WO2022045031A1 - 蓄電素子 - Google Patents

蓄電素子 Download PDF

Info

Publication number
WO2022045031A1
WO2022045031A1 PCT/JP2021/030703 JP2021030703W WO2022045031A1 WO 2022045031 A1 WO2022045031 A1 WO 2022045031A1 JP 2021030703 W JP2021030703 W JP 2021030703W WO 2022045031 A1 WO2022045031 A1 WO 2022045031A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
power storage
storage element
material layer
Prior art date
Application number
PCT/JP2021/030703
Other languages
English (en)
French (fr)
Inventor
倫央 山谷
森人 田邊
丈 佐々木
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to US18/022,661 priority Critical patent/US20230317957A1/en
Priority to JP2022544565A priority patent/JPWO2022045031A1/ja
Publication of WO2022045031A1 publication Critical patent/WO2022045031A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a power storage element.
  • Power storage elements secondary batteries, capacitors, etc. that can be charged and discharged are used in various devices such as vehicles such as electric vehicles, home appliances, and mobile phones.
  • a band-shaped positive electrode having a positive electrode active material layer containing positive electrode active material particles and a band-shaped negative electrode having a negative electrode active material layer containing negative electrode active material particles are superposed with each other via a band-shaped separator.
  • the electrode body is wound with a winding type electrode body (see Patent Documents 1 and 2).
  • Such an electrode body is housed in a container together with an electrolyte to form a power storage element.
  • the electrodes expand due to a decrease in the binding force between the active material particles and the generation of gas as the charging and discharging are repeated.
  • the electrode expands, the active material particles are separated from each other, so that the conductivity of the active material layer decreases, which causes a decrease in the discharge capacity.
  • the expansion of the electrode leads to the expansion of the electrode body provided with the electrode.
  • the flat portion of the electrode body is usually in contact with the inner surface of the container and therefore difficult to expand, but the curved surface portion is particularly the inner surface of the container. If it is not in contact with, it tends to swell. The expansion of this curved surface portion may cause a decrease in capacity.
  • the present invention has been made based on the above circumstances, and an object thereof is a power storage element provided with a flat winding type electrode body, which has a high capacity retention rate after a charge / discharge cycle. It is to provide an element.
  • One aspect of the present invention comprises a flat electrode body in which a positive electrode and a negative electrode are wound around a separator and have two curved portions facing each other, and a container for accommodating the electrode body.
  • At least one of the negative electrode and the negative electrode is a power storage element having an active material layer containing active material particles and a fibrous conductive agent and satisfying the following formula 1.
  • X is the distance from the tip of one of the curved surfaces in the winding axis direction of the electrode body to the inner surface of the container facing the tip of the curved surface.
  • R is the length of the outer circumference of the one curved surface portion in the winding axis direction view of the electrode body.
  • D is the average particle diameter D50 of the active material particles.
  • A is the surface roughness Ra of the active material layer.
  • Another aspect of the present invention includes a flat electrode body in which a positive electrode and a negative electrode are wound around a separator and have two curved portions facing each other, and a container for accommodating the electrode body.
  • At least one of the positive electrode and the negative electrode has an active material layer containing active material particles and a fibrous conductive agent, and is a power storage element satisfying the following formula 2.
  • D is the average particle diameter D50 of the active material particles.
  • A is the surface roughness Ra of the active material layer.
  • a power storage element provided with a flat winding type electrode body and having a high capacity retention rate after a charge / discharge cycle.
  • FIG. 1 is a schematic perspective view showing a power storage element according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along the line II of the power storage element of FIG.
  • FIG. 3A is a first schematic view showing a state of the surface of the active material layer of the power storage element according to the embodiment of the present invention.
  • FIG. 3B is a second schematic view showing the state of the surface of the active material layer of the power storage element according to the embodiment of the present invention.
  • FIG. 4 is a schematic view showing a power storage device configured by assembling a plurality of power storage elements according to an embodiment of the present invention.
  • the power storage element includes a flat electrode body in which a positive electrode and a negative electrode are wound around a separator and have two curved portions facing each other, and a container for accommodating the electrode body.
  • At least one of the positive electrode and the negative electrode has an active material layer containing active material particles and a fibrous conductive agent, and is a power storage element ( ⁇ ) satisfying the following formula 1.
  • X is the distance from the tip of one of the curved surfaces in the winding axis direction of the electrode body to the inner surface of the container facing the tip of the curved surface.
  • R is the length of the outer circumference of the one curved surface portion in the winding axis direction view of the electrode body.
  • D is the average particle diameter D50 of the active material particles.
  • A is the surface roughness Ra of the active material layer.
  • the power storage element ( ⁇ ) is a power storage element provided with a flat, wound-type electrode body, and has a high capacity retention rate after a charge / discharge cycle.
  • the reason for this effect is not clear, but the following reasons are presumed.
  • one of the causes of the low capacity retention rate after the charge / discharge cycle in the power storage element provided with the conventional flat winding type electrode body is the conductivity of the active material layer due to the expansion of the curved surface portion of the electrode body. Can be mentioned as a decrease.
  • the active material layer contains the fibrous conductive agent together with the active material particles, and by satisfying the formula 1, the decrease in the conductivity of the active material layer on the curved surface is suppressed. As a result, it is presumed that the capacity retention rate will be improved.
  • the formula 1 and the like will be described in detail below. The following lengths and the like will be described as the lengths and the like in the state of the electrode body viewed in the winding axis direction (see FIG. 2). Regarding the left side (R / D) A in the equation 1, R is the length (unit: mm) of the outer circumference of the curved surface portion 8a (see FIG. 2) of the electrode body 1.
  • D is an average particle diameter D50 (unit: ⁇ m) of the active material particles in the active material layer. Therefore, R / D represents the number of active material particles in the active material layer along the length direction of the outer periphery of the curved surface portion. Further, A is the surface roughness Ra (unit: ⁇ m) of the active material layer, and represents the degree of unevenness on the surface of the active material layer. Therefore, the product (R / D) A of R / D and A represents the degree of the length of the surface of the active material layer along the unevenness of the surface on the outer periphery of the curved surface portion.
  • the height of the unevenness on the surface of the active material layer (A: surface roughness Ra) is large, or the interval between the unevenness on the surface of the active material layer (D: active material).
  • D active material
  • the average particle diameter D50 of the particles is small, the length of the surface of the active material layer along the unevenness of the surface becomes long.
  • the fibrous conductive agent 12 existing on the surface of the active material layer 11 comes into contact with the surface of the active material particles 13 and electrically between the active material particles 13. You are connected.
  • the fibrous conductive agent 12 bends along the unevenness of the active material layer surface 11, that is, the shape of the active material particles 13 existing on the active material layer surface 11, and comes into contact with the plurality of active material particles 13. It is considered that the conductivity between the active material particles 13 is ensured. Then, even when the curved surface portion of the electrode body expands and the space between the active material particles 13 expands as schematically shown in FIG. 3B, the fibrous conductive agent 12 extends to a straight state and the plurality of active material particles. Since it can come into contact with 13, the conductivity between the active material particles 13 is ensured. That is, it is considered that the fibrous conductive agent 12 can be stretched like a bellows in a state of being in contact with the active material particles 13.
  • X is the distance (unit::) from the tip of the curved surface portion 8a of the electrode body 1 to the inner surface of the container 2 facing the tip of the curved surface portion 8a, as shown in FIG. mm).
  • the curved surface portion 8a expands and the length of the outer circumference of the curved surface portion 8a extends by 2X, it can be assumed that the tip of the curved surface portion 8a comes into contact with the inner surface of the container 2 and further expansion is suppressed.
  • 2X indicates an upper limit for extending the outer circumference of the curved surface portion. That is, the above formula 1 shows that even when the curved surface portion of the electrode body expands until it comes into contact with the inner surface of the container due to repeated charging and discharging, the fibrous conductive agent can suppress the decrease in conductivity between the active material particles. From the above, it is presumed that the capacity retention rate of the power storage element ( ⁇ ) after the charge / discharge cycle is increased.
  • the "curved surface portion” of the electrode body refers to a substantially semicircular portion located at both ends in the winding axis direction, and specifically, when the thickness of the electrode body is T, the winding is performed.
  • the region from both ends of the electrode body to the length T / 2 in the axial direction is defined as a curved surface portion (see FIG. 2).
  • the R (the length of the outer circumference of one curved surface portion) is ⁇ T / 2.
  • the "fibrous conductive agent” refers to a deformable elongated conductive agent.
  • the ratio of the length to the diameter of the fibrous conductor is, for example, 10 or more.
  • the diameter and length of the fibrous conductive agent shall be values measured in a scanning electron microscope (SEM) or transmission electron microscope (TEM) image on the surface of the active material layer.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • X when the distances from the tips of the two curved surfaces to the inner surface of the container facing each tip are different, the shorter distance is defined as X.
  • the distance from the tip of the upper curved surface portion 8a to the inner surface of the container 2 facing the tip of the curved surface portion 8a is defined as X.
  • another member spacer or the like
  • the distance from the tip end of the curved surface portion to the surface of the other member is defined as X.
  • the “container” in the definition of X above includes other members other than the electrode body in the container.
  • the above other members do not contain an electrolyte.
  • Average particle size D50 (D) of active material particles is based on JIS-Z-8825 (2013), and has a particle size distribution measured by laser diffraction / scattering method with respect to a diluted solution obtained by diluting the particles with a solvent. Based on this, it means a value at which the volume-based integrated distribution calculated in accordance with JIS-Z-8891-2 (2001) is 50%.
  • “Surface roughness Ra (A) of the active material layer” means the arithmetic mean roughness measured according to JIS B0601: 2013.
  • the sample for measuring the “surface roughness Ra (A) of the active material layer” is prepared by the following procedure. First, the power storage element (secondary battery) is constantly charged with a charging current of 0.05 C until the charge end voltage at the time of normal use is reached, and the battery is fully charged. After a 30-minute pause, a constant current discharge is performed with a discharge current of 0.05 C to the lower limit voltage during normal use. Disassemble, take out the electrodes, and assemble a test battery with metal Li as the counter electrode.
  • the current value is 10 mA per 1 g of the positive electrode active material, and the positive electrode potential is 2.0 V vs.
  • a constant current discharge is performed until Li / Li +
  • the electrode is a negative electrode
  • the current value is 10 mA per 1 g of the negative electrode active material, and the negative electrode potential is 1.5 V vs.
  • a constant current discharge is performed until Li / Li + is obtained. Re-disassemble and take out the electrodes. The non-aqueous electrolyte adhering to the removed electrode is thoroughly washed with dimethyl carbonate and dried at room temperature for 24 hours, and the sample is used as a sample for measuring the surface roughness Ra.
  • the power storage element accommodates a flat electrode body in which a positive electrode and a negative electrode are wound around a separator and have two curved surface portions facing each other, and the electrode body.
  • a power storage element ( ⁇ ) provided with a container, wherein at least one of the positive electrode and the negative electrode has an active material layer containing active material particles and a fibrous conductive agent, and satisfies the following formula 2.
  • D is the average particle diameter D50 of the active material particles.
  • A is the surface roughness Ra of the active material layer.
  • the power storage element ( ⁇ ) is a power storage element provided with a flat, wound-type electrode body, and has a high capacity retention rate after a charge / discharge cycle.
  • the reason for this effect is not clear, but the following reasons are presumed.
  • the A / D obtained by dividing the surface roughness Ra of the active material layer by the average particle diameter D50 of the active material particles is the surface of the active material layer along the surface irregularities per unit length of the outer periphery of the curved surface portion of the electrode body. Represents the degree of length. That is, it can be said that the larger the A / D, the longer the fibrous conductive agent in contact with the surface unevenness of the active material layer exists in a sufficiently bent state and the longer it can be stretched.
  • the fibrous conductive agent is sufficient like a bellows. It is presumed that the capacity retention rate of the power storage element ( ⁇ ) after the charge / discharge cycle is increased because the decrease in conductivity between the active material particles can be sufficiently suppressed.
  • the power storage element ( ⁇ ) further satisfies the following formula 1.
  • X is the distance from the tip of one of the curved surfaces in the winding axis direction of the electrode body to the inner surface of the container facing the tip of the curved surface.
  • R is the length of the outer circumference of the one curved surface portion in the winding axis direction view of the electrode body.
  • D and A are synonymous with D and A in Equation 2.
  • the power storage element ( ⁇ ) and the power storage element ( ⁇ ) further satisfy the following formula 3. 0.06 ⁇ X / R ⁇ 0.12 ⁇ ⁇ ⁇ 3
  • X and R are synonymous with X and R in Equation 1.
  • the curved surface portion of the electrode body comes into contact with the inner surface of the container due to expansion accompanying the charge / discharge cycle.
  • the curved surface is easily pressed. Therefore, when the power storage element ( ⁇ ) and the power storage element ( ⁇ ) are applied to the lithium ion power storage element, the resistance tends to increase due to the compression of the separator on the curved surface portion.
  • the content of the fibrous conductive agent in the active material layer is preferably 0.01% by mass or more. In such a case, even when the curved surface portion of the electrode body expands, the presence of a sufficient amount of the fibrous conductive agent can sufficiently sufficiently suppress the decrease in conductivity between the active material particles, so that the capacity after the charge / discharge cycle is reached. The maintenance rate will be higher.
  • the average length of the fibrous conductive agent is larger than the average particle diameter D50 of the active material particles.
  • the fibrous conductive agent having a sufficient length sufficiently sufficiently reduces the conductivity between the active material particles. Since it can be suppressed, the capacity retention rate after the charge / discharge cycle is further increased.
  • the "average length" of the fibrous conductive agent is the average value of the lengths of any 10 fibrous conductive agents observed by SEM or TEM.
  • the active material particles exist in the state of secondary particles in which the ratio of the average particle diameter D50 to the primary particle diameter is 3 or less, or primary particles that are not substantially aggregated.
  • an active material layer having a relatively large surface roughness Ra with respect to the average particle diameter D50 is formed, so that it becomes easy to obtain a power storage element satisfying the formulas 1 and 2.
  • the "primary particle size" of the active material particles is an average value of each particle size in any 50 primary particles constituting the active material particles observed in SEM.
  • the primary particles are particles in which no grain boundaries are observed on the appearance in the above SEM observation.
  • the particle size of the primary particles is obtained as follows. The shortest diameter passing through the center of the minimum circumscribed circle of the primary particle is defined as the minor diameter, and the diameter passing through the center and orthogonal to the minor diameter is defined as the major diameter. The average value of the major axis and the minor axis is taken as the particle diameter of the primary particle. When there are two or more shortest diameters, the one with the longest orthogonal diameter is the shortest diameter.
  • the active material particles "exist in the state of primary particles that are not substantially aggregated" means that when the active material layer is observed by SEM, or the active material particles are collected from the active material layer and used as a binder or the like.
  • SEM SEM with the conductive agent removed
  • a plurality of primary particles exist independently without agglomeration, or the primary particles and other primary particles are generally directly bonded. It means that you have not done so.
  • the positive electrode contains the active material particles and the fibrous conductive agent.
  • the active material particles of the positive electrode usually have lower conductivity than the active material particles of the negative electrode, and the decrease in conductivity at the positive electrode has a large effect on the capacity retention rate. Therefore, by suppressing the decrease in conductivity in the positive electrode, the capacity retention rate after the charge / discharge cycle can be effectively increased.
  • the power storage element 100 includes an electrode body 1, an electrolyte (not shown), and a container 2 for accommodating them. Note that FIGS. 1 and 2 do not limit the orientation when the power storage element 100 is used. For example, the power storage element 100 of FIGS. 1 and 2 may be tilted or turned upside down for use.
  • the power storage element 100 is a secondary battery which is an example of the power storage element.
  • the electrode body 1 is a flat, wound-type electrode body including a positive electrode, a negative electrode, and a separator. The specific structure of the electrode body 1 will be described later.
  • the power storage element 100 further includes a positive electrode connecting member 3, a positive electrode external terminal 4, a negative electrode connecting member 5, and a negative electrode external terminal 6.
  • the positive electrode of the electrode body 1 is electrically connected to the positive electrode external terminal 4 via the positive electrode connecting member 3.
  • the negative electrode of the electrode body 1 is electrically connected to the negative electrode external terminal 6 via the negative electrode connecting member 5.
  • the electrode body 1 has a positive electrode, a negative electrode, and a separator, and the positive electrode and the negative electrode are overlapped with each other via the separator.
  • the electrode body 1 is a flat winding type electrode body in which a band-shaped positive electrode and a band-shaped negative electrode are wound in a state of being overlapped with each other via a band-shaped separator.
  • the electrode body 1 has a flat shape, and a flat portion 7 in which the positive electrode, the negative electrode, and the separator are overlapped substantially in parallel, and two curved surface portions 8 in which the positive electrode, the negative electrode, and the separator are overlapped in a curved state. (8a, 8b) (see FIG. 2).
  • the curved surface portion 8 may be referred to as a curved surface portion or the like.
  • the two curved surface portions 8a and 8b are located so as to face each other.
  • the length R of the outer circumference of the curved surface portion 8a and the length R'of the outer circumference of the curved surface portion 8b in the winding axis direction view (FIG. 2) of the electrode body 1 are appropriately set depending on the size of the power storage element 100 and the like. For example, they may be 5 mm or more and 100 mm or less, or 10 mm or more and 50 mm or less, respectively. Normally, the length R of the outer circumference of the curved surface portion 8a and the length R'of the outer circumference of the curved surface portion 8b are substantially equal to each other.
  • the container 2 is a closed container that houses the electrode body 1 and the like and encloses an electrolyte inside.
  • the material of the container 2 may be, for example, a resin or a metal as long as it has a sealing property capable of enclosing an electrolyte and a strength capable of protecting the electrode body 1.
  • the container 2 is a square container, and the outer surface of the flat portion 7 of the electrode body 1 is in contact with the inner surface of the container 2. That is, the thickness T of the electrode body 1 and the inner dimensions of the container 2 may be substantially the same (see FIG. 2).
  • the upper curved surface portion 8a in FIG. 2 of the electrode body 1 and the inner surface of the container 2 are separated from each other.
