WO2022042204A1 - 一种预防选区激光熔融镍基高温合金开裂的方法 - Google Patents

一种预防选区激光熔融镍基高温合金开裂的方法 Download PDF

Info

Publication number
WO2022042204A1
WO2022042204A1 PCT/CN2021/109546 CN2021109546W WO2022042204A1 WO 2022042204 A1 WO2022042204 A1 WO 2022042204A1 CN 2021109546 W CN2021109546 W CN 2021109546W WO 2022042204 A1 WO2022042204 A1 WO 2022042204A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
based superalloy
laser melting
scanning
selective laser
Prior art date
Application number
PCT/CN2021/109546
Other languages
English (en)
French (fr)
Inventor
刘祖铭
农必重
魏冰
任亚科
周旭
卢思哲
曹镔
艾永康
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Priority to US17/490,355 priority Critical patent/US20220062995A1/en
Publication of WO2022042204A1 publication Critical patent/WO2022042204A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/368Temperature or temperature gradient, e.g. temperature of the melt pool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0844Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid in controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention provides a method for preventing cracking of nickel-based superalloy by selective laser melting, belonging to the field of additive manufacturing.
  • Nickel-based superalloys have high strength and good oxidation resistance, fatigue resistance, wear resistance and other properties at high temperatures, and are widely used in rocket engines, aero engine turbine disk structural parts and other fields. With the continuous refresh of the extremely high propulsion ratio of the engine, the integrated design of the engine components poses a serious challenge to the traditional forming method.
  • Selective laser melting (SLM) technology uses 3D computer-aided design data to directly melt metal powders with high-energy laser beams, and generate near-net-shape 3D parts by layer-by-layer stacking. Chemical forming has unique advantages.
  • Acta Materialia, 2015, 94:59-68] used SLM forming to prepare Hastelloy X precipitation-strengthened nickel-based superalloy, and by adding solid solution alloy elements, the high temperature tensile strength of the alloy was improved, so The cracks of the prepared alloy samples were reduced by 65%.
  • the present invention proposes to prevent the cracking of 3D printing parts by reducing the content of some alloy components and combining with the control of 3D printing process parameters. So far, this method has not been reported.
  • the present invention provides a method for preventing cracking of nickel-based superalloys by selective laser melting.
  • the invention effectively prevents the cracking phenomenon of the SLM nickel-based superalloy by regulating the content of the elements forming the low melting point phase in the nickel-based superalloy and controlling the special SLM process parameters, thereby obtaining high density, no crack defects, mechanical Parts with excellent performance.
  • the invention reduces the low melting point phase forming elements of Zr and B in the nickel-based superalloy, adjusts the total content of (Ti+Al) in the alloy to be less than or equal to 4.5wt%, and combines special SLM process parameter control to prepare a high-density, Parts with no crack defects and excellent mechanical properties.
  • the present invention provides a method for preventing cracking of nickel-based superalloy by selective laser melting, which comprises the following steps:
  • the content of Zr and B in the nickel-based superalloy is reduced, and the total content of Al and Ti in the nickel-based superalloy is adjusted to ⁇ 4.5wt% to obtain the desired nickel-based superalloy powder;
  • Step 2 SLM forming
  • the SLM forming process is adopted to prepare nickel-based superalloy forming parts.
  • step 1 the Zr content in the nickel-based superalloy powder is 0%.
  • Zr element expands the solidification temperature range of the alloy and can form low melting point phases such as Ni x Zr y , which will greatly increase the probability of cracks in the 3D printing process.
  • step 1 the content of element B in the nickel-based superalloy powder is 0-0.02wt%.
  • B is easily enriched on the grain boundaries.
  • low melting point phases such as M 3 B 2 will be formed. These low melting point phases greatly increase 3D printing.
  • the probability of cracks in the workpiece during the process it was also found that when the B element is less than 0.02%, the probability of cracks in the parts during the 3D printing process will be greatly reduced.
  • the present invention controls the heating temperature of the substrate to be 150° C., controls the rotation angle between the scanning layers to be 67.5°, controls the laser input power to be 300W-350W, preferably 315-335W, and controls the scanning speed to be 750-850mm/ s, preferably 785-815 mm/s, the scanning distance is controlled to be 0.11-0.13 mm, and the thickness of the powder layer is controlled to be 30-40 ⁇ m.
