)デラミネーションの5つの工程を順に実施して、MXene2次元粒子を作製した。また比較例3、4では、前記前駆体のエッチングにおけるエッチング液中のHI濃度を変更した以外は上記実施例と同様に実施した。
 (エッチング条件)
 ・前駆体:Ti3AlC2(目開き45μmふるい通し)
 ・エッチング液組成:HF濃度とHI濃度が下記表4に記載の通りである水溶液
 ・前駆体投入量:3.0g
 ・エッチング容器:100mLアイボーイ
 ・エッチング温度:35℃
 ・エッチング時間:24h
 ・スターラー回転数:400rpm
 (Liインターカレーションの条件)
 ・Ti32s-水分媒体クレイ(洗浄後MXene):固形分0.75g
 ・LiI:2.37g
 ・55質量%HI:0.7mL
 ・H2O:34.3mL
 ・インターカレーション容器:100mLアイボーイ
 ・温度:20℃以上25℃以下(室温)
 ・時間:15h
 ・スターラー回転数:800rpm
 〔評価〕
 得られたMXene含有試料を用い、単層・少層MXeneの収率、MXene中のヨウ素濃度の測定、MXeneの2次元面の長径と厚みの測定、およびMXene中の塩素濃度と臭素濃度の測定を下記に示す通り行った。
 (単層MXeneの収率)
 前記実施例1~6と同様にして単層・少層MXeneの収率を求めた。その結果を表4に示す。
 (MXene中のヨウ素濃度の測定)
 MXene中のヨウ素(I)濃度は、サーモフィッシャーサイエンティフィック社製の燃焼イオンクロマトグラフィー装置(Dionex ICS-5000)を用いて測定した。その結果を表4に示す。
 (MXeneの2次元面の長径と厚みの測定)
 実施例7のMXeneの2次元面の長径と厚みを、前記実施例1~6と同様に測定した。その結果をそれぞれ図8、図9に示す。図8の結果から、MXeneの2次元面の長径の平均値は3.2μmであった。また、図9の結果から、MXeneの厚みの平均値は3.6nmであった。
 (MXene中の塩素濃度と臭素濃度の測定)
 実施例7のMXene中の塩素濃度と臭素濃度を、前記実施例1~6と同様に測定した。その結果、塩素濃度は50質量ppm以下であり、臭素濃度も50質量ppm以下、すなわち、塩素と臭素の合計含有率は100質量ppm以下であった。
Figure JPOXMLDOC01-appb-T000004
 これらの結果から、次のことがわかる。比較例3、4では、エッチング液中のHI濃度が低く、フレークサイズが1.0μm以上で単層・少層のMXene粒子が得られなかった。非特許文献3のエッチング液中のHI濃度は4.5Mであるのに対し、本実施形態によれば、エッチング液中のHI濃度が5.0M以上6.5M以下の範囲で単層化が起こり、HI濃度が高いほど、単層・少層MXeneの収率が高くなることが分かった。また、HI濃度とともにHF濃度も高くすることで、単層・少層MXeneの収率がさらに高くなることが分かった。
 本実施形態で得られたMXene2次元粒子は、塩素と臭素の合計含有率が100質量ppm以下であるため、ハロゲンフリー用途に使用できる。本実施形態で得られたMXene2次元粒子は、2次元面の長径の平均値が1.0μm以上であり、かつ厚みの平均値が5nm以下であった。特に図8および図9から、本実施形態で得られたMXene2次元粒子は、大半がフレークサイズ1.0μm以上であり、かつ厚みが5nm以下であった。よって、本実施形態で得られたMXene2次元粒子を用い、バインダーを添加することなく、ハンドリングが可能なフィルムを作製できる。更に、フレークサイズが1.0μm以上と大きいため、下記に示す通り、高導電率のフィルムが得られる。
 〔MXeneフィルムの作製〕
 実施例7のMXeneを用い、上記(5)デラミネーションにて得られた、MXene2次元粒子が固形分で0.05g、純水40mLを含む上澄み液を、吸引ろ過することで、フィルムを作製した。吸引ろ過のフィルターには、メンブレンフィルター(メルク株式会社製、デュラポア、孔径0.45μm)を用いた。
 作成したフィルムの密度と導電率を、実施例2のフィルムの場合と同様に測定した。その結果、フィルムのフィルム密度は2.82g/cm3であり、導電率は8000S/cmであった。
 上記結果から、本実施形態のMXene2次元粒子を用い、バインダーを添加することなく作製したMXeneフィルムは、導電率が5000S/cm以上、更には7000S/cm以上を達成し、高い導電率を示した。
 [実施例13~15、および比較例5、6]
 〔試料の調製〕
 実施例13~15では、エッチング条件とLiインターカレーション条件を下記の通りとする以外は、実施例1~6と同様にして(1)前駆体(MAX)の準備、(2)前駆体のエッチング、(3)洗浄、(4)インターカレーションおよび(5)デラミネーションの5つの工程を順に実施して、MXene2次元粒子を作製した。また比較例5,6では、前記前駆体のエッチングにおけるエッチング液中のH2SO4濃度を変更した以外は上記実施例と同様に実施した。
