WO2022050071A1 - レーザ装置、及びレーザ装置の製造方法 - Google Patents

レーザ装置、及びレーザ装置の製造方法 Download PDF

Info

Publication number
WO2022050071A1
WO2022050071A1 PCT/JP2021/030434 JP2021030434W WO2022050071A1 WO 2022050071 A1 WO2022050071 A1 WO 2022050071A1 JP 2021030434 W JP2021030434 W JP 2021030434W WO 2022050071 A1 WO2022050071 A1 WO 2022050071A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
flow path
light source
source unit
holder
Prior art date
Application number
PCT/JP2021/030434
Other languages
English (en)
French (fr)
Inventor
琢斗 井口
義則 加藤
宇亮 森田
一希 川合
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN202180054293.XA priority Critical patent/CN116057796A/zh
Priority to US18/022,764 priority patent/US20230318245A1/en
Priority to EP21864129.8A priority patent/EP4181332A4/en
Publication of WO2022050071A1 publication Critical patent/WO2022050071A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/061Crystal lasers or glass lasers with elliptical or circular cross-section and elongated shape, e.g. rod
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/09408Pump redundancy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4056Edge-emitting structures emitting light in more than one direction

Definitions

  • This disclosure relates to a laser device and a method for manufacturing the laser device.
  • a laser device including a rod-shaped laser medium and a plurality of excitation light sources for emitting excitation light for exciting the laser medium is known (see, for example, Patent Document 1).
  • each excitation light source may be configured to be detachable from the laser device while the laser device is mounted on the laser system. In such a configuration, when exchanging each excitation light source, it is necessary to severely adjust the position and orientation of each excitation light source with respect to the laser medium so that the excitation distribution in the laser medium becomes a desired state.
  • the entire laser device may be configured to be detachable from the laser system. In such a configuration, when exchanging each excitation light source, it is necessary to severely adjust the position and orientation of the laser device in the laser system so that the optical axis of the laser medium coincides with the optical axis of the laser system. be.
  • the laser apparatus on one side of the present disclosure includes a rod-shaped laser medium extending along a first direction, a first base, and a first light source unit including a plurality of excitation light sources attached to the first base.
  • a holder that supports a second light source unit, at least one of the first base and the holder includes a first defining part that defines the position of the first base with respect to the holder, and at least one of the second base and the holder. , Includes a second defining part that defines the position of the second base with respect to the holder.
  • the first base and a plurality of excitation light sources are unitized as a first light source unit
  • the second base and a plurality of excitation light sources are unitized as a second light source unit
  • the second light source unit is supported by the holder in a state of being juxtaposed in the second direction.
  • a plurality of excitation light sources can be easily attached to and detached from the holder simply by attaching and detaching the first base and the second base to and from the holder.
  • the position of the first base with respect to the holder is defined by the first defining unit
  • the position of the second base with respect to the holder is the second.
  • a plurality of excitation light sources can be easily positioned with respect to the laser medium only by attaching each of the first base and the second base to the holder supporting the laser medium.
  • this laser device it is possible to facilitate the attachment / detachment of a plurality of excitation light sources and the positioning of a plurality of excitation light sources.
  • the holder includes a first holding member and a second holding member juxtaposed in the first direction, and a connecting member for connecting the first holding member and the second holding member.
  • the first light source unit and the second light source unit may be arranged between the first holding member and the second holding member. According to this, it is possible to reduce the size of the laser device and simplify the structure.
  • the connecting member may have a support surface that slidably supports the first base and the second base along the second direction. According to this, by sliding each of the first base and the second base on the support surface of the connecting member, a plurality of excitation light sources can be easily attached to and detached from the holder.
  • the connecting member includes, as a first defining part, a first stopper that regulates the movement of the first base along the second direction, and as a second defining part, in the second direction. It may include a second stopper that regulates the movement of the second base along.
  • the first base includes the first flow path through which the refrigerant flows
  • the second base includes the second flow path through which the refrigerant flows
  • the holder is the third flow path through which the refrigerant flows. May include. According to this, the laser medium and a plurality of excitation light sources can be cooled.
  • the first flow path, the second flow path, and the third flow path may communicate with each other. According to this, the laser medium and a plurality of excitation light sources can be efficiently cooled.
  • the holder includes a cylinder in which the laser medium is arranged inside, the cylinder has light transmission, and the third flow path is the laser medium and the cylinder.
  • the first branch includes the main flow path including the flow path between the main flow path, the first branch flow path and the second branch flow path branching from the main flow path, and the third branch flow path and the fourth branch flow path joining the main flow path.
  • the downstream end of the flow path is connected to the upstream end of the first flow path
  • the downstream end of the second branch flow path is connected to the upstream end of the second flow path, and the upstream end of the third branch flow path.
  • the end may be connected to the downstream end of the first flow path, and the upstream end of the fourth branch flow path may be connected to the downstream end of the second flow path.
  • the plurality of excitation light sources may be arranged along the circumference centered on the center line of the laser medium when viewed from the first direction. According to this, it is possible to make the excitation distribution uniform in the laser medium.
  • each of the plurality of excitation light sources may include a semiconductor laser device. According to this, it is possible to extend the life of the excitation light source. Further, since a plurality of excitation light sources are unitized as a first light source unit or a second light source unit, the delicacy required for handling as a single semiconductor laser device becomes unnecessary.
  • the semiconductor laser device may include a plurality of laminated semiconductor laser bars. According to this, the laser medium can be excited efficiently and sufficiently.
  • the laser apparatus on one side of the present disclosure includes a rod-shaped laser medium extending along a first direction, a first base, and a first light source unit including a plurality of excitation light sources attached to the first base.
  • a holder that supports the second light source unit, and at least one of the first base and the holder includes a first defining part that defines the position of the first base with respect to the holder, and at least the first base and the second base.
  • the first base and a plurality of excitation light sources are unitized as a first light source unit
  • the second base and a plurality of excitation light sources are unitized as a second light source unit
  • the second light source unit is supported by the holder in a state of being juxtaposed in the second direction.
  • a plurality of excitation light sources can be easily attached to and detached from the holder simply by attaching and detaching the first base and the second base to and from the holder.
  • the position of the first base with respect to the holder is defined by the first defining unit
  • the position of the second base with respect to the first base is defined.
  • a plurality of excitation light sources can be easily positioned with respect to the laser medium only by attaching each of the first base and the second base to the holder supporting the laser medium.
  • this laser device it is possible to facilitate the attachment / detachment of a plurality of excitation light sources and the positioning of a plurality of excitation light sources.
  • a method of manufacturing a laser apparatus includes a first light source unit including a first base and a plurality of excitation light sources attached to the first base, and a plurality of laser devices attached to the second base and the second base.
  • the first base is arranged in the holder from one side in the second direction intersecting the first direction in which the rod-shaped laser medium extends, and the first base is arranged in the holder from the other side in the second direction.
  • a laser device capable of facilitating attachment / detachment of a plurality of excitation light sources and facilitation of positioning of a plurality of excitation light sources, and a method for manufacturing such a laser device. ..
  • FIG. 1 is a cross-sectional view of the laser apparatus of one embodiment.
  • FIG. 2 is a cross-sectional view of the laser device along line II-II shown in FIG.
  • FIG. 3 is a cross-sectional view of the laser device along line III-III shown in FIG.
  • FIG. 4 is a cross-sectional view of the laser apparatus along the IV-IV line shown in FIG.
  • FIG. 5 is a cross-sectional view of the laser apparatus along the VV line shown in FIG.
  • FIG. 6 is a cross-sectional view of the laser device along the VI-VI line shown in FIG.
  • FIG. 7 is a cross-sectional view of a laser device for explaining a method of manufacturing the laser device of one embodiment.
  • FIG. 1 is a cross-sectional view of the laser apparatus of one embodiment.
  • FIG. 2 is a cross-sectional view of the laser device along line II-II shown in FIG.
  • FIG. 3 is a cross-sectional view of the laser device along line III-III
  • FIG. 8 is a cross-sectional view of the laser apparatus along VIII-VIII shown in FIG.
  • FIG. 9 is a front view of the first light source unit and the second light source unit of the modified example.
  • FIG. 10 is a perspective view of the first light source unit of the modified example.
  • FIG. 11 is a schematic diagram showing the excitation distribution of the laser medium by the first light source unit and the second light source unit of the modified example.
  • FIG. 12 is a front view of the first light source unit and the second light source unit of the modified example.
  • the laser device 1 includes a laser medium 20, a first light source unit 30, a second light source unit 40, and a holder 50.
  • the laser medium 20, the first light source unit 30, and the second light source unit 40 are supported by the holder 50.
  • the laser device 1 is used as a laser amplifier that amplifies the laser beam L in a laser system.
  • the direction in which the laser beam L is incident on the laser device 1 is referred to as the X direction
  • one direction perpendicular to the X direction is referred to as the Y direction
  • the direction perpendicular to both the X direction and the Y direction is referred to as the Z direction.
  • the laser medium 20 is a rod-shaped solid-state laser medium extending along the X direction (first direction).
  • the laser medium 20 has a center line CL parallel to the X direction.
  • the shape of the laser medium 20 is, for example, a cylindrical shape having a diameter of about 10 mm and a length of about 200 mm.
  • the material of the laser medium 20 is, for example, Nd: YAG.
  • the first light source unit 30 and the second light source unit 40 are arranged side by side in the Y direction (the second direction intersecting the first direction).
  • the first light source unit 30 is arranged on one side in the Y direction with respect to the center line CL.
  • the second light source unit 40 is arranged on the other side in the Y direction with respect to the center line CL.
  • the first light source unit 30 includes a first base 31 and a plurality of excitation light sources 32.
  • the plurality of excitation light sources 32 are attached to the first base 31.
  • the second light source unit 40 includes a second base 41 and a plurality of excitation light sources 42.
  • the plurality of excitation light sources 42 are attached to the second base 41.
  • the first base 31 and the second base 41 are plate-shaped members whose thickness direction is the X direction, respectively.
  • the set of the first base 31 and the second base 41 defines an opening having a plurality of inner surfaces facing the laser medium 20.
  • Each of the excitation light sources 32 is arranged on each of the plurality of mounting surfaces 31a of the first base 31 among the plurality of inner surfaces.
  • Each excitation light source 42 is arranged on each of the plurality of mounting surfaces 41a of the second base 41 among the plurality of inner surfaces.
  • the shape of the set of the first base 31 and the second base 41 is, for example, a rectangular plate shape.
  • the respective materials of the first base 31 and the second base 41 are, for example, aluminum.
  • the thickness of each of the first base 31 and the second base 41 is larger than the thickness of each of the first holding member 51 and the second holding member 52, which will be described later. This makes it possible to reliably hold the plurality of excitation light sources 32 and 42.
  • Each of the plurality of excitation light sources 32 and 42 emits excitation light EL for exciting the laser medium 20.
  • the plurality of excitation light sources 32 and 42 are arranged along the circumference centered on the center line CL of the laser medium 20 when viewed from the X direction.
  • the set of the first base 31 and the second base 41 defines a regular hexagonal opening having six mounting surfaces 31a, 41a as a plurality of inner surfaces, and six excitation light sources 32, 42. However, they are arranged at a pitch of 60 ° along the circumference centered on the center line CL.
  • the plurality of excitation light sources 32 and 42 are arranged inside the first base 31 and the second base 41 (on the laser medium 20 side), even if an impact is applied to the laser device 1 from the outside. , A plurality of excitation light sources 32, 42 can be reliably protected.
  • Each excitation light source 32 includes a semiconductor laser element 33 and a lens 34.
  • the semiconductor laser device 33 emits excitation light EL toward the laser medium 20.
  • the lens 34 is arranged on the laser medium 20 side with respect to the semiconductor laser element 33.
  • the lens 34 converges the excitation light EL emitted from the semiconductor laser device 33 on the laser medium 20.
  • the semiconductor laser element 33 includes a plurality of semiconductor laser bars 33a and a heat sink 33b.
  • the plurality of semiconductor laser bars 33a are laminated so that the emission end faces of the semiconductor laser bars 33a are arranged in two dimensions in a plane perpendicular to the direction in which the semiconductor laser element 33 and the laser medium 20 face each other.