  • the laser power is 300-350W, the density of the formed parts is high. Too low laser power leads to incomplete melting of alloy powder and high porosity of workpieces. Too high laser power leads to greater thermal stress and more serious cracking.
  • the diameter of the laser spot is controlled to be 0.12 mm.
  • the serpentine scanning mode is used for scanning during the SLM forming process.
  • the nickel-based superalloy powder is a nickel-based superalloy powder prepared by an argon atomization method or a plasma rotating electrode atomization method.
  • the protective atmosphere is an argon atmosphere.
  • a method for preventing cracking of nickel-based superalloy by selective laser melting includes the following components:
  • Ta 2.4wt%
  • the above nickel-based superalloy powder is prepared by argon atomization, and the nickel-based superalloy powder suitable for SLM forming is sieved;
  • Adopt SLM forming adjust the heating temperature of the substrate to 150°C, set the rotation angle between the scanning layers to 67°, the laser input power to 325W, the scanning speed to be 800mm/s, the scanning distance to be 0.12mm, and the thickness of the powder layer to be 30 ⁇ m.
  • the spot diameter is 0.12mm, and the forming scanning mode is serpentine scanning. After passing in argon, the printing starts to obtain a formed part; the formed part has a density of 99.35% and no cracks, and its room temperature tensile strength in the XY plane is 1145MPa.
  • the nickel-based superalloy powder in terms of mass percentage, includes the following components:
  • the above nickel-based superalloy powder is prepared by argon atomization, and the nickel-based superalloy powder suitable for SLM forming is sieved;
  • Adopt SLM forming adjust the heating temperature of the substrate to 150°C, set the rotation angle between the scanning layers to 67°, the laser input power to 300W, the scanning speed to 750mm/s, the scanning distance to be 0.12mm, and the thickness of the powder layer to be 30 ⁇ m.
  • the spot diameter is 0.12mm
  • the forming scanning method is serpentine scanning, and printing is started after passing argon gas to obtain a formed part; the density of the formed part is 99.28%, and there is no crack, and its room temperature tensile strength in the XY plane is 1127MPa.
  • the present invention is the first to reduce the low melting point phase forming elements of Zr and B in the nickel-based superalloy, adjust the total content of Al and Ti in the alloy to ⁇ 4.5wt%, and combine the special SLM process parameter control to prepare the density. High, no crack defects, excellent mechanical properties.
  • the present invention reduces the thermal gradient in the SLM forming process of the nickel-based superalloy by preheating the substrate.
  • the present invention optimizes process parameters such as laser power, scanning speed, forming layer thickness and scanning spacing, and minimizes the number of formed parts. This provides the necessary conditions for the preparation of nickel-based superalloy formed parts with high density, good internal quality, no crack defects and excellent mechanical properties.
  • Precipitation-strengthened René104 nickel-based superalloy in mass percentage, includes the following components:
  • Ta 2.4wt%
  • the content of Zr, B, Al and Ti elements in the René104 nickel-based superalloy is adjusted, and the obtained alloy composition is calculated in mass percentage, including the following components:
  • Ta 2.4wt%
  • the above nickel-based superalloy powder was prepared by the argon atomization method, and the nickel-based superalloy powder suitable for SLM forming was sieved (the particle size of the nickel-based superalloy powder suitable for SLM forming was 15-53 ⁇ m).
  • the density of the product obtained by the above steps is 99.35%, no cracks appear, and its room temperature tensile strength in the X-Y plane is 1145 MPa.
  • the René104 nickel-based superalloy powder was prepared by argon atomization, and the nickel-based superalloy powder suitable for SLM forming was sieved (the particle size of the nickel-based superalloy powder suitable for SLM forming was 15-53 ⁇ m).
  • Adopt SLM forming adjust the heating temperature of the substrate to 150°C, set the rotation angle between the scanning layers to 67°, the laser input power to be 350W, the scanning speed to be 800mm/s, the scanning distance to be 0.12mm, and the thickness of the powder layer to be 30 ⁇ m. , choose a laser spot diameter of 0.12mm, a serpentine scanning mode, and start printing with argon gas. After the printing is completed, the formed part is separated from the substrate to obtain a formed part.