  • the distance X from the tip of the curved surface portion 8a in the direction of the winding axis of the electrode body 1 (FIG. 2) to the inner surface of the container 2 facing the tip of the curved surface portion 8a is appropriately set according to the size of the power storage element 100 and the like. However, for example, it may be 0.1 mm or more and 10 mm or less, or 0.5 mm or more and 3 mm or less.
  • the lower curved surface portion 8b in FIG. 2 of the electrode body 1 and the inner surface of the container 2 are also separated from each other.
  • the distance X'to the inner surface of the container 2 facing the tip of the curved surface portion 8b is larger than the above distance X.
  • the distance X' may be, for example, a length within the same range as the above-mentioned distance X.
  • the positive electrode has a positive electrode base material and a positive electrode active material layer laminated on the positive electrode base material directly or via an intermediate layer.
  • the positive electrode substrate has conductivity. "Whether or not it has conductivity is determined with a volume resistivity of 107 ⁇ ⁇ cm measured in accordance with JIS-H-0505 (1975) as a threshold value.
  • Aluminum is used as the material of the positive electrode base material. , Titanium, tantalum, stainless steel and other metals or alloys thereof are used. Among these, aluminum and aluminum alloys are preferable from the viewpoint of balance of resistivity, high conductivity and cost, and formation of a positive electrode base material. Examples of the form include a foil, a vapor-deposited film, and the like, and a foil is preferable from the viewpoint of cost. That is, an aluminum foil is preferable as a positive substrate base material. As an aluminum or an aluminum alloy, JIS-H-4000 (2014). ) Or A1085, A3003, A1N30 and the like specified in JIS-H-4160 (2006) can be exemplified.
  • the average thickness of the positive electrode substrate is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, further preferably 8 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the "average thickness" of the positive electrode base material and the negative electrode base material described later means a value obtained by dividing the punched mass when punching a base material having a predetermined area by the true density and the punched area of the base material.
  • the intermediate layer is a coating layer on the surface of the positive electrode base material, and contains conductive particles such as carbon particles to reduce the contact resistance between the positive electrode base material and the positive electrode active material layer.
  • the composition of the intermediate layer is not particularly limited, and can be formed by, for example, a composition containing a resin binder and conductive particles.
  • the positive electrode active material layer is formed from a so-called positive electrode mixture containing positive electrode active material particles.
  • the positive electrode active material layer preferably contains the positive electrode active material particles and the fibrous conductive agent.
  • the positive electrode mixture forming the positive electrode active material layer contains optional components such as a binder, a thickener, and a filler, if necessary.
  • the positive electrode active material layer contains the fibrous conductive agent, but the positive electrode active material layer does not contain the fibrous conductive agent and the negative electrode active material layer contains the fibrous conductive agent. It may be in a form including.
  • the material (type) of the positive electrode active material constituting the positive electrode active material particles can be appropriately selected from known positive electrode active materials.
  • As the positive electrode active material for a lithium ion secondary battery a material capable of occluding and releasing lithium ions is usually used.
  • Examples of the positive electrode active material include a lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure, a lithium transition metal composite oxide having a spinel type crystal structure, a polyanionic compound, a chalcogen compound, sulfur and the like.
  • Examples of the lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure include Li [Li x Ni 1-x ] O 2 (0 ⁇ x ⁇ 0.5) and Li [Li x Ni ⁇ Co 1-x . - ⁇ ] O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ ⁇ 1), Li [Li x Co 1-x ] O 2 (0 ⁇ x ⁇ 0.5), Li [Li x Ni ⁇ Mn 1 ) -X - ⁇ ] O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ ⁇ 1), Li [Li x Ni ⁇ Mn ⁇ Co 1-x- ⁇ - ⁇ ] O 2 (0 ⁇ x ⁇ 0.5) , 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇ ⁇ 1), Li [Li x Ni ⁇ Co ⁇ Al 1-x- ⁇ - ⁇ ] O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ , Examples thereof include 0 ⁇ , 0.5 ⁇ + ⁇ ⁇ 1).
  • Examples of the lithium transition metal composite oxide having a spinel-type crystal structure include Li x Mn 2 O 4 and Li x Ni ⁇ Mn 2- ⁇ O 4 .
  • Examples of the polyanionic compound include LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F and the like.
  • Examples of the chalcogen compound include titanium disulfide, molybdenum disulfide, molybdenum dioxide and the like. The atoms or polyanions in these materials may be partially substituted with atoms or anion species consisting of other elements.
  • a lithium transition metal composite oxide is preferable, a lithium transition metal composite oxide containing nickel, cobalt, manganese or aluminum is more preferable, and a lithium transition metal containing nickel, cobalt and manganese is more preferable. Composite oxides are even more preferred.
  • This lithium transition metal composite oxide preferably has an ⁇ -NaFeO type 2 crystal structure.
  • the positive electrode active material As the material for the positive electrode active material, one type may be used alone, or two or more types may be mixed and used. Among them, the positive electrode active material contains a lithium transition metal composite oxide in a proportion of 50% by mass or more (preferably 70 to 100% by mass, more preferably 80 to 100% by mass) of the total positive electrode active material used. It is more preferable to use a positive electrode active material which is substantially composed of only a lithium transition metal composite oxide.
  • the average particle size D50 of the positive electrode active material particles is, for example, preferably 0.1 ⁇ m or more and 20 ⁇ m or less, more preferably 1 ⁇ m or more and 12 ⁇ m or less, and further preferably 3 ⁇ m or more and 8 ⁇ m or less.
  • the conductivity of the positive electrode active material layer is improved, and the capacity retention rate after the charge / discharge cycle tends to be further increased.
  • the average particle diameter D50 (D in formulas 1 and 2) of the positive electrode active material particles is set to be equal to or less than the above upper limit, (R / D) A and A / D become large and the space between the positive electrode active material particles widens.
  • the capacity retention rate after the charge / discharge cycle of the power storage element is further increased.
  • the positive electrode active material particles exist in the state of secondary particles in which the ratio of the average particle diameter D50 to the primary particle diameter is 3 or less, or primary particles that are not substantially aggregated.
  • secondary particles in which the ratio of the average particle diameter D50 to the primary particle diameter is 3 or less, or primary particles that are not substantially aggregated are also referred to as “single particle type particles”.
  • the ratio of the average particle diameter D50 to the primary particle diameter in the secondary particles is preferably 2 or less, more preferably 1.5 or less, still more preferably 1.2 or less.
  • the lower limit of the ratio of the average particle diameter D50 to the primary particle diameter of the secondary particles may be 1. Due to the difference between the method for measuring the primary particle size and the method for measuring the average particle size D50, the lower limit of the ratio of the average particle size D50 to the primary particle size of the secondary particles is less than 1, for example, 0.9. May be good.
  • the positive electrode active material particles may contain positive electrode active material particles other than single particle type particles.
  • the content of the single particle-based particles with respect to all the positive electrode active material particles contained in the positive electrode active material layer is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 99% by mass or more, and substantially. It is more preferably 100% by mass. That is, in the positive electrode, it is particularly preferable to use substantially only single particle type particles as the positive electrode active material particles. In such a case, it becomes easy to obtain a power storage element satisfying the formulas 1 and 2, and as a result, the capacity retention rate after the charge / discharge cycle of the power storage element can be further increased.
  • the positive electrode active material particles which are single particle type particles, can be produced by a known method, and the primary particle diameter and the average particle diameter D50 can be controlled by the production conditions. Further, as such positive electrode active material particles, a commercially available product may be used. In the process of manufacturing an active material, it is possible to grow a plurality of primary particles and increase the particle size by raising the firing temperature to a high temperature or lengthening the firing time. Alternatively, it is possible to obtain primary particles by crushing the secondary particles.
  • the content of the positive electrode active material particles in the positive electrode active material layer is preferably 80% by mass or more and 99% by mass or less, more preferably 85% by mass or more and 98% by mass or less, and more preferably 90% by mass or more and 97% by mass or less.
  • fibrous conductive agent examples include fibrous metal, fibrous conductive resin, fibrous carbon and the like, but fibrous carbon is preferable.
  • Fibrous carbon refers to a fibrous conductive agent that is a carbonaceous material.
  • fibrous carbon examples include carbon nanofibers, pitch-based carbon fibers, and carbon nanotubes (CNTs), and CNTs which are graphene-based carbons can be preferably used. ..
  • the average diameter of the fibrous conductive agent is preferably 1 nm or more and 300 nm or less, more preferably 3 nm or more and 100 nm or less, further preferably 4 nm or more and 50 nm or less, still more preferably 5 nm or more and 30 nm or less.
  • the "average diameter" of the fibrous conductive agent is an average value of the diameters of any 10 fibrous conductive agents observed by SEM or TEM.
  • the average length of the fibrous conductive agent is preferably larger than the average particle size D50 of the positive electrode active material particles, and is twice or more, three times or more, and even five times or more the average particle size D50 of the positive electrode active material particles. Is more preferable.
  • the fibrous conductive agent sufficiently long compared to the size of the positive electrode active material particles, even when the curved surface portion 8a of the electrode body 1 expands and the distance between the positive electrode active material particles widens. Since the fibrous conductive agent can sufficiently sufficiently suppress the decrease in conductivity between the positive electrode active material particles, the capacity retention rate after the charge / discharge cycle is further increased.
  • the average length of the fibrous conductive agent is preferably 1 ⁇ m or more and 1,000 ⁇ m or less, more preferably 10 ⁇ m or more and 600 ⁇ m or less, and further preferably 20 ⁇ m or more and 300 ⁇ m or less.
  • the average aspect ratio (ratio of average length to average diameter) of the fibrous conductive agent is, for example, preferably 10 or more and 10,000 or less, more preferably 100 or more, still more preferably 1,000 or more.
  • the average lattice spacing (d 002 ) of the (002) plane determined by the X-ray diffraction method of the fibrous carbon is preferably less than 0.340 nm.
  • the lower limit of the average lattice spacing (d 002 ) of the fibrous carbon can be, for example, 0.330 nm.
  • the half width (002) of the peak corresponding to the (002) plane by the X-ray diffraction method of fibrous carbon is, for example, 0.5 ° or more.
  • the full width at half maximum (002) of the fibrous carbon is preferably less than 0.7 °.
  • Fibrous carbon can be obtained by, for example, a method of making a polymer into a fibrous form by a spinning method or the like and heat-treating it in an inert atmosphere, or a vapor phase growth method in which an organic compound is reacted at a high temperature in the presence of a catalyst.
  • fibrous carbon fibrous carbon (vapor-grown fibrous carbon) obtained by the vapor phase growth method is preferable.
  • fibrous carbon and other fibrous conductive agents commercially available ones can be used.
  • the content of the fibrous conductive agent in the positive electrode active material layer is, for example, preferably 0.01% by mass or more and 5% by mass or less, preferably 0.1% by mass or more and 4% by mass or less, and 0.5% by mass or more and 3% by mass. % Or less is more preferable, and 1.0% by mass or more and 2.5% by mass or less is further preferable.
  • the fibrous conductive agent exists over the entire length of the curved surface portion 8a of the electrode body 1 in the direction of the winding axis, and forms a network of the fibrous conductive agent along the shape of the positive electrode active material particles existing on the surface of the positive electrode active material layer. It is preferable to do. That is, the surface of the positive electrode active material layer on the curved surface portion 8a of the electrode body 1 is ensured to be conductive by a plurality of fibrous conductive agents from one end to the other end of the outer periphery of the curved surface portion 8a in the winding axis direction. Is preferable.
  • the fibrous conductive agent is preferably oriented in the length direction of the band-shaped positive electrode (positive electrode active material layer), that is, in the length direction of the outer periphery of the curved surface portion 8a.
  • the fibrous conductive agent tends to stretch when the curved surface portion 8a expands, and the conductivity can be more sufficiently maintained.
  • the fibrous conductive agent can be oriented in a desired direction by adjusting the direction of coating or pressing.
  • the positive electrode active material layer further contains a conductive agent other than the fibrous conductive agent.
  • conductive agents include granular conductive agents.
  • the granular conductive agent means a conductive agent having a shape in which the ratio of the major axis to the minor axis is, for example, 1 or more and less than 10.
  • the minor axis and the major axis of the granular conductive agent shall be values measured in an SEM or TEM image on the surface of the positive electrode active material layer.
  • the shortest diameter passing through the center of the minimum circumscribed circle of the granular conductive agent is defined as the minor diameter
  • the diameter passing through the center and orthogonal to the minor diameter is defined as the major diameter. When there are two or more shortest diameters, the one with the longest orthogonal diameter is the shortest diameter.
  • the granular conductive agent may be a granular conductive agent that does not substantially deform.
  • the granular conductive agent examples include granular metal, granular conductive resin, granular conductive ceramic, granular carbon and the like, but granular carbon is preferable.
  • Granular carbon refers to a granular conductive agent that is a carbonaceous material.
  • Examples of the granular carbon (granular conductive agent which is a carbonaceous material) include graphitic carbon, non-graphitic carbon, graphene-based carbon and the like.
  • non-graphitic carbon examples include carbon black and the like.
  • Examples of carbon black include furnace black, acetylene black, and ketjen black.
  • Examples of graphene-based carbons include graphene and fullerenes. Among these, non-graphitic carbon is preferable, and carbon black is more preferable.
  • the granular conductive agent is composed of primary particles, and it is preferable that the primary particles exist in an aggregated state.
  • the average particle size of the primary particles of the granular conductive agent is, for example, 10 nm or more and 500 nm or less, and more preferably 20 nm or more and 100 nm or less.
  • the "average particle size" of the granular conductive agent is an average value of the particle sizes of any 10 granular conductive agents observed by SEM or TEM.
  • the particle size of the granular conductive agent is an average value of a major axis and a minor axis.
  • the content of the granular conductive agent in the positive electrode active material layer is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 1% by mass or more and 6% by mass or less.
  • binder examples include a solvent-based binder and a water-based binder, but a solvent-based binder is preferable.
  • a solvent-based binder is a binder that is dispersed or dissolved in an organic solvent.
  • solvent-based binder examples include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, and polyimide, and copolymers of vinylidene fluoride and hexafluoropropylene.
  • fluororesins polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • thermoplastic resins such as polyethylene, polypropylene, and polyimide
  • copolymers of vinylidene fluoride and hexafluoropropylene examples include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • thermoplastic resins such as polyethylene, polypropylene, and polyimide, and copolymers of vinylidene fluoride and hexafluoropropylene.
  • Copolymer of ethylene and vinyl alcohol polyacrylonitrile, polyphosphazene, polysiloxane, vinylacetate, polymethyl methacrylate, polystyrene, polycarbonate, polyamide, polyamideimide, cross-linked polymer of cellulose and chitosanpyrrolidone carboxylate , A derivative of chitin or chitosan, and the like, a fluororesin is preferable, and PVDF is more preferable.
  • One type or two or more types of binders can be used.
  • the binder content in the positive electrode active material layer is preferably 0.3% by mass or more and 10% by mass or less, more preferably 0.5% by mass or more and 8% by mass or less, and further preferably 5% by mass or less.
  • the thickener examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • CMC carboxymethyl cellulose
  • the content of the thickener in the positive electrode active material layer is preferably 5% by mass or less, more preferably 1% by mass or less.
  • the technique disclosed herein can be preferably carried out in a manner in which the positive electrode active material layer does not contain a thickener.
  • the filler is not particularly limited. Fillers include polyolefins such as polypropylene and polyethylene, silicon dioxide, aluminum oxide, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, inorganic oxides such as aluminosilicate, carbonates such as calcium carbonate, and fluoride.
  • polyolefins such as polypropylene and polyethylene
  • silicon dioxide aluminum oxide
  • titanium dioxide calcium oxide
  • strontium oxide barium oxide
  • magnesium oxide magnesium oxide
  • inorganic oxides such as aluminosilicate
  • carbonates such as calcium carbonate, and fluoride.
  • Poorly soluble ion crystals such as calcium, barium fluoride, barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite, apatite, kaolin, mulite, spinel, olivine, sericite, bentonite, mica
  • the content of the filler in the positive electrode active material layer is preferably 5% by mass or less, more preferably 1% by mass or less.
  • the technique disclosed herein can be preferably carried out in a manner in which the positive electrode active material layer does not contain a filler.
  • the positive electrode active material layer includes typical non-metal elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba and the like.
  • Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W, etc.
  • Binder, thickener and filler may be contained as a component other than the filler.
  • the surface roughness Ra of the positive electrode active material layer is preferably 0.5 ⁇ m or more and 3.0 ⁇ m or less, more preferably 1.0 ⁇ m or more and 2.0 ⁇ m or less, and further preferably 1.3 ⁇ m or more.
  • the surface roughness Ra of the positive electrode active material layer can be adjusted by the type and size of the positive electrode active material particles, the press on the positive electrode active material layer in the manufacturing process, the pressure thereof, and the like.
  • the power storage element 100 satisfies the following formula 1.
  • X is the distance from the tip of one curved surface portion 8a in the winding axis direction view (FIG. 2) of the electrode body 1 to the inner surface of the container 2 facing the tip of the curved surface portion 8a.
  • R is the length of the outer circumference of one curved surface portion 8a in the winding axis direction view of the electrode body 1.
  • D is the average particle diameter D50 of the positive electrode active material particles.
  • A is the surface roughness Ra of the positive electrode active material layer.
  • (R / D) A is preferably 3X or more, more preferably 3.5X or more, and even more preferably 3.8X or more.
  • (R / D) A is preferably, for example, 20X or less, and may be more preferably 15X or less or 10X or less.
  • the power storage element 100 satisfies the following formula 2.
  • D is the average particle diameter D50 of the positive electrode active material particles.
  • A is the surface roughness Ra of the positive electrode active material layer.
  • the A / D is preferably 0.25 or more, and more preferably 0.26 or more.
  • the fibrous conductive agent is sufficiently stretched to suppress a decrease in conductivity between the positive electrode active material particles.
  • the capacity retention rate after the charge / discharge cycle is increased.
  • the A / D may be, for example, 0.5 or less, 0.4 or less, or 0.30 or less.
  • the X / R is more preferably 0.07 or more.
  • the X / R is more preferably 0.10 or less, and further preferably 0.08 or less.
  • X'/ R' is preferably 0.12 or less, more preferably 0.10 or less, still more preferably 0.08 or less.
  • the negative electrode has a negative electrode base material and a negative electrode active material layer laminated directly on the negative electrode base material or via an intermediate layer.
  • the intermediate layer may have the same structure as the intermediate layer of the positive electrode.
  • the negative electrode base material may have the same structure as the positive electrode base material, but as the material, a metal such as copper, nickel, stainless steel, nickel-plated steel or an alloy thereof is used, and copper or a copper alloy is preferable. .. That is, a copper foil is preferable as the negative electrode base material. Examples of the copper foil include rolled copper foil and electrolytic copper foil.
  • the average thickness of the negative electrode substrate is preferably 2 ⁇ m or more and 35 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, further preferably 4 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode active material layer is generally formed of a so-called negative electrode mixture containing a negative electrode active material. Further, the negative electrode mixture forming the negative electrode active material layer contains optional components such as a conductive agent, a binder, a thickener, and a filler, if necessary. As the optional components such as the conductive agent, the binder, the thickener, and the filler, the same ones as those of the positive electrode active material layer can be used. Further, in one embodiment of the present invention, the conductive agent used for the negative electrode active material layer may be one or both of a fibrous conductive agent and a granular conductive agent, or may be another conductive agent. It may be a fibrous conductive agent. The negative electrode active material layer may be a layer substantially composed of only a negative electrode active material such as metallic Li.