  • the heat sink 33b is arranged on the mounting surface 31a in a state of supporting the plurality of semiconductor laser bars 33a.
  • the heat sink 33b absorbs the heat generated by the plurality of semiconductor laser bars 33a and releases the heat to the first base 31 side. It should be noted that each excitation light source 32 does not have to include the lens 34.
  • Each excitation light source 42 includes a semiconductor laser element 43 and a lens 44.
  • the semiconductor laser device 43 emits excitation light EL toward the laser medium 20.
  • the lens 44 is arranged on the laser medium 20 side with respect to the semiconductor laser element 43.
  • the lens 44 converges the excitation light EL emitted from the semiconductor laser device 43 on the laser medium 20.
  • the semiconductor laser element 43 includes a plurality of semiconductor laser bars 43a and a heat sink 43b.
  • the plurality of semiconductor laser bars 43a are laminated so that the emission end faces of the semiconductor laser bars 43a are arranged in two dimensions in a plane perpendicular to the direction in which the semiconductor laser element 43 and the laser medium 20 face each other.
  • the heat sink 43b is arranged on the mounting surface 41a in a state of supporting the plurality of semiconductor laser bars 43a.
  • the heat sink 43b absorbs the heat generated by the plurality of semiconductor laser bars 43a and releases the heat to the second base 41 side. It should be noted that each excitation light source 42 does not have to include the lens 44.
  • the holder 50 includes a first holding member 51, a second holding member 52, a connecting member 53, a pair of leg members 54, and a tubular body 55. As an example, the holder 50 is attached to the installation portion S of the laser system.
  • the first holding member 51 and the second holding member 52 are plate-shaped members whose thickness direction is the X direction, respectively.
  • the first holding member 51 and the second holding member 52 are arranged side by side in the X direction at predetermined intervals.
  • the first holding member 51 holds one end of the laser medium 20 in the X direction in a state where one end surface 20a of the laser medium 20 in the X direction is exposed.
  • the second holding member 52 holds the other end of the laser medium 20 in the X direction with the other end surface 20b of the laser medium 20 exposed in the X direction.
  • the first light source unit 30 and the second light source unit 40 are arranged between the first holding member 51 and the second holding member 52.
  • the shapes of the first holding member 51 and the second holding member 52 are, for example, rectangular plates.
  • each of the first holding member 51 and the second holding member 52 is, for example, aluminum.
  • the first light source unit 30 and the second light source unit 40 are located inside the outer edges of the first holding member 51 and the second holding member 52 when viewed from the X direction (that is, from the outer edge). Does not protrude outward). As a result, even if an impact is applied to the laser device 1 from the X direction, the first light source unit 30 and the second light source unit 40 can be reliably protected.
  • the connecting member 53 is a plate-shaped member having the Z direction as the thickness direction.
  • the connecting member 53 connects the first holding member 51 and the second holding member 52.
  • the connecting member 53 is hung between the end portion of the first holding member 51 on the installation portion S side and the end portion of the second holding member 52 on the installation portion S side.
  • the shape of the connecting member 53 is, for example, a rectangular plate.
  • the material of the connecting member 53 is, for example, aluminum.
  • the pair of leg members 54 are attached to the end portion of the first holding member 51 on the installation portion S side and the end portion of the second holding member 52 on the installation portion S side, respectively.
  • Each leg member 54 has a plurality of elongated holes 54a with the Y direction as the longitudinal direction.
  • the holder 50 is fixed to the installation portion S by fastening a plurality of bolts (not shown) to the installation portion S via a plurality of elongated holes 54a.
  • the tubular body 55 is a tubular member extending along the X direction.
  • the tubular body 55 is hung between the first holding member 51 and the second holding member 52 in a state where the laser medium 20 is arranged inside the tubular body 55.
  • the tubular body 55 has light transmission (transparency to the excitation light EL emitted from each of the excitation light sources 32 and 42).
  • the shape of the tubular body 55 is, for example, a cylindrical shape.
  • the material of the cylinder 55 is, for example, synthetic quartz.
  • the connecting member 53 has a groove 53a extending along the Y direction. Both ends of the groove 53a in the Y direction are open to one side and the other side in the Y direction.
  • the bottom surface of the groove 53a is a support surface 56 that supports the first base 31 and the second base 41 so as to be slidable along the Y direction.
  • the connecting member 53 includes a first stopper (first specified portion) 57 and a second stopper (second specified portion) 58.
  • the first stopper 57 regulates the movement of the first base 31 along the Y direction. More specifically, the first stopper 57 regulates the movement of the first base 31 toward the side approaching the laser medium 20 in the Y direction.
  • the second stopper 58 regulates the movement of the second base 41 along the Y direction. More specifically, the second stopper 58 regulates the movement of the second base 41 toward the side approaching the laser medium 20 in the Y direction.
  • the first base 31 By fitting the first base 31 into the groove 53a of the connecting member 53, the position of the first base 31 in the X direction and the Z direction with respect to the holder 50 (and thus with respect to the laser medium 20) is defined. To. By bringing the first base 31 into contact with the first stopper 57, the position of the first base 31 in the Y direction with respect to the holder 50 (and thus with respect to the laser medium 20) is defined. In this state, the first base 31 is fixed to each of the first holding member 51 and the second holding member 52 by bolts (not shown) or the like.
  • the second base 41 By fitting the second base 41 into the groove 53a of the connecting member 53, the position of the second base 41 in the X direction and the Z direction with respect to the holder 50 (and thus with respect to the laser medium 20) is defined. To. By bringing the second base 41 into contact with the second stopper 58, the position of the second base 41 in the Y direction with respect to the holder 50 (and thus with respect to the laser medium 20) is defined. In this state, the second base 41 is fixed to each of the first holding member 51 and the second holding member 52 by bolts (not shown) or the like.
  • the holder 50 includes a third flow path 90.
  • the first base 31 includes a first flow path 70.
  • the second base 41 includes the second flow path 80.
  • Refrigerant flows through the first flow path 70, the second flow path 80, and the third flow path 90.
  • the refrigerant is, for example, water.
  • the first flow path 70, the second flow path 80, and the third flow path 90 communicate with each other. That is, the first flow path 70, the second flow path 80, and the third flow path 90 are connected so that the refrigerant supplied from a common supply source (not shown) flows.
  • the third flow path 90 includes the main flow path 91.
  • the main flow path 91 includes a plurality of flow path portions 91a, 91b, 91c, 91d, 91e.
  • the flow path portion 91b is a flow path between the laser medium 20 and the tubular body 55.
  • the flow path portion 91d is a flow path in the pipe 59 spanned between the first holding member 51 and the second holding member 52.
  • the flow path portion 91a is formed in the first holding member 51.
  • the upstream end of the flow path portion 91a is located on the side surface 51a of the first holding member 51.
  • the upstream end of the flow path portion 91a is a refrigerant supply port.
  • the downstream end of the flow path portion 91a is connected to the upstream end of the flow path portion 91b.
  • the flow path portion 91c is formed in the second holding member 52.
  • the upstream end of the flow path portion 91c is connected to the downstream end of the flow path portion 91b.
  • the downstream end of the flow path portion 91c is connected to the upstream end of the flow path portion 91d.
  • the flow path portion 91e is formed in the first holding member 51.
  • the upstream end of the flow path portion 91e is connected to the downstream end of the flow path portion 91d.
  • the downstream end of the flow path portion 91e is located on the side surface 51a of the first holding member 51.
  • the downstream end of the flow path portion 91e is a refrigerant discharge port. Since the upstream end of the flow path portion 91a, which is the supply port of the refrigerant, and the downstream end of the flow path portion 91e, which is the discharge port of the refrigerant, are located on the side surface 51a of the first holding member 51, the external piping It is easy to handle.
  • the refrigerant is supplied from the upstream end of the flow path portion 91a, the refrigerant flows in the order of the flow path portions 91a, 91b, 91c, 91d, 91e, and the refrigerant flows downstream of the flow path portion 91e. Refrigerant is discharged from the end. As a result, the laser medium 20 is cooled.
  • the third flow path 90 further includes a first branch flow path 93 and a second branch flow path 94.
  • the first branch flow path 93 and the second branch flow path 94 are formed in the first holding member 51.
  • the first branch flow path 93 branches from the main flow path 91.
  • the upstream end 93a of the first branch flow path 93 is connected to the middle of the flow path portion 91a of the main flow path 91 (the portion of the main flow path 91 on the upstream side of the flow path portion 91b).
  • the downstream end 93b of the first branch flow path 93 is located on the surface 51b of the first holding member 51 on the side of the second holding member 52.
  • the second branch flow path 94 branches from the main flow path 91.
  • the upstream end 94a of the second branch flow path 94 is connected in the middle of the flow path portion 91a of the main flow path 91.
  • the downstream end 94b of the second branch flow path 94 is located on the surface 51b of the first holding member 51.
  • the third flow path 90 further includes a third branch flow path 95 and a fourth branch flow path 96.
  • the third branch flow path 95 and the fourth branch flow path 96 are formed in the first holding member 51.
  • the third branch flow path 95 joins the main flow path 91.
  • the upstream end 95a of the third branch flow path 95 is located on the surface 51b of the first holding member 51.
  • the downstream end 95b of the third branch flow path 95 is connected to the middle of the flow path portion 91e of the main flow path 91 (the portion of the main flow path 91 on the downstream side of the flow path portion 91b).
  • the fourth branch flow path 96 joins the main flow path 91.
  • the upstream end 96a of the fourth branch flow path 96 is located on the surface 51b of the first holding member 51.
  • the downstream end 96b of the fourth branch flow path 96 is connected in the middle of the flow path portion 91e of the main flow path 91.
  • the first flow path 70 is formed in the first base 31 so as to extend linearly along the Z direction when viewed from the X direction.
  • the upstream end 70a and the downstream end 70b of the first flow path 70 are located on the surface 31b on the first holding member 51 side of the first base 31.
  • the surface 31b of the first base 31 is in contact with the surface 51b of the first holding member 51.
  • the downstream end 93b of the first branch flow path 93 is connected to the upstream end 70a of the first flow path 70
  • the upstream end 95a of the third branch flow path 95 is downstream of the first flow path 70. It is connected to the end 70b.
  • an O-ring is used for the connection between the downstream end 93b and the upstream end 70a and the connection between the upstream end 95a and the downstream end 70b to prevent leakage of the refrigerant.
  • the refrigerant is supplied from the main flow path 91 at the upstream end 93a of the first branch flow path 93, and the first The refrigerant flows in the order of the branch flow path 93, the first flow path 70, and the third branch flow path 95, and the refrigerant joins the main flow path 91 at the downstream end 95b of the third branch flow path 95.
  • the first base 31 is cooled.
  • the semiconductor laser element 33 of each excitation light source 32 the first base 31 is cooled, so that the plurality of semiconductor laser bars 33a are cooled via the heat sink 33b.
  • the second flow path 80 is formed in the second base 41 so as to extend linearly along the Z direction when viewed from the X direction.
  • the upstream end 80a and the downstream end 80b of the second flow path 80 are located on the surface 41b on the side of the first holding member 51 in the second base 41.
  • the surface 41b of the second base 41 is in contact with the surface 51b of the first holding member 51.
  • the downstream end 94b of the second branch flow path 94 is connected to the upstream end 80a of the second flow path 80
  • the upstream end 96a of the fourth branch flow path 96 is downstream of the second flow path 80. It is connected to the end 80b.
  • an O-ring is used for the connection between the downstream end 94b and the upstream end 80a and the connection between the upstream end 96a and the downstream end 80b to prevent leakage of the refrigerant.
  • the refrigerant is supplied from the main flow path 91 at the upstream end 94a of the second branch flow path 94, and the second branch flow path 94 is supplied.
  • the refrigerant flows in the order of the branch flow path 94, the second flow path 80, and the fourth branch flow path 96, and the refrigerant joins the main flow path 91 at the downstream end 96b of the fourth branch flow path 96.
  • the second base 41 is cooled.
  • the semiconductor laser element 43 of each excitation light source 42 the second base 41 is cooled, so that the plurality of semiconductor laser bars 43a are cooled via the heat sink 43b.
  • the manufacturing method of the laser device 1 will be described.
  • the holder 50 in a state of supporting the laser medium 20 is attached to the installation portion S of the laser system.
  • the first light source unit 30 and the second light source unit 40 are prepared (preparation step).
  • the first base 31 is arranged from one side in the Y direction in the holder 50 in the state of supporting the laser medium 20, and the second base 41 is arranged in the holder 50 from the other side in the Y direction.
  • the first light source unit 30 and the second light source unit 40 are arranged side by side in the Y direction (step of arranging them side by side).
  • the first base 31 is fixed to each of the first holding member 51 and the second holding member 52 with bolts (not shown) or the like, and the second base is attached to each of the first holding member 51 and the second holding member 52.
  • the 41 is fixed with a bolt (not shown) or the like.
  • the first base 31 When attaching the first base 31 to the holder 50, the first base 31 is fitted into the groove 53a of the connecting member 53 in the X direction and in the X direction with respect to the holder 50 (and thus with respect to the laser medium 20).