 (エッチング条件)
・前駆体:Ti3AlC2(目開き45μmふるい通し)
・エッチング液組成:HF濃度とH2SO4濃度が下記表5に記載の通りである水溶液
・前駆体投入量:3.0g
・エッチング容器:100mLアイボーイ
・エッチング温度:35℃
・エッチング時間:24h
・スターラー回転数:400rpm
 (Liインターカレーションの条件)
 ・Ti32s-水分媒体クレイ(洗浄後MXene):固形分0.75g
 ・Li2SO4・H2O:2.26g
 ・H2O:34.7mL
 ・98質量%H2SO4:0.3mL
 ・インターカレーション容器:100mLアイボーイ
 ・温度:20℃以上25℃以下(室温)
 ・時間:15h
 ・スターラー回転数:800rpm
 〔評価〕
 得られたMXene含有試料を用い、単層・少層MXeneの収率、MXene中の硫黄(S)濃度の測定、MXeneの2次元面の長径と厚みの測定、およびMXene中の塩素濃度と臭素濃度の測定を下記に示す通り行った。
 (単層・少層MXeneの収率)
 前記実施例1~6と同様にして単層・少層MXeneの収率を求めた。その結果を表5に示す。
 (MXene中の硫黄(S)濃度の測定)
 得られた単層MXene含有試料を用い、MXene中の硫黄(S)濃度を、(株)堀場製作所製EMIA-920V2/FAを用い、酸素気流中燃焼(高周波加熱炉方式)-赤外線吸収法で測定した。その結果を表5に示す。
 (MXeneの2次元面の長径と厚みの測定)
 実施例13のMXeneの2次元面の長径と厚みを、前記実施例1~6と同様に測定した。その結果をそれぞれ、図10、図11に示す。図10の結果から、MXeneの2次元面の長径の平均値は2.7μmであった。また、図11の結果から、MXeneの厚みの平均値は4.2nmであった。
 (MXene中の塩素濃度と臭素濃度の測定)
 実施例13のMXene中の塩素濃度と臭素濃度を、前記実施例1~6と同様に測定した。その結果、塩素濃度は50質量ppm以下であり、臭素濃度も50質量ppm以下、すなわち、塩素と臭素の合計含有率は100質量ppm以下であった。
Figure JPOXMLDOC01-appb-T000005
 これらの結果から、次のことがわかる。比較例5、6では、エッチング液中のH2SO4濃度が低く、フレークサイズが1.0μm以上で単層・少層のMXene粒子が得られなかった。非特許文献3のエッチング液中のH2SO4濃度は4.5Mであるのに対し、本実施形態によれば、エッチング液中のH2SO4濃度が5.0M以上7.4M以下の範囲で単層化が起こり、H2SO4濃度が高いほど、単層・少層MXeneの収率が高くなることが分かった。
 本実施形態で得られたMXene2次元粒子は、塩素と臭素の合計含有率が100質量ppm以下であるため、ハロゲンフリー用途に使用できる。本実施形態で得られたMXene2次元粒子は、2次元面の長径の平均値が1.0μm以上であり、かつ厚みの平均値が5nm以下であった。特に図10および図11から、本実施形態で得られたMXene2次元粒子は、大半がフレークサイズ1.0μm以上であり、かつ厚みが5nm以下であった。よって、本実施形態で得られたMXene2次元粒子を用い、バインダーを添加することなく、ハンドリングが可能なフィルムを作製できる。更に、フレークサイズが1.0μm以上と大きいため、下記に示す通り、高導電率のフィルムが得られる。
 〔MXeneフィルムの作製〕
 実施例13のMXeneを用い、上記(5)デラミネーションにて得られた、MXene2次元粒子が固形分で0.06g、純水40mLを含む上澄み液を、吸引ろ過することで、フィルムを作製した。吸引ろ過のフィルターには、メンブレンフィルター(メルク株式会社製、デュラポア、孔径0.45μm)を用いた。
 作成したフィルムの密度と導電率を、実施例2のフィルムの場合と同様に測定した。その結果、上記フィルムの密度は1.58g/cm3であり、導電率は5130S/cmであった。
 上記結果から、本実施形態のMXene2次元粒子を用い、バインダーを添加することなく作製したMXeneフィルムは、導電率が5000S/cm以上を達成し、高い導電率を示した。
 本発明のペーストおよび導電性フィルムは、任意の適切な用途に利用され得、例えば電気デバイスにおける電極として特に好ましく使用され得る。
 本出願は、日本国特許出願である特願2020-147676号を基礎出願とする優先権主張を伴う。特願2020-147676号は参照することにより本明細書に取り込まれる。
  1a、1b 層本体(Mmn層)
  3a、5a、3b、5b 修飾または終端T
  7a、7b MXene層
  10、10a、10b MXene粒子(層状材料の粒子)
  30 導電性フィルム