  • the negative electrode active material layer includes typical non-metal elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba and the like.
  • Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W, etc. It may be contained as a component other than the thickener and the filler.
  • the negative electrode active material can be appropriately selected from known negative electrode active materials.
  • a material capable of occluding and releasing lithium ions is usually used.
  • the negative electrode active material include metal Li; metal or semi-metal such as Si and Sn; metal oxide or semi-metal oxide such as Si oxide, Ti oxide and Sn oxide; Li 4 Ti 5 O 12 ; Titanium-containing oxides such as LiTIO 2 and TiNb 2O 7 ; polyphosphate compounds; silicon carbide; carbon materials such as graphite (graphite) and non-graphitric carbon (easy graphitable carbon or non-graphitizable carbon) can be mentioned. Be done. Among these materials, graphite and non-graphitic carbon are preferable. In the negative electrode active material layer, one of these materials may be used alone, or two or more thereof may be mixed and used.
  • Graphite refers to a carbon material having an average lattice spacing (d 002 ) of (002) planes determined by X-ray diffraction method before charging / discharging or in a discharged state of 0.33 nm or more and less than 0.34 nm.
  • Examples of graphite include natural graphite and artificial graphite. Artificial graphite is preferable from the viewpoint that a material having stable physical properties can be obtained.
  • Non-graphitic carbon refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by the X-ray diffraction method before charging / discharging or in a discharged state of 0.34 nm or more and 0.42 nm or less. ..
  • Examples of non-graphitizable carbon include non-graphitizable carbon and easily graphitizable carbon.
  • the non-planar carbon include a resin-derived material, a petroleum pitch or a petroleum pitch-derived material, a petroleum coke or a petroleum coke-derived material, a plant-derived material, an alcohol-derived material, and the like.
  • the "discharged state" of the carbon material means a state in which lithium ions that can be occluded and discharged are sufficiently released from the carbon material that is the negative electrode active material by charging and discharging.
  • the open circuit voltage is 0.7 V or more.
  • non-graphitizable carbon refers to a carbon material having d 002 of 0.36 nm or more and 0.42 nm or less.
  • the “graphitizable carbon” refers to a carbon material having d 002 of 0.34 nm or more and less than 0.36 nm.
  • the negative electrode active material may exist as negative electrode active material particles.
  • the average particle size of the negative electrode active material particles can be, for example, 1 nm or more and 100 ⁇ m or less.
  • the negative electrode active material is, for example, a carbon material, a titanium-containing oxide, a polyphosphoric acid compound, or the like
  • the average particle size D50 thereof may be preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode active material is Si, Sn, Si oxide, Sn oxide or the like
  • the average particle diameter D50 thereof may be preferably 1 nm or more and 1 ⁇ m or less.
  • the production or handling of the negative electrode active material particles becomes easy.
  • the average particle diameter D50 of the negative electrode active material particles is set to the above upper limit or less, the conductivity of the negative electrode active material layer is improved.
  • a crusher, a classifier, or the like is used to obtain the negative electrode active material particles having a predetermined particle size.
  • the negative electrode active material is metallic Li, the form may be foil-shaped or plate-shaped.
  • the content of the negative electrode active material in the negative electrode active material layer is preferably 60% by mass or more and 99% by mass or less, more preferably 90% by mass or more and 98% by mass or less, for example, when the negative electrode active material layer is formed of a negative electrode mixture. preferable.
  • the content of the negative electrode active material may be 99% by mass or more, and may be 100% by mass.
  • the separator can be appropriately selected from known separators.
  • a separator composed of only a base material layer a separator having a heat-resistant layer containing heat-resistant particles and a binder formed on one surface or both surfaces of the base material layer can be used.
  • Examples of the form of the base material layer of the separator include woven fabrics, non-woven fabrics, and porous resin films. Among these, a porous resin film is preferable from the viewpoint of strength, and a non-woven fabric is preferable from the viewpoint of liquid retention of the electrolyte.
  • polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of shutdown function, and polyimide and aramid are preferable from the viewpoint of oxidative decomposition resistance.
  • base material layer of the separator a material in which these resins are combined may be used.
  • the heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when heated from room temperature to 500 ° C. in the atmosphere, and a mass loss of 5% when heated from room temperature to 800 ° C. in the atmosphere.
  • Inorganic compounds can be mentioned as a material whose mass loss when heated is less than or equal to a predetermined value.
  • the inorganic compound include oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide and aluminosilicate; magnesium hydroxide, calcium hydroxide and water.
  • Hydroxides such as aluminum oxide; nitrides such as aluminum nitride and silicon nitride; carbonates such as calcium carbonate; sulfates such as barium sulfate; sparingly soluble ion crystals such as calcium fluoride, barium fluoride and barium titanate Covalently bonded crystals such as silicon and diamond; talc, montmorillonite, boehmite, zeolite, apatite, kaolin, mulite, spinel, olivine, sericite, bentonite, mica and other mineral resource-derived substances or man-made products thereof. ..
  • the inorganic compound a simple substance or a complex of these substances may be used alone, or two or more kinds thereof may be mixed and used.
  • silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of safety of the power storage device.
  • the porosity of the separator is preferably 80% by volume or less from the viewpoint of strength, and preferably 20% by volume or more from the viewpoint of discharge performance.
  • the "porosity” is a value based on volume, and means a value measured by a mercury porosity meter.
  • a polymer gel composed of a polymer and a non-aqueous electrolyte may be used.
  • the polymer include polyacrylonitrile, polyethylene oxide, polypropylene oxide, polymethyl methacrylate, polyvinyl acetate, polyvinylpyrrolidone, polyvinylidene fluoride and the like.
  • the use of polymer gel has the effect of suppressing liquid leakage.
  • a polymer gel may be used in combination with a porous resin film or a non-woven fabric as described above.
  • the electrolyte can be appropriately selected from known electrolytes.
  • the non-aqueous electrolyte will be mainly described.
  • a non-aqueous electrolyte solution may be used as the non-aqueous electrolyte.
  • the non-aqueous electrolyte solution contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous solvent can be appropriately selected from known non-aqueous solvents.
  • the non-aqueous solvent include cyclic carbonates, chain carbonates, carboxylic acid esters, phosphoric acid esters, sulfonic acid esters, ethers, amides, nitriles and the like.
  • a solvent in which some of the hydrogen atoms contained in these compounds are replaced with halogen may be used.
  • cyclic carbonate examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene carbonate.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • VC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • FEC fluoroethylene carbonate
  • DFEC difluoroethylene carbonate
  • styrene carbonate 1-phenylvinylene carbonate
  • 1,2-diphenylvinylene carbonate and the like can be mentioned.
  • EC is preferable.
  • chain carbonate examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diphenyl carbonate, trifluoroethylmethyl carbonate, bis (trifluoroethyl) carbonate and the like.
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethylmethyl carbonate
  • diphenyl carbonate trifluoroethylmethyl carbonate
  • bis (trifluoroethyl) carbonate bis (trifluoroethyl) carbonate and the like.
  • DMC and EMC are preferable.
  • the cyclic carbonate and the chain carbonate are used as the non-aqueous solvent, and it is more preferable to use the cyclic carbonate and the chain carbonate in combination.
  • the cyclic carbonate By using the cyclic carbonate, the dissociation of the electrolyte salt can be promoted and the ionic conductivity of the non-aqueous electrolyte solution can be improved.
  • the chain carbonate By using the chain carbonate, the viscosity of the non-aqueous electrolytic solution can be kept low.
  • the volume ratio of the cyclic carbonate to the chain carbonate is preferably in the range of, for example, 5:95 to 50:50.
  • the electrolyte salt can be appropriately selected from known electrolyte salts.
  • Examples of the electrolyte salt include lithium salt, sodium salt, potassium salt, magnesium salt, onium salt and the like. Of these, lithium salts are preferred.
  • Lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 ). C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3 and other halogenated hydrocarbon groups Examples thereof include lithium salts having. Among these, an inorganic lithium salt is preferable, and LiPF 6 is more preferable.
  • the content of the electrolyte salt in the non-aqueous electrolyte solution is preferably 0.1 mol / dm 3 or more and 2.5 mol / dm 3 or less, and more preferably 0.3 mol / dm 3 or more and 2.0 mol / dm 3 or less. , 0.5 mol / dm 3 or more and 1.7 mol / dm 3 or less is more preferable, and 0.7 mol / dm 3 or more and 1.5 mol / dm 3 or less is particularly preferable.
  • the non-aqueous electrolytic solution may contain an additive.
  • the additive include aromatic compounds such as biphenyl, alkyl biphenyl, terphenyl, and partially hydrides of turphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; 2-fluorobiphenyl, o.
  • -Partial halides of the above aromatic compounds such as cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; Halogenated anisole compounds; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic acid anhydride; ethylene sulfone, propylene sulfite, dimethyl sulfite, dimethyl sulfate, ethylene sulfate, Sulfone, dimethyl sulfone, diethyl sulfone, dimethyl sulfoxide, diethyl sulfoxide, tetramethylene sulfoxide, diphenyl sulfide, 4,4'-bis (2,2-dioxo-1,3,2-dioxathiolane), 4-methylsulfonyloxymethyl- Examples thereof
  • the content of the additive contained in the non-aqueous electrolytic solution is preferably 0.01% by mass or more and 10% by mass or less, and more preferably 0.1% by mass or more and 7% by mass or less with respect to the total mass of the non-aqueous electrolytic solution. , 0.2% by mass or more and 5% by mass or less is more preferable, and 0.3% by mass or more and 3% by mass or less is particularly preferable.
  • non-aqueous electrolyte a solid electrolyte may be used, or a non-aqueous electrolyte solution and a solid electrolyte may be used in combination.
  • the solid electrolyte can be selected from any material having ionic conductivity such as lithium, sodium and calcium and being solid at room temperature (for example, 20 ° C.).
  • Examples of the solid electrolyte include a sulfide solid electrolyte, an oxide solid electrolyte, an oxynitride solid electrolyte, a polymer solid electrolyte and the like.
  • lithium ion secondary battery examples include Li 2 SP 2 S 5, Li I-Li 2 SP 2 S 5 , Li 10 Ge -P 2 S 12 and the like as the sulfide solid electrolyte.
  • the power storage element of the present embodiment is a power storage element having a high energy density, and can be particularly preferably applied to a power storage element of a usage form in which charging / discharging is repeated at a high current density. This is because such a power storage element tends to expand the curved surface portion of the electrode body due to repeated charging and discharging, and the decrease in the capacity retention rate due to this tends to be remarkable.
  • the power storage element of the present embodiment can be particularly preferably used as a power source for automobiles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).
  • EV electric vehicle
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • the power storage element of the present embodiment is suitably applied to a power storage element in which expansion in the thickness direction of the container (Y direction in FIGS. 1 and 2) is restricted, or the container is pressed in the thickness direction. Can be done. This is because, in such a power storage element, expansion of the flat portion of the electrode body is particularly unlikely to occur, and therefore, the capacity retention rate is significantly reduced due to the expansion of the curved surface portion of the electrode body.
  • the pressing in the thickness direction of the container can be performed by, for example, a pressurizing member that pressurizes the container 2 from the outside. That is, the power storage element of the present embodiment may further have a pressurizing member. Examples of the pressurizing member include a restraint band and a metal frame. It should be noted that a plurality of power storage elements may be arranged side by side in the thickness direction, and the plurality of power storage elements may be pressed from both ends in the thickness direction and fixed by using a frame or the like.
  • the power storage element 100 can be manufactured by a conventionally known method.
  • the power storage element 100 is, for example, flattened by preparing a positive electrode, preparing a negative electrode, preparing a separator, preparing an electrolyte, laminating a positive electrode and a negative electrode via a separator, and winding the negative electrode. It can be manufactured by a manufacturing method including forming the electrode body 1, accommodating the electrode body 1 in the container 2, and injecting an electrolyte into the container 2.
  • the power storage element of the present embodiment is a power storage element composed of a plurality of power storage elements assembled in a power supply for an automobile such as an EV, HEV, PHEV, a power supply for an electronic device such as a personal computer or a communication terminal, or a power supply for power storage. It can be installed as a unit (battery module). In this case, the technique according to the embodiment of the present invention may be applied to at least one power storage element included in the power storage unit.
  • FIG. 4 shows an example of a power storage device 300 in which a power storage unit 200 in which two or more electrically connected power storage elements 100 are assembled is further assembled.
  • the power storage device 300 may include a bus bar (not shown) for electrically connecting two or more power storage elements 100, a bus bar (not shown) for electrically connecting two or more power storage units 200, and the like.
  • the power storage unit 200 or the power storage device 300 may include a state monitoring device (not shown) for monitoring the state of one or more power storage elements.
  • the present invention is not limited to the above embodiment, and various modifications may be made without departing from the gist of the present invention.
  • the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a well-known technique.
  • some of the configurations of certain embodiments can be deleted.
  • a well-known technique can be added to the configuration of a certain embodiment.
  • the positive electrode active material layer contains a fibrous conductive agent, D in Formulas 1 and 2 is described as the average particle diameter D50 of the positive electrode active material particles, and A is described as the surface roughness Ra of the positive electrode active material layer.
  • the negative electrode active material layer contains the fibrous conductive agent, D in the formulas 1 and 2 is the average particle diameter D50 of the negative electrode active material particles, and A is the surface roughness Ra of the negative electrode active material layer.
  • the form of the power storage element satisfying at least one of the formula 2 is also within the scope of the present invention.
  • the technique according to the embodiment of the present invention may be applied to both the positive electrode active material layer and the negative electrode active material layer.
  • the distance X from the tip of the upper curved surface portion 8a to the inner surface of the container 2 facing the tip of the curved surface portion 8a is the curved surface portion from the tip of the lower curved surface portion 8b.
  • the distance to the inner surface of the container 2 facing the tip of 8b is shorter than X', but the shape is not limited to this.
  • the tip of the lower curved surface portion 8b faces the tip of the curved surface portion 8b.
  • Equations 1 and 3 are applied, where X is the distance to the inner surface of the container 2 and the length of the outer periphery of the curved surface portion 8b in the winding axis direction of the electrode body 1 is R. Further, the distance X from the tip of the upper curved surface portion 8a to the inner surface of the container 2 facing the tip of the curved surface portion 8a, and the container 2 facing the tip of the curved surface portion 8b from the tip of the lower curved surface portion 8b. The distance X'to the inner surface may be equal.
  • the power storage element is used as a rechargeable secondary battery (for example, a lithium ion secondary battery) has been described, but the type, shape, size, capacity, etc. of the power storage element are arbitrary.
  • the power storage element of the present invention can also be applied to a capacitor such as an electric double layer capacitor or a lithium ion capacitor. Further, the shape of the container of the power storage element is not particularly limited.
  • the positive electrode active material particles A which are positive electrode active material particles, CNT (average diameter 7 nm, average length 60 to 100 ⁇ m) which is a fibrous conductive agent, acetylene black (AB) which is a granular conductive agent, and a binder are used.
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-pyrrolidone
  • This positive electrode mixture paste was applied to the surface of an aluminum foil as a positive electrode base material and dried to prepare a positive electrode active material layer. Then, a roll press was performed to obtain a positive electrode of Example 1. The surface roughness Ra of the obtained positive electrode active material layer of the positive electrode of Example 1 was 1.3 ⁇ m.
  • Negative electrode It contains graphite as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener in a mass ratio of 96: 3: 1 (in terms of solid content), and water is used as a dispersion medium.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • a negative electrode mixture paste was prepared. This negative electrode mixture paste was applied to the surface of a copper foil as a negative electrode base material and dried to prepare a negative electrode active material layer. Then, a roll press was performed to obtain a negative electrode.
  • Example 1 Assembly of secondary battery
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • DMC dimethyl carbonate
  • the length (R) of the outer periphery of the curved surface portion in the winding axis direction view of the electrode body of the obtained secondary battery of Example 1 is 25.8 mm, and the distance from the tip of the curved surface portion to the inner surface of the facing container ( X) was 1.7 mm.
  • Example 1 The same as in Example 1 except that the mass ratio of the positive electrode active material particles A, AB, and the binder was 94.5: 4.0: 1.5 without using CNT when preparing the positive electrode mixture paste.
  • the positive electrode and the secondary battery of Comparative Example 1 were obtained.
  • the surface roughness Ra of the positive electrode active material layer of the obtained positive electrode of Comparative Example 1 was 1.2 ⁇ m.
  • Comparative Example 2 A positive electrode and a secondary battery of Comparative Example 2 were obtained in the same manner as in Example 1 except that the positive electrode active material particles B were used instead of the positive electrode active material particles A in the preparation of the positive electrode mixture paste.
  • the surface roughness Ra of the positive electrode active material layer of the obtained positive electrode of Comparative Example 2 was 1.0 ⁇ m.
  • Comparative Example 3 A positive electrode and a secondary battery of Comparative Example 3 were obtained in the same manner as in Comparative Example 1 except that the positive electrode active material particles B were used instead of the positive electrode active material particles A in the preparation of the positive electrode mixture paste.
  • the surface roughness Ra of the positive electrode active material layer of the obtained positive electrode of Comparative Example 3 was 1.0 ⁇ m.
  • the length (R) of the outer periphery of the curved surface portion in the winding axis direction of the electrode body of each of the obtained secondary batteries of Comparative Examples 1 to 3 is 25.8 mm, and faces each other from the tip of the curved surface portion.
  • the distance (X) to the inner surface of the container was 1.7 mm in each case.
  • Capacity maintenance rate The ratio of the discharge capacity at the 700th cycle to the discharge capacity at the first cycle in the charge / discharge cycle test was determined as the discharge capacity retention rate. The results are shown in Table 1.
  • the secondary battery of Example 1 had a high capacity retention rate after the charge / discharge cycle test.
  • the values of (R / D) A and A / D are large, but the values of (R / D) A and A / D are small in Comparative Example 1 in which the positive electrode active material layer does not contain the fibrous conductive agent.
  • Each of the secondary batteries of Comparative Examples 2 and 3 had a low capacity retention rate after the charge / discharge cycle test.
  • the present invention can be applied to personal computers, electronic devices such as communication terminals, power storage elements used as power sources for automobiles, and the like.
  • Electrode 1 Electrode 2 Container 3 Positive electrode connection member 4 Positive electrode external terminal 5 Negative electrode connection member 6 Negative electrode external terminal 7 Flat portion 8 (8a, 8b) Curved surface portion 11 Active material layer surface 12 Fibrous conductive agent 13 Active material particles 200 Power storage unit 300 Power storage device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の一態様は、正極と負極とがセパレータを介して巻回されてなり、互いに対向する2つの曲面部を有する扁平状の電極体、及び上記電極体を収容する容器を備え、上記正極と上記負極との少なくとも一方が、活物質粒子及び繊維状導電剤を含有する活物質層を有し、下記式1を満たす蓄電素子である。式1中、Xは、上記電極体の巻回軸方向視における一方の上記曲面部の先端から、上記曲面部の先端に対向する上記容器の内面までの距離である。Rは、上記電極体の巻回軸方向視における上記一方の曲面部の外周の長さである。Dは、上記活物質粒子の平均粒子径D50である。Aは、上記活物質層の表面粗さRaである。 (R/D)A≧2X ・・・1