  • the position of the first base 31 in the Z direction is defined. Further, by sliding the first base 31 on the support surface 56 of the connecting member 53 and bringing it into contact with the first stopper 57, the first base 31 is brought into contact with the first stopper 57 in the Y direction with respect to the holder 50 (and thus with respect to the laser medium 20).
  • the position of the first base 31 is defined. At this time, a situation in which the first base 31 comes into contact with the tubular body 55 and the tubular body 55 is damaged is prevented.
  • the second base 41 When attaching the second base 41 to the holder 50, the second base 41 is fitted into the groove 53a of the connecting member 53 in the X direction and in the X direction with respect to the holder 50 (and thus with respect to the laser medium 20).
  • the position of the second base 41 in the Z direction is defined. Further, by sliding the second base 41 on the support surface 56 of the connecting member 53 and bringing it into contact with the second stopper 58, the second base 41 is brought into contact with the second stopper 58 in the Y direction with respect to the holder 50 (and thus with respect to the laser medium 20).
  • the position of the second base 41 is defined. At this time, a situation in which the second base 41 comes into contact with the tubular body 55 and the tubular body 55 is damaged is prevented.
  • the first base 31 and the plurality of excitation light sources 32 are unitized as the first light source unit 30, and the second base 41 and the plurality of excitation light sources 42 are the second light source units. It is unitized as 40, and the first light source unit 30 and the second light source unit 40 are supported by the holder 50 in a state of being arranged side by side in the Y direction.
  • a plurality of excitation light sources 32 and 42 can be easily attached to and detached from the holder 50 by simply attaching and detaching the first base 31 and the second base 41 to and from the holder 50.
  • the position of the first base 31 with respect to the holder 50 is defined by the first stopper 57, and the position of the first base 31 is defined with respect to the holder 50.
  • the position of the second base 41 is defined by the second stopper 58.
  • the holder 50 includes a first holding member 51 and a second holding member 52 arranged side by side in the X direction, and a connecting member 53 connecting the first holding member 51 and the second holding member 52.
  • the first light source unit 30 and the second light source unit 40 are arranged between the first holding member 51 and the second holding member 52. This makes it possible to reduce the size of the laser device 1 and simplify the structure.
  • the connecting member 53 has a support surface 56 that supports the first base 31 and the second base 41 so as to be slidable along the Y direction.
  • the plurality of excitation light sources 32 and 42 can be easily attached to and detached from the holder 50 by sliding each of the first base 31 and the second base 41 on the support surface 56 of the connecting member 53.
  • the connecting member 53 includes a first stopper 57 that regulates the movement of the first base 31 along the Y direction, and a second stopper 58 that regulates the movement of the second base 41 along the Y direction. I'm out. As a result, the first base 31 and the second base 41 are brought into contact with each of the first stopper 57 and the second stopper 58 of the connecting member 53, whereby the plurality of excitation light sources 32, 42 with respect to the laser medium 20 are brought into contact with each other. Can be easily and reliably positioned.
  • the first base 31 includes the first flow path 70 through which the refrigerant flows
  • the second base 41 includes the second flow path 80 through which the refrigerant flows
  • the holder 50 contains the second flow path 80 through which the refrigerant flows. It includes a third flow path 90. Thereby, the laser medium 20 and the plurality of excitation light sources 32, 42 can be cooled.
  • the first flow path 70, the second flow path 80, and the third flow path 90 communicate with each other.
  • the laser medium 20 and the plurality of excitation light sources 32 and 42 can be efficiently cooled.
  • the third flow path 90 is a main flow path 91 including a flow path portion 91b between the laser medium 20 and the tubular body 55, a first branch flow path 93 branching from the main flow path 91, and a second branch flow. It includes a road 94, and a third branch flow path 95 and a fourth branch flow path 96 that join the main flow path 91.
  • the downstream end 93b of the first branch flow path 93 is connected to the upstream end 70a of the first flow path 70, and the downstream end 94b of the second branch flow path 94 is the second flow path 80.
  • the upstream end 95a of the third branch flow path 95 is connected to the downstream end 70b of the first flow path 70, and the upstream end 96a of the fourth branch flow path 96 is the second. It is connected to the downstream end 80b of the flow path 80.
  • the plurality of excitation light sources 32 and 42 are arranged along the circumference centered on the center line CL of the laser medium 20 when viewed from the X direction. According to this, it is possible to make the excitation distribution in the laser medium 20 uniform.
  • each excitation light source 32 includes a semiconductor laser element 33, and each excitation light source 42 includes a semiconductor laser element 43.
  • the life of each of the excitation light sources 32 and 42 can be extended.
  • the plurality of excitation light sources 32 are unitized as the first light source unit 30 and the plurality of excitation light sources 42 are unitized as the second light source unit 40, the delicacy required for handling as a single semiconductor laser device is required. Is unnecessary.
  • the semiconductor laser element 33 includes a plurality of laminated semiconductor laser bars 33a, and the semiconductor laser element 43 includes a plurality of laminated semiconductor laser bars 43a. This makes it possible to efficiently and sufficiently excite the laser medium 20.
  • the first base 31 is arranged on the holder 50 from one side in the Y direction intersecting the X direction in which the rod-shaped laser medium 20 extends, and the first base 31 is arranged in the holder 50 from the other side in the Y direction.
  • the plurality of excitation light sources 32 and 42 can be easily positioned with respect to the laser medium 20. Therefore, according to the method for manufacturing the laser device 1, it is possible to easily obtain the laser device 1 in which a plurality of excitation light sources 32, 42 are positioned with respect to the laser medium 20.
  • the present disclosure is not limited to the above embodiment.
  • the first light source unit 30 includes three excitation light sources 32, but the first light source unit 30 may include a plurality of excitation light sources 32.
  • the second light source unit 40 includes three excitation light sources 42, but the second light source unit 40 may include a plurality of excitation light sources 42.
  • the first light source unit 30 may include four excitation light sources 32 and the second light source unit 40 may include four excitation light sources 42.
  • the first light source unit 30 may include two excitation light sources 32, and the second light source unit 40 may include two excitation light sources 42.
  • the plurality of excitation light sources 32 and 42 are arranged at equal pitches along the circumference centered on the center line CL.
  • the first light source unit 30 has a plurality of excitation light sources 32a arranged in a row along the circumference centered on the center line CL, and the X direction from the circumference. It may include a plurality of excitation light sources 32b arranged in a row along the circumference deviated from. In the first light source unit 30 shown in FIG. 10A, one excitation light source 32a and one excitation light source 32b are arranged side by side in the X direction.
  • the second light source unit 40 combined with the first light source unit 30 also has the same configuration as the first light source unit 30.
  • the first light source unit 30 is displaced from the circumference in the X direction with at least one excitation light source 32a arranged along the circumference centered on the center line CL. It may include a plurality of excitation light sources 32b arranged in another row along the circumference. In the first light source unit 30 shown in FIG. 10B, three excitation light sources 32a and 32b are provided so that one excitation light source 32a is located between the two excitation light sources 32b when viewed from the X direction. , Are arranged at a pitch of 60 ° along the circumference centered on the center line CL.
  • the second light source unit 40 combined with the first light source unit 30 also has the same configuration as the first light source unit 30.
  • one excitation light source 32a and two excitation light sources 42a are arranged at a pitch of 120 ° along the circumference centered on the center line CL, as shown in FIG. 11A. ..
  • the two excitation light sources 32b and one excitation light source 42b will be arranged at a pitch of 120 ° along another circumference centered on the center line CL, as shown in FIG. 11 (b).
  • the six excitation light sources 32a, 32b, 42a, 42b have circumferences around the center line CL when viewed from a direction parallel to the center line CL, as shown in FIG. 11 (c). Will be arranged at a pitch of 60 ° along.
  • a uniform excitation distribution is given to the laser medium 20 by the excitation light EL emitted from each excitation light source 32a, 32b, 42a, 42b.
  • a plurality of excitation light sources 32 are arranged on the outer surface of the first base 31, and are emitted from each excitation light source 32 toward the laser medium 20.
  • the through hole 31c through which the excitation light EL passes may be formed in the first base 31.
  • a plurality of excitation light sources 42 are arranged on the outer surface of the second base 41, and the excitation light EL emitted from each excitation light source 42 toward the laser medium 20 passes through.
  • the through hole 41c may be formed in the second base 41.
  • the first flow path 70 may be formed in the first base 31 in a bent state (for example, a state in which the first flow path 70 is bent so as to approach each excitation light source 32).
  • the second flow path 80 may be formed in the second base 41 in a bent state (for example, a state of being bent so as to approach each excitation light source 42).
  • the first flow path 70 and the second flow path 80 are formed linearly in the first base 31 and the second base 41, respectively, their formation becomes easy.
  • the first flow path 70 may include a pipe provided separately from the main body of the first base 31 to which a plurality of excitation light sources 32 are attached.
  • the second flow path 80 may include a pipe provided separately from the main body of the second base 41 to which the plurality of excitation light sources 42 are attached.
  • the heat sink 33b of the semiconductor laser element 33 may include a flow path by introducing a refrigerant from the first flow path 70 and leading the refrigerant out to the first flow path 70.
  • the heat sink 43b of the semiconductor laser element 43 may include a flow path by introducing a refrigerant from the second flow path 80 and leading the refrigerant out to the second flow path 80.
  • the first base 31 and the second base 41 do not have to include the first flow path 70 and the second flow path 80, respectively. In that case, heat dissipation fins may be provided on each of the first base 31 and the second base 41.
  • the semiconductor laser elements 33 and 43 are cooled by cooling the first base 31 and the second base 41 by air cooling or natural heat dissipation.
  • Each excitation light source 32 may include an electronic cooling element for cooling the semiconductor laser element 33.
  • each excitation light source 42 may include an electron cooling element for cooling the semiconductor laser element 43.
  • the holder 50 includes the first stopper 57 as a first defining portion that defines the position of the first base 31 with respect to the holder 50, but the first base 31 includes the first defining portion.
  • both the first base 31 and the holder 50 may include the first ruler. That is, at least one of the first base 31 and the holder 50 may include a first defining portion that defines the position of the first base 31 with respect to the holder 50.
  • the first specified portion may be a positioning pin and a positioning hole, a positioning bolt, a positioning screw hole (in that case, also serves as fixing of the first base 31 to the holder 50) and the like.
  • the holder 50 includes the second stopper 58 as the second defining portion that defines the position of the second base 41 with respect to the holder 50, but the second base 41 includes the second defining portion.
  • both the second base 41 and the holder 50 may include the second regulation part. That is, at least one of the second base 41 and the holder 50 may include a second defining portion that defines the position of the second base 41 with respect to the holder 50.
  • the second specified portion may be a positioning pin and a positioning hole, a positioning bolt, a positioning screw hole (in that case, also serves as fixing of the second base 41 to the holder 50) and the like.
  • the holder 50 includes the first stopper 57 as a first defining portion that defines the position of the first base 31 with respect to the holder 50, and the holder 50 defines the position of the second base 41 with respect to the holder 50.
  • the second stopper 58 was included as the second regulation part, at least one of the first base 31 and the holder 50 includes the first regulation part that defines the position of the first base 31 with respect to the holder 50, and the first At least one of the 1st base 31 and the 2nd base 41 may include a 2nd ruler that defines the position of the 2nd base 41 with respect to the 1st base 31.
  • the plurality of excitation light sources 32 and 42 can be easily attached to and detached from the holder 50 by simply attaching and detaching the first base 31 and the second base 41 to and from the holder 50. Further, the plurality of excitation light sources 32 and 42 can be easily positioned with respect to the laser medium 20 only by attaching each of the first base 31 and the second base 41 to the holder 50 that supports the laser medium 20.
  • the holder 50 may not include, for example, the connecting member 53, or may include the connecting member 53, as long as it is configured to support the laser medium 20, the first light source unit 30, and the second light source unit 40. Regardless of whether or not, it is not necessary to include either the first holding member 51 or the second holding member.
  • the holder 50 is configured to support the laser medium 20, the first light source unit 30, and the second light source unit 40, so that each of the laser medium 20, the first light source unit 30, and the second light source unit 40 is configured. It is not essential that it is in contact with the holder 50.
  • the first light source unit 30 is supported by the holder 50 in a state where the first light source unit 30 is in contact with the holder 50, and the second light source unit 40 is in contact with the first light source unit 30 and separated from the holder 50.
  • the second light source unit 40 is supported by the holder 50.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

