WO2022044254A1 - 融着方法および融着装置 - Google Patents

融着方法および融着装置 Download PDF

Info

Publication number
WO2022044254A1
WO2022044254A1 PCT/JP2020/032592 JP2020032592W WO2022044254A1 WO 2022044254 A1 WO2022044254 A1 WO 2022044254A1 JP 2020032592 W JP2020032592 W JP 2020032592W WO 2022044254 A1 WO2022044254 A1 WO 2022044254A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
installation
composite
pressurizing
fusion
Prior art date
Application number
PCT/JP2020/032592
Other languages
English (en)
French (fr)
Inventor
大輔 田中
彰吾 乙部
顕夫 池田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP2022512850A priority Critical patent/JP7236201B2/ja
Priority to PCT/JP2020/032592 priority patent/WO2022044254A1/ja
Publication of WO2022044254A1 publication Critical patent/WO2022044254A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/24Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool
    • B29C65/30Electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/78Moulding material on one side only of the preformed part

Definitions

  • the present disclosure relates to a fusion method and a fusion apparatus for fusing a first composite material and a second composite material, each of which contains a fiber base material and a thermoplastic resin and has conductivity.
  • Patent Document 1 discloses that a joint surface in contact with a pair of composite materials is pressed by a pair of pressure members, and a voltage is applied to the pair of composite materials via the pressure members.
  • Patent Document 1 a pair of pressure members are arranged so as to sandwich the pair of composite materials, and a voltage is applied through the pair of pressure members. Therefore, for example, when a plurality of small composite materials are fused to a large composite material, an operation of changing the installation position of the pair of pressure members as many times as the number of times according to the number of small composite materials may be performed. It is necessary to attach an electrode to the pressurizing member.
  • the present disclosure has been made in view of such circumstances, and simplifies the operation required for arranging and fusing a plurality of second composite materials on the first composite material formed in a plate shape. It is an object of the present invention to provide a fusion method and a fusion apparatus capable of shortening the time required for the process of fusing the first composite material and the second composite material.
  • the fusion method is a fusion method for fusing a first composite material and a second composite material, each of which contains a fiber base material and a thermoplastic resin and has conductivity, and is a plate.
  • the first lower surface is brought into contact with the installation surface of an installation portion that is formed in a shape corresponding to the first lower surface of the first composite material and has a wider installation surface than the first lower surface.
  • a voltage is applied between the first electrode portion connected to the installation surface having conductivity and the second electrode portion connected to the pressurizing member having conductivity. Is applied to provide a fusion step of fusing the first upper surface of the first composite material and the second lower surface of the second composite material.
  • the fusion device is a fusion device that fuses a first composite material and a second composite material that contain a fiber base material and a thermoplastic resin and have conductivity, respectively, and is a plate.
  • the first lower surface is brought into contact with the installation portion which is formed in a shape corresponding to the first lower surface of the first composite material and has an installation surface wider than the first lower surface.
  • the second composite via a pressurizing member so that the first upper surface of the first composite material installed in the state and the second lower surface of the plurality of second composite materials arranged on the first upper surface come close to each other.
  • a pressurizing mechanism configured to pressurize the second upper surface of the material so that the second upper surface of any one of the plurality of second composite materials and the pressurizing member can move in contact with each other, and a pair of electrode portions.
  • the installation surface is conductive and is connected to one of the pair of the electrode portions
  • the pressurizing member is conductive and is connected to the other of the pair of the electrode portions.
  • a voltage is applied between the first composite material and the second composite material in a state where the first composite material and the second composite material are pressed by the pressurizing member. By applying, the first upper surface of the first composite material and the second lower surface of the second composite material are fused.
  • the operation required for arranging and fusing a plurality of second composite materials on the first composite material formed in a plate shape is simplified, and the first composite material and the second composite material are fused. It is possible to provide a fusing method and a fusing device capable of shortening the time required for the fusing process.
  • FIG. 1 It is sectional drawing which shows the fusion
  • FIG. 1 is a cross-sectional view showing a fusion device 100 according to an embodiment of the present disclosure, showing a state in which the first composite material 210 and a plurality of second composite materials 220 are fused.
  • FIG. 2 is a plan view of the fusion splicer 100 shown in FIG. 1 as viewed from above.
  • the cross-sectional view of the fusion splicer 100 shown in FIG. 1 is a cross-sectional view taken along the line AA of the fusion splicer 100 shown in FIG.
  • the fusion apparatus 100 of the present embodiment is an apparatus for manufacturing a structure 200 by fusing a first composite material 210 and a second composite material 220, each of which contains a fiber base material and a thermoplastic resin and has conductivity. Is.
  • the fusion device 100 of the present embodiment includes an installation portion 10, a pressurizing mechanism 20, a first electrode portion 31, and a second electrode portion 32.
  • the structure 200 of the present embodiment is formed by joining the first composite material 210 and the second composite material 220 by fusion splicing.
  • the first composite material 210 is a member formed in a plate shape extending along the axis Y.
  • the first composite material 210 has an arcuate cross section that is orthogonal to the axis Y and projects downward along the axis Z extending in the vertical direction in a state of being installed in the installation portion 10.
  • the first composite material 210 is, for example, a member used as a skin forming a part of the fuselage of an aircraft.
  • the first composite material 210 is a laminated body formed into a plate shape by laminating three sheet-shaped composite materials 210a, 210b, 210c.
  • the first composite material 210 in which three layers of the composite materials 210a, 210b, and 210c are laminated is used, but the first composite material 210 in which two or more arbitrary number of layers are laminated may be used.
  • the composite materials 210a, 210b, 210c contained in the first composite material 210 include a fiber base material and a matrix resin (resin material).
  • the fiber base material contained in the composite materials 210a, 210b, 210c is, for example, carbon fiber. Since the carbon fibers have conductivity, the first composite material 210 containing the carbon fibers has conductivity as a whole.
  • the matrix resin contained in the composite materials 210a, 210b, 210c is a thermoplastic resin material, and is, for example, polyetheretherketone (PEEK), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), nylon 6 (PA6). ), Nylon 66 (PA66), Polyphenylene Sulfide (PPS), Polyetherimide (PEI), Polyetherketone Ketone (PEKK) and the like.
  • PEEK polyetheretherketone
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PA6 nylon 6
  • PA66 Nylon 66
  • PPS Polyphenylene Sulfide
  • PEI Polyetherimide
  • PEKK Polyetherketone Ketone
  • the second composite material 220 is a member formed in a long shape extending along a longitudinal LD parallel to the axis Y. As shown in FIGS. 1 and 2, six second composite materials 220A, 220B, 220C, 220D, 220E are arranged with respect to one first composite material 210. Here, six second composite materials 220 are arranged for one first composite material 210, but an arbitrary number of second composite materials 220 are arranged for one first composite material 210. It may be arranged.
  • the second composite material 220 is a member formed in a substantially L-shape in cross-sectional view, and is orthogonal to a portion of the first composite material 210 that contacts the first upper surface 212 and a portion that contacts the first upper surface 212. It has a portion extending in the direction of The second composite material 220 is a member that is joined to a plurality of locations at intervals in the axis X direction of the first composite material 210, and is, for example, a member used as a stringer that reinforces the skin.
  • the second composite material 220 is a laminated body formed by laminating two sheet-shaped composite materials 220a and 220b and bending them along the longitudinal direction LD.
  • the second composite material 220 in which two layers of the composite materials 220a and 220b are laminated is used, but the second composite material 220 in which two or more arbitrary number of layers are laminated may be used.
  • the composite materials 220a and 220b included in the second composite material 220 include a fiber base material and a matrix resin (resin material).
  • the fiber base material contained in the composite materials 220a and 220b is, for example, carbon fiber. Since the carbon fibers have conductivity, the second composite material 220 containing the carbon fibers has conductivity as a whole.
  • the matrix resin contained in the composite materials 220a and 220b is a thermoplastic resin material. Examples of the thermoplastic resin material are the same as those of the first composite material 210.
  • the installation portion 10 is a member formed in a plate shape extending along the axis Y.
  • the installation portion 10 has an arcuate cross section orthogonal to the axis Y and projecting downward along the axis X extending in the horizontal direction.
  • the installation portion 10 has an installation surface 11 and a pair of leg portions 12.
  • the installation portion 10 is made of a metal material, and the entire installation portion 10 including the installation surface 11 has conductivity.
  • the installation surface 11 is formed in an arc shape protruding downward along the axis Z, and is formed in a shape corresponding to the first lower surface 211 of the first composite material 210. As shown in FIG. 2, the installation surface 11 is longer than the first composite material 210 in both the direction along the axis Y and the direction along the axis X. That is, the installation surface 11 has a larger area than the first lower surface 211 of the first composite material 210.
  • the first composite material 210 is installed on the installation surface 11 in a state where the entire area of the first lower surface 211 of the first composite material 210 is in contact with the installation surface 11.
  • the pressurizing mechanism 20 is a mechanism for pressurizing the first composite material 210 installed in the installation unit 10 and the plurality of second composite materials 220 arranged in the first composite material 210.
  • the pressurizing mechanism 20 is an articulated robot arm having a pressurizing member 21, a plurality of arms 22, and a plurality of link mechanisms 23.
  • the pressurizing mechanism 20 is configured to be movable so that the second upper surface 222 of any of the plurality of second composite members 220 and the pressurizing member 21 are in contact with each other.
  • the pressurizing mechanism 20 includes a first upper surface 212 of the first composite material 210 installed in a state where the first lower surface 211 is in contact with the installation surface 11, and a plurality of second composite materials 220 arranged on the first upper surface 212.