Description

蓄電素子
 本発明は、蓄電素子に関する。
 電気自動車等の車両、家電製品、携帯電話等の様々な機器に、充放電可能な蓄電素子(二次電池、キャパシタ等)が使用されている。蓄電素子としては、正極活物質粒子を含有する正極活物質層を有する帯状の正極と負極活物質粒子を含有する負極活物質層を有する帯状の負極とが帯状のセパレータを介して重ね合わされた状態で巻回されてなる、巻回型の電極体を備えるものが知られている(特許文献1、2参照)。このような電極体が電解質と共に容器に収納され、蓄電素子を構成している。
特開2013-16440号公報 特開2013-191467号公報
 電極(正極及び負極)は、充放電の繰り返しに伴って、活物質粒子間の結着力の低下や、ガスの発生などによって膨張する。電極が膨張すると、活物質粒子同士が離間することなどにより活物質層の導電性が低下し、放電容量の低下を引き起こす。電極の膨張は、電極を備える電極体の膨張に繋がる。特に扁平状の巻回型の電極体が角型容器に収容されてなる蓄電素子の場合、通常、電極体の平坦部は容器内面に接しているため膨張しにくいものの、曲面部は特に容器内面に接していない場合、膨張しやすい。この曲面部の膨張が容量低下を引き起こす原因となることがある。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、扁平状の巻回型の電極体を備える蓄電素子であって、充放電サイクル後の容量維持率が高い蓄電素子を提供することである。
 本発明の一態様は、正極と負極とがセパレータを介して巻回されてなり、互いに対向する2つの曲面部を有する扁平状の電極体、及び上記電極体を収容する容器を備え、上記正極と上記負極との少なくとも一方が、活物質粒子及び繊維状導電剤を含有する活物質層を有し、下記式1を満たす蓄電素子である。
 (R/D)A≧2X ・・・1
 式1中、Xは、上記電極体の巻回軸方向視における一方の上記曲面部の先端から、上記曲面部の先端に対向する上記容器の内面までの距離である。Rは、上記電極体の巻回軸方向視における上記一方の曲面部の外周の長さである。Dは、上記活物質粒子の平均粒子径D50である。Aは、上記活物質層の表面粗さRaである。
 本発明の他の一態様は、正極と負極とがセパレータを介して巻回されてなり、互いに対向する2つの曲面部を有する扁平状の電極体、及び上記電極体を収容する容器を備え、上記正極と上記負極との少なくとも一方が、活物質粒子及び繊維状導電剤を含有する活物質層を有し、下記式2を満たす蓄電素子である。
 A/D≧0.2 ・・・2
 式2中、Dは、上記活物質粒子の平均粒子径D50である。Aは、上記活物質層の表面粗さRaである。
 本発明の一態様によれば、扁平状の巻回型の電極体を備える蓄電素子であって、充放電サイクル後の容量維持率が高い蓄電素子を提供することができる。
図1は、本発明の一実施形態に係る蓄電素子を示す模式的斜視図である。 図2は、図1の蓄電素子のI-I矢視模式的断面図である。 図3Aは、本発明の一実施形態に係る蓄電素子の活物質層表面の状態を示す第1の模式図である。 図3Bは、本発明の一実施形態に係る蓄電素子の活物質層表面の状態を示す第2の模式図である。 図4は、本発明の一実施形態に係る蓄電素子を複数個集合して構成した蓄電装置を示す概略図である。
 初めに、本明細書によって開示される蓄電素子の概要について説明する。
 本発明の一態様に係る蓄電素子は、正極と負極とがセパレータを介して巻回されてなり、互いに対向する2つの曲面部を有する扁平状の電極体、及び上記電極体を収容する容器を備え、上記正極と上記負極との少なくとも一方が、活物質粒子及び繊維状導電剤を含有する活物質層を有し、下記式1を満たす蓄電素子(α)である。
 (R/D)A≧2X ・・・1
 式1中、Xは、上記電極体の巻回軸方向視における一方の上記曲面部の先端から、上記曲面部の先端に対向する上記容器の内面までの距離である。Rは、上記電極体の巻回軸方向視における上記一方の曲面部の外周の長さである。Dは、上記活物質粒子の平均粒子径D50である。Aは、上記活物質層の表面粗さRaである。
 本発明の一態様に係る蓄電素子(α)は、扁平状の巻回型の電極体を備える蓄電素子であって、充放電サイクル後の容量維持率が高い。このような効果が生じる理由としては定かではないが、以下の理由が推測される。上記のように従来の扁平状の巻回型の電極体を備える蓄電素子において充放電サイクル後の容量維持率が低い原因の一つとして、電極体の曲面部の膨張によって活物質層の導電性が低下することが挙げられる。これに対し当該蓄電素子(α)においては、活物質層が活物質粒子と共に繊維状導電剤を含有しており、且つ式1を満たすことにより曲面部の活物質層の導電性の低下が抑制され、その結果、容量維持率が改善されると推測される。以下、式1等について詳説する。なお、以下の長さ等に関し、電極体の巻回軸方向視した状態(図2参照)における長さ等として説明する。
 式1中の左辺(R/D)Aに関し、Rは、電極体1の曲面部8a(図2参照)の外周の長さ(単位:mm)である。また、Dは活物質層中の活物質粒子の平均粒子径D50(単位:μm)である。従って、R/Dは、曲面部の外周の長さ方向に沿った活物質層中の活物質粒子の数を表す。また、Aは、活物質層の表面粗さRa(単位:μm)であり、活物質層表面の凹凸の高低の程度を表す。従って、R/DとAとの積(R/D)Aは、曲面部の外周における、表面の凹凸に沿った活物質層表面の長さの程度を表す。すなわち、曲面部の外周の長さが同じであっても、活物質層表面の凹凸の高低(A:表面粗さRa)が大きい場合や、活物質層表面の凹凸の間隔(D:活物質粒子の平均粒子径D50)が小さい場合は、表面の凹凸に沿った活物質層表面の長さは長くなる。ここで、図3Aに模式的に示すように、活物質層表面11に存在している繊維状導電剤12は活物質粒子13の表面に沿って接触し、活物質粒子13間を電気的に接続している。このとき、繊維状導電剤12は、活物質層表面11の凹凸、すなわち活物質層表面11に存在する活物質粒子13の形状に沿って折れ曲がって複数の活物質粒子13に接触することにより、活物質粒子13間の導電性を確保していると考えられる。そして、電極体の曲面部が膨張して、図3Bに模式的に示すように活物質粒子13間が広がった場合も、繊維状導電剤12が真っ直ぐな状態にまで伸びて複数の活物質粒子13に接触することができるため、活物質粒子13間の導電性が確保される。すなわち、繊維状導電剤12は、活物質粒子13間に接触した状態で、蛇腹のように伸びることができると考えられる。このとき、上記した電極体の曲面部の外周における表面の凹凸に沿った活物質層表面の長さ、すなわち(R/D)Aが長いほど、繊維状導電剤が伸びることができる長さが長い、すなわち膨張しても活物質粒子間の導電性の低下が抑制できることを示している。
 一方、式1中の右辺2Xに関し、Xは、図2に示すように、電極体1の曲面部8aの先端から、この曲面部8aの先端に対向する容器2の内面までの距離(単位:mm)である。そして、曲面部8aが膨張し、曲面部8aの外周の長さが2X伸びたときに、曲面部8aの先端は容器2の内面に接触し、それ以上の膨張が抑制されると仮定できる。このように、2Xは、曲面部の外周が伸びる上限の目安を示している。
 すなわち、上記式1は、充放電の繰り返しに伴い電極体の曲面部が容器の内面に接するまで膨張した場合も、繊維状導電剤によって活物質粒子間の導電性の低下を抑制できることを示しており、以上のようなことから、当該蓄電素子(α)は、充放電サイクル後の容量維持率が高まると推測される。
 ここで、電極体の「曲面部」とは、巻回軸方向視において、両端に位置する略半円の部分を指し、具体的には、電極体の厚さをTとしたとき、巻回軸方向視における電極体の両端から長さT/2までの領域を曲面部とする(図2参照)。このとき上記R(一方の曲面部の外周の長さ)は、πT/2となる。
 「繊維状導電剤」とは、変形可能な細長い形状の導電剤をいう。繊維状導電剤の直径に対する長さの比は、例えば10以上である。繊維状導電剤の直径及び長さは、活物質層表面における走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)の画像において測定した値とする。
 上記Xに関し、2つの曲面部の各先端から、この各先端に対向する容器の内面までの距離が異なる場合、短い方の距離をXとする。例えば図2の蓄電素子100においては、上側の曲面部8aの先端から、曲面部8aの先端に対向する容器2の内面までの距離をXとする。また、電極体の曲面部の先端と容器との間に他の部材(スペーサ等)が存在する場合は、曲面部の先端から上記他の部材の表面までの距離をXとする。換言すれば、蓄電素子が容器内に電極体以外の他の部材を含む場合、上記Xの定義における「容器」には、容器内の電極体以外の他の部材も含まれる。なお、上記他の部材に電解質は含まれない。
 「活物質粒子の平均粒子径D50(D)」は、JIS-Z-8825(2013年)に準拠し、粒子を溶媒で希釈した希釈液に対しレーザ回折・散乱法により測定した粒径分布に基づき、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値を意味する。
 「活物質層の表面粗さRa(A)」は、JIS B0601:2013に準じて測定された算術平均粗さを意味する。「活物質層の表面粗さRa(A)」を測定する際の試料は、以下の手順により準備する。まず、蓄電素子(二次電池)を、0.05Cの充電電流で通常使用時の充電終止電圧となるまで定電流充電し、満充電状態とする。30分の休止後、0.05Cの放電電流で通常使用時の下限電圧まで定電流放電する。解体し、電極を取り出し、金属Liを対極とした試験電池を組み立てる。電極が正極の場合は、正極活物質1gあたり10mAの電流値で、正極電位が2.0V vs.Li/Liとなるまで定電流放電を行い、電極が負極の場合は、負極活物質1gあたり10mAの電流値で、負極電位が1.5V vs.Li/Liとなるまで定電流放電を行う。再解体し、電極を取り出す。ジメチルカーボネートを用いて、取り出した電極に付着した非水電解質を十分に洗浄し、室温にて24時間乾燥させたものを表面粗さRaの測定試料とする。
 本発明の他の一態様に係る蓄電素子は、正極と負極とがセパレータを介して巻回されてなり、互いに対向する2つの曲面部を有する扁平状の電極体、及び上記電極体を収容する容器を備え、上記正極と上記負極との少なくとも一方が、活物質粒子及び繊維状導電剤を含有する活物質層を有し、下記式2を満たす蓄電素子(β)である。
 A/D≧0.2 ・・・2
 式2中、Dは、上記活物質粒子の平均粒子径D50である。Aは、上記活物質層の表面粗さRaである。
 本発明の一態様に係る蓄電素子(β)は、扁平状の巻回型の電極体を備える蓄電素子であって、充放電サイクル後の容量維持率が高い。このような効果が生じる理由としては定かではないが、以下の理由が推測される。活物質層の表面粗さRaを活物質粒子の平均粒子径D50で除したA/Dは、電極体の曲面部の外周の単位長さあたりの、表面の凹凸に沿った活物質層表面の長さの程度を表す。すなわち、A/Dが大きいほど、活物質層の表面の凹凸に沿って接触している繊維状導電剤が十分に折れ曲がった状態で存在しており、伸びることができる長さが長いといえる。そして、上記式2のように、A/Dが0.2以上であれば、電極体の曲面部が膨張して活物質粒子間が広がった場合も、繊維状導電剤が蛇腹のように十分に伸びて活物質粒子間の導電性の低下が十分に抑制できるため、当該蓄電素子(β)は、充放電サイクル後の容量維持率が高まると推測される。
 当該蓄電素子(β)は、下記式1をさらに満たすことが好ましい。
 (R/D)A≧2X ・・・1
 式1中、Xは、上記電極体の巻回軸方向視における一方の上記曲面部の先端から、上記曲面部の先端に対向する上記容器の内面までの距離である。Rは、上記電極体の巻回軸方向視における上記一方の曲面部の外周の長さである。D及びAは、式2中のD及びAと同義である。
 当該蓄電素子(β)が上記式1をさらに満たす場合、当該蓄電素子(α)の場合と同様の理由から、充放電サイクル後の容量維持率がより高まる。
 当該蓄電素子(α)及び当該蓄電素子(β)は、下記式3をさらに満たすことが好ましい。
 0.06≦X/R≦0.12 ・・・3
 式3中、X及びRは、式1中のX及びRと同義である。
 X/Rが小さい場合、すなわち電極体の曲面部の先端から容器の内面までの距離Xが相対的に短い場合、電極体の曲面部が充放電サイクルに伴う膨張により容器の内面に接触して曲面部が圧迫され易くなる。このため、当該蓄電素子(α)及び当該蓄電素子(β)をリチウムイオン蓄電素子に適用した場合、曲面部においてセパレータが圧縮されることによる抵抗の上昇が生じ易くなる。一方、曲面部の先端から容器の内面までの距離Xが相対的に長い場合、充放電に寄与しない容器内の空間が大きくなることとなり、蓄電素子の体積エネルギー密度が低下する。従って、当該蓄電素子(α)及び当該蓄電素子(β)が上記式3をさらに満たす場合、蓄電素子としての性能がより高まる。
 上記活物質層における上記繊維状導電剤の含有量が0.01質量%以上であることが好ましい。このような場合、電極体の曲面部が膨張したときも、十分な量の繊維状導電剤の存在によって活物質粒子間の導電性の低下を特に十分に抑制できるため、充放電サイクル後の容量維持率がより高まる。
 上記繊維状導電剤の平均長さが、上記活物質粒子の平均粒子径D50より大きいことが好ましい。このような場合、電極体の曲面部が膨張して活物質粒子間の間隔が広がったときに、十分な長さのある繊維状導電剤によって活物質粒子間の導電性の低下を特に十分に抑制できるため、充放電サイクル後の容量維持率がより高まる。
 なお、繊維状導電剤の「平均長さ」とは、SEM又はTEMで観察される任意の10個の繊維状導電剤の長さの平均値とする。
 上記活物質粒子が、一次粒子径に対する平均粒子径D50の比が3以下である二次粒子、又は実質的に凝集していない一次粒子の状態で存在していることが好ましい。このような活物質粒子を用いた場合、平均粒子径D50に対して比較的表面粗さRaの大きい活物質層が形成されるため、式1及び式2を満たす蓄電素子が得られやすくなる。
 なお、活物質粒子の「一次粒子径」とは、SEMにおいて観察される活物質粒子を構成する任意の50個の一次粒子における各粒子径の平均値である。一次粒子とは、上記SEMでの観察において、外観上に粒界が観測されない粒子である。一次粒子の粒子径は、次のようにして求める。一次粒子の最小外接円の中心を通り最も短い径を短径とし、上記中心を通り短径に直交する径を長径とする。長径と短径との平均値を一次粒子の粒子径とする。最も短い径が2本以上存在する場合、直交する径が最も長いものを短径とする。
 活物質粒子が「実質的に凝集していない一次粒子の状態で存在している」とは、活物質層をSEMで観察したとき、あるいは、活物質層から活物質粒子を採取し、バインダや導電剤を除去した状態で活物質粒子をSEMで観察したとき、複数の一次粒子が凝集せずに独立して存在していること、あるいは、一次粒子と他の一次粒子とが、おおむね直接結合していないことをいう。
 上記正極が、上記活物質粒子及び上記繊維状導電剤を含有することが好ましい。正極の活物質粒子は、通常、負極の活物質粒子と比べて導電性が低く、正極における導電性の低下が容量維持率に与える影響が大きい。従って、正極において導電性の低下を抑制することで、充放電サイクル後の容量維持率を効果的に高めることができる。
 以下、本発明の一実施形態に係る蓄電素子について詳説する。
<蓄電素子>