レーザ装置は、第1方向に沿って延在するロッド状のレーザ媒質と、第1ベース、及び第1ベースに取り付けられた複数の励起光源を含む第1光源ユニットと、第1方向と交差する第2方向において第1光源ユニットと並設され、第2ベース、及び第2ベースに取り付けられた複数の励起光源を含む第2光源ユニットと、レーザ媒質、第1光源ユニット及び第2光源ユニットを支持するホルダと、を備える。第1ベース及びホルダの少なくとも一方は、ホルダに対する第1ベースの位置を規定する第1規定部を含み、第2ベース及びホルダの少なくとも一方は、ホルダに対する第2ベースの位置を規定する第2規定部を含む。

Description

レーザ装置、及びレーザ装置の製造方法
 本開示は、レーザ装置、及びレーザ装置の製造方法に関する。
 ロッド状のレーザ媒質と、当該レーザ媒質を励起するための励起光を出射する複数の励起光源と、を備えるレーザ装置が知られている(例えば、特許文献1参照)。
特開2005-285807号公報
 上述したようなレーザ装置は、当該レーザ装置がレーザシステムに搭載された状態で各励起光源がレーザ装置に対して着脱可能に構成されている場合がある。そのような構成では、各励起光源を交換する場合に、レーザ媒質における励起分布が所望の状態となるように、レーザ媒質に対する各励起光源の位置や向きをシビアに調整する必要がある。その一方で、上述したようなレーザ装置は、当該レーザ装置の全体がレーザシステムに対して着脱可能に構成されている場合がある。そのような構成では、各励起光源を交換する場合に、レーザシステムの光軸に対してレーザ媒質の光軸が一致するように、レーザシステムにおけるレーザ装置の位置や向きをシビアに調整する必要がある。
 本開示は、複数の励起光源の着脱の容易化及び複数の励起光源の位置決めの容易化を図ることができるレーザ装置、及びそのようなレーザ装置の製造方法を提供することを目的とする。
 本開示の一側面のレーザ装置は、第1方向に沿って延在するロッド状のレーザ媒質と、第1ベース、及び第1ベースに取り付けられた複数の励起光源を含む第1光源ユニットと、第1方向と交差する第2方向において第1光源ユニットと並設され、第2ベース、及び第2ベースに取り付けられた複数の励起光源を含む第2光源ユニットと、レーザ媒質、第1光源ユニット及び第2光源ユニットを支持するホルダと、を備え、第1ベース及びホルダの少なくとも一方は、ホルダに対する第1ベースの位置を規定する第1規定部を含み、第2ベース及びホルダの少なくとも一方は、ホルダに対する第2ベースの位置を規定する第2規定部を含む。
 このレーザ装置では、第1ベース及び複数の励起光源が第1光源ユニットとしてユニット化されていると共に、第2ベース及び複数の励起光源が第2光源ユニットとしてユニット化されており、第1光源ユニット及び第2光源ユニットが、第2方向において並設された状態で、ホルダによって支持されている。これにより、ホルダに対して第1ベース及び第2ベースのそれぞれを着脱するだけで、ホルダに対して複数の励起光源を容易に着脱することができる。更に、レーザ媒質を支持するホルダに第1ベース及び第2ベースのそれぞれを取り付ける際に、ホルダに対する第1ベースの位置が第1規定部によって規定されると共に、ホルダに対する第2ベースの位置が第2規定部によって規定される。これにより、レーザ媒質を支持するホルダに第1ベース及び第2ベースのそれぞれを取り付けるだけで、レーザ媒質に対して複数の励起光源を容易に位置決めすることができる。以上により、このレーザ装置によれば、複数の励起光源の着脱の容易化及び複数の励起光源の位置決めの容易化を図ることができる。
 本開示の一側面のレーザ装置では、ホルダは、第1方向において並設された第1保持部材及び第2保持部材、並びに、第1保持部材及び第2保持部材を連結する連結部材を含み、第1光源ユニット及び第2光源ユニットは、第1保持部材と第2保持部材との間に配置されていてもよい。これによれば、レーザ装置の小型化及び構造の単純化を図ることができる。
 本開示の一側面のレーザ装置では、連結部材は、第2方向に沿ってスライド可能に第1ベース及び第2ベースを支持する支持面を有してもよい。これによれば、連結部材の支持面において第1ベース及び第2ベースのそれぞれをスライドさせることで、ホルダに対して複数の励起光源を容易に着脱することができる。
 本開示の一側面のレーザ装置では、連結部材は、第1規定部として、第2方向に沿った第1ベースの移動を規制する第1ストッパを含み、第2規定部として、第2方向に沿った第2ベースの移動を規制する第2ストッパを含んでもよい。これによれば、連結部材の第1ストッパ及び第2ストッパのそれぞれに第1ベース及び第2ベースのそれぞれを当接させることで、レーザ媒質に対して複数の励起光源を容易に且つ確実に位置決めすることができる。
 本開示の一側面のレーザ装置では、第1ベースは、冷媒が流れる第1流路を含み、第2ベースは、冷媒が流れる第2流路を含み、ホルダは、冷媒が流れる第3流路を含んでもよい。これによれば、レーザ媒質及び複数の励起光源を冷却することができる。
 本開示の一側面のレーザ装置では、第1流路、第2流路及び第3流路は、連通していてもよい。これによれば、レーザ媒質及び複数の励起光源を効率良く冷却することができる。
 本開示の一側面のレーザ装置では、ホルダは、レーザ媒質が内側に配置された筒体を含み、筒体は、光透過性を有し、第3流路は、レーザ媒質と筒体との間の流路を含む本流路、本流路から分岐する第1分岐流路及び第2分岐流路、並びに、本流路に合流する第3分岐流路及び第4分岐流路を含み、第1分岐流路の下流端は、第1流路の上流端に接続されており、第2分岐流路の下流端は、第2流路の上流端に接続されており、第3分岐流路の上流端は、第1流路の下流端に接続されており、第4分岐流路の上流端は、第2流路の下流端に接続されていてもよい。これによれば、簡易な流路構成で、レーザ媒質及び複数の励起光源を効率良く冷却することができる。
 本開示の一側面のレーザ装置では、複数の励起光源は、第1方向から見た場合に、レーザ媒質の中心線を中心とする円周に沿って配置されていてもよい。これによれば、レーザ媒質における励起分布の均一化を図ることができる。
 本開示の一側面のレーザ装置では、複数の励起光源のそれぞれは、半導体レーザ素子を含んでもよい。これによれば、励起光源の長寿命化を図ることができる。また、複数の励起光源が第1光源ユニット又は第2光源ユニットとしてユニット化されているため、半導体レーザ素子単品での取り扱いに求められる繊細さが不要となる。
 本開示の一側面のレーザ装置では、半導体レーザ素子は、積層された複数の半導体レーザバーを含んでもよい。これによれば、レーザ媒質を効率良く且つ十分に励起することができる。
 本開示の一側面のレーザ装置は、第1方向に沿って延在するロッド状のレーザ媒質と、第1ベース、及び第1ベースに取り付けられた複数の励起光源を含む第1光源ユニットと、第1方向と交差する第2方向において第1光源ユニットと並設され、第2ベース、及び第2ベースに取り付けられた複数の励起光源を含む第2光源ユニットと、レーザ媒質、第1光源ユニット及び第2光源ユニットを支持するホルダと、を備え、第1ベース及びホルダの少なくとも一方は、ホルダに対する第1ベースの位置を規定する第1規定部を含み、第1ベース及び第2ベースの少なくとも一方は、第1ベースに対する第2ベースの位置を規定する第2規定部を含む。
 このレーザ装置では、第1ベース及び複数の励起光源が第1光源ユニットとしてユニット化されていると共に、第2ベース及び複数の励起光源が第2光源ユニットとしてユニット化されており、第1光源ユニット及び第2光源ユニットが、第2方向において並設された状態で、ホルダによって支持されている。これにより、ホルダに対して第1ベース及び第2ベースのそれぞれを着脱するだけで、ホルダに対して複数の励起光源を容易に着脱することができる。更に、レーザ媒質を支持するホルダに第1ベース及び第2ベースのそれぞれを取り付ける際に、ホルダに対する第1ベースの位置が第1規定部によって規定されると共に、第1ベースに対する第2ベースの位置が第2規定部によって規定される。これにより、レーザ媒質を支持するホルダに第1ベース及び第2ベースのそれぞれを取り付けるだけで、レーザ媒質に対して複数の励起光源を容易に位置決めすることができる。以上により、このレーザ装置によれば、複数の励起光源の着脱の容易化及び複数の励起光源の位置決めの容易化を図ることができる。
 本開示の一側面のレーザ装置の製造方法は、第1ベース、及び第1ベースに取り付けられた複数の励起光源を含む第1光源ユニットと、第2ベース、及び第2ベースに取り付けられた複数の励起光源を含む第2光源ユニットと、を準備するステップと、第1方向に沿って延在するロッド状のレーザ媒質を支持した状態にあるホルダに、第1方向と交差する第2方向における一方の側から第1ベースを配置し、ホルダに、第2方向における他方の側から第2ベースを配置することで、第2方向において第1光源ユニット及び第2光源ユニットを並設するステップと、を備える。
 このレーザ装置の製造方法では、ロッド状のレーザ媒質が延在する第1方向と交差する第2方向における一方の側から第1ベースをホルダに配置し、当該第2方向における他方の側から第2ベースをホルダに配置するだけで、レーザ媒質に対して複数の励起光源を容易に位置決めすることができる。よって、このレーザ装置の製造方法によれば、レーザ媒質に対して複数の励起光源が位置決めされたレーザ装置を容易に得ることができる。
 本開示によれば、複数の励起光源の着脱の容易化及び複数の励起光源の位置決めの容易化を図ることができるレーザ装置、及びそのようなレーザ装置の製造方法を提供することが可能となる。
図1は、一実施形態のレーザ装置の断面図である。 図2は、図1に示されるII-II線に沿ってのレーザ装置の断面図である。 図3は、図1に示されるIII-III線に沿ってのレーザ装置の断面図である。 図4は、図3に示されるIV-IV線に沿ってのレーザ装置の断面図である。 図5は、図3に示されるV-V線に沿ってのレーザ装置の断面図である。 図6は、図3に示されるVI-VI線に沿ってのレーザ装置の断面図である。 図7は、一実施形態のレーザ装置の製造方法を説明するためのレーザ装置の断面図である。 図8は、図7に示されるVIII-VIIIに沿ってのレーザ装置の断面図である。 図9は、変形例の第1光源ユニット及び第2光源ユニットの正面図である。 図10は、変形例の第1光源ユニットの斜視図である。 図11は、変形例の第1光源ユニット及び第2光源ユニットによるレーザ媒質の励起分布を示す模式図である。 図12は、変形例の第1光源ユニット及び第2光源ユニットの正面図である。