  • the density of the product obtained by the above steps is 97.35%, and a large number of microcracks appear, and its room temperature tensile strength in the X-Y plane is 834MPa.
  • Ta 2.4wt%
  • the above nickel-based superalloy powder is prepared by argon atomization, and the nickel-based superalloy powder suitable for SLM forming is sieved (the particle size of the nickel-based superalloy powder suitable for SLM forming is 15-53 ⁇ m).
  • the density of the product obtained by the above steps is 98.65%, a few microcracks appear, and its room temperature tensile strength in the X-Y plane is 915MPa.
  • Ta 2.4wt%
  • the above nickel-based superalloy powder is prepared by argon atomization, and the nickel-based superalloy powder suitable for SLM forming is sieved (the particle size of the nickel-based superalloy powder suitable for SLM forming is 15-53 ⁇ m).
  • the compactness of the formed part obtained by the above steps is 98.85%, a few microcracks appear, and its room temperature tensile strength in the X-Y plane is 986 MPa.
  • Precipitation-strengthened Inconel738LC nickel-based superalloy in mass percentage, includes the following components:
  • the content of Zr, B, Al and Ti elements in the Inconel738LC nickel-based superalloy is adjusted, and the obtained alloy composition is calculated in mass percentage, including the following components:
  • the above nickel-based superalloy powder is prepared by argon atomization, and the nickel-based superalloy powder suitable for SLM forming is sieved (the particle size of the nickel-based superalloy powder suitable for SLM forming is 15-53 ⁇ m).
  • the compactness of the formed part obtained by the above steps is 99.28%, no cracks appear, and its room temperature tensile strength in the X-Y plane is 1127 MPa.
  • the Inconel738LC nickel-based superalloy powder was prepared by argon atomization, and the nickel-based superalloy powder suitable for SLM forming was sieved (the particle size of the nickel-based superalloy powder suitable for SLM forming was 15-53 ⁇ m).