  • the second upper surface 222 of the second composite material 220 is pressurized via the pressurizing member 21 so as to be close to the second lower surface 221 of the above.
  • the pressure member 21 is made of a metal material and has conductivity.
  • the pair of electrode portions including the first electrode portion 31 and the second electrode portion 32 are first in a state where the first composite material 210 and the second composite material 220 are pressed by the pressure member 21 of the pressure mechanism 20. It is a device that applies a voltage between the composite material 210 and the second composite material 220.
  • the first electrode portion 31 is an electrode connected to the installation surface S and maintained at the ground potential.
  • the installation surface 11 of the installation unit 10 is connected to the first electrode unit 31 and is maintained at the ground potential.
  • the second electrode portion 32 is an electrode connected to a voltage source (not shown), connected to the pressurizing member 21, and maintained at a potential higher than the ground potential.
  • the pressurizing member 21 is connected to the second electrode portion 32 and is maintained at a potential higher than the ground potential. Since the first composite material 210 and the second composite material 220 have conductivity respectively, when a voltage is applied between the first composite material 210 and the second composite material 220, the first electrode portion 31 and the second electrode portion are formed. A current flows between the 32 and the cell.
  • a minute gap is formed between the first upper surface 212 of the first composite material 210 and the second lower surface 221 of the second composite material 220. Therefore, the resistance value becomes the maximum in this gap, and it becomes the region where the heat is generated most.
  • the first upper surface 212 of the first composite material 210 and the second lower surface of the second composite material 220 Fuse with 221. In this way, the first electrode portion 31 and the second electrode portion 32 fuse the first upper surface 212 of the first composite material 210 and the second lower surface 221 of the second composite material 220.
  • the fusion method of the present embodiment is a method of fusing the first composite material 210 and the second composite material 220, each of which contains a fiber base material and a thermoplastic resin and has conductivity.
  • FIG. 3 is a flowchart showing a fusion method according to the present embodiment.
  • step S101 installation step
  • the first composite material 210 is installed in a state where the first lower surface 211 is in contact with the installation surface 11 of the installation portion 10.
  • the operation of moving the first composite material 210 to the installation surface 11 is performed by, for example, an articulated robot arm (not shown).
  • FIG. 4 is a cross-sectional view showing a state in which the first composite material 210 is installed in the installation portion 10.
  • the first composite material 210 having the first lower surface 211 formed in a shape corresponding to the installation surface 11 is installed on the installation surface 11, but other embodiments may be used.
  • the sheet-shaped composite material 210c is laminated on the installation surface 11
  • the sheet-shaped composite material 210b is laminated on the composite material 210c
  • the sheet-shaped composite material 210a is laminated on the composite material 210c. 1
  • the composite material 210 may be formed. That is, the installation portion 10 may be used as a molding die for molding the first composite material 210.
  • step S102 (arrangement process) a plurality of second composite materials 220 are arranged on the first upper surface 212 of the first composite material 210 installed in the installation unit 10 by the installation process.
  • the positioning member 40 is installed on the installation surface 11 in order to position the second composite material 220 on the first upper surface 212 of the first composite material 210.
  • FIG. 5 is a cross-sectional view showing a state in which the positioning member 40 is installed in the installation portion.
  • the fusion device 100 of the present embodiment includes a positioning member 40.
  • the positioning member 40 is a plate-shaped member in which a plurality of positioning holes 41 for positioning the second composite material 220 are formed on the first upper surface 212 of the first composite material 210.
  • the second composite material 220 is inserted into the plurality of positioning holes 41 of the positioning member 40, so that a plurality of the second composite material 220 are inserted into the first upper surface 212 of the first composite material 210.
  • the second composite material 220 of the above is arranged.
  • FIG. 6 is a cross-sectional view showing a state in which a plurality of second composite materials 220 are arranged on the first composite material 210.
  • step S103 moving step
  • the pressurizing mechanism 20 is in contact with the second upper surface 222 of any of the plurality of second composite materials 220 arranged on the first upper surface 212 of the first composite material 210 by the arranging step.
  • the pressurizing member 21 is moved.
  • FIG. 7 is a cross-sectional view showing a state in which the pressurizing member 21 of the pressurizing mechanism 20 is in contact with the second upper surface 222 of the second composite material 220.
  • step S104 pressurization step
  • the first upper surface 212 of the first composite material 210 and the second lower surface 221 of the second composite material 220 arranged on the first upper surface 212 are brought close to each other via the pressurizing member 21.
  • the second upper surface 222 of the second composite material 220 is pressed.
  • the pressurizing member 21 is moved along the longitudinal direction LD from one end (upper side in FIG. 8) to the other end (lower side in FIG. 8) of the longitudinal direction LD of the second composite material 220. While moving, the entire area of the second upper surface 222 of the second composite material 220 is pressed.
  • the pressurization by the pressurizing step of step S104 is performed at the same time as the fusion step of step S105 described later.
  • step S105 the first electrode portion 31 connected to the installation surface 11 and the pressurizing member 21 in a state where the first composite material 210 and the second composite material 220 are pressurized by the pressurizing step.
  • a voltage is applied between the second electrode portion 32 connected to the second electrode portion 32 and the second electrode portion 32 connected to the second electrode portion 32. Since the first composite material 210 and the second composite material 220 have conductivity respectively, when a voltage is applied between the first composite material 210 and the second composite material 220, the first electrode portion 31 and the second electrode portion are formed.
  • a current flows between the 32 and the cell.
  • the thermoplastic resin contained in the first composite material 210 and the second composite material 220 has a melting point temperature.
  • the first upper surface 212 of the first composite material 210 and the second lower surface 221 of the second composite material 220 are fused.
  • the fusion step fuses the first upper surface 212 of the first composite material 210 and the second lower surface 221 of the second composite material 220.
  • the fusion step is performed at the same time as the pressurization step of step S104. Therefore, when the pressure member 21 is moved along the longitudinal direction LD to pressurize the second upper surface 222 of the second composite material 220, the first composite is in the vicinity of the second upper surface 222 that comes into contact with the pressure member 21. The first upper surface 212 of the material 210 and the second lower surface 221 of the second composite material 220 are fused.
  • step S106 it is determined whether or not there is another second composite material 220 to be fused to the first composite material 210. If YES, the processes after step S103 are executed again, and if NO, the process proceeds to step S107. To proceed. In the example shown in FIGS. 7 and 8, the second composite material 220A is fused out of the six second composite materials 220A, 220B, 220C, 220D, 220E.
  • step S106 If NO is determined in step S106 after the second composite material 220A is fused, the pressurizing mechanism 20 moves the pressurizing member 21 so as to come into contact with the second upper surface 222 of the second composite material 220B. .. After that, while moving the pressurizing member 21 from one end (upper in FIG. 8) to the other end (lower in FIG. 8) of the longitudinal LD, the entire region of the second upper surface 222 of the second composite material 220B is pressurized. 1 The first upper surface 212 of the composite material 210 and the second lower surface 221 of the second composite material 220B are fused.
  • the second composite material 220B is fused
  • the second composite material 220C is fused
  • the second composite material 220D is fused to form the second composite material 220D.
  • the second composite material 220E is fused. Based on the above, if it is determined that there is no other second composite material 220 to be fused to the first composite material 210, the process proceeds to step S107.
  • step S107 cooling step
  • the thermoplastic resin contained in the first composite material 210 is cooled to be lower than the melting point temperature
  • the thermoplastic resin contained in the second composite material 220 is cooled to be lower than the melting point temperature.
  • Cooling in the cooling step is performed, for example, by leaving the structure 200 in a space maintained below the melting point temperature for a predetermined time. Further, the cooling in the cooling mechanism may be performed by using a cooling mechanism such as water cooling or air cooling.
  • the plate-shaped first composite material 210 is installed in the installation portion 10 having an installation surface 11 wider than the first lower surface 211 of the first composite material 210.
  • the plurality of second composite materials 220 are arranged on the first upper surface 212 of the first composite material 210.
  • the pressurizing member 21 of the pressurizing mechanism 20 moves so as to come into contact with the second upper surface 222 of any of the plurality of second composite materials 220.
  • the conductive installation surface 11 is connected to the first electrode portion 31, and the conductive pressurizing member 21 is connected to the second electrode portion 32, between the first electrode portion 31 and the second electrode portion 32. A voltage is applied.
  • first composite material 210 and the second composite material 220 have conductivity, an electric current flows through the first composite material 210 and the second composite material 220. Then, the first composite material 210 and the second composite material 220 generate heat and are partially melted, and the first upper surface 212 of the first composite material 210 and the second lower surface 221 of the second composite material 220 are fused.
  • the pressure member 21 of the pressure mechanism 20 is moved by the moving step.
  • the installation unit 10 does not need to be moved while the first composite material 210 is installed. That is, when the first composite material 210 and the second composite material 220 are fused, it is not necessary to move both the pressure member 21 and the installation surface 11 that sandwich the first composite material 210 and the second composite material 220. .. Therefore, as compared with the case where both of the pair of surfaces sandwiching the first composite material 210 and the second composite material 220 are moved, a plurality of second composite materials 220 are arranged on the first composite material 210 formed in a plate shape. The operation required for fusing can be simplified, and the time required for the process of fusing the first composite material 210 and the second composite material 220 can be shortened.