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
 図1及び図2に示されるように、レーザ装置1は、レーザ媒質20と、第1光源ユニット30と、第2光源ユニット40と、ホルダ50と、を備えている。レーザ媒質20、第1光源ユニット30及び第2光源ユニット40は、ホルダ50によって支持されている。一例として、レーザ装置1は、レーザシステムにおいて、レーザ光Lを増幅するレーザ増幅器して用いられる。以下、レーザ装置1にレーザ光Lが入射する方向をX方向といい、X方向に垂直な一方向をY方向といい、X方向及びY方向の両方向に垂直な方向をZ方向という。
 レーザ媒質20は、X方向(第1方向)に沿って延在するロッド状の固体レーザ媒質である。レーザ媒質20は、X方向に平行な中心線CLを有している。レーザ媒質20の形状は、例えば、10mm程度の直径及び200mm程度の長さを有する円柱形状である。レーザ媒質20の材料は、例えば、Nd:YAGである。
 第1光源ユニット30及び第2光源ユニット40は、Y方向(第1方向と交差する第2方向)において並設されている。第1光源ユニット30は、中心線CLに対して、Y方向における一方の側に配置されている。第2光源ユニット40は、中心線CLに対して、Y方向における他方の側に配置されている。第1光源ユニット30は、第1ベース31と、複数の励起光源32と、を含んでいる。複数の励起光源32は、第1ベース31に取り付けられている。第2光源ユニット40は、第2ベース41と、複数の励起光源42と、を含んでいる。複数の励起光源42は、第2ベース41に取り付けられている。
 第1ベース31及び第2ベース41は、それぞれ、X方向を厚さ方向とする板状の部材である。第1ベース31及び第2ベース41のセットは、レーザ媒質20と対向する複数の内面を有する開口を画定している。各励起光源32は、当該複数の内面のうち第1ベース31が有する複数の載置面31aのそれぞれに配置されている。各励起光源42は、当該複数の内面のうち第2ベース41が有する複数の載置面41aのそれぞれに配置されている。第1ベース31及び第2ベース41のセットの形状は、例えば、矩形板状である。第1ベース31及び第2ベース41のそれぞれの材料は、例えば、アルミニウムである。第1ベース31及び第2ベース41のそれぞれの厚さは、後述する第1保持部材51及び第2保持部材52のそれぞれの厚さよりも大きい。これにより、複数の励起光源32,42を確実に保持することができる。
 複数の励起光源32,42は、それぞれ、レーザ媒質20を励起するための励起光ELを出射する。複数の励起光源32,42は、X方向から見た場合に、レーザ媒質20の中心線CLを中心とする円周に沿って配置されている。本実施形態では、第1ベース31及び第2ベース41のセットが、複数の内面として6つの載置面31a,41aを有する正六角形状の開口を画定しており、6つの励起光源32,42が、中心線CLを中心とする円周に沿って60°ピッチで配置されている。このように、複数の励起光源32,42が第1ベース31及び第2ベース41に対して内側(レーザ媒質20側)に配置されているため、外部からレーザ装置1に衝撃が加わったとしても、複数の励起光源32,42を確実に保護することができる。
 各励起光源32は、半導体レーザ素子33と、レンズ34と、を含んでいる。半導体レーザ素子33は、レーザ媒質20に向けて励起光ELを出射する。レンズ34は、半導体レーザ素子33に対してレーザ媒質20側に配置されている。レンズ34は、半導体レーザ素子33から出射された励起光ELをレーザ媒質20に収束させる。半導体レーザ素子33は、複数の半導体レーザバー33aと、ヒートシンク33bと、を含んでいる。複数の半導体レーザバー33aは、半導体レーザ素子33とレーザ媒質20とが対向する方向に垂直な面内において各半導体レーザバー33aの出射端面が二次元に配列されるように、積層されている。ヒートシンク33bは、複数の半導体レーザバー33aを支持した状態で、載置面31aに配置されている。ヒートシンク33bは、複数の半導体レーザバー33aで発生した熱を吸収し、当該熱を第1ベース31側に逃がす。なお、各励起光源32は、レンズ34を含んでいなくてもよい。
 各励起光源42は、半導体レーザ素子43と、レンズ44と、を含んでいる。半導体レーザ素子43は、レーザ媒質20に向けて励起光ELを出射する。レンズ44は、半導体レーザ素子43に対してレーザ媒質20側に配置されている。レンズ44は、半導体レーザ素子43から出射された励起光ELをレーザ媒質20に収束させる。半導体レーザ素子43は、複数の半導体レーザバー43aと、ヒートシンク43bと、を含んでいる。複数の半導体レーザバー43aは、半導体レーザ素子43とレーザ媒質20とが対向する方向に垂直な面内において各半導体レーザバー43aの出射端面が二次元に配列されるように、積層されている。ヒートシンク43bは、複数の半導体レーザバー43aを支持した状態で、載置面41aに配置されている。ヒートシンク43bは、複数の半導体レーザバー43aで発生した熱を吸収し、当該熱を第2ベース41側に逃がす。なお、各励起光源42は、レンズ44を含んでいなくてもよい。
 ホルダ50は、第1保持部材51と、第2保持部材52と、連結部材53と、一対の脚部材54と、筒体55と、を含んでいる。一例として、ホルダ50は、レーザシステムの設置部Sに取り付けられている。
 第1保持部材51及び第2保持部材52は、それぞれ、X方向を厚さ方向とする板状の部材である。第1保持部材51及び第2保持部材52は、所定の間隔をとってX方向において並設されている。第1保持部材51は、X方向におけるレーザ媒質20の一端面20aを露出させた状態で、X方向におけるレーザ媒質20の一端部を保持している。第2保持部材52は、X方向におけるレーザ媒質20の他端面20bを露出させた状態で、X方向におけるレーザ媒質20の他端部を保持している。第1光源ユニット30及び第2光源ユニット40は、第1保持部材51と第2保持部材52との間に配置されている。第1保持部材51及び第2保持部材52のそれぞれの形状は、例えば、矩形板状である。第1保持部材51及び第2保持部材52のそれぞれの材料は、例えば、アルミニウムである。第1光源ユニット30及び第2光源ユニット40は、X方向から見た場合に、第1保持部材51及び第2保持部材52のそれぞれの外縁よりも内側に位置している(つまり、当該外縁から外側に突出していない)。これにより、X方向からレーザ装置1に衝撃が加わったとしても、第1光源ユニット30及び第2光源ユニット40を確実に保護することができる。
 連結部材53は、Z方向を厚さ方向とする板状の部材である。連結部材53は、第1保持部材51及び第2保持部材52を連結している。本実施形態では、連結部材53は、第1保持部材51における設置部S側の端部と第2保持部材52における設置部S側の端部との間に掛け渡されている。連結部材53の形状は、例えば、矩形板状である。連結部材53の材料は、例えば、アルミニウムである。
 一対の脚部材54は、それぞれ、第1保持部材51における設置部S側の端部及び第2保持部材52における設置部S側の端部に取り付けられている。各脚部材54は、Y方向を長手方向とする複数の長穴54aを有している。一例として、ホルダ50は、複数のボルト(図示省略)が複数の長穴54aを介して設置部Sに締結されることで、設置部Sに固定されている。
 筒体55は、X方向に沿って延在する筒状の部材である。筒体55は、筒体55の内側にレーザ媒質20が配置された状態で、第1保持部材51と第2保持部材52との間に掛け渡されている。筒体55は、光透過性(各励起光源32,42から出射される励起光ELに対する透過性)を有している。筒体55の形状は、例えば、円筒形状である。筒体55の材料は、例えば、合成石英である。
 連結部材53は、Y方向に沿って延在する溝53aを有している。Y方向における溝53aの両端は、Y方向における一方の側及び他方の側に開放されている。溝53aの底面は、Y方向に沿ってスライド可能に第1ベース31及び第2ベース41を支持する支持面56である。連結部材53は、第1ストッパ(第1規定部)57と、第2ストッパ(第2規定部)58と、を含んでいる。第1ストッパ57は、Y方向に沿った第1ベース31の移動を規制する。より具体的には、第1ストッパ57は、Y方向においてレーザ媒質20に近付く側への第1ベース31の移動を規制する。第2ストッパ58は、Y方向に沿った第2ベース41の移動を規制する。より具体的には、第2ストッパ58は、Y方向においてレーザ媒質20に近付く側への第2ベース41の移動を規制する。
 第1ベース31が連結部材53の溝53aに嵌められることで、ホルダ50に対して(延いては、レーザ媒質20に対して)、X方向及びZ方向における第1ベース31の位置が規定される。第1ベース31が第1ストッパ57に当接させられることで、ホルダ50に対して(延いては、レーザ媒質20に対して)、Y方向における第1ベース31の位置が規定される。この状態で、第1ベース31は、第1保持部材51及び第2保持部材52のそれぞれにボルト(図示省略)等によって固定されている。
 第2ベース41が連結部材53の溝53aに嵌められることで、ホルダ50に対して(延いては、レーザ媒質20に対して)、X方向及びZ方向における第2ベース41の位置が規定される。第2ベース41が第2ストッパ58に当接させられることで、ホルダ50に対して(延いては、レーザ媒質20に対して)、Y方向における第2ベース41の位置が規定される。この状態で、第2ベース41は、第1保持部材51及び第2保持部材52のそれぞれにボルト(図示省略)等によって固定されている。
 図3及び図4に示されるように、ホルダ50は、第3流路90を含んでいる。図5に示されるように、第1ベース31は、第1流路70を含んでいる。図6に示されるように、第2ベース41は、第2流路80を含んでいる。第1流路70、第2流路80及び第3流路90には、冷媒が流れる。冷媒は、例えば、水である。第1流路70、第2流路80及び第3流路90は、連通している。つまり、第1流路70、第2流路80及び第3流路90は、共通の供給源(図示省略)から供給された冷媒が流れるように接続されている。
 図3及び図4に示されるように、第3流路90は、本流路91を含んでいる。本流路91は、複数の流路部分91a,91b,91c,91d,91eを含んでいる。流路部分91bは、レーザ媒質20と筒体55との間の流路である。流路部分91dは、第1保持部材51と第2保持部材52との間に掛け渡された配管59内の流路である。