Claims (8)

  1.  1つの層を含む、または1つの層と複数の層とを含む、層状材料の導電性2次元粒子であって、
     前記層が、以下の式:
      Mmn
     (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
      Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
      nは、1以上4以下であり、
      mは、nより大きく、5以下である)
    で表される層本体と、該層本体の表面に存在する修飾または終端T(Tは、水酸基、フッ素原子、塩素原子、酸素原子および水素原子からなる群より選択される少なくとも1種である)とを含み、
     前記層のMと、PO4 3-、I、およびSO4 2-からなる群より選択される少なくとも1種とが結合し、
     塩素と臭素の合計含有率が1500質量ppm以下であり、
     前記導電性2次元粒子の2次元面の長径の平均値が1.0μm以上である、導電性2次元粒子。
  2.  リン原子の含有率が0.20質量%以上14質量%以下、
    ヨウ素原子の含有率が1.0質量%以上60質量%以下、および
    硫黄原子の含有率が0.03質量%以上18質量%以下からなる群より選択される少なくとも1つを満たす、請求項1に記載の導電性2次元粒子。
  3.  厚みの平均値が5nm以下である、請求項1または2に記載の導電性2次元粒子。
  4.  (a)以下の式:
      MmAXn
     (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
      Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
      Aは、少なくとも1種の第12、13、14、15、16族元素であり、
      nは、1以上4以下であり、
      mは、nより大きく、5以下である)
    で表される前駆体を準備すること、および
     (b)エッチング液を用いて、前記前駆体からA原子をエッチングすることであって、前記エッチング液は、H3PO4濃度が5.5M以上、HI濃度が5.0M以上、およびH2SO4濃度が5.0M以上からなる群より選択される少なくとも1つを満たすこと
    を含む、導電性2次元粒子の製造方法。
  5.  前記(b)のエッチングの後に、インターカレーション処理、およびデラミネーション処理を行う、請求項4に記載の導電性2次元粒子の製造方法。
  6.  請求項1~3のいずれかに記載の導電性2次元粒子を含有する導電性フィルム。
  7.  請求項1~3のいずれかに記載の導電性2次元粒子を含有する導電性ペースト。
  8.  請求項1~3のいずれかに記載の導電性2次元粒子と樹脂を含有する導電性複合材料。
PCT/JP2021/031565 2020-09-02 2021-08-27 導電性2次元粒子およびその製造方法 WO2022050191A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022546293A JP7487783B2 (ja) 2020-09-02 2021-08-27 導電性2次元粒子およびその製造方法
CN202180053101.3A CN116096669A (zh) 2020-09-02 2021-08-27 导电性二维粒子及其制造方法
US18/175,981 US20230207152A1 (en) 2020-09-02 2023-02-28 Conductive two-dimensional particle and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-147676 2020-09-02
JP2020147676 2020-09-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/175,981 Continuation US20230207152A1 (en) 2020-09-02 2023-02-28 Conductive two-dimensional particle and method for producing the same

Publications (1)