  • the second composite material 220 is formed in a long shape extending along the longitudinal direction LD, and in the pressurizing step, the pressurizing member 21 is moved along the longitudinal direction LD. 2 Pressurize the second upper surface 222 of the composite material 220. Since the entire region of the second upper surface 222 of the second composite material 220 can be pressurized by using the pressurizing member 21 whose length of the LD in the longitudinal direction is shorter than that of the second composite material 220, the pressurizing mechanism 20 is downsized. can do.
  • the arrangement step of arranging the plurality of second composite materials 220 on the first composite material 210 is for positioning the second composite material 220 on the first upper surface 212 of the first composite material 210.
  • the plurality of second composite materials 220 are formed on the first upper surface 212 of the first composite material 210. Deploy.
  • the plurality of second composite materials 220 can be easily positioned with respect to the first upper surface 212 of the first composite material 210.
  • the pressurizing mechanism 20 is an articulated robot arm having a pressurizing member 21, a plurality of arms 22, and a plurality of link mechanisms 23, but in other embodiments. There may be.
  • the pressurizing mechanism 20 another mechanism installed on the installation portion 10 and moving the pressurizing member 21 along the longitudinal LD may be adopted.
  • a self-propelled gantry arm that moves the pressurizing member 21 along the longitudinal LD may be adopted.
  • the pressurizing mechanism 20 a mechanism capable of pressurizing and fusing only at the installed position may be adopted.
  • the operator or the transfer device operated by the operator moves the pressurizing mechanism 20 so as to come into contact with the second upper surface 222 of any of the plurality of second composite materials 220.
  • the fusion method described in the embodiment described above can be grasped as follows, for example.
  • the fusion method according to the present disclosure is a fusion method in which a first composite material (210) and a second composite material (220), each of which contains a fiber base material and a thermoplastic resin and has conductivity, are fused.
  • the installation portion (10) is formed in a shape corresponding to the first lower surface (211) of the first composite material formed in a plate shape and has an installation surface (11) wider than the first lower surface.
  • An installation step (S101) in which the first composite material is installed with the first lower surface in contact with the installation surface, and a first upper surface of the first composite material installed in the installation portion by the installation step (S101).
  • the arrangement step (S102) for arranging the plurality of the second composite materials in 212) and the second upper surface (222) of any one of the plurality of the second composite materials arranged by the arrangement step are added so as to be in contact with each other.
  • Pressurization step (S104) for pressurizing the second upper surface of the second composite material via the pressurizing member (21) so as to bring the second lower surface (221) close to each other, and pressurization by the pressurizing step.
  • the plate-shaped first composite material is installed in an installation portion having a wider installation surface than the first lower surface of the first composite material.
  • the plurality of second composite materials are arranged on the first upper surface of the first composite material.
  • the pressurizing member of the pressurizing mechanism is moved so as to be in contact with the second upper surface of any of the plurality of second composite materials.
  • the installation surface having conductivity is connected to the first electrode portion, the pressure member having conductivity is connected to the second electrode portion, and a voltage is applied between the first electrode portion and the second electrode portion. Since the first composite material and the second composite material have conductivity, an electric current flows through the first composite material and the second composite material. Then, the first composite material and the second composite material generate heat and are partially melted, and the first upper surface of the first composite material and the second lower surface of the second composite material are fused.
  • the pressurizing member of the pressurizing mechanism when a plurality of second composite materials are fused to the first composite material, the pressurizing member of the pressurizing mechanism is moved by the moving step, but the installation portion is the first. 1 It is not necessary to move the composite material while it is installed. That is, when the first composite material and the second composite material are fused, it is not necessary to move both the pressure member and the installation surface that sandwich the first composite material and the second composite material. Therefore, as compared with the case where both of the pair of surfaces sandwiching the first composite material and the second composite material are moved, a plurality of second composite materials are arranged and fused to the first composite material formed in a plate shape. It is possible to simplify the operation required for the above and shorten the time required for the process of fusing the first composite material and the second composite material.
  • the second composite material is formed in an elongated shape extending along the longitudinal direction (LD), and the pressurizing step moves the pressurizing member along the longitudinal direction. It may be configured to pressurize the second upper surface of the second composite material while allowing the second composite material to be pressed. According to the fusion method according to this configuration, it is possible to pressurize the entire region of the second upper surface of the second composite material by using a pressurizing member whose length in the longitudinal direction is shorter than that of the second composite material.
  • the pressure mechanism can be miniaturized.
  • a plurality of the second composite materials may be arranged on the first upper surface of the first composite material.
  • the first electrode portion may be maintained at a ground potential
  • the second electrode portion may be maintained at a potential higher than the ground potential. According to the fusion method of this configuration, by maintaining the first electrode portion connected to the installation surface at the ground potential, fusion can be easily performed without being affected by the position of the second electrode portion. ..
  • the installation step may be configured such that a plurality of sheet-shaped composite materials are laminated on the installation surface to form the first composite material.
  • the installation portion for installing the first composite material is formed not only by the fusion treatment in which the second composite material is fused to the first composite material but also by molding the first composite material. It can also be used for molding processing.
  • the fusion splicer according to the embodiment described above is grasped as follows, for example.
  • the fusion device according to the present disclosure is a fusion device that fuses a first composite material and a second composite material that contain a fiber base material and a thermoplastic resin and have conductivity, respectively, and is formed in a plate shape.
  • the installation portion is formed in a shape corresponding to the first lower surface of the first composite material and has an installation surface wider than the first lower surface, and is installed in a state where the first lower surface is in contact with the installation surface.
  • the first upper surface of the first composite material and the second lower surface of the plurality of second composite materials arranged on the first upper surface are brought close to each other via a pressurizing member. 2.
  • a pressurizing mechanism configured to pressurize the upper surface so that the second upper surface of any of the plurality of second composite materials and the pressurizing member can move in contact with each other, and a pair of electrode portions.
  • the installation surface has conductivity and is connected to one of the pair of the electrode portions
  • the pressurizing member has conductivity and is connected to the other of the pair of the electrode portions.
  • a voltage is applied between the first composite material and the second composite material in a state where the first composite material and the second composite material are pressed by the pressure member. , The first upper surface of the first composite material and the second lower surface of the second composite material are fused.
  • the plate-shaped first composite material is installed in an installation portion having a wider installation surface than the first lower surface of the first composite material.
  • the plurality of second composite materials are arranged on the first upper surface of the first composite material.
  • the pressurizing mechanism moves the pressurizing member so as to come into contact with the second upper surface of any of the plurality of second composite materials.
  • a conductive installation surface is connected to one electrode portion, a conductive pressurizing member is connected to the other electrode portion, and a voltage is applied between the pair of electrode portions. Since the first composite material and the second composite material have conductivity, an electric current flows through the first composite material and the second composite material. Then, the first composite material and the second composite material generate heat and are partially melted, and the first upper surface of the first composite material and the second lower surface of the second composite material are fused.
  • the pressure member when a plurality of second composite materials are fused to the first composite material, the pressure member is moved by the pressurizing mechanism, but the installation portion is the first composite material. There is no need to move it with it installed. That is, when the first composite material and the second composite material are fused, it is not necessary to move both the pressure member and the installation surface that sandwich the first composite material and the second composite material. Therefore, as compared with the case where both of the pair of surfaces sandwiching the first composite material and the second composite material are moved, a plurality of second composite materials are arranged and fused to the first composite material formed in a plate shape. It is possible to simplify the operation required for the above and shorten the time required for the process of fusing the first composite material and the second composite material.
  • the second composite material is formed in an elongated shape extending along the longitudinal direction, and the pressurizing mechanism moves the pressurizing member along the longitudinal direction.
  • the second upper surface of the second composite material may be pressurized. According to the fusion device of this configuration, it is possible to pressurize the entire region of the second upper surface of the second composite material by using a pressurizing member whose length in the longitudinal direction is shorter than that of the second composite material.
  • the mechanism can be miniaturized.
  • the fusion device may be configured to include a positioning member in which a plurality of positioning holes for positioning the second composite material are formed on the first upper surface of the first composite material. According to the fusion device of this configuration, a plurality of second composite materials can be easily positioned with respect to the first upper surface of the first composite material by using the positioning member having the positioning holes formed therein.
  • the electrode portion connected to the installation surface is maintained at a ground potential, and the electrode portion connected to the pressurizing member is maintained at a potential higher than the ground potential. It may be configured as such. According to the fusion device of this configuration, by maintaining the electrode portion connected to the installation surface at the ground potential, fusion can be easily performed without being affected by the position of the other electrode portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