 図1、2に示す本発明の一実施形態に係る蓄電素子100は、電極体1と、図示しない電解質と、これらを収容する容器2とを備える。なお、図1、2は、蓄電素子100を使用するときの向きを限定するものではない。例えば図1、2の蓄電素子100を倒して又は上下逆の向きにして使用してもよい。蓄電素子100は、蓄電素子の一例である二次電池である。電極体1は、正極と負極とセパレータとを備えた扁平状の巻回型の電極体である。電極体1の具体的構造は後述する。蓄電素子100は、正極接続部材3、正極外部端子4、負極接続部材5及び負極外部端子6をさらに備える。電極体1の正極は、正極接続部材3を介して正極外部端子4と電気的に接続されている。電極体1の負極は、負極接続部材5を介して負極外部端子6と電気的に接続されている。
(電極体)
 電極体1は、正極、負極及びセパレータを有し、正極と負極とは、セパレータを介して重ね合わされている。電極体1は、帯状の正極と帯状の負極とが帯状のセパレータを介して重ね合わされた状態で巻回されてなる扁平状の巻回型の電極体である。
 電極体1は扁平状であり、正極と負極とセパレータとが実質的に平行に重ね合わされている平坦部7、及び正極と負極とセパレータとが湾曲した状態で重ね合わされている2つの曲面部8(8a、8b)を有する(図2参照)。曲面部8は、湾曲部等と称してもよい。2つの曲面部8a、8bは、互いに対向するように位置する。
 電極体1の巻回軸方向視(図2)における曲面部8aの外周の長さR及び曲面部8bの外周の長さR’は、蓄電素子100の大きさ等によって適宜設定されるが、それぞれ例えば5mm以上100mm以下であってもよく、10mm以上50mm以下であってもよい。なお、通常、曲面部8aの外周の長さRと曲面部8bの外周の長さR’とは実質的に等しい。
(容器)
 容器2は、電極体1等を収容し、内部に電解質が封入される密閉容器である。容器2の材質としては、電解質を封入できるシール性と、電極体1を保護できる強度とを備えるものであれば、例えば樹脂であってもよく、金属であってもよい。
 容器2は、角型容器であり、電極体1の平坦部7の外面は、容器2の内面と接している。すなわち、電極体1の厚さTと、容器2の内寸とは、実質的に同じであってよい(図2参照)。
 電極体1の図2における上側の曲面部8aと容器2の内面との間は離間している。電極体1の巻回軸方向視(図2)における曲面部8aの先端から、曲面部8aの先端に対向する容器2の内面までの距離Xは蓄電素子100の大きさ等によって適宜設定されるが、例えば0.1mm以上10mm以下であってもよく、0.5mm以上3mm以下であってもよい。
 電極体1の図2における下側の曲面部8bと容器2の内面との間も離間している。本実施形態においては、曲面部8bの先端に対向する容器2の内面までの距離X’は、上記距離Xより大きい。距離X’は、例えば上記した距離Xと同様の範囲内の長さであってよい。
(正極)
 正極は、正極基材、及びこの正極基材に直接又は中間層を介して積層される正極活物質層を有する。
 正極基材は、導電性を有する。「導電性を有するか否かは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cmを閾値として判定する。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はそれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ及びコストのバランスからアルミニウム及びアルミニウム合金が好ましい。また、正極基材の形成形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、正極基材としてはアルミニウム箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)又はJIS-H-4160(2006年)に規定されるA1085、A3003、A1N30等が例示できる。
 正極基材の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材の平均厚さを上記の範囲とすることで、正極基材の強度を高めつつ、蓄電素子の体積当たりのエネルギー密度を高めることができる。正極基材及び後述する負極基材の「平均厚さ」とは、所定の面積の基材を打ち抜いた際の打ち抜き質量を、基材の真密度及び打ち抜き面積で除した値をいう。
 中間層は、正極基材の表面の被覆層であり、炭素粒子等の導電性粒子を含むことで正極基材と正極活物質層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば樹脂バインダ及び導電性粒子を含有する組成物により形成できる。
 正極活物質層は、正極活物質粒子を含むいわゆる正極合剤から形成される。正極活物質層は、上記正極活物質粒子及び繊維状導電剤を含有することが好ましい。また、正極活物質層を形成する正極合剤は、必要に応じてバインダ、増粘剤、フィラー等の任意成分を含む。なお、本実施形態においては、正極活物質層が繊維状導電剤を含む形態を中心に説明するが、正極活物質層が繊維状導電剤を含まず、負極活物質層が繊維状導電剤を含む形態であってもよい。
 正極活物質粒子を構成する正極活物質の材料(種類)としては、公知の正極活物質の中から適宜選択できる。リチウムイオン二次電池用の正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。正極活物質としては、例えば、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物、スピネル型結晶構造を有するリチウム遷移金属複合酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物として、例えば、Li[LiNi1-x]O(0≦x<0.5)、Li[LiNiγCo1-x-γ]O(0≦x<0.5、0<γ<1)、Li[LiCo1-x]O(0≦x<0.5)、Li[LiNiγMn1-x-γ]O(0≦x<0.5、0<γ<1)、Li[LiNiγMnβCo1-x-γ-β]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)、Li[LiNiγCoβAl1-x-γ-β]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)等が挙げられる。スピネル型結晶構造を有するリチウム遷移金属複合酸化物として、LiMn、LiNiγMn2-γ等が挙げられる。ポリアニオン化合物として、LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO、LiCoPOF等が挙げられる。カルコゲン化合物として、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。これらの材料中の原子又はポリアニオンは、他の元素からなる原子又はアニオン種で一部が置換されていてもよい。
 正極活物質としては、リチウム遷移金属複合酸化物が好ましく、ニッケルと、コバルトと、マンガン又はアルミニウムとを含むリチウム遷移金属複合酸化物がより好ましく、ニッケルと、コバルトと、マンガンとを含むリチウム遷移金属複合酸化物がさらに好ましい。このリチウム遷移金属複合酸化物は、α-NaFeO型結晶構造を有することが好ましい。このようなリチウム遷移金属複合酸化物を用いることで、エネルギー密度を高くすることなどができる。また、このような正極活物質を用いた巻回型の電極体を備える高エネルギー密度の蓄電素子は、充放電の繰り返しに伴う曲面部の膨張が生じ易い。従って、本発明をこのような正極活物質を有する巻回型の電極体を備える蓄電素子に適用した場合、充放電サイクル後の容量維持率が高まるという利点が特に効果的に得られる。
 正極活物質の材料は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。なかでも、正極活物質は、リチウム遷移金属複合酸化物を、使用する全正極活物質のうち50質量%以上(好ましくは70から100質量%、より好ましくは80から100質量%)の割合で含有することが好ましく、実質的にリチウム遷移金属複合酸化物のみからなる正極活物質を用いることがより好ましい。
 正極活物質粒子の平均粒子径D50としては、例えば0.1μm以上20μm以下が好ましく、1μm以上12μm以下がより好ましく、3μm以上8μm以下がさらに好ましい。正極活物質粒子の平均粒子径D50を上記範囲とすることで正極活物質層の導電性が向上し、充放電サイクル後の容量維持率がより高まる傾向にある。特に正極活物質粒子の平均粒子径D50(式1、2におけるD)を上記上限以下とすることで、(R/D)A及びA/Dが大きくなり、正極活物質粒子間が広がった場合も正極活物質粒子間の導電性の低下が十分に抑制できるため、蓄電素子充放電サイクル後の容量維持率がより高まる。
 正極活物質粒子は、一次粒子径に対する平均粒子径D50の比が3以下である二次粒子、又は実質的に凝集していない一次粒子の状態で存在していることが好ましい。以下、「一次粒子径に対する平均粒子径D50の比が3以下である二次粒子、又は実質的に凝集していない一次粒子」を「単粒子系粒子」とも称する。上記二次粒子における上記一次粒子径に対する平均粒子径D50の比は、2以下が好ましく、1.5以下がより好ましく、1.2以下がさらに好ましい。上記二次粒子の一次粒子径に対する平均粒子径D50の比の下限は、1であってよい。なお、一次粒子径の測定方法と平均粒子径D50の測定方法との違いから、上記二次粒子の一次粒子径に対する平均粒子径D50の比の下限は、1未満、例えば0.9であってもよい。
 正極活物質粒子には、単粒子系粒子以外の他の正極活物質粒子が含まれていてもよい。但し、正極活物質層に含まれる全ての正極活物質粒子に対する単粒子系粒子の含有量は、80質量%以上が好ましく、90質量%以上がより好ましく、99質量%以上がさらに好ましく、実質的に100質量%であることがよりさらに好ましい。すなわち、正極においては、正極活物質粒子として実質的に単粒子系粒子のみを用いることが特に好ましい。このような場合、式1及び式2を満たす蓄電素子が得られやすくなり、その結果、蓄電素子の充放電サイクル後の容量維持率をより高めることができる。
 単粒子系粒子である正極活物質粒子は、公知の方法により製造することができ、一次粒子径及び平均粒子径D50は製造条件によって制御することができる。また、このような正極活物質粒子は、市販品を用いてもよい。活物質の製造工程において、焼成温度を高温にしたり焼成時間を長時間にしたりするなどして、複数の一次粒子を成長させて粒子径を大きくすることが可能である。あるいは、二次粒子を解砕することにより一次粒子とすることが可能である。
 正極活物質層における正極活物質粒子の含有量は、80質量%以上99質量%以下が好ましく、85質量%以上98質量%以下がより好ましく、90質量%以上97質量%以下がより好ましい。正極活物質層における正極活物質粒子の含有量を上記範囲とすることで、正極活物質層の導電性及びエネルギー密度をバランスよく高めることができる。
 繊維状導電剤としては、繊維状金属、繊維状導電性樹脂、繊維状炭素等を挙げることができるが、繊維状炭素が好ましい。繊維状炭素とは、炭素質材料である繊維状導電剤をいう。繊維状炭素(炭素質材料である繊維状導電剤)としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンナノチューブ(CNT)等が挙げられるが、グラフェン系炭素であるCNTを好適に用いることができる。
 繊維状導電剤の平均直径としては、1nm以上300nm以下が好ましく、3nm以上100nm以下がより好ましく、4nm以上50nm以下がさらに好ましく、5nm以上30nm以下がよりさらに好ましい。繊維状導電剤の平均直径が上記範囲内であることで、正極活物質層の導電性がより良好になり、充放電サイクル後の容量維持率がより高まる。なお、繊維状導電剤の「平均直径」とは、SEM又はTEMで観察される任意の10個の繊維状導電剤の直径の平均値である。
 繊維状導電剤の平均長さは、正極活物質粒子の平均粒子径D50より大きいことが好ましく、正極活物質粒子の平均粒子径D50の2倍以上、3倍以上さらには5倍以上であることがより好ましい。このように、正極活物質粒子の大きさに比べて十分に長い繊維状導電剤を用いることで、電極体1の曲面部8aが膨張して正極活物質粒子間の間隔が広がったときにも、繊維状導電剤によって正極活物質粒子間の導電性の低下を特に十分に抑制できるため、充放電サイクル後の容量維持率がより高まる。具体的に繊維状導電剤の平均長さは、1μm以上1,000μm以下が好ましく、10μm以上600μm以下がより好ましく、20μm以上300μm以下がさらに好ましい。
 繊維状導電剤の平均アスペクト比(平均直径に対する平均長さの比)としては、例えば10以上10,000以下が好ましく、100以上がより好ましく、1,000以上がさらに好ましい。上記範囲の平均アスペクト比の繊維状導電剤を用いることで、充放電サイクル後の容量維持率をより高めることができる。
 繊維状導電剤が繊維状炭素である場合、繊維状炭素のエックス線回折法により決定される(002)面の平均格子面間隔(d002)としては、0.340nm未満が好ましい。このように繊維状炭素の平均格子面間隔(d002)が小さく、結晶化度が高い場合、正極活物質層の導電性がより高まる。なお、この繊維状炭素の平均格子面間隔(d002)の下限としては、例えば0.330nmとすることができる。また、繊維状炭素のエックス線回折法による(002)面に相当するピークの半値幅(002)は、例えば0.5°以上である。繊維状炭素の半値幅(002)は、0.7°未満であることが好ましい。
 繊維状炭素は、例えば紡糸法等により高分子を繊維状にし、不活性雰囲気下で熱処理する方法や、触媒存在下、高温で有機化合物を反応させる気相成長法等によって得ることができる。繊維状炭素としては、気相成長法によって得られた繊維状炭素(気相成長繊維状炭素)が好ましい。繊維状炭素及びその他の繊維状導電剤は、市販されているものを用いることができる。
 正極活物質層における繊維状導電剤の含有量としては、例えば0.01質量%以上5質量%以下が好ましく、0.1質量%以上4質量%以下が好ましく、0.5質量%以上3質量%以下がより好ましく、1.0質量%以上2.5質量%以下がさらに好ましい。繊維状導電剤の含有量を上記下限以上とすることで、充放電サイクル後の容量維持率をより高めることができる。一方、繊維状導電剤の含有量を上記上限以下とすることで、充放電サイクル後の容量維持率を十分に高めつつ、相対的に正極活物質粒子の含有量を大きくし、エネルギー密度を高めることができる。また、繊維状導電剤の含有量を上記上限以下とすることで、生産コストを抑えることもできる。
 繊維状導電剤は、巻回軸方向視における電極体1の曲面部8aの全長にわたって存在し、正極活物質層表面に存在する正極活物質粒子の形状に沿って繊維状導電剤のネットワークを形成していることが好ましい。すなわち、電極体1の曲面部8aにおける正極活物質層表面は、巻回軸方向視における曲面部8aの外周の一端から他端まで、複数の繊維状導電剤によって導電性が確保されていることが好ましい。また、繊維状導電剤は、帯状の正極(正極活物質層)の長さ方向、すなわち曲面部8aにおける外周の長さ方向に配向していることが好ましい。これにより、曲面部8aが膨張した場合の繊維状導電剤の伸びが生じ易く、より十分に導電性を維持することができる。なお、繊維状導電剤は、塗工やプレスの方向を調整することで所望する方向に配向させることができる。