  • the compactness of the formed part obtained by the above steps is 97.56%, a large number of microcracks appear, and its room temperature tensile strength in the X-Y plane is 864 MPa.
  • the above nickel-based superalloy powder is prepared by argon atomization, and the nickel-based superalloy powder suitable for SLM forming is sieved (the particle size of the nickel-based superalloy powder suitable for SLM forming is 15-53 ⁇ m).
  • the compactness of the formed part obtained by the above steps is 98.25%, with a small amount of microcracks, and its room temperature tensile strength in the X-Y plane is 895 MPa.
  • the above nickel-based superalloy powder is prepared by argon atomization, and the nickel-based superalloy powder suitable for SLM forming is sieved (the particle size of the nickel-based superalloy powder suitable for SLM forming is 15-53 ⁇ m).
  • the compactness of the formed part obtained by the above steps is 98.78%, and a few microcracks appear, and its room temperature tensile strength in the X-Y plane is 915MPa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种预防选区激光熔融镍基高温合金开裂的方法,属于增材制造领域。该方法通过降低镍基高温合金中Zr、B低熔点相形成元素,并调整合金中Al、Ti的总含量至≤4.5wt%,结合特殊的选区激光熔融(SLM)工艺参数控制,制备出了致密度高、无裂纹缺陷、力学性能优良的制件。该方法组分设计合理,制备工艺简单,所得制件性能优良,便于大规模的应用。

Description

一种预防选区激光熔融镍基高温合金开裂的方法 技术领域
本发明提供一种预防选区激光熔融镍基高温合金开裂的方法,属于增材制造领域。
背景技术
镍基高温合金在高温下具有较高的强度和良好的抗氧化、耐疲劳、耐磨损等性能,广泛应用于火箭发动机、航空发动机涡轮盘结构件等领域。随着发动机极高推进比的不断刷新,发动机构件的一体化设计对传统成形方法提出了严重挑战。选区激光熔融(SLM)技术借助三维计算机辅助设计数据,利用高能激光束直接熔化金属粉末,通过逐层叠加,生成近净形的三维零部件,对于制备难加工的材料和具有复杂结构构件的一体化成形具有独特的优势。
技术问题
由于SLM成形过程冷却速度快、反复重熔、热梯度大等原因,导致成形件中残余应力大,易发生变形翘曲和开裂;特别是镍基高温合金,由于其合金成分复杂,采用SLM技术制备成品时极易出现开裂。
针对SLM制备镍基高温合金开裂问题,王黎等人[王黎等,第14届全国特种加工学术会议,2011,502-507]优化了SLM成形Inconel625固溶强化型镍基高温合金的激光功率、扫描速度、扫描间距和扫描层厚等工艺参数,提高了成形件的致密度和力学性能,但无法从根本上完全避免成形件发生开裂。Harrison等人[Harrison N J, et al. Acta Materialia, 2015, 94:59-68]采用SLM成形制备Hastelloy X沉淀强化型镍基高温合金,通过添加固溶合金元素,提高合金高温抗拉强度,所制备合金样品的裂纹减少了65%。