第1複合材の第1下面と対応する形状に形成される設置部に、設置面に第1下面を接触させた状態で第1複合材を設置する設置工程(S101)と、設置部に設置された第1複合材の第1上面に複数の第2複合材を配置する配置工程(S102)と、複数の第2複合材のいずれかの第2上面と接触するように加圧機構の加圧部材を移動させる移動工程(S103)と、第1複合材の第1上面と、第1上面に配置される複数の第2複合材の第2下面とを近づけるように加圧部材を介して第2複合材の第2上面を加圧する加圧工程(S104)と、加圧工程(S104)により加圧された状態で、導電性を有する設置面に接続される第1電極部と、導電性を有する加圧部材に接続される第2電極部との間に電圧を印加して、第1複合材の第1上面と第2複合材の第2下面とを融着させる融着工程(S105)と、を備える融着方法を提供する。

Description

融着方法および融着装置
 本開示は、それぞれ繊維基材と熱可塑性樹脂とを含むとともに導電性を有する第1複合材と第2複合材とを融着させる融着方法および融着装置に関するものである。
 繊維強化熱可塑性プラスチック(Fiber Reinforced Thermo Plastic)で構成された複合材を融着させる方法として、一対の複合材料に電圧を印加して複合材料に含まれる炭素繊維を発熱させ、複数の複合材料の接合面およびその近傍の樹脂を溶融させる方法が知られている(例えば、特許文献1参照)。特許文献1には、一対の複合材料が接触する接合面を一対の加圧部材により加圧し、加圧部材を介して一対の複合材料に電圧を印加することが開示されている。
特開2012-187903号公報
 しかしながら、特許文献1は、一対の複合材料を挟むように一対の加圧部材をそれぞれ配置し、一対の加圧部材を介して電圧を印加するものである。そのため、例えば、大型の複合材に対して複数の小型の複合材を融着させる場合には、小型の複合材の数に応じた回数だけ一対の加圧部材の設置位置を変更する動作や、加圧部材に対して電極を取り付ける動作などが必要となる。
 したがって、大型の複合材に対して取り付ける小型の複合材の数が増えるほど、小型の複合材を大型の複合材に融着させるのに要する動作が煩雑となり、融着させる処理に多大な時間を要してしまう。また、複合材のサイズが大きくなるほど、小型の複合材を大型の複合材に融着させるのに要する動作が煩雑となり、融着させる処理に多大な時間を要してしまう。
 本開示は、このような事情に鑑みてなされたものであって、板状に形成される第1複合材に複数の第2複合材を配置して融着させるのに要する動作を簡素化し、第1複合材と第2複合材とを融着させる処理に要する時間を短縮することが可能な融着方法および融着装置を提供することを目的とする。
 本開示の一態様に係る融着方法は、それぞれ繊維基材と熱可塑性樹脂とを含むとともに導電性を有する第1複合材と第2複合材とを融着させる融着方法であって、板状に形成される前記第1複合材の第1下面と対応する形状に形成されるとともに前記第1下面よりも広い設置面を有する設置部に、前記設置面に前記第1下面を接触させた状態で前記第1複合材を設置する設置工程と、前記設置工程により前記設置部に設置された前記第1複合材の第1上面に複数の前記第2複合材を配置する配置工程と、前記配置工程により配置された複数の前記第2複合材のいずれかの第2上面と接触するように加圧機構の加圧部材を移動させる移動工程と、前記第1複合材の前記第1上面と、前記第1上面に配置される複数の前記第2複合材の第2下面とを近づけるように前記加圧部材を介して前記第2複合材の前記第2上面を加圧する加圧工程と、前記加圧工程により加圧された状態で、導電性を有する前記設置面に接続される第1電極部と、導電性を有する前記加圧部材に接続される第2電極部との間に電圧を印加して、前記第1複合材の前記第1上面と前記第2複合材の前記第2下面とを融着させる融着工程と、を備える。
 本開示の一態様に係る融着装置は、それぞれ繊維基材と熱可塑性樹脂とを含むとともに導電性を有する第1複合材と第2複合材とを融着させる融着装置であって、板状に形成される前記第1複合材の第1下面と対応する形状に形成されるとともに前記第1下面よりも広い設置面を有する設置部と、前記設置面に前記第1下面を接触させた状態で設置される前記第1複合材の第1上面と、前記第1上面に配置される複数の前記第2複合材の第2下面とを近づけるように加圧部材を介して前記第2複合材の第2上面を加圧し、複数の前記第2複合材のいずれかの前記第2上面と前記加圧部材とが接触するように移動可能に構成される加圧機構と、一対の電極部と、を備え、前記設置面は、導電性を有するとともに一対の前記電極部の一方に接続されており、前記加圧部材は、導電性を有するとともに一対の前記電極部の他方に接続されており、前記一対の電極部は、前記第1複合材および前記第2複合材が前記加圧部材により加圧された状態で、前記第1複合材と前記第2複合材との間に電圧を印加して、前記第1複合材の前記第1上面と前記第2複合材の前記第2下面とを融着させる。
 本開示によれば、板状に形成される第1複合材に複数の第2複合材を配置して融着させるのに要する動作を簡素化し、第1複合材と第2複合材とを融着させる処理に要する時間を短縮することが可能な融着方法および融着装置を提供することができる。
本開示の一実施形態に係る融着装置を示す断面図であり、第1複合材と複数の第2複合材とが融着した状態を示す。 図1に示す融着装置を上方からみた平面図である。 本開示の一実施形態に係る融着方法を示すフローチャートである。 設置部に第1複合材を設置した状態を示す断面図である。 設置部に位置決め部材を設置した状態を示す断面図である。 第1複合材に複数の第2複合材を配置した状態を示す断面図である。 加圧機構の加圧部材を第2複合材の第2上面に接触させた状態を示す断面図である。 加圧機構の加圧部材を長手方向に沿って移動させる状態を示す平面図である。
 以下、本開示にかかる実施形態について説明する。以下で説明する各実施形態は、本開示の一態様を示すものであり、この開示を限定するものではない。以下で説明する各実施形態は、本開示の技術的思想の範囲内で任意に変更可能である。
 以下、本開示の一実施形態に係る融着装置100および融着方法について、図面を参照して説明する。図1は、本開示の一実施形態に係る融着装置100を示す断面図であり、第1複合材210と複数の第2複合材220とが融着した状態を示す。図2は、図1に示す融着装置100を上方からみた平面図である。図1に示す融着装置100の断面図は、図2に示す融着装置100のA-A矢視断面図となっている。
 本実施形態の融着装置100は、それぞれ繊維基材と熱可塑性樹脂とを含むとともに導電性を有する第1複合材210と第2複合材220とを融着させて構造体200を製造する装置である。図1に示すように、本実施形態の融着装置100は、設置部10と、加圧機構20と、第1電極部31と、第2電極部32と、を備える。
 図1および図2に示すように、本実施形態の構造体200は、第1複合材210と、第2複合材220とを融着により接合したものである。第1複合材210は、軸線Yに沿って延びる板状に形成される部材である。第1複合材210は、設置部10に設置された状態で、軸線Yに直交するとともに鉛直方向に延びる軸線Zに沿って下方に向けて突出する円弧状の断面を有する。第1複合材210は、例えば、航空機の胴体の一部を形成するスキンとして用いられる部材である。
 第1複合材210は、シート状の三層の複合材料210a,210b,210cを積層して板状に成形された積層体である。本実施形態では、三層の複合材料210a,210b,210cを積層した第1複合材210を用いることとしたが、2以上の任意の数の層を積層した第1複合材210としてもよい。
 第1複合材210に含まれる複合材料210a,210b,210cは、繊維基材とマトリックス樹脂(樹脂材料)とを含む。複合材料210a,210b,210cに含まれる繊維基材は、例えば炭素繊維である。炭素繊維が導電性を有するため、炭素繊維を含む第1複合材210は、全体として導電性を有する。