 流路部分91aは、第1保持部材51内に形成されている。流路部分91aの上流端は、第1保持部材51の側面51aに位置している。流路部分91aの上流端は、冷媒の供給口である。流路部分91aの下流端は、流路部分91bの上流端に接続されている。流路部分91cは、第2保持部材52内に形成されている。流路部分91cの上流端は、流路部分91bの下流端に接続されている。流路部分91cの下流端は、流路部分91dの上流端に接続されている。流路部分91eは、第1保持部材51内に形成されている。流路部分91eの上流端は、流路部分91dの下流端に接続されている。流路部分91eの下流端は、第1保持部材51の側面51aに位置している。流路部分91eの下流端は、冷媒の排出口である。なお、冷媒の供給口である流路部分91aの上流端、及び冷媒の排出口である流路部分91eの下流端が、第1保持部材51の側面51aに位置しているため、外部の配管の取り回しが容易となっている。
 以上のように構成された本流路91では、流路部分91aの上流端から冷媒が供給され、流路部分91a,91b,91c,91d,91eの順に冷媒が流れて、流路部分91eの下流端から冷媒が排出される。これにより、レーザ媒質20が冷却される。
 図3、図5及び図6に示されるように、第3流路90は、第1分岐流路93と、第2分岐流路94と、を更に含んでいる。第1分岐流路93及び第2分岐流路94は、第1保持部材51内に形成されている。第1分岐流路93は、本流路91から分岐している。第1分岐流路93の上流端93aは、本流路91の流路部分91aの途中(本流路91のうち、流路部分91bよりも上流側の部分)に接続されている。第1分岐流路93の下流端93bは、第1保持部材51における第2保持部材52側の表面51bに位置している。第2分岐流路94は、本流路91から分岐している。第2分岐流路94の上流端94aは、本流路91の流路部分91aの途中に接続されている。第2分岐流路94の下流端94bは、第1保持部材51の表面51bに位置している。
 第3流路90は、第3分岐流路95と、第4分岐流路96と、を更に含んでいる。第3分岐流路95及び第4分岐流路96は、第1保持部材51内に形成されている。第3分岐流路95は、本流路91に合流している。第3分岐流路95の上流端95aは、第1保持部材51の表面51bに位置している。第3分岐流路95の下流端95bは、本流路91の流路部分91eの途中(本流路91のうち、流路部分91bよりも下流側の部分)に接続されている。第4分岐流路96は、本流路91に合流している。第4分岐流路96の上流端96aは、第1保持部材51の表面51bに位置している。第4分岐流路96の下流端96bは、本流路91の流路部分91eの途中に接続されている。
 図5に示されるように、第1流路70は、X方向から見た場合にZ方向に沿って直線状に延在するように、第1ベース31内に形成されている。第1流路70の上流端70a及び下流端70bは、第1ベース31における第1保持部材51側の表面31bに位置している。第1ベース31の表面31bは、第1保持部材51の表面51bに接触している。この状態で、第1分岐流路93の下流端93bは、第1流路70の上流端70aに接続されており、第3分岐流路95の上流端95aは、第1流路70の下流端70bに接続されている。なお、下流端93bと上流端70aとの接続、及び、上流端95aと下流端70bとの接続には、例えば、Oリングが用いられており、冷媒の漏れが防止されている。
 以上のように構成された第1分岐流路93、第1流路70及び第3分岐流路95では、第1分岐流路93の上流端93aにおいて本流路91から冷媒が供給され、第1分岐流路93、第1流路70、第3分岐流路95の順に冷媒が流れて、第3分岐流路95の下流端95bにおいて冷媒が本流路91に合流する。これにより、第1ベース31が冷却される。各励起光源32の半導体レーザ素子33では、第1ベース31が冷却されることで、ヒートシンク33bを介して複数の半導体レーザバー33aが冷却される。
 図6に示されるように、第2流路80は、X方向から見た場合にZ方向に沿って直線状に延在するように、第2ベース41内に形成されている。第2流路80の上流端80a及び下流端80bは、第2ベース41における第1保持部材51側の表面41bに位置している。第2ベース41の表面41bは、第1保持部材51の表面51bに接触している。この状態で、第2分岐流路94の下流端94bは、第2流路80の上流端80aに接続されており、第4分岐流路96の上流端96aは、第2流路80の下流端80bに接続されている。なお、下流端94bと上流端80aとの接続、及び、上流端96aと下流端80bとの接続には、例えば、Oリングが用いられており、冷媒の漏れが防止されている。
 以上のように構成された第2分岐流路94、第2流路80及び第4分岐流路96では、第2分岐流路94の上流端94aにおいて本流路91から冷媒が供給され、第2分岐流路94、第2流路80、第4分岐流路96の順に冷媒が流れて、第4分岐流路96の下流端96bにおいて冷媒が本流路91に合流する。これにより、第2ベース41が冷却される。各励起光源42の半導体レーザ素子43では、第2ベース41が冷却されることで、ヒートシンク43bを介して複数の半導体レーザバー43aが冷却される。
 レーザ装置1の製造方法について説明する。本実施形態では、図7に示されるように、レーザ媒質20を支持した状態にあるホルダ50が、レーザシステムの設置部Sに取り付けられているものとする。まず、図8に示されるように、第1光源ユニット30及び第2光源ユニット40を準備する(準備するステップ)。続いて、レーザ媒質20を支持した状態にあるホルダ50に、Y方向における一方の側から第1ベース31を配置し、当該ホルダ50に、Y方向における他方の側から第2ベース41を配置することで、Y方向において第1光源ユニット30及び第2光源ユニット40を並設する(並設するステップ)。この状態で、第1保持部材51及び第2保持部材52のそれぞれに第1ベース31をボルト(図示省略)等によって固定し、第1保持部材51及び第2保持部材52のそれぞれに第2ベース41をボルト(図示省略)等によって固定する。
 ホルダ50に第1ベース31を取り付ける際には、第1ベース31を連結部材53の溝53aに嵌めることで、ホルダ50に対して(延いては、レーザ媒質20に対して)、X方向及びZ方向における第1ベース31の位置が規定される。また、第1ベース31を連結部材53の支持面56においてスライドさせて第1ストッパ57に当接させることで、ホルダ50に対して(延いては、レーザ媒質20に対して)、Y方向における第1ベース31の位置が規定される。このとき、第1ベース31が筒体55に接触して筒体55が破損するような事態が防止される。
 ホルダ50に第2ベース41を取り付ける際には、第2ベース41を連結部材53の溝53aに嵌めることで、ホルダ50に対して(延いては、レーザ媒質20に対して)、X方向及びZ方向における第2ベース41の位置が規定される。また、第2ベース41を連結部材53の支持面56においてスライドさせて第2ストッパ58に当接させることで、ホルダ50に対して(延いては、レーザ媒質20に対して)、Y方向における第2ベース41の位置が規定される。このとき、第2ベース41が筒体55に接触して筒体55が破損するような事態が防止される。
 以上説明したように、レーザ装置1では、第1ベース31及び複数の励起光源32が第1光源ユニット30としてユニット化されていると共に、第2ベース41及び複数の励起光源42が第2光源ユニット40としてユニット化されており、第1光源ユニット30及び第2光源ユニット40が、Y方向において並設された状態で、ホルダ50によって支持されている。これにより、ホルダ50に対して第1ベース31及び第2ベース41のそれぞれを着脱するだけで、ホルダ50に対して複数の励起光源32,42を容易に着脱することができる。更に、レーザ媒質20を支持するホルダ50に第1ベース31及び第2ベース41のそれぞれを取り付ける際に、ホルダ50に対する第1ベース31の位置が第1ストッパ57によって規定されると共に、ホルダ50に対する第2ベース41の位置が第2ストッパ58によって規定される。これにより、レーザ媒質20を支持するホルダ50に第1ベース31及び第2ベース41のそれぞれを取り付けるだけで、レーザ媒質20に対して複数の励起光源32,42を容易に位置決めすることができる。以上により、レーザ装置1によれば、複数の励起光源32,42の着脱の容易化及び複数の励起光源32,42の位置決めの容易化を図ることができる。
 レーザ装置1では、ホルダ50が、X方向において並設された第1保持部材51及び第2保持部材52、並びに、第1保持部材51及び第2保持部材52を連結する連結部材53を含んでおり、第1光源ユニット30及び第2光源ユニット40が、第1保持部材51と第2保持部材52との間に配置されている。これにより、レーザ装置1の小型化及び構造の単純化を図ることできる。
 レーザ装置1では、連結部材53が、Y方向に沿ってスライド可能に第1ベース31及び第2ベース41を支持する支持面56を有している。これにより、連結部材53の支持面56において第1ベース31及び第2ベース41のそれぞれをスライドさせることで、ホルダ50に対して複数の励起光源32,42を容易に着脱することができる。
 レーザ装置1では、連結部材53が、Y方向に沿った第1ベース31の移動を規制する第1ストッパ57、及びY方向に沿った第2ベース41の移動を規制する第2ストッパ58を含んでいる。これにより、連結部材53の第1ストッパ57及び第2ストッパ58のそれぞれに第1ベース31及び第2ベース41のそれぞれを当接させることで、レーザ媒質20に対して複数の励起光源32,42を容易に且つ確実に位置決めすることができる。
 レーザ装置1では、第1ベース31が、冷媒が流れる第1流路70を含んでおり、第2ベース41が、冷媒が流れる第2流路80を含んでおり、ホルダ50が、冷媒が流れる第3流路90を含んでいる。これにより、レーザ媒質20及び複数の励起光源32,42を冷却することができる。
 レーザ装置1では、第1流路70、第2流路80及び第3流路90が連通している。これにより、レーザ媒質20及び複数の励起光源32,42を効率良く冷却することができる。
 レーザ装置1では、第3流路90が、レーザ媒質20と筒体55との間の流路部分91bを含む本流路91、本流路91から分岐する第1分岐流路93及び第2分岐流路94、並びに、本流路91に合流する第3分岐流路95及び第4分岐流路96を含んでいる。レーザ装置1では、第1分岐流路93の下流端93bが、第1流路70の上流端70aに接続されており、第2分岐流路94の下流端94bが、第2流路80の上流端80aに接続されており、第3分岐流路95の上流端95aが、第1流路70の下流端70bに接続されており、第4分岐流路96の上流端96aが、第2流路80の下流端80bに接続されている。これにより、簡易な流路構成で、レーザ媒質20及び複数の励起光源32,42を効率良く冷却することができる。