Publication Number Publication Date
WO2022050191A1 true WO2022050191A1 (ja) 2022-03-10

Family

ID=80491710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031565 WO2022050191A1 (ja) 2020-09-02 2021-08-27 導電性2次元粒子およびその製造方法

Country Status (4)

Country Link
US (1) US20230207152A1 (ja)
JP (1) JP7487783B2 (ja)
CN (1) CN116096669A (ja)
WO (1) WO2022050191A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162423A1 (ja) * 2022-02-28 2023-08-31 株式会社村田製作所 2次元粒子、2次元粒子の製造方法および材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017076739A (ja) * 2015-10-16 2017-04-20 国立大学法人 東京大学 層状化合物を含む電気化学キャパシタ用電極材料の製造方法
JP2020093971A (ja) * 2018-10-02 2020-06-18 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー 飽和または不飽和炭化水素を含む官能基で表面改質された2次元マキシン(MXene)粒子及びその製造方法及び用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017076739A (ja) * 2015-10-16 2017-04-20 国立大学法人 東京大学 層状化合物を含む電気化学キャパシタ用電極材料の製造方法
JP2020093971A (ja) * 2018-10-02 2020-06-18 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー 飽和または不飽和炭化水素を含む官能基で表面改質された2次元マキシン(MXene)粒子及びその製造方法及び用途

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162423A1 (ja) * 2022-02-28 2023-08-31 株式会社村田製作所 2次元粒子、2次元粒子の製造方法および材料

Also Published As

Publication number Publication date
US20230207152A1 (en) 2023-06-29
JP7487783B2 (ja) 2024-05-21
CN116096669A (zh) 2023-05-09
JPWO2022050191A1 (ja) 2022-03-10

Similar Documents

Publication Publication Date Title
WO2022080321A1 (ja) 導電性2次元粒子およびその製造方法、導電性膜、導電性複合材料、ならびに導電性ペースト
KR102150818B1 (ko) MXene 입자 재료, 슬러리, 이차 전지, 투명 전극, MXene 입자 재료의 제조 방법
US8691441B2 (en) Graphene-enhanced cathode materials for lithium batteries
WO2017047521A1 (ja) グラフェン分散液およびその製造方法、グラフェン-活物質複合体粒子の製造方法ならびに電極ペーストの製造方法
WO2022030444A1 (ja) 導電性複合材料
Luo et al. A timesaving, low-cost, high-yield method for the synthesis of ultrasmall uniform graphene oxide nanosheets and their application in surfactants
WO2019074109A1 (ja) 無機粒子複合体およびその製造方法、並びに無機粒子複合体分散液
CN111591992A (zh) 一种单层MXene纳米片及其制备方法
US20240034634A9 (en) Conductive two-dimensional particle and method for producing the same
JP7479390B2 (ja) 分散性端部官能化グラフェンプレートレット
Seok et al. Synthesis of high quality 2D carbide MXene flakes using a highly purified MAX precursor for ink applications
US20230207152A1 (en) Conductive two-dimensional particle and method for producing the same
WO2022153890A1 (ja) 導電性膜およびその製造方法
JP5326336B2 (ja) 導電体及びその製造方法
JP2013100219A (ja) 薄片状黒鉛微粒子の製造方法
JP6747061B2 (ja) 無機層状材料、無機層状材料積層体、及び無機層状材料分散液
WO2023047861A1 (ja) 導電性2次元粒子含有組成物、導電性膜、および導電性2次元粒子含有組成物の製造方法
WO2022050317A1 (ja) 導電性膜およびその製造方法
WO2023048081A1 (ja) 2次元粒子、導電性膜、導電性ペーストおよび2次元粒子の製造方法
WO2023223780A1 (ja) 導電性2次元粒子およびその製造方法、導電性膜、導電性ペースト、ならびに導電性複合材料
JP6979196B2 (ja) 層状鉱物粉体の剥離方法および層状ナノプレート複合体の製造方法
JP7432180B2 (ja) ペーストおよび導電性フィルムならびにそれらの製造方法
WO2022259775A1 (ja) 磁性材料、電磁気部品及び磁性材料の製造方法
WO2023053721A1 (ja) 導電性2次元粒子およびその製造方法
KR101583335B1 (ko) 2차원 하이브리드 소재 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546293

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864249

Country of ref document: EP

Kind code of ref document: A1