 複合材料210a,210b,210cに含まれるマトリックス樹脂は、熱可塑性樹脂材料であり、例えば、ポリエーテルエーテルケトン(PEEK)、ポリエチレンテレフタラート(PET)、ポリブチレンテレフタラート(PBT)、ナイロン6(PA6)、ナイロン66(PA66)、ポリフェニレンサルファイド(PPS)、ポリエーテルイミド(PEI)、ポリエーテルケトンケトン(PEKK)等である。
 第2複合材220は、軸線Yと平行な長手方向LDに沿って延びる長尺状に形成される部材である。図1および図2に示すように、1つの第1複合材210に対して、6つの第2複合材220A,220B,220C,220D,220Eが配置される。ここでは、1つの第1複合材210に対して、6つの第2複合材220を配置するものとしたが、1つの第1複合材210に対して、任意の数の第2複合材220を配置してもよい。
 第2複合材220は、断面視が略L字状に形成される部材であり、第1複合材210の第1上面212に接触する部分と、第1上面212に接触する部分に対して直交する方向に延びる部分とを有する。第2複合材220は、第1複合材210の軸線X方向に間隔を空けて複数箇所に接合される部材であり、例えば、スキンを補強するストリンガとして用いられる部材である。
 第2複合材220は、シート状の二層の複合材料220a,220bを積層して長手方向LDに沿って折り曲げて成形された積層体である。本実施形態では、二層の複合材料220a,220bを積層した第2複合材220を用いることとしたが、2以上の任意の数の層を積層した第2複合材220としてもよい。
 第2複合材220に含まれる複合材料220a,220bは、繊維基材とマトリックス樹脂(樹脂材料)とを含む。複合材料220a,220bに含まれる繊維基材は、例えば炭素繊維である。炭素繊維が導電性を有するため、炭素繊維を含む第2複合材220は、全体として導電性を有する。複合材料220a,220bに含まれるマトリックス樹脂は、熱可塑性樹脂材料である。熱可塑性樹脂材料の例は、第1複合材210と同様である。
 設置部10は、軸線Yに沿って延びる板状に形成される部材である。設置部10は、軸線Yに直交するとともに水平方向に延びる軸線Xに沿って下方に向けて突出する円弧状の断面を有する。設置部10は、設置面11と、一対の脚部12とを有する。設置部10は、金属材料により形成されており、設置面11を含めた全体が導電性を有する。
 設置面11は、軸線Zに沿って下方に向けて突出する円弧状に形成され、第1複合材210の第1下面211と対応する形状に形成される。図2に示すように、設置面11は、軸線Yに沿った方向と軸線Xに沿った方向の双方において、第1複合材210よりも長い。すなわち、設置面11は、第1複合材210の第1下面211よりも広い面積を有する。設置面11には、第1複合材210の第1下面211の全領域が接触した状態で、第1複合材210が設置される。
 加圧機構20は、設置部10に設置される第1複合材210と第1複合材210に配置される複数の第2複合材220とを加圧する機構である。加圧機構20は、加圧部材21と、複数のアーム22と、複数のリンク機構23とを有する多関節型ロボットアームである。加圧機構20は、複数の第2複合材220のいずれかの第2上面222と加圧部材21とが接触するように移動可能に構成される。
 加圧機構20は、設置面11に第1下面211を接触させた状態で設置される第1複合材210の第1上面212と、第1上面212に配置される複数の第2複合材220の第2下面221とを近づけるように加圧部材21を介して第2複合材220の第2上面222を加圧する。加圧部材21は、金属材料により形成されており、導電性を有する。
 第1電極部31および第2電極部32からなる一対の電極部は、第1複合材210および第2複合材220が加圧機構20の加圧部材21により加圧された状態で、第1複合材210と第2複合材220との間に電圧を印加する装置である。第1電極部31は、設置面Sに接続されて接地電位に維持される電極である。設置部10の設置面11は、第1電極部31に接続されており、接地電位に維持される。
 第2電極部32は、電圧源(図示略)に接続されており、加圧部材21に接続されて接地電位よりも高い電位に維持される電極である。加圧部材21は、第2電極部32に接続されており、接地電位よりも高い電位に維持される。第1複合材210および第2複合材220は、それぞれ導電性を有するため、第1複合材210と第2複合材220との間に電圧を印加すると、第1電極部31と第2電極部32との間に電流が流れる。
 第1複合材210に第2複合材220を配置した構造体200において、第1複合材210の第1上面212と第2複合材220の第2下面221との間に微小な隙間が形成されるため、この隙間において抵抗値が最大となり、最も発熱する領域となる。この領域が加熱され、第1複合材210および第2複合材220に含まれる熱可塑性樹脂が融点温度以上となると、第1複合材210の第1上面212と第2複合材220の第2下面221とが融着する。このようにして、第1電極部31および第2電極部32は、第1複合材210の第1上面212と第2複合材220の第2下面221とを融着させる。
 次に、第1複合材210と第2複合材220とを融着させる融着方法について、図面を参照して説明する。本実施形態の融着方法は、それぞれ繊維基材と熱可塑性樹脂とを含むとともに導電性を有する第1複合材210と第2複合材220とを融着させる方法である。図3は、本実施形態に係る融着方法を示すフローチャートである。
 図3に示すように、ステップS101(設置工程)において、設置部10の設置面11に第1下面211を接触させた状態で第1複合材210を設置する。設置面11へ第1複合材210を移動させる動作は、例えば、多関節型ロボットアーム(図示略)により行われる。設置工程が完了すると、図4に示す状態となる。図4は、設置部10に第1複合材210を設置した状態を示す断面図である。
 設置工程においては、予め設置面11と対応する形状に第1下面211が形成された第1複合材210を、設置面11に設置するものとするが、他の態様であってもよい。例えば、シート状の複合材料210cを設置面11に積層し、シート状の複合材料210bを複合材料210cの上に積層し、シート状の複合材料210aを複合材料210cの上に積層して、第1複合材210を成形するようにしてもよい。すなわち、設置部10を、第1複合材210を成形するための成形型として用いてもよい。
 ステップS102(配置工程)において、設置工程により設置部10に設置された第1複合材210の第1上面212に複数の第2複合材220を配置する。配置工程においては、第2複合材220を配置するのに先立って、第1複合材210の第1上面212に第2複合材220を位置決めするため位置決め部材40を設置面11に設置する。設置面11に位置決め部材40が設置されると、図5に示す状態となる。図5は、設置部に位置決め部材40を設置した状態を示す断面図である。
 本実施形態の融着装置100は、位置決め部材40を備える。位置決め部材40は、第1複合材210の第1上面212に第2複合材220を位置決めするための複数の位置決め穴41が形成された板状部材である。配置工程においては、設置面11に位置決め部材40を設置した後に、位置決め部材40の複数の位置決め穴41に第2複合材220を挿入することにより、第1複合材210の第1上面212に複数の第2複合材220を配置する。配置工程が完了すると、図6に示す状態となる。図6は、第1複合材210に複数の第2複合材220を配置した状態を示す断面図である。
 ステップS103(移動工程)において、配置工程により第1複合材210の第1上面212に配置された複数の第2複合材220のいずれかの第2上面222と接触するように加圧機構20の加圧部材21を移動させる。移動工程が完了すると、図7に示す状態となる。図7は、加圧機構20の加圧部材21を第2複合材220の第2上面222に接触させた状態を示す断面図である。