 レーザ装置1では、複数の励起光源32,42は、X方向から見た場合に、レーザ媒質20の中心線CLを中心とする円周に沿って配置されている。これによれば、レーザ媒質20における励起分布の均一化を図ることができる。
 レーザ装置1では、各励起光源32が半導体レーザ素子33を含んでおり、各励起光源42が半導体レーザ素子43を含んでいる。これにより、各励起光源32,42の長寿命化を図ることができる。また、複数の励起光源32が第1光源ユニット30としてユニット化されており、複数の励起光源42が第2光源ユニット40としてユニット化されているため、半導体レーザ素子単品での取り扱いに求められる繊細さが不要となる。
 レーザ装置1では、半導体レーザ素子33は、積層された複数の半導体レーザバー33aを含んでおり、半導体レーザ素子43は、積層された複数の半導体レーザバー43aを含んでいる。これにより、レーザ媒質20を効率良く且つ十分に励起することができる。
 レーザ装置1の製造方法では、ロッド状のレーザ媒質20が延在するX方向と交差するY方向における一方の側から第1ベース31をホルダ50に配置し、当該Y方向における他方の側から第2ベース41をホルダ50に配置するだけで、レーザ媒質20に対して複数の励起光源32,42を容易に位置決めすることができる。よって、レーザ装置1の製造方法によれば、レーザ媒質20に対して複数の励起光源32,42が位置決めされたレーザ装置1を容易に得ることができる。
 本開示は、上記実施形態に限定されない。例えば、上記実施形態では、第1光源ユニット30が3つの励起光源32を含んでいたが、第1光源ユニット30は、複数の励起光源32を含んでいればよい。同様に、上記実施形態では、第2光源ユニット40が3つの励起光源42を含んでいたが、第2光源ユニット40は、複数の励起光源42を含んでいればよい。一例として、図9の(a)に示されるように、第1光源ユニット30が4つの励起光源32を含んでおり、第2光源ユニット40が4つの励起光源42を含んでいてもよい。図9の(b)に示されるように、第1光源ユニット30が2つの励起光源32を含んでおり、第2光源ユニット40が2つの励起光源42を含んでいてもよい。いずれの場合にも、複数の励起光源32,42が、中心線CLを中心とする円周に沿って等角度ピッチで配置されている。
 図10の(a)に示されるように、第1光源ユニット30は、中心線CLを中心とする円周に沿って1列に配置された複数の励起光源32aと、当該円周からX方向にずれた円周に沿って1列に配置された複数の励起光源32bと、を含んでいてもよい。図10の(a)に示される第1光源ユニット30では、X方向において1つの励起光源32a及び1つの励起光源32bが並設されている。当該第1光源ユニット30と組み合わせられる第2光源ユニット40も、当該第1光源ユニット30と同様の構成を有している。
 図10の(b)に示されるように、第1光源ユニット30は、中心線CLを中心とする円周に沿って配置された少なくとも1つの励起光源32aと、当該円周からX方向にずれた円周に沿って他の1列に配置された複数の励起光源32bと、を含んでいてもよい。図10の(b)に示される第1光源ユニット30では、X方向から見た場合に1つの励起光源32aが2つの励起光源32bの間に位置するように、3つの励起光源32a、32bが、中心線CLを中心とする円周に沿って60°ピッチで配置されている。当該第1光源ユニット30と組み合わせられる第2光源ユニット40も、当該第1光源ユニット30と同様の構成を有している。
 その場合、1つの励起光源32a及び2つの励起光源42aは、図11の(a)に示されるように、中心線CLを中心とする円周に沿って120°ピッチで配置されることになる。2つの励起光源32b及び1つの励起光源42bは、図11の(b)に示されるように、中心線CLを中心とする別の円周に沿って120°ピッチで配置されることになる。結果として、6つの励起光源32a,32b,42a,42bは、図11の(c)に示されるように、中心線CLに平行な方向から見た場合に、中心線CLを中心とする円周に沿って60°ピッチで配置されることになる。これにより、各励起光源32a,32b,42a,42bから出射される励起光ELによってレーザ媒質20に均一な励起分布が与えられる。
 図12に示されるように、第1光源ユニット30において、複数の励起光源32が、第1ベース31における外側の表面に配置されており、各励起光源32からレーザ媒質20に向けて出射された励起光ELが通る貫通孔31cが、第1ベース31に形成されていてもよい。同様に、第2光源ユニット40において、複数の励起光源42が、第2ベース41における外側の表面に配置されており、各励起光源42からレーザ媒質20に向けて出射された励起光ELが通る貫通孔41cが、第2ベース41に形成されていてもよい。
 第1流路70は、屈曲した状態(例えば、各励起光源32に近付くように屈曲した状態)で第1ベース31内に形成されていてもよい。同様に、第2流路80は、屈曲した状態(例えば、各励起光源42に近付くように屈曲した状態)で第2ベース41内に形成されていてもよい。ただし、第1流路70及び第2流路80がそれぞれ第1ベース31内及び第2ベース41内に直線状に形成されていると、それらの形成が容易となる。
 第1流路70は、複数の励起光源32が取り付けられた第1ベース31の本体部とは別に設けられた配管を含んでいてもよい。同様に、第2流路80は、複数の励起光源42が取り付けられた第2ベース41の本体部とは別に設けられた配管を含んでいてもよい。
 半導体レーザ素子33のヒートシンク33bは、第1流路70から冷媒を導入させて第1流路70に冷媒を導出させ流路を含むものであってもよい。同様に、半導体レーザ素子43のヒートシンク43bは、第2流路80から冷媒を導入させて第2流路80に冷媒を導出させ流路を含むものであってもよい。
 第1ベース31及び第2ベース41は、それぞれ、第1流路70及び第2流路80を含んでいなくてもよい。その場合には、第1ベース31及び第2ベース41のそれぞれに放熱フィンが設けられていてもよい。空冷又は自然放熱によって第1ベース31及び第2ベース41が冷却されることで、各半導体レーザ素子33,43が冷却される。
 各励起光源32が、半導体レーザ素子33を冷却するための電子冷却素子を含んでいてもよい。同様に、各励起光源42が、半導体レーザ素子43を冷却するための電子冷却素子を含んでいてもよい。
 上記実施形態では、ホルダ50が、ホルダ50に対する第1ベース31の位置を規定する第1規定部として第1ストッパ57を含んでいたが、第1ベース31が当該第1規定部を含んでいてもよいし、第1ベース31及びホルダ50の両方が当該第1規定部を含んでいてもよい。つまり、第1ベース31及びホルダ50の少なくとも一方が、ホルダ50に対する第1ベース31の位置を規定する第1規定部を含んでいればよい。第1規定部は、位置決めピン及び位置決め穴、位置決めボルト及び位置決めねじ穴(その場合には、ホルダ50に対する第1ベース31の固定も兼ねる)等であってもよい。
 上記実施形態では、ホルダ50が、ホルダ50に対する第2ベース41の位置を規定する第2規定部として第2ストッパ58を含んでいたが、第2ベース41が当該第2規定部を含んでいてもよいし、第2ベース41及びホルダ50の両方が当該第2規定部を含んでいてもよい。つまり、第2ベース41及びホルダ50の少なくとも一方が、ホルダ50に対する第2ベース41の位置を規定する第2規定部を含んでいればよい。第2規定部は、位置決めピン及び位置決め穴、位置決めボルト及び位置決めねじ穴(その場合には、ホルダ50に対する第2ベース41の固定も兼ねる)等であってもよい。
 上記実施形態では、ホルダ50が、ホルダ50に対する第1ベース31の位置を規定する第1規定部として第1ストッパ57を含み、且つ、ホルダ50が、ホルダ50に対する第2ベース41の位置を規定する第2規定部として第2ストッパ58を含んでいたが、第1ベース31及びホルダ50の少なくとも一方が、ホルダ50に対する第1ベース31の位置を規定する第1規定部を含み、且つ、第1ベース31及び第2ベース41の少なくとも一方が、第1ベース31に対する第2ベース41の位置を規定する第2規定部を含んでいてもよい。その場合にも、ホルダ50に対して第1ベース31及び第2ベース41のそれぞれを着脱するだけで、ホルダ50に対して複数の励起光源32,42を容易に着脱することができる。更に、レーザ媒質20を支持するホルダ50に第1ベース31及び第2ベース41のそれぞれを取り付けるだけで、レーザ媒質20に対して複数の励起光源32,42を容易に位置決めすることができる。
 ホルダ50は、レーザ媒質20、第1光源ユニット30及び第2光源ユニット40を支持するように構成されていれば、例えば、連結部材53を含んでいなくてもよいし、連結部材53を含むか否かにかかわらず第1保持部材51又は第2保持部材のいずれか一方を含んでいなくてもよい。なお、レーザ媒質20、第1光源ユニット30及び第2光源ユニット40を支持するようにホルダ50が構成されていることは、レーザ媒質20、第1光源ユニット30及び第2光源ユニット40のそれぞれがホルダ50に接触していることを必須としない。例えば、第1光源ユニット30がホルダ50に接触した状態で第1光源ユニット30がホルダ50によって支持されており、第2光源ユニット40が第1光源ユニット30に接触し且つホルダ50から離間した状態で第2光源ユニット40がホルダ50によって支持されている場合もある。
 1…レーザ装置、20…レーザ媒質、30…第1光源ユニット、31…第1ベース、32…励起光源、33…半導体レーザ素子、33a…半導体レーザバー、40…第2光源ユニット、41…第2ベース、42…励起光源、43…半導体レーザ素子、43a…半導体レーザバー、50…ホルダ、51…第1保持部材、52…第2保持部材、53…連結部材、55…筒体、56…支持面、57…第1ストッパ(第1規定部)、58…第2ストッパ(第2規定部)、70…第1流路、70a…上流端、70b…下流端、80…第2流路、80a…上流端、80b…下流端、90…第3流路、91…本流路、91b…流路部分(流路)、93…第1分岐流路、93b…下流端、94…第2分岐流路、94b…下流端、95…第3分岐流路、95a…上流端、96…第4分岐流路、96a…上流端。