 正極活物質層は、繊維状導電剤以外の他の導電剤をさらに含有していることが好ましい。他の導電剤としては、粒状導電剤が挙げられる。粒状導電剤とは、短径に対する長径の比が、例えば1以上10未満の形状の導電剤をいう。粒状導電剤の短径及び長径は、正極活物質層表面におけるSEM又はTEMの画像において測定した値とする。なお、粒状導電剤の最小外接円の中心を通り最も短い径を短径とし、上記中心を通り短径に直交する径を長径とする。最も短い径が2本以上存在する場合、直交する径が最も長いものを短径とする。粒状導電剤は実質的に変形しない粒状の導電剤であってよい。
 粒状導電剤としては、粒状金属、粒状導電性樹脂、粒状導電性セラミック、粒状炭素等を挙げることができるが、粒状炭素が好ましい。粒状炭素とは、炭素質材料である粒状導電剤をいう。粒状炭素(炭素質材料である粒状導電剤)としては、黒鉛質炭素、非黒鉛質炭素、グラフェン系炭素等が挙げられる。非黒鉛質炭素としては、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、フラーレン等が挙げられる。これらの中でも、非黒鉛質炭素が好ましく、カーボンブラックがより好ましい。
 粒状導電剤は一次粒子で構成され、この一次粒子が凝集した状態で存在していることが好ましい。粒状導電剤の一次粒子の平均粒子径としては、例えば10nm以上500nm以下であり、20nm以上100nm以下がより好ましい。このようなサイズの粒状導電剤を用いることで、正極活物質粒子間の空隙を効果的に埋めることができ、正極活物質層の導電性をより高め、充放電サイクル後の容量維持率をより高めることができる。粒状導電剤の「平均粒子径」とは、SEM又はTEMで観察される任意の10個の粒状導電剤の粒子径の平均値である。粒状導電剤の粒子径は、長径と短径との平均値である。
 正極活物質層における粒状導電剤の含有量としては、0.1質量%以上10質量%以下が好ましく、1質量%以上6質量%以下がより好ましい。正極活物質層における粒状導電剤の含有量を上記下限以上とすることで、正極活物質層の導電性をより高め、充放電サイクル後の容量維持率をより高めることができる。一方、粒状導電剤の含有量を上記上限以下とすることで、相対的に正極活物質粒子の含有量を大きくし、エネルギー密度を高めることができる。
 バインダとしては、溶剤系バインダ及び水系バインダが挙げられるが、溶剤系バインダが好ましい。溶剤系バインダとは、有機溶剤に分散又は溶解するバインダをいう。
 溶剤系バインダとしては、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド等の熱可塑性樹脂、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、エチレンとビニルアルコールとの共重合体、ポリアクリロニトリル、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリメタクリル酸メチル、ポリスチレン、ポリカーボネート、ポリアミド、ポリアミドイミド、セルロースとキトサンピロリドンカルボン酸塩との架橋重合体、キチン又はキトサンの誘導体等を挙げることができ、フッ素樹脂が好ましく、PVDFがより好ましい。バインダは、1種又は2種以上を用いることができる。
 正極活物質層におけるバインダの含有量は、0.3質量%以上10質量%以下が好ましく、0.5質量%以上8質量%以下がより好ましく、5質量%以下がさらに好ましい場合もある。バインダの含有量を上記下限以上とすることで、正極活物質粒子を安定して保持することができる。また、バインダの含有量を上記上限以下とすることで、正極活物質粒子の含有量を増やし、エネルギー密度を高めることができる。
 増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。増粘剤を使用する場合、正極活物質層における増粘剤の含有量は、5質量%以下、さらには1質量%以下とすることが好ましい。ここで開示される技術は、正極活物質層が増粘剤を含まない態様で好ましく実施され得る。
 フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、酸化アルミニウム、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。フィラーを使用する場合、正極活物質層におけるフィラーの含有量は、5質量%以下、さらには1質量%以下とすることが好ましい。ここで開示される技術は、正極活物質層がフィラーを含まない態様で好ましく実施され得る。
 正極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質粒子、導電剤(繊維状導電剤等)、バインダ、増粘剤及びフィラー以外の成分として含有してもよい。
 正極活物質層の表面粗さRaは、0.5μm以上3.0μm以下が好ましく、1.0μm以上2.0μm以下がより好ましく、1.3μm以上がさらに好ましい。正極活物質層の表面粗さRa(式1、2におけるA)を上記下限以上とすることで、(R/D)A及びA/Dが大きくなり、正極活物質粒子間が広がった場合も正極活物質粒子間の導電性の低下が十分に抑制できるため、蓄電素子の充放電サイクル後の容量維持率がより高まる。正極活物質層の表面粗さRaは、正極活物質粒子の種類、サイズの他、製造工程における正極活物質層へのプレス及びその圧力等によって調整することができる。
(式1について)
 本発明の一実施形態に係る蓄電素子100においては、下記式1を満たす。
 (R/D)A≧2X ・・・1
 式1中、Xは、電極体1の巻回軸方向視(図2)における一方の曲面部8aの先端から、曲面部8aの先端に対向する容器2の内面までの距離である。Rは、電極体1の巻回軸方向視における一方の曲面部8aの外周の長さである。Dは、正極活物質粒子の平均粒子径D50である。Aは、正極活物質層の表面粗さRaである。
 (R/D)Aは、3X以上であることが好ましく、3.5X以上であることがより好ましく、3.8X以上であることがさらに好ましい。(R/D)AをXに対して相対的に大きくすることで、電極体1の曲面部8aの先端が容器2の内面に接するまで膨張した場合も繊維状導電剤が十分に伸びることによって正極活物質粒子間の導電性の低下を抑制できるため、当該蓄電素子100の充放電サイクル後の容量維持率が高まる。
 一方、(R/D)Aは、例えば20X以下が好ましく、15X以下又は10X以下がより好ましい場合がある。(R/D)Aを上記上限以下とすることで、容器2内において電極体1が配置されない空間が相対的に小さくなり、当該蓄電素子100のエネルギー密度を高めることなどができる。
(式2について)
 本発明の一実施形態に係る蓄電素子100においては、下記式2を満たす。
 A/D≧0.2 ・・・2
 式2中、Dは、正極活物質粒子の平均粒子径D50である。Aは、正極活物質層の表面粗さRaである。
 A/Dは、0.25以上であることが好ましく、0.26以上であることがより好ましい。A/Dを大きくすることで、電極体1の曲面部8aが膨張した場合も繊維状導電剤が十分に伸びることによって正極活物質粒子間の導電性の低下を抑制できるため、当該蓄電素子100の充放電サイクル後の容量維持率が高まる。一方、A/Dは、例えば0.5以下であってもよく、0.4以下であってもよく、0.30以下であってもよい。
(式3について)
 本発明の一実施形態に係る蓄電素子100においては、下記式3を満たすことが好ましい。
 0.06≦X/R≦0.12 ・・・3
 式3中、Xは、電極体1の巻回軸方向視における一方の曲面部8aの先端から、曲面部8aの先端に対向する容器2の内面までの距離である。Rは、電極体1の巻回軸方向視における一方の曲面部8aの外周の長さである。
 X/Rは、0.07以上がより好ましい。X/Rを上記下限以上とすることで、曲面部8aが膨張した場合も容器2の内面に接触し難くなり、曲面部8aにおいてセパレータが圧縮されることによる抵抗の上昇を抑制することなどができる。
 一方、X/Rは、0.10以下がより好ましく、0.08以下がさらに好ましい。X/Rを上記上限以下とすることで、容器2内における充放電に寄与しない空間が小さくなり、エネルギー密度が高まる。
 また、電極体1の巻回軸方向視における他方の曲面部8bの先端から、曲面部8bの先端に対向する容器2の内面までの距離X’と、電極体1の巻回軸方向視における他方の曲面部8bの外周の長さR’との関係においても、X’/R’は、0.12以下が好ましく、0.10以下がより好ましく、0.08以下がさらに好ましい。X’/R’を上記上限以下とすることで、容器2内における充放電に寄与しない空間が小さくなり、エネルギー密度が高まる。また、上記式1又は3において、XをX’に置き換え、RをR’に置き換えた場合も、上記式1又は3を満たすことが好ましい。この場合、2つの曲面部8a、8bの双方で好適な状態となるため、当該蓄電素子100の充放電サイクル後の容量維持率等がより良好なものとなる。
(負極)
 上記負極は、負極基材、及びこの負極基材に直接又は中間層を介して積層される負極活物質層を有する。上記中間層は正極の中間層と同様の構成とすることができる。
 負極基材は、正極基材と同様の構成とすることができるが、材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はそれらの合金が用いられ、銅又は銅合金が好ましい。つまり、負極基材としては銅箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。
 負極基材の平均厚さは、2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材の平均厚さを上記の範囲とすることで、負極基材の強度を高めつつ、蓄電素子の体積当たりのエネルギー密度を高めることができる。
 負極活物質層は、一般的に負極活物質を含むいわゆる負極合剤から形成される。また、負極活物質層を形成する負極合剤は、必要に応じて導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。導電剤、バインダ、増粘剤、フィラー等の任意成分は、正極活物質層と同様のものを用いることができる。また、本発明の一実施形態において、負極活物質層に用いられる導電剤は、繊維状導電剤及び粒状導電剤の一方又は双方であってもよく、その他の導電剤であってもよいが、繊維状導電剤であってもよい。負極活物質層は、実質的に金属Li等の負極活物質のみからなる層であってもよい。
 負極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を負極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。
 負極活物質としては、公知の負極活物質の中から適宜選択できる。例えばリチウムイオン二次電池用の負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。負極活物質としては、例えば、金属Li;Si、Sn等の金属又は半金属;Si酸化物、Ti酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;LiTi12、LiTiO2、TiNb等のチタン含有酸化物;ポリリン酸化合物;炭化ケイ素;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。これらの材料の中でも、黒鉛及び非黒鉛質炭素が好ましい。負極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 「黒鉛」とは、充放電前又は放電状態において、エックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。安定した物性の材料を入手できるという観点で、人造黒鉛が好ましい。
 「非黒鉛質炭素」とは、充放電前又は放電状態においてエックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.34nm以上0.42nm以下の炭素材料をいう。非黒鉛質炭素としては、難黒鉛化性炭素や、易黒鉛化性炭素が挙げられる。非黒鉛質炭素としては、例えば、樹脂由来の材料、石油ピッチまたは石油ピッチ由来の材料、石油コークスまたは石油コークス由来の材料、植物由来の材料、アルコール由来の材料等が挙げられる。
 ここで、炭素材料の「放電状態」とは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオンが十分に放出された状態を意味する。例えば、負極活物質として炭素材料を含む負極を作用極として、金属Liを対極として用いた半電池において、開回路電圧が0.7V以上である状態である。
 「難黒鉛化性炭素」とは、上記d002が0.36nm以上0.42nm以下の炭素材料をいう。
 「易黒鉛化性炭素」とは、上記d002が0.34nm以上0.36nm未満の炭素材料をいう。
 負極活物質は、負極活物質粒子として存在していてよい。この場合、負極活物質粒子の平均粒径は、例えば、1nm以上100μm以下とすることができる。負極活物質が例えば炭素材料、チタン含有酸化物、ポリリン酸化合物等である場合、その平均粒子径D50は1μm以上100μm以下が好ましい場合がある。負極活物質が、Si、Sn、Si酸化物、又は、Sn酸化物等である場合、その平均粒子径D50は、1nm以上1μm以下が好ましい場合がある。負極活物質粒子の平均粒子径D50を上記下限以上とすることで、負極活物質粒子の製造又は取り扱いが容易になる。負極活物質粒子の平均粒子径D50を上記上限以下とすることで、負極活物質層の導電性が向上する。負極活物質粒子を所定の粒径で得るためには粉砕機や分級機等が用いられる。また、負極活物質が金属Liの場合、その形態は箔状又は板状であってもよい。
 負極活物質層における負極活物質の含有量は、例えば負極活物質層が負極合剤から形成されている場合、60質量%以上99質量%以下が好ましく、90質量%以上98質量%以下がより好ましい。負極活物質の含有量を上記の範囲とすることで、負極活物質層の高エネルギー密度化と製造性を両立できる。負極活物質が金属Liである場合、負極活物質層における負極活物質の含有量は99質量%以上であってよく、100質量%であってよい。
(セパレータ)
 セパレータは、公知のセパレータの中から適宜選択できる。セパレータとして、例えば、基材層のみからなるセパレータ、基材層の一方の面又は双方の面に耐熱粒子とバインダとを含む耐熱層が形成されたセパレータ等を使用することができる。セパレータの基材層の形態としては、例えば、織布、不織布、多孔質樹脂フィルム等が挙げられる。これらの中でも、強度の観点から多孔質樹脂フィルムが好ましく、電解質の保液性の観点から不織布が好ましい。セパレータの基材層の材料としては、シャットダウン機能の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。セパレータの基材層として、これらの樹脂を複合した材料を用いてもよい。