 ステップS104(加圧工程)において、第1複合材210の第1上面212と、第1上面212に配置される第2複合材220の第2下面221とを近づけるように加圧部材21を介して第2複合材220の第2上面222を加圧する。図8に示すように、加圧工程は、加圧部材21を長手方向LDに沿って第2複合材220の長手方向LDの一端(図8における上方)から他端(図8における下方)まで移動させながら第2複合材220の第2上面222の全領域を加圧する。ステップS104の加圧工程による加圧は、後述するステップS105の融着工程と同時に行われる。
 ステップS105(融着工程)において、第1複合材210および第2複合材220が加圧工程により加圧された状態で、設置面11に接続される第1電極部31と、加圧部材21に接続される第2電極部32との間に電圧を印加する。第1複合材210および第2複合材220は、それぞれ導電性を有するため、第1複合材210と第2複合材220との間に電圧を印加すると、第1電極部31と第2電極部32との間に電流が流れる。
 第1複合材210の第1上面212と第2複合材220の第2下面221との間の隙間の近傍において、第1複合材210および第2複合材220に含まれる熱可塑性樹脂が融点温度以上となると、第1複合材210の第1上面212と第2複合材220の第2下面221とが融着する。このようにして、融着工程は、第1複合材210の第1上面212と第2複合材220の第2下面221とを融着させる。
 融着工程は、ステップS104の加圧工程と同時に行われる。そのため、加圧部材21を長手方向LDに沿って移動させながら第2複合材220の第2上面222を加圧する際に、加圧部材21に接触する第2上面222の近傍において、第1複合材210の第1上面212と第2複合材220の第2下面221とが融着する。
 ステップS106において、第1複合材210に融着させる他の第2複合材220があるかどうかが判断され、YESであればステップS103以降の処理が再び実行され、NOであればステップS107へ処理を進める。図7および図8に示す例では、6つの第2複合材220A,220B,220C,220D,220Eのうち、第2複合材220Aを融着させている。
 第2複合材220Aを融着させた後に、ステップS106でNOと判断された場合、加圧機構20は、第2複合材220Bの第2上面222と接触するように加圧部材21を移動させる。その後は、加圧部材21を長手方向LDの一端(図8における上方)から他端(図8における下方)まで移動させながら第2複合材220Bの第2上面222の全領域を加圧し、第1複合材210の第1上面212と第2複合材220Bの第2下面221とを融着させる。
 第2複合材220Bを融着させた後は第2複合材220Cを融着させ、第2複合材220Cを融着させた後は第2複合材220Dを融着させ、第2複合材220Dを融着させた後は第2複合材220Eを融着させる。以上により、第1複合材210に融着させる他の第2複合材220がないと判断されると、ステップS107へ処理を進める。
 ステップS107(冷却工程)において、第1複合材210に含まれる熱可塑性樹脂が融点温度未満となり、第2複合材220に含まれる熱可塑性樹脂が融点温度未満となるように冷却する。冷却工程が完了すると、第2複合材220を位置決めするために用いた位置決め部材40を取り外し、図1に示す状態とする。冷却工程が完了すると、図3に示す本実施形態の融着方法の各処理が終了する。
 冷却工程おける冷却は、例えば、構造体200を融点温度未満に維持される空間で所定時間に渡って放置することにより実行される。また、冷却機構における冷却は、水冷あるいは空冷等の冷却機構を用いて行ってもよい。
 以上説明した本実施形態の融着方法が奏する作用および効果について説明する。
 本実施形態の融着方法によれば、板状に形成される第1複合材210が、第1複合材210の第1下面211よりも広い設置面11を有する設置部10に設置される。複数の第2複合材220は、第1複合材210の第1上面212に配置される。移動工程により、加圧機構20の加圧部材21が複数の第2複合材220のいずれかの第2上面222と接触するように移動する。導電性を有する設置面11が第1電極部31に接続され、導電性を有する加圧部材21が第2電極部32に接続され、第1電極部31と第2電極部32との間に電圧が印加される。第1複合材210および第2複合材220が導電性を有するため、第1複合材210および第2複合材220に電流が流れる。そして、第1複合材210および第2複合材220が発熱して部分的に溶融し、第1複合材210の第1上面212と第2複合材220の第2下面221とが融着する。
 本実施形態の融着方法によれば、第1複合材210に対して複数の第2複合材220を融着させる際に、移動工程により加圧機構20の加圧部材21を移動させるが、設置部10は第1複合材210を設置したまま移動させる必要はない。すなわち、第1複合材210と第2複合材220を融着させる際に、第1複合材210と第2複合材220とを挟む加圧部材21と設置面11の双方を移動させる必要はない。したがって、第1複合材210と第2複合材220とを挟む一対の面の双方を移動させる場合に比べ、板状に形成される第1複合材210に複数の第2複合材220を配置して融着させるのに要する動作を簡素化し、第1複合材210と第2複合材220とを融着させる処理に要する時間を短縮することができる。
 本実施形態の融着方法において、第2複合材220は、長手方向LDに沿って延びる長尺状に形成され、加圧工程は、加圧部材21を長手方向LDに沿って移動させながら第2複合材220の第2上面222を加圧する。長手方向LDの長さが第2複合材220よりも短い加圧部材21を用いて第2複合材220の第2上面222の全領域を加圧することができるため、加圧機構20を小型化することができる。
 本実施形態の融着方法において、第1複合材210に複数の第2複合材220を配置する配置工程は、第1複合材210の第1上面212に第2複合材220を位置決めするための複数の位置決め穴41が形成された位置決め部材40を設置した後に位置決め穴41に第2複合材220を挿入することにより、第1複合材210の第1上面212に複数の第2複合材220を配置する。位置決め穴41が形成された位置決め部材40を用いることにより、第1複合材210の第1上面212に対して複数の第2複合材220を容易に位置決めすることができる。
〔他の実施形態〕
 以上説明した本実施形態において、加圧機構20は、加圧部材21と、複数のアーム22と、複数のリンク機構23とを有する多関節型ロボットアームであるものとしたが、他の態様であってもよい。加圧機構20として、設置部10の上に設置され、長手方向LDに沿って加圧部材21を移動させる他の機構を採用してもよい。例えば、長手方向LDに沿って加圧部材21を移動させる自走式の門型のアームを採用してもよい。
 また、加圧機構20として、設置された位置においてのみ加圧および融着が可能な機構を採用してもよい。この場合、作業者または作業者が操作する搬送装置(図示略)は、加圧機構20を、複数の第2複合材220のいずれかの第2上面222と接触するように移動させる。
 以上説明した実施形態に記載の融着方法は、例えば以下のように把握される。