现有工艺大多采用优化SLM工艺参数,或者通过添加微量元素以及固溶元素,来抑制SLM成形件开裂。本发明提出,通过降低合金部分组元含量,结合3D打印工艺参数控制,来预防3D打印制件开裂。目前,这一方法未见报道。
技术解决方案
针对以上问题,本发明提供一种预防选区激光熔融镍基高温合金开裂的方法。本发明通过调控镍基高温合金中低熔点相形成元素含量并结合特殊的SLM工艺参数控制,有效的预防了SLM镍基高温合金发生开裂的现象,进而获得了致密度高、无裂纹缺陷、力学性能优良的制件。本发明首次通过降低镍基高温合金中Zr、B低熔点相形成元素,并调整合金中(Ti+Al)总含量≤4.5wt%,结合特殊的SLM工艺参数控制,制备出了致密度高、无裂纹缺陷、力学性能优良的制件。
本发明提供一种预防选区激光熔融镍基高温合金开裂的方法,其包括下述步骤:
步骤一:调整合金成分
降低镍基高温合金中Zr、B的含量,并调整镍基高温合金中Al、Ti的总含量至≤4.5wt%,得到所需镍基高温合金粉末;
步骤二:SLM成形
以所需镍基高温合金粉末为原料,在保护气氛下,采用SLM成形工艺,制备镍基高温合金成形件。
本发明,步骤一中,镍基高温合金粉末中的Zr含量为0%。在技术开发过程中,发现Zr元素扩大了合金凝固温度范围,可以形成Ni xZr y等低熔点相,这会极大增加3D打印过程中制件产生裂纹的概率。
本发明,步骤一中,镍基高温合金粉末中B元素的含量为0~0.02wt%。在技术开发过程中发现B容易在晶界上富集,当B元素持续富集达到临界点时,就会形成M 3B 2之类的低熔点相,这些低熔点相极大增加了3D打印过程中制件产生裂纹的概率。同时,在研发过程中还发现,当B元素低于0.02%时,3D打印过程中,制件产生裂纹的概率会大幅度降低。
在技术开发过程中,发现合金中(Ti+Al)总含量≤4.5wt%时,其焊接性能良好,制备得到成形件致密度高。
本发明在SLM成形工艺过程中,控制基板加热温度为150℃,控制扫描层间旋转角度为67.5°,控制激光输入功率为300W-350W,优选为315-335W,控制扫描速度为750-850mm/s,优选为785-815mm/s,控制扫描间距为0.11-0.13mm,控制铺粉层厚为30-40μm。在技术开发过程中发现激光功率在300-350W时,成形件致密度高。激光功率过低导致合金粉末熔化不完全,制件孔隙率高,激光功率过高导致制件受到更大热应力作用,发生较严重的开裂。
本发明在SLM成形工艺过程中,控制激光光斑直径为0.12mm。
本发明在SLM成形工艺过程中,采用蛇形扫描方式进行扫描。
步骤二中,所述镍基高温合金粉末为采用氩气雾化法或等离子旋转电极雾化法制备的镍基高温合金粉末。
步骤二中,所述保护气氛为氩气气氛。
作为优选方案,一种预防选区激光熔融镍基高温合金开裂的方法;所述镍基高温合金粉末以质量百分比计,包括下述组分:
Co:20.6wt%;
Cr:13.0wt%;
Mo:3.8wt%;
W:2.1wt%;
Al:2.0wt%;
Ti:2.5wt%;
Ta:2.4wt%;
Nb:0.9wt%;
Zr:0wt%;
B:0.01wt%;
C:0.04wt%;
Ni:余量;
采用氩气雾化法制备上述镍基高温合金粉末,并筛分出适合SLM成形的镍基高温合金粉末;
采用SLM成形,调节基板加热温度至150℃,设置扫描层间旋转角度为67°、激光输入功率为325W、扫描速度为800mm/s、扫描间距为0.12mm、铺粉层厚为30μm,选择激光光斑直径为0.12mm、成形扫描方式为蛇形扫描,通入氩气后开始打印,得到成形件;成形件致密度为99.35%且无裂纹,其在X-Y平面的室温抗拉强度为1145MPa。
作为优选方案,所述镍基高温合金粉末以质量百分比计,包括下述组分:
Co:8.5wt%;
Cr:16wt%;
Mo:1.75wt%;
W:2.6wt%;
Al:2.0wt%;
Ti:2.5wt%;
Ta:1.75wt%;
Nb:0.9wt%;
Zr:0wt%;
B:0wt%;
C:0.11wt%;
Ni:余量;
采用氩气雾化法制备上述镍基高温合金粉末,并筛分出适合SLM成形的镍基高温合金粉末;
采用SLM成形,调节基板加热温度至150℃,设置扫描层间旋转角度为67°、激光输入功率为300W、扫描速度为750mm/s、扫描间距为0.12mm、铺粉层厚为30μm,选择激光光斑直径为0.12mm、成形扫描方式为蛇形扫描,通入氩气后开始打印,得到成形件;成形件致密度为99.28%,且无裂纹,其在X-Y平面的室温抗拉强度为1127MPa。
有益效果
(1)本发明首次通过降低镍基高温合金中Zr、B低熔点相形成元素,调整合金中Al、Ti的总含量至≤4.5wt%,结合特殊的SLM工艺参数控制,制备出了致密度高、无裂纹缺陷、力学性能优良的制件。