Claims (12)

  1.  第1方向に沿って延在するロッド状のレーザ媒質と、
     第1ベース、及び前記第1ベースに取り付けられた複数の励起光源を含む第1光源ユニットと、
     前記第1方向と交差する第2方向において前記第1光源ユニットと並設され、第2ベース、及び前記第2ベースに取り付けられた複数の励起光源を含む第2光源ユニットと、
     前記レーザ媒質、前記第1光源ユニット及び前記第2光源ユニットを支持するホルダと、を備え、
     前記第1ベース及び前記ホルダの少なくとも一方は、前記ホルダに対する前記第1ベースの位置を規定する第1規定部を含み、
     前記第2ベース及び前記ホルダの少なくとも一方は、前記ホルダに対する前記第2ベースの位置を規定する第2規定部を含む、レーザ装置。
  2.  前記ホルダは、前記第1方向において並設された第1保持部材及び第2保持部材、並びに、前記第1保持部材及び前記第2保持部材を連結する連結部材を含み、
     前記第1光源ユニット及び前記第2光源ユニットは、前記第1保持部材と前記第2保持部材との間に配置されている、請求項1に記載のレーザ装置。
  3.  前記連結部材は、前記第2方向に沿ってスライド可能に前記第1ベース及び前記第2ベースを支持する支持面を有する、請求項2に記載のレーザ装置。
  4.  前記連結部材は、前記第1規定部として、前記第2方向に沿った前記第1ベースの移動を規制する第1ストッパを含み、前記第2規定部として、前記第2方向に沿った前記第2ベースの移動を規制する第2ストッパを含む、請求項3に記載のレーザ装置。
  5.  前記第1ベースは、冷媒が流れる第1流路を含み、
     前記第2ベースは、冷媒が流れる第2流路を含み、
     前記ホルダは、冷媒が流れる第3流路を含む、請求項1~4のいずれか一項に記載のレーザ装置。
  6.  前記第1流路、前記第2流路及び前記第3流路は、連通している、請求項5に記載のレーザ装置。
  7.  前記ホルダは、前記レーザ媒質が内側に配置された筒体を含み、
     前記筒体は、光透過性を有し、
     前記第3流路は、前記レーザ媒質と前記筒体との間の流路を含む本流路、前記本流路から分岐する第1分岐流路及び第2分岐流路、並びに、前記本流路に合流する第3分岐流路及び第4分岐流路を含み、
     前記第1分岐流路の下流端は、前記第1流路の上流端に接続されており、
     前記第2分岐流路の下流端は、前記第2流路の上流端に接続されており、
     前記第3分岐流路の上流端は、前記第1流路の下流端に接続されており、
     前記第4分岐流路の上流端は、前記第2流路の下流端に接続されている、請求項6に記載のレーザ装置。
  8.  前記複数の励起光源は、前記第1方向から見た場合に、前記レーザ媒質の中心線を中心とする円周に沿って配置されている、請求項1~7のいずれか一項に記載のレーザ装置。
  9.  前記複数の励起光源のそれぞれは、半導体レーザ素子を含む、請求項1~8のいずれか一項に記載のレーザ装置。
  10.  前記半導体レーザ素子は、積層された複数の半導体レーザバーを含む、請求項9に記載のレーザ装置。
  11.  第1方向に沿って延在するロッド状のレーザ媒質と、
     第1ベース、及び前記第1ベースに取り付けられた複数の励起光源を含む第1光源ユニットと、
     前記第1方向と交差する第2方向において前記第1光源ユニットと並設され、第2ベース、及び前記第2ベースに取り付けられた複数の励起光源を含む第2光源ユニットと、
     前記レーザ媒質、前記第1光源ユニット及び前記第2光源ユニットを支持するホルダと、を備え、
     前記第1ベース及び前記ホルダの少なくとも一方は、前記ホルダに対する前記第1ベースの位置を規定する第1規定部を含み、
     前記第1ベース及び前記第2ベースの少なくとも一方は、前記第1ベースに対する前記第2ベースの位置を規定する第2規定部を含む、レーザ装置。
  12.  第1ベース、及び前記第1ベースに取り付けられた複数の励起光源を含む第1光源ユニットと、第2ベース、及び前記第2ベースに取り付けられた複数の励起光源を含む第2光源ユニットと、を準備するステップと、
     第1方向に沿って延在するロッド状のレーザ媒質を支持した状態にあるホルダに、前記第1方向と交差する第2方向における一方の側から前記第1ベースを配置し、前記ホルダに、前記第2方向における他方の側から前記第2ベースを配置することで、前記第2方向において前記第1光源ユニット及び前記第2光源ユニットを並設するステップと、を備える、レーザ装置の製造方法。
PCT/JP2021/030434 2020-09-04 2021-08-19 レーザ装置、及びレーザ装置の製造方法 WO2022050071A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180054293.XA CN116057796A (zh) 2020-09-04 2021-08-19 激光装置和激光装置的制造方法
US18/022,764 US20230318245A1 (en) 2020-09-04 2021-08-19 Laser device and method for manufacturing laser device
EP21864129.8A EP4181332A4 (en) 2020-09-04 2021-08-19 LASER DEVICE AND METHOD FOR MANUFACTURING A LASER DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020148901A JP7554610B2 (ja) 2020-09-04 2020-09-04 レーザ装置、及びレーザ装置の製造方法
JP2020-148901 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022050071A1 true WO2022050071A1 (ja) 2022-03-10

Family

ID=80490746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030434 WO2022050071A1 (ja) 2020-09-04 2021-08-19 レーザ装置、及びレーザ装置の製造方法

Country Status (5)

Country Link
US (1) US20230318245A1 (ja)
EP (1) EP4181332A4 (ja)
JP (1) JP7554610B2 (ja)
CN (1) CN116057796A (ja)
WO (1) WO2022050071A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7554611B2 (ja) 2020-09-04 2024-09-20 浜松ホトニクス株式会社 レーザ装置、及びレーザ装置の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683296A (en) * 1970-10-13 1972-08-08 Texas Instruments Inc High efficiency laser cavity
US5012481A (en) * 1990-03-09 1991-04-30 Martin Marietta Corporation Flashlamp line replaceable unit
US5253260A (en) * 1991-12-20 1993-10-12 Hughes Aircraft Company Apparatus and method for passive heat pipe cooling of solid state laser heads
US5278860A (en) * 1992-09-28 1994-01-11 General Electric Company Modular construction of face-pumped laser head components
JPH07115237A (ja) * 1993-10-19 1995-05-02 Mitsui Petrochem Ind Ltd 固体レーザ装置
US5418809A (en) * 1994-05-31 1995-05-23 General Electric Company Modular slab assembly for a face-pumped laser
US5475702A (en) * 1994-05-31 1995-12-12 General Electric Company Diode pumped slab module
JP2000277837A (ja) * 1999-03-23 2000-10-06 Toshiba Corp 固体レーザ装置
JP2001068765A (ja) * 1999-08-24 2001-03-16 Ishikawajima Harima Heavy Ind Co Ltd キャビティ
JP2005285807A (ja) 2004-03-26 2005-10-13 Hamamatsu Photonics Kk 半導体レーザ励起固体レーザ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774488A (en) * 1994-06-30 1998-06-30 Lightwave Electronics Corporation Solid-state laser with trapped pump light
US5590147A (en) * 1994-12-19 1996-12-31 The Morgan Curcible Company Plc Side-pumped lasers
US5778020A (en) * 1996-06-04 1998-07-07 Cj Laser, Inc. ND: YAG laser pump head
JP2001068767A (ja) 1999-08-24 2001-03-16 Ishikawajima Harima Heavy Ind Co Ltd ランプコネクタバネ
JP2004207496A (ja) * 2002-12-25 2004-07-22 Nec Corp 固体レーザ発振器
CN100379099C (zh) * 2003-03-17 2008-04-02 三菱电机株式会社 激光振荡器
US7170919B2 (en) * 2003-06-23 2007-01-30 Northrop Grumman Corporation Diode-pumped solid-state laser gain module
JP7554611B2 (ja) 2020-09-04 2024-09-20 浜松ホトニクス株式会社 レーザ装置、及びレーザ装置の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683296A (en) * 1970-10-13 1972-08-08 Texas Instruments Inc High efficiency laser cavity
US5012481A (en) * 1990-03-09 1991-04-30 Martin Marietta Corporation Flashlamp line replaceable unit
US5253260A (en) * 1991-12-20 1993-10-12 Hughes Aircraft Company Apparatus and method for passive heat pipe cooling of solid state laser heads
US5278860A (en) * 1992-09-28 1994-01-11 General Electric Company Modular construction of face-pumped laser head components
JPH07115237A (ja) * 1993-10-19 1995-05-02 Mitsui Petrochem Ind Ltd 固体レーザ装置
US5418809A (en) * 1994-05-31 1995-05-23 General Electric Company Modular slab assembly for a face-pumped laser
US5475702A (en) * 1994-05-31 1995-12-12 General Electric Company Diode pumped slab module
JP2000277837A (ja) * 1999-03-23 2000-10-06 Toshiba Corp 固体レーザ装置
JP2001068765A (ja) * 1999-08-24 2001-03-16 Ishikawajima Harima Heavy Ind Co Ltd キャビティ
JP2005285807A (ja) 2004-03-26 2005-10-13 Hamamatsu Photonics Kk 半導体レーザ励起固体レーザ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4181332A4

Also Published As

Publication number Publication date
EP4181332A4 (en) 2024-08-21
EP4181332A1 (en) 2023-05-17
JP7554610B2 (ja) 2024-09-20
JP2022043569A (ja) 2022-03-16
US20230318245A1 (en) 2023-10-05
CN116057796A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2022050071A1 (ja) レーザ装置、及びレーザ装置の製造方法
US6101208A (en) Nd:YAG laser pump head
US20090101308A1 (en) Micro-channel pulsating heat pump
EP0820126B1 (en) Diode laser pumped solid state laser gain module
WO2022050072A1 (ja) レーザ装置、及びレーザ装置の製造方法
US5883737A (en) Diode laser excitation solid-state laser amplifier and diode laser excitation solid-state laser
EP1439618B1 (en) Laserdiode pumped compact solid state laser with a folded resonator
US6785440B1 (en) Assembly for focusing and coupling the radiation produced by a semiconductor laser into optical fibers
JPH1187816A (ja) Ld励起固体レーザ発振装置
JP7302409B2 (ja) 照射ユニットおよび液晶パネル製造装置
JP2005100865A (ja) システム天井用照明器具
US20060153258A1 (en) Laser beam transmitter
JP2019087561A (ja) 冷却構造体、及び光源ユニット
KR102097708B1 (ko) 방열 장치 및 그것을 구비하는 광 조사 장치
JP2009253074A (ja) レーザ光出射装置およびレーザ装置
TWI427285B (zh) 線性光發射裝置
US20050129080A1 (en) Pump arrangement for transversally pumping an active medium
GR1009510B (el) Προβολεας φωτοδιοδων ενιαιος στο συστημα ψυξης του
WO2023027096A1 (ja) 光モジュール及び光モジュールの製造方法
WO2021210226A1 (ja) 光源装置、プロジェクタ、機械加工装置、光源ユニットおよび光源装置の調整方法
JP7276054B2 (ja) 光照射装置
JP7008413B2 (ja) 光照射装置および印刷装置
JP4592485B2 (ja) 大出力レーザ光発生方法および大出力レーザ光発生装置
JP2007073636A (ja) レーザ装置及びレーザシステム
JP2007220717A (ja) 固体レーザロッドおよび大出力レーザ光発生方法ならびに大出力レーザ光発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021864129

Country of ref document: EP

Effective date: 20230207

NENP Non-entry into the national phase

Ref country code: DE