 本開示に係る融着方法は、それぞれ繊維基材と熱可塑性樹脂とを含むとともに導電性を有する第1複合材(210)と第2複合材(220)とを融着させる融着方法であって、板状に形成される前記第1複合材の第1下面(211)と対応する形状に形成されるとともに前記第1下面よりも広い設置面(11)を有する設置部(10)に、前記設置面に前記第1下面を接触させた状態で前記第1複合材を設置する設置工程(S101)と、前記設置工程により前記設置部に設置された前記第1複合材の第1上面(212)に複数の前記第2複合材を配置する配置工程(S102)と、前記配置工程により配置された複数の前記第2複合材のいずれかの第2上面(222)と接触するように加圧機構(20)の加圧部材(21)を移動させる移動工程(S103)と、前記第1複合材の前記第1上面と、前記第1上面に配置される複数の前記第2複合材の第2下面(221)とを近づけるように前記加圧部材(21)を介して前記第2複合材の前記第2上面を加圧する加圧工程(S104)と、前記加圧工程により加圧された状態で、導電性を有する前記設置面に接続される第1電極(31)と、導電性を有する前記加圧部材に接続される第2電極(32)との間に電圧を印加して、前記第1複合材の前記第1上面と前記第2複合材の前記第2下面とを融着させる融着工程(S105)と、を備える。
 本開示に係る融着方法によれば、板状に形成される第1複合材が、第1複合材の第1下面よりも広い設置面を有する設置部に設置される。複数の第2複合材は、第1複合材の第1上面に配置される。移動工程により、加圧機構の加圧部材が複数の第2複合材のいずれかの第2上面と接触するように移動する。導電性を有する設置面が第1電極部に接続され、導電性を有する加圧部材が第2電極部に接続され、第1電極部と第2電極部との間に電圧が印加される。第1複合材および第2複合材が導電性を有するため、第1複合材および第2複合材に電流が流れる。そして、第1複合材および第2複合材が発熱して部分的に溶融し、第1複合材の第1上面と第2複合材の第2下面とが融着する。
 本開示に係る融着方法によれば、第1複合材に対して複数の第2複合材を融着させる際に、移動工程により加圧機構の加圧部材を移動させるが、設置部は第1複合材を設置したまま移動させる必要はない。すなわち、第1複合材と第2複合材を融着させる際に、第1複合材と第2複合材とを挟む加圧部材と設置面の双方を移動させる必要はない。したがって、第1複合材と第2複合材とを挟む一対の面の双方を移動させる場合に比べ、板状に形成される第1複合材に複数の第2複合材を配置して融着させるのに要する動作を簡素化し、第1複合材と第2複合材とを融着させる処理に要する時間を短縮することができる。
 本開示に係る融着方法において、前記第2複合材は、長手方向(LD)に沿って延びる長尺状に形成され、前記加圧工程は、前記加圧部材を前記長手方向に沿って移動させながら前記第2複合材の前記第2上面を加圧する構成としてもよい。
 本構成に係る融着方法によれば、長手方向の長さが第2複合材よりも短い加圧部材を用いて第2複合材の第2上面の全領域を加圧することができるため、加圧機構を小型化することができる。
 本開示に係る融着方法において、前記配置工程は、前記第1複合材の前記第1上面に前記第2複合材を位置決めするための複数の位置決め穴(41)が形成された位置決め部材(40)を設置した後に前記位置決め穴に前記第2複合材を挿入することにより、前記第1複合材の前記第1上面に複数の前記第2複合材を配置する構成としてもよい。
 本構成の融着方法によれば、位置決め穴が形成された位置決め部材を用いることにより、第1複合材の第1上面に対して複数の第2複合材を容易に位置決めすることができる。
 本開示に係る融着方法において、前記第1電極部は、接地電位に維持され、前記第2電極部は、前記接地電位よりも高い電位に維持される構成としてもよい。
 本構成の融着方法によれば、設置面に接続される第1電極部を接地電位に維持することで、第2電極部の位置に影響を受けることなく融着を容易に行うことができる。
 本開示に係る融着方法において、前記設置工程は、シート状の複数の複合材料を前記設置面に積層して前記第1複合材を成形する構成としてもよい。
 本構成の融着方法によれば、第1複合材を設置するための設置部を、第1複合材に第2複合材を融着させる融着処理だけでなく、第1複合材を成形する成形処理にも利用することができる。
 以上説明した実施形態に記載の融着装置は、例えば以下のように把握される。
 本開示に係る融着装置は、それぞれ繊維基材と熱可塑性樹脂とを含むとともに導電性を有する第1複合材と第2複合材とを融着させる融着装置であって、板状に形成される前記第1複合材の第1下面と対応する形状に形成されるとともに前記第1下面よりも広い設置面を有する設置部と、前記設置面に前記第1下面を接触させた状態で設置される前記第1複合材の第1上面と、前記第1上面に配置される複数の前記第2複合材の第2下面とを近づけるように加圧部材を介して前記第2複合材の第2上面を加圧し、複数の前記第2複合材のいずれかの前記第2上面と前記加圧部材とが接触するように移動可能に構成される加圧機構と、一対の電極部と、を備え、前記設置面は、導電性を有するとともに一対の前記電極部の一方に接続されており、前記加圧部材は、導電性を有するとともに一対の前記電極部の他方に接続されており、前記一対の電極部は、前記第1複合材および前記第2複合材が前記加圧部材により加圧された状態で、前記第1複合材と前記第2複合材との間に電圧を印加して、前記第1複合材の前記第1上面と前記第2複合材の前記第2下面とを融着させる。
 本開示に係る融着装置によれば、板状に形成される第1複合材が、第1複合材の第1下面よりも広い設置面を有する設置部に設置される。複数の第2複合材は、第1複合材の第1上面に配置される。加圧機構により、加圧部材が複数の第2複合材のいずれかの第2上面と接触するように移動する。導電性を有する設置面が一方の電極部に接続され、導電性を有する加圧部材が他方の電極部に接続され、一対の電極部の間に電圧が印加される。第1複合材および第2複合材が導電性を有するため、第1複合材および第2複合材に電流が流れる。そして、第1複合材および第2複合材が発熱して部分的に溶融し、第1複合材の第1上面と第2複合材の第2下面とが融着する。
 本開示に係る融着装置によれば、第1複合材に対して複数の第2複合材を融着させる際に、加圧機構により加圧部材を移動させるが、設置部は第1複合材を設置したまま移動させる必要はない。すなわち、第1複合材と第2複合材を融着させる際に、第1複合材と第2複合材とを挟む加圧部材と設置面の双方を移動させる必要はない。したがって、第1複合材と第2複合材とを挟む一対の面の双方を移動させる場合に比べ、板状に形成される第1複合材に複数の第2複合材を配置して融着させるのに要する動作を簡素化し、第1複合材と第2複合材とを融着させる処理に要する時間を短縮することができる。
 本開示に係る融着装置において、前記第2複合材は、長手方向に沿って延びる長尺状に形成され、前記加圧機構は、前記加圧部材を前記長手方向に沿って移動させながら前記第2複合材の前記第2上面を加圧する構成としてもよい。
 本構成の融着装置によれば、長手方向の長さが第2複合材よりも短い加圧部材を用いて第2複合材の第2上面の全領域を加圧することができるため、加圧機構を小型化することができる。
 本開示に係る融着装置においては、前記第1複合材の前記第1上面に前記第2複合材を位置決めするための複数の位置決め穴が形成された位置決め部材を備える構成としてもよい。
 本構成の融着装置によれば、位置決め穴が形成された位置決め部材を用いることにより、第1複合材の第1上面に対して複数の第2複合材を容易に位置決めすることができる。
 本開示に係る融着装置において、前記設置面に接続される前記電極部は、接地電位に維持され、前記加圧部材に接続される前記電極部は、前記接地電位よりも高い電位に維持される構成としてもよい。
 本構成の融着装置によれば、設置面に接続される電極部を接地電位に維持することで、他方の電極部の位置に影響を受けることなく融着を容易に行うことができる。
10   設置部
11   設置面
12   脚部
20   加圧機構
21   加圧部材
31   第1電極部
32   第2電極部
40   位置決め部材
41   位置決め穴
100  融着装置
200  構造体
210  第1複合材
211  第1下面
212  第1上面
220,220A,220B,220C,220D,220E 第2複合材
221  第2下面
222  第2上面
LD   長手方向
S    設置面
X,Y,Z 軸線