(2)本发明的优化方案中,针对沉淀强化型镍基高温合金(如René104、Inconel738LC)3D打印开裂问题,采用了“减法”措施,即降低镍基高温合金中Zr、B低熔点相形成元素,并调整合金中Al、Ti的总含量至≤4.5wt%,极大降低了合金的开裂敏感性;该方法操作简单,效果显著,适用于大范围推广应用。
(3)本发明通过对基板进行预加热,减少了镍基高温合金SLM成形过程的热梯度。同时,本发明根据原料粉末的物理特性(包括成分、激光吸收和反射效率、粉末流动性等),优化了激光功率、扫描速度、成形层厚和扫描间距等工艺参数,最大限度减少了成形件的热应力;这为制得致密度高、内部质量好、无裂纹缺陷、力学性能优良的镍基高温合金成形件提供了必要条件。
本发明的实施方式
实施例1:
(1)沉淀强化型René104镍基高温合金以质量百分比计,包括下述组分:
Co:20.6wt%;
Cr:13.0wt%;
Mo:3.8wt%;
W:2.1wt%;
Al:3.4wt%;
Ti:3.9wt%;
Ta:2.4wt%;
Nb:0.9wt%;
Zr:0.05wt%;
B:0.03wt%;
C:0.04wt%;
Ni:余量;
对René104镍基高温合金中Zr、B、Al、Ti元素含量进行调整,得到的合金成分以质量百分比计,包括下述组分:
Co:20.6wt%;
Cr:13.0wt%;
Mo:3.8wt%;
W:2.1wt%;
Al:2.0wt%;
Ti:2.5wt%;
Ta:2.4wt%;
Nb:0.9wt%;
Zr:0wt%;
B:0.01wt%;
C:0.04wt%;
Ni:余量;
采用氩气雾化法制备上述镍基高温合金粉末,并筛分出适合SLM成形的镍基高温合金粉末(适合SLM成形的镍基高温合金粉末的粒度为15-53μm)。
(2)采用SLM成形,调节基板加热温度至150℃,设置扫描层间旋转角度为67°、激光输入功率为325W、扫描速度为800mm/s、扫描间距为0.12mm、铺粉层厚为30μm,选择激光光斑直径为0.12mm、成形扫描方式为蛇形扫描,通入氩气开始打印,成形件尺寸为10×10×10mm尺寸的立方块。待打印完成后,将成形的零件从基板上分离,得到成形件。
经上述步骤获得的制件致密度为99.35%,未出现裂纹,其在X-Y平面的室温抗拉强度为1145MPa。
 
对比例1:
(1)采用氩气雾化法制备René104镍基高温合金粉末,并筛分出适合SLM成形的镍基高温合金粉末(适合SLM成形的镍基高温合金粉末的粒度为15-53μm)。
(2)采用SLM成形,调节基板加热温度至150℃,设置扫描层间旋转角度为67°、激光输入功率为350W、扫描速度为800mm/s、扫描间距为0.12mm、铺粉层厚为30μm,选择激光光斑直径为0.12mm、成形扫描方式为蛇形扫描,通入氩气开始打印,成形件尺寸为10×10×10mm尺寸的立方块。待打印完成后,将成形的零件从基板上分离,得到成形件。
经上述步骤获得的制件致密度为97.35%,出现大量微裂纹,其在X-Y平面的室温抗拉强度为834MPa。
 
对比例2:
(1)调整René104镍基高温合金成分中B、Zr含量,得到的合金成分以质量百分比计,包括下述组分:
Co:20.6wt%;
Cr:13.0wt%;
Mo:3.8wt%;
W:2.1wt%;
Al:3.4wt%;
Ti:3.9wt%;
Ta:2.4wt%;
Nb:0.9wt%;
Zr:0wt%;
B:0.01wt%;
C:0.04wt%;
Ni:余量;
采用氩气雾化法制备上述镍基高温合金粉末,并筛分出适合SLM成形的镍基高温合金粉末(适合SLM成形的镍基高温合金粉末的粒度为15-53μm)。
(2)采用SLM成形,调节基板加热温度至150℃,设置扫描层间旋转角度为67°、激光输入功率为325W、扫描速度为800mm/s、扫描间距为0.12mm、铺粉层厚为30μm,选择激光光斑直径为0.12mm、成形扫描方式为蛇形扫描,通入氩气开始打印,成形件尺寸为10×10×10mm尺寸的立方块。待打印完成后,将成形的零件从基板上分离,得到成形件。
经上述步骤获得的制件致密度为98.65%,出现少量微裂纹,其在X-Y平面的室温抗拉强度为915MPa。
 
对比例3:
(1)调整René104镍基高温合金成分中Al、Ti含量,得到的合金成分以质量百分比计,包括下述组分:
Co:20.6wt%;
Cr:13.0wt%;
Mo:3.8wt%;
W:2.1wt%;
Al:2.0wt%;
Ti:2.5wt%;
Ta:2.4wt%;
Nb:0.9wt%;
Zr:0.05wt%;
B:0.03wt%;
C:0.04wt%;
Ni:余量;