 耐熱層に含まれる耐熱粒子は、大気下で室温から500℃に加熱したときの質量減少が5%以下であるものが好ましく、大気下で室温から800℃に加熱したときの質量減少が5%以下であるものがさらに好ましい。加熱したときの質量減少が所定以下である材料として無機化合物が挙げられる。無機化合物として、例えば、酸化鉄、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物;窒化アルミニウム、窒化ケイ素等の窒化物;炭酸カルシウム等の炭酸塩;硫酸バリウム等の硫酸塩;フッ化カルシウム、フッ化バリウム、チタン酸バリウム等の難溶性のイオン結晶;シリコン、ダイヤモンド等の共有結合性結晶;タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。無機化合物として、これらの物質の単体又は複合体を単独で用いてもよく、2種以上を混合して用いてもよい。これらの無機化合物の中でも、蓄電素子の安全性の観点から、酸化ケイ素、酸化アルミニウム、又はアルミノケイ酸塩が好ましい。
 セパレータの空孔率は、強度の観点から80体積%以下が好ましく、放電性能の観点から20体積%以上が好ましい。ここで、「空孔率」とは、体積基準の値であり、水銀ポロシメータでの測定値を意味する。
 セパレータとして、ポリマーと非水電解質とで構成されるポリマーゲルを用いてもよい。ポリマーとして、例えば、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリメチルメタアクリレート、ポリビニルアセテート、ポリビニルピロリドン、ポリフッ化ビニリデン等が挙げられる。ポリマーゲルを用いると、漏液を抑制する効果がある。セパレータとして、上述したような多孔質樹脂フィルム又は不織布等とポリマーゲルを併用してもよい。
(電解質)
 電解質としては、公知の電解質の中から適宜選択できる。以下には、非水電解質について中心に説明する。非水電解質には、非水電解液を用いてもよい。非水電解液は、非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む。
 非水溶媒としては、公知の非水溶媒の中から適宜選択できる。非水溶媒としては、環状カーボネート、鎖状カーボネート、カルボン酸エステル、リン酸エステル、スルホン酸エステル、エーテル、アミド、ニトリル等が挙げられる。非水溶媒として、これらの化合物に含まれる水素原子の一部がハロゲンに置換されたものを用いてもよい。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等が挙げられる。これらの中でもECが好ましい。
 鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート、トリフルオロエチルメチルカーボネート、ビス(トリフルオロエチル)カーボネート等が挙げられる。これらの中でもDMC及びEMCが好ましい。
 非水溶媒として、環状カーボネート及び鎖状カーボネートの少なくとも一方を用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートを用いることで、電解質塩の解離を促進して非水電解液のイオン伝導度を向上させることができる。鎖状カーボネートを用いることで、非水電解液の粘度を低く抑えることができる。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比率(環状カーボネート:鎖状カーボネート)としては、例えば、5:95から50:50の範囲とすることが好ましい。
 電解質塩としては、公知の電解質塩から適宜選択できる。電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等が挙げられる。これらの中でもリチウム塩が好ましい。
 リチウム塩としては、LiPF、LiPO、LiBF、LiClO、LiN(SOF)等の無機リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のハロゲン化炭化水素基を有するリチウム塩等が挙げられる。これらの中でも、無機リチウム塩が好ましく、LiPFがより好ましい。
 非水電解液における電解質塩の含有量は、0.1mol/dm以上2.5mol/dm以下であると好ましく、0.3mol/dm以上2.0mol/dm以下であるとより好ましく、0.5mol/dm以上1.7mol/dm以下であるとさらに好ましく、0.7mol/dm以上1.5mol/dm以下であると特に好ましい。電解質塩の含有量を上記の範囲とすることで、非水電解液のイオン伝導度を高めることができる。
 非水電解液は、添加剤を含んでもよい。添加剤としては、例えばビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 非水電解液に含まれる添加剤の含有量は、非水電解液全体の質量に対して0.01質量%以上10質量%以下が好ましく、0.1質量%以上7質量%以下がより好ましく、0.2質量%以上5質量%以下がさらに好ましく、0.3質量%以上3質量%以下が特に好ましい。添加剤の含有量を上記の範囲とすることで、高温保存後の容量維持性能又は充放電サイクル性能を向上させたり、安全性をより向上させたりすることができる。
 非水電解質には、固体電解質を用いてもよく、非水電解液と固体電解質とを併用してもよい。
 固体電解質としては、リチウム、ナトリウム、カルシウム等のイオン伝導性を有し、常温(例えば20℃)において固体である任意の材料から選択できる。固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、酸窒化物固体電解質、ポリマー固体電解質等が挙げられる。
 硫化物固体電解質としては、リチウムイオン二次電池の場合、例えば、LiS-P、LiI-LiS-P、Li10Ge-P12等が挙げられる。
(用途等)
 本実施形態の蓄電素子は、エネルギー密度が高い蓄電素子であって、高電流密度での充放電の繰り返しが行われる使用形態の蓄電素子に対して特に好適に適用することができる。このような蓄電素子は、充放電の繰り返しによって電極体の曲面部の膨張が生じ易く、これに伴う容量維持率の低下が顕著になるためである。具体的に、本実施形態の蓄電素子は、例えば電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源などとして特に好適に用いることができる。
 本実施形態の蓄電素子は、容器の厚さ方向(図1、2におけるY方向)の膨張が規制されている、あるいは容器が厚さ方向に押圧された形態の蓄電素子に好適に適用することができる。このような蓄電素子は、電極体の平坦部の膨張が特に生じ難いため、電極体の曲面部の膨張による容量維持率の低下が顕著になるためである。容器の厚さ方向への押圧は、例えば容器2を外側から加圧する加圧部材により行うことができる。すなわち、本実施形態の蓄電素子は、加圧部材をさらに有することができる。加圧部材としては、例えば拘束バンド、金属製のフレームなどが挙げられる。なお、複数の蓄電素子を厚さ方向に並べて配置し、この厚さ方向の両端から複数の蓄電素子を加圧した状態でフレーム等を用いて固定してもよい。
(製造方法)
 蓄電素子100は、従来公知の方法により製造することができる。蓄電素子100は、例えば、正極を準備すること、負極を準備すること、セパレータを準備すること、電解質を調製すること、セパレータを介して正極及び負極を積層し、巻回することにより扁平状の電極体1を形成すること、電極体1を容器2に収容すること、並びに容器2に電解質を注入することを備える製造方法により製造することができる。
<蓄電装置の構成>
 本実施形態の蓄電素子は、EV、HEV、PHEV等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の蓄電素子を集合して構成した蓄電ユニット(バッテリーモジュール)として搭載することができる。この場合、蓄電ユニットに含まれる少なくとも一つの蓄電素子に対して、本発明の一実施形態に係る技術が適用されていればよい。
 図4に、電気的に接続された二以上の蓄電素子100が集合した蓄電ユニット200をさらに集合した蓄電装置300の一例を示す。蓄電装置300は、二以上の蓄電素子100を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット200を電気的に接続するバスバ(図示せず)等を備えていてもよい。蓄電ユニット200又は蓄電装置300は、一以上の蓄電素子の状態を監視する状態監視装置(図示せず)を備えていてもよい。
<その他の実施形態>
 本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。
 上記実施形態においては、正極活物質層が繊維状導電剤を含有し、式1及び式2におけるDを正極活物質粒子の平均粒子径D50、Aを正極活物質層の表面粗さRaとして説明したがこれに限定されるものではない。すなわち、負極活物質層が繊維状導電剤を含有し、式1及び式2におけるDが負極活物質粒子の平均粒子径D50、Aが負極活物質層の表面粗さRaであり、式1及び式2の少なくとも一方を満たす蓄電素子の形態も本発明の範囲内である。また、正極活物質層及び負極活物質層の双方において本発明の一実施形態に係る技術が適用されていてもよい。
 また、図2の蓄電素子100においては、上側の曲面部8aの先端から、曲面部8aの先端に対向する容器2の内面までの距離Xが、下側の曲面部8bの先端から、曲面部8bの先端に対向する容器2の内面までの距離X’より短いが、このような形状に限定されるものではない。但し、下側の曲面部8bの先端から、曲面部8bの先端に対向する容器2の内面までの距離の方が短い場合、下側の曲面部8bの先端から、曲面部8bの先端に対向する容器2の内面までの距離をXとし、電極体1の巻回軸方向視における曲面部8bの外周の長さをRとして、式1及び式3を適用する。また、上側の曲面部8aの先端から、曲面部8aの先端に対向する容器2の内面までの距離Xと、下側の曲面部8bの先端から、曲面部8bの先端に対向する容器2の内面までの距離X’とが等しくてもよい。
 上記実施形態では、蓄電素子が充放電可能な二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子の種類、形状、寸法、容量等は任意である。本発明の蓄電素子は、電気二重層キャパシタ又はリチウムイオンキャパシタ等のキャパシタにも適用できる。また、当該蓄電素子の容器の形状等も特に限定されるものではない。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。以下の実施例における測定値はいずれも上記した方法により測定されたものである。
 以下に用いた正極活物質粒子を示す。
・正極活物質粒子A:正極活物質であるLiNi0.6Co0.2Mn0.2の粒子
 一次粒子径5.0μm、平均粒子径(D50)5.0μm、平均粒子径(D50)/一次粒子径=1.0
・正極活物質粒子B:正極活物質であるLiNi0.6Co0.2Mn0.2の粒子
 一次粒子径0.6μm、平均粒子径(D50)8.5μm、平均粒子径(D50)/一次粒子径=14
[実施例1]
(正極の作製)
 正極活物質粒子である上記正極活物質粒子Aと、繊維状導電剤であるCNT(平均直径7nm、平均長さ60~100μm程度)と、粒状導電剤であるアセチレンブラック(AB)と、バインダであるポリフッ化ビニリデン(PVDF)とを94.5:1.5:2.5:1.5の質量比(固形分換算)で含み、N-メチル-ピロリドン(NMP)を分散媒とする正極合剤ペーストを作製した。この正極合剤ペーストを、正極基材であるアルミニウム箔の表面に塗布し、乾燥することにより正極活物質層を作製した。その後、ロールプレスを行い、実施例1の正極を得た。得られた実施例1の正極の正極活物質層の表面粗さRaは、1.3μmであった。
(負極の作製)
 負極活物質である黒鉛とバインダであるスチレンブタジエンゴム(SBR)と増粘剤であるカルボキシメチルセルロース(CMC)とを96:3:1の質量比(固形分換算)で含み、水を分散媒とする負極合剤ペーストを作製した。この負極合剤ペーストを、負極基材である銅箔の表面に塗布し、乾燥することにより負極活物質層を作製した。その後、ロールプレスを行い、負極を得た。
(二次電池の組み立て)
 上記正極、上記負極及びセパレータであるポリオレフィン製微多孔膜を用い、扁平状の巻回型の電極体を作製した。この電極体を角型容器に収容し、非水電解質を注入することによって、実施例1の二次電池(蓄電素子)を組み立てた。なお、非水電解質として、EC(エチレンカーボネート)とEMC(エチルメチルカーボネート)とジメチルカーボネート(DMC)を体積比30:35:35で混合した非水溶媒に、電解質塩としてヘキサフルオロリン酸リチウム(LiPF)を1.0mol/dmの濃度で溶解させた溶液を用いた。
 得られた実施例1の二次電池の電極体の巻回軸方向視における曲面部の外周の長さ(R)は、25.8mm、曲面部の先端から対向する容器の内面までの距離(X)は、1.7mmであった。
[比較例1]
 正極合剤ペーストの作製の際、CNTを用いず、正極活物質粒子AとABとバインダとの質量比を94.5:4.0:1.5としたこと以外は実施例1と同様にして、比較例1の正極及び二次電池を得た。得られた比較例1の正極の正極活物質層の表面粗さRaは、1.2μmであった。
[比較例2]
 正極合剤ペーストの作製の際、正極活物質粒子Aに代えて正極活物質粒子Bを用いたこと以外は実施例1と同様にして、比較例2の正極及び二次電池を得た。得られた比較例2の正極の正極活物質層の表面粗さRaは、1.0μmであった。
[比較例3]
 正極合剤ペーストの作製の際、正極活物質粒子Aに代えて正極活物質粒子Bを用いたこと以外は比較例1と同様にして、比較例3の正極及び二次電池を得た。得られた比較例3の正極の正極活物質層の表面粗さRaは、1.0μmであった。
 なお、得られた比較例1から3の各二次電池の電極体の巻回軸方向視における曲面部の外周の長さ(R)は、いずれも25.8mm、曲面部の先端から対向する容器の内面までの距離(X)は、いずれも1.7mmであった。
[評価]
(充放電サイクル試験)
 得られた各二次電池について、以下の充放電サイクル試験を行った。60℃の恒温槽内に3時間保管した後、1.0Cの電流値で、4.20Vまで定電流充電した後、4.2Vで定電圧充電した。充電の終了条件は、総充電時間が3時間となるまでとした。その後、10分間の休止期間を設けた。1.0Cの電流値で、2.50Vまで定電流放電を行い、その後、10分間の休止期間を設けた。これらの充電及び放電の工程を1サイクルとして、このサイクルを700サイクル実施した。これらの充電、放電及び休止は、60℃の恒温槽内で行った。
(容量維持率)
 上記充放電サイクル試験における1サイクル目の放電容量に対する700サイクル目の放電容量の比を放電容量維持率として求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、(R/D)Aが2X(=3.4mm)以上及びA/Dが0.2以上であり、且つ正極活物質層が繊維状導電剤であるCNTを含む実施例1の二次電池は、充放電サイクル試験後の容量維持率が高い結果となった。これに対し、(R/D)A及びA/Dの値は大きいものの正極活物質層が繊維状導電剤を含まない比較例1、及び(R/D)A及びA/Dの値が小さい比較例2、3の各二次電池は、充放電サイクル試験後の容量維持率は低い結果となった。
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車などの電源として使用される蓄電素子などに適用できる。
100 蓄電素子
1 電極体
2 容器
3 正極接続部材
4 正極外部端子
5 負極接続部材
6 負極外部端子
7 平坦部
8(8a、8b) 曲面部
11 活物質層表面
12 繊維状導電剤
13 活物質粒子
200 蓄電ユニット
300 蓄電装置