Claims (9)

  1.  それぞれ繊維基材と熱可塑性樹脂とを含むとともに導電性を有する第1複合材と第2複合材とを融着させる融着方法であって、
     板状に形成される前記第1複合材の第1下面と対応する形状に形成されるとともに前記第1下面よりも広い設置面を有する設置部に、前記設置面に前記第1下面を接触させた状態で前記第1複合材を設置する設置工程と、
     前記設置工程により前記設置部に設置された前記第1複合材の第1上面に複数の前記第2複合材を配置する配置工程と、
     前記配置工程により配置された複数の前記第2複合材のいずれかの第2上面と接触するように加圧機構の加圧部材を移動させる移動工程と、
     前記第1複合材の前記第1上面と、前記第1上面に配置される複数の前記第2複合材の第2下面とを近づけるように前記加圧部材を介して前記第2複合材の前記第2上面を加圧する加圧工程と、
     前記加圧工程により加圧された状態で、導電性を有する前記設置面に接続される第1電極部と、導電性を有する前記加圧部材に接続される第2電極部との間に電圧を印加して、前記第1複合材の前記第1上面と前記第2複合材の前記第2下面とを融着させる融着工程と、を備える融着方法。
  2.  前記第2複合材は、長手方向に沿って延びる長尺状に形成され、
     前記加圧工程は、前記加圧部材を前記長手方向に沿って移動させながら前記第2複合材の前記第2上面を加圧する請求項1に記載の融着方法。
  3.  前記配置工程は、前記第1複合材の前記第1上面に前記第2複合材を位置決めするための複数の位置決め穴が形成された位置決め部材を設置した後に前記位置決め穴に前記第2複合材を挿入することにより、前記第1複合材の前記第1上面に複数の前記第2複合材を配置する請求項1または請求項2に記載の融着方法。
  4.  前記第1電極部は、接地電位に維持され、
     前記第2電極部は、前記接地電位よりも高い電位に維持される請求項1から請求項3のいずれか一項に記載の融着方法。
  5.  前記設置工程は、シート状の複数の複合材料を前記設置面に積層して前記第1複合材を成形する請求項1から請求項4のいずれか一項に記載の融着方法。
  6.  それぞれ繊維基材と熱可塑性樹脂とを含むとともに導電性を有する第1複合材と第2複合材とを融着させる融着装置であって、
     板状に形成される前記第1複合材の第1下面と対応する形状に形成されるとともに前記第1下面よりも広い設置面を有する設置部と、
     前記設置面に前記第1下面を接触させた状態で設置される前記第1複合材の第1上面と、前記第1上面に配置される複数の前記第2複合材の第2下面とを近づけるように加圧部材を介して前記第2複合材の第2上面を加圧し、複数の前記第2複合材のいずれかの前記第2上面と前記加圧部材とが接触するように移動可能に構成される加圧機構と、
     一対の電極部と、を備え、
     前記設置面は、導電性を有するとともに一対の前記電極部の一方に接続されており、
     前記加圧部材は、導電性を有するとともに一対の前記電極部の他方に接続されており、
     前記一対の電極部は、前記第1複合材および前記第2複合材が前記加圧部材により加圧された状態で、前記第1複合材と前記第2複合材との間に電圧を印加して、前記第1複合材の前記第1上面と前記第2複合材の前記第2下面とを融着させる融着装置。
  7.  前記第2複合材は、長手方向に沿って延びる長尺状に形成され、
     前記加圧機構は、前記加圧部材を前記長手方向に沿って移動させながら前記第2複合材の前記第2上面を加圧する請求項6に記載の融着装置。
  8.  前記第1複合材の前記第1上面に前記第2複合材を位置決めするための複数の位置決め穴が形成された位置決め部材を備える請求項6または請求項7に記載の融着装置。
  9.  前記設置面に接続される前記電極部は、接地電位に維持され、
     前記加圧部材に接続される前記電極部は、前記接地電位よりも高い電位に維持される請求項6から請求項8のいずれか一項に記載の融着装置。
     
PCT/JP2020/032592 2020-08-28 2020-08-28 融着方法および融着装置 WO2022044254A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022512850A JP7236201B2 (ja) 2020-08-28 2020-08-28 融着方法および融着装置
PCT/JP2020/032592 WO2022044254A1 (ja) 2020-08-28 2020-08-28 融着方法および融着装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/032592 WO2022044254A1 (ja) 2020-08-28 2020-08-28 融着方法および融着装置

Publications (1)

Publication Number Publication Date
WO2022044254A1 true WO2022044254A1 (ja) 2022-03-03

Family

ID=80352960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032592 WO2022044254A1 (ja) 2020-08-28 2020-08-28 融着方法および融着装置

Country Status (2)

Country Link
JP (1) JP7236201B2 (ja)
WO (1) WO2022044254A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187903A (ja) * 2011-03-14 2012-10-04 Tokyo Institute Of Technology Cfrtp材の融着方法
WO2014148643A1 (ja) * 2013-03-22 2014-09-25 オリジン電気株式会社 複合材料の接合装置、接合体の製造方法及び接合体
JP2017196768A (ja) * 2016-04-26 2017-11-02 三菱重工業株式会社 複合材料の接合方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187903A (ja) * 2011-03-14 2012-10-04 Tokyo Institute Of Technology Cfrtp材の融着方法
WO2014148643A1 (ja) * 2013-03-22 2014-09-25 オリジン電気株式会社 複合材料の接合装置、接合体の製造方法及び接合体
JP2017196768A (ja) * 2016-04-26 2017-11-02 三菱重工業株式会社 複合材料の接合方法

Also Published As

Publication number Publication date
JPWO2022044254A1 (ja) 2022-03-03
JP7236201B2 (ja) 2023-03-09

Similar Documents

Publication Publication Date Title
JP2008544887A (ja) 超音波組立方法
US20100320321A1 (en) Method for joining two fuselage sections by creating a transverse butt joint as well as transverse butt joint connection
US20200055259A1 (en) Heating element, device, and method for resistance welding of thermoplastic components, in particular for the production of aircraft, and aircraft
US20190091940A1 (en) Method for the resistance welding of fiber-composite components to give a fiber-composite structure, fiber-composite structure and fiber-composite component
BR102019027221B1 (pt) Dispositivo de soldagem por indução eletromagnética portátil, e, método para unir fitas de aderentes em materiais compósitos eletricamente condutores com matrizes de polímero por meio de um dispositivo de soldagem
WO2022044254A1 (ja) 融着方法および融着装置
JP2015168137A (ja) 繊維強化熱可塑性樹脂部材の融着方法
US8323444B2 (en) System and method for placing a resistive implant for welding assemblies of plastic components
JP6285720B2 (ja) アクチュエータ
US20230191712A1 (en) Resistance welding methods and apparatus
WO2022054152A1 (ja) 融着方法および融着装置
DE102017105185B4 (de) Verbindungselement, Effektor und Widerstandsschweißverfahren zum stoffschlüssigen Verbinden von Faserverbundwerkstoffteilen
JP2021142643A (ja) 溶着方法及び溶着装置
EP4088912A1 (en) Welding method and structure
EP3313646B1 (en) Resistive implant welding carbon fiber composite thermoplastics
US10160057B2 (en) Method and device for the optimized resistance welding of metal sheets
NL2025473B1 (en) Fiber-reinforced composite laminate for use in electromagnetic welding and method of electromagnetic welding of molded parts of said laminates
JP2022142144A (ja) 融着装置および融着方法
KR101921053B1 (ko) 통전압접장치 및 통전압접방법
JP7314423B2 (ja) 接合方法
JP7293290B2 (ja) 融着装置及び融着方法
JP5332509B2 (ja) 抵抗溶接機
WO2022054120A1 (ja) 融着装置および融着方法
EP4140706A1 (en) Heating element and welding kit for resistance welding and methods of manufacturing a heating element and welding thermoplastic components
US20230321923A1 (en) Joining thermoplastic components

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022512850

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951506

Country of ref document: EP

Kind code of ref document: A1