Claims (8)

  1.  正極と負極とがセパレータを介して巻回されてなり、互いに対向する2つの曲面部を有する扁平状の電極体、及び
     上記電極体を収容する容器
     を備え、
     上記正極と上記負極との少なくとも一方が、活物質粒子及び繊維状導電剤を含有する活物質層を有し、
     下記式1を満たす蓄電素子。
     (R/D)A≧2X ・・・1
     式1中、Xは、上記電極体の巻回軸方向視における一方の上記曲面部の先端から、上記曲面部の先端に対向する上記容器の内面までの距離である。Rは、上記電極体の巻回軸方向視における上記一方の曲面部の外周の長さである。Dは、上記活物質粒子の平均粒子径D50である。Aは、上記活物質層の表面粗さRaである。
  2.  正極と負極とがセパレータを介して巻回されてなり、互いに対向する2つの曲面部を有する扁平状の電極体、及び
     上記電極体を収容する容器
     を備え、
     上記正極と上記負極との少なくとも一方が、活物質粒子及び繊維状導電剤を含有する活物質層を有し、
     下記式2を満たす蓄電素子。
     A/D≧0.2 ・・・2
     式2中、Dは、上記活物質粒子の平均粒子径D50である。Aは、上記活物質層の表面粗さRaである。
  3.  下記式1をさらに満たす請求項2に記載の蓄電素子。
     (R/D)A≧2X ・・・1
     式1中、Xは、上記電極体の巻回軸方向視における一方の上記曲面部の先端から、上記曲面部の先端に対向する上記容器の内面までの距離である。Rは、上記電極体の巻回軸方向視における上記一方の曲面部の外周の長さである。D及びAは、式2中のD及びAと同義である。
  4.  下記式3をさらに満たす請求項1又は請求項3に記載の蓄電素子。
     0.06≦X/R≦0.12 ・・・3
     式3中、X及びRは、式1中のX及びRと同義である。
  5.  上記活物質層における上記繊維状導電剤の含有量が0.01質量%以上である請求項1から請求項4のいずれか1項に記載の蓄電素子。
  6.  上記繊維状導電剤の平均長さが、上記活物質粒子の平均粒子径D50より大きい請求項1から請求項5のいずれか1項に記載の蓄電素子。
  7.  上記活物質粒子が、一次粒子径に対する平均粒子径D50の比が3以下である二次粒子、又は実質的に凝集していない一次粒子の状態で存在している請求項1から請求項6のいずれか1項に記載の蓄電素子。
  8.  上記正極が、上記活物質粒子及び上記繊維状導電剤を含有する上記活物質層を有する請求項1から請求項7のいずれか1項に記載の蓄電素子。
PCT/JP2021/030703 2020-08-24 2021-08-23 蓄電素子 WO2022045031A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/022,661 US20230317957A1 (en) 2020-08-24 2021-08-23 Energy storage device
JP2022544565A JPWO2022045031A1 (ja) 2020-08-24 2021-08-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020140812 2020-08-24
JP2020-140812 2020-08-24

Publications (1)

Publication Number Publication Date
WO2022045031A1 true WO2022045031A1 (ja) 2022-03-03

Family

ID=80353238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030703 WO2022045031A1 (ja) 2020-08-24 2021-08-23 蓄電素子

Country Status (3)

Country Link
US (1) US20230317957A1 (ja)
JP (1) JPWO2022045031A1 (ja)
WO (1) WO2022045031A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022833A (ja) * 2013-07-17 2015-02-02 トヨタ自動車株式会社 非水電解質二次電池
JP2016181409A (ja) * 2015-03-24 2016-10-13 株式会社Gsユアサ 蓄電素子
JP2019046648A (ja) * 2017-09-01 2019-03-22 株式会社Gsユアサ 蓄電素子及び蓄電装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022833A (ja) * 2013-07-17 2015-02-02 トヨタ自動車株式会社 非水電解質二次電池
JP2016181409A (ja) * 2015-03-24 2016-10-13 株式会社Gsユアサ 蓄電素子
JP2019046648A (ja) * 2017-09-01 2019-03-22 株式会社Gsユアサ 蓄電素子及び蓄電装置

Also Published As

Publication number Publication date
US20230317957A1 (en) 2023-10-05
JPWO2022045031A1 (ja) 2022-03-03

Similar Documents

Publication Publication Date Title
JP2022075345A (ja) 蓄電素子用正極及び蓄電素子
WO2021193326A1 (ja) 蓄電素子
JP2022018845A (ja) 正極及び非水電解質蓄電素子
JP2018137133A (ja) 非水電解質蓄電素子用の負極、非水電解質蓄電素子及び非水電解質蓄電素子用の負極の製造方法
WO2021246186A1 (ja) 正極及び蓄電素子
JP7411161B2 (ja) 蓄電素子
WO2022045031A1 (ja) 蓄電素子
JP2021190165A (ja) 正極及び蓄電素子
JP2022052579A (ja) 蓄電素子
JP2022017033A (ja) 正極活物質粒子、その製造方法、蓄電素子、及び蓄電装置
JP2018078029A (ja) 負極及び非水電解質蓄電素子
JP2021190184A (ja) 非水電解質蓄電素子
JP2021034298A (ja) 非水電解液二次電池及び非水電解液二次電池の製造方法
WO2023248769A1 (ja) 活物質粒子、電極、蓄電素子及び蓄電装置
WO2023190422A1 (ja) 非水電解質蓄電素子用の正極及びこれを備える非水電解質蓄電素子
WO2021100858A1 (ja) 蓄電素子及び蓄電装置
WO2024053496A1 (ja) 電極、蓄電素子及び蓄電装置
WO2022091825A1 (ja) 電極、蓄電素子及び蓄電装置
WO2023167235A1 (ja) 蓄電素子及び蓄電装置
WO2023224071A1 (ja) 非水電解質蓄電素子
WO2023171796A1 (ja) 負極、蓄電素子及び蓄電装置
WO2021200431A1 (ja) 蓄電素子、その製造方法及び蓄電装置
WO2023145677A1 (ja) 非水電解質蓄電素子
WO2023074559A1 (ja) 蓄電素子
WO2023224070A1 (ja) 非水電解質蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544565

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861457

Country of ref document: EP

Kind code of ref document: A1