采用氩气雾化法制备上述镍基高温合金粉末,并筛分出适合SLM成形的镍基高温合金粉末(适合SLM成形的镍基高温合金粉末的粒度为15-53μm)。
(2)采用SLM成形,调节基板加热温度至150℃,设置扫描层间旋转角度为67°、激光输入功率为325W、扫描速度为800mm/s、扫描间距为0.12mm、铺粉层厚为30μm,选择激光光斑直径为0.12mm、成形扫描方式为蛇形扫描,通入氩气开始打印,成形件尺寸为10×10×10mm尺寸的立方块。待打印完成后,将成形的零件从基板上分离,得到成形件。
经上述步骤获得的成形件致密度为98.85%,出现少量微裂纹,其在X-Y平面的室温抗拉强度为986MPa。
 
实施例2:
(1)沉淀强化型Inconel738LC镍基高温合金以质量百分比计,包括下述组分:
Co:8.5wt%;
Cr:16wt%;
Mo:1.75wt%;
W:2.6wt%;
Al:3.4wt%;
Ti:3.4wt%;
Ta:1.75wt%;
Nb:0.9wt%;
Zr:0.06wt%;
B:0.01wt%;
C:0.11wt%;
Ni:余量;
对Inconel738LC镍基高温合金中Zr、B、Al、Ti元素含量进行调整,得到的合金成分以质量百分比计,包括下述组分:
Co:8.5wt%;
Cr:16wt%;
Mo:1.75wt%;
W:2.6wt%;
Al:2.0wt%;
Ti:2.5wt%;
Ta:1.75wt%;
Nb:0.9wt%;
Zr:0wt%;
B:0.01wt%;
C:0.11wt%;
Ni:余量;
采用氩气雾化法制备上述镍基高温合金粉末,并筛分出适合SLM成形的镍基高温合金粉末(适合SLM成形的镍基高温合金粉末的粒度为15-53μm)。
(2)采用SLM成形,调节基板加热温度至150℃,设置扫描层间旋转角度为67°、激光输入功率为300W、扫描速度为750mm/s、扫描间距为0.12mm、铺粉层厚为30μm,选择激光光斑直径为0.12mm、成形扫描方式为蛇形扫描,通入氩气开始打印,成形件尺寸为10×10×10mm尺寸的立方块。待打印完成后,将成形的零件从基板上分离,得到成形件。
经上述步骤获得的成形件致密度为99.28%,未出现裂纹,其在X-Y平面的室温抗拉强度为1127MPa。
 
对比例4:
(1)采用氩气雾化法制备Inconel738LC镍基高温合金粉末,并筛分出适合SLM成形的镍基高温合金粉末(适合SLM成形的镍基高温合金粉末的粒度为15-53μm)。
(2)采用SLM成形,调节基板加热温度至150℃,设置扫描层间旋转角度为67°、激光输入功率为300W、扫描速度为750mm/s、扫描间距为0.12mm、铺粉层厚为30μm,选择激光光斑直径为0.12mm、成形扫描方式为蛇形扫描,通入氩气开始打印,成形件尺寸为10×10×10mm尺寸的立方块。待打印完成后,将成形的零件从基板上分离,得到成形件。
经上述步骤获得的成形件致密度为97.56%,出现大量微裂纹,其在X-Y平面的室温抗拉强度为864MPa。
 
对比例5:
(1)调整Inconel738LC镍基高温合金成分中B、Zr含量,得到的合金成分以质量百分比计,包括下述组分:
Co:8.5wt%;
Cr:16wt%;
Mo:1.75wt%;
W:2.6wt%;
Al:3.4wt%;
Ti:3.4wt%;
Ta:1.75wt%;
Nb:0.9wt%;
Zr:0wt%;
B:0.01wt%;
C:0.11wt%;
Ni:余量;
采用氩气雾化法制备上述镍基高温合金粉末,并筛分出适合SLM成形的镍基高温合金粉末(适合SLM成形的镍基高温合金粉末的粒度为15-53μm)。
(2)采用SLM成形,调节基板加热温度至150℃,设置扫描层间旋转角度为67°、激光输入功率为300W、扫描速度为750mm/s、扫描间距为0.12mm、铺粉层厚为30μm,选择激光光斑直径为0.12mm、成形扫描方式为蛇形扫描,通入氩气开始打印,成形件尺寸为10×10×10mm尺寸的立方块。待打印完成后,将成形的零件从基板上分离,得到成形件。
经上述步骤获得的成形件致密度为98.25%,出现少量微裂纹,其在X-Y平面的室温抗拉强度为895MPa。
 
对比例6:
(1)调整Inconel738LC镍基高温合金成分中Al、Ti含量,得到的合金成分以质量百分比计,包括下述组分:
Co:8.5wt%;
Cr:16wt%;
Mo:1.75wt%;
W:2.6wt%;
Al:2.0wt%;
Ti:2.5wt%;
Ta:1.75wt%;
Nb:0.9wt%;
Zr:0.06wt%;
B:0.01wt%;
C:0.11wt%;
Ni:余量;
采用氩气雾化法制备上述镍基高温合金粉末,并筛分出适合SLM成形的镍基高温合金粉末(适合SLM成形的镍基高温合金粉末的粒度为15-53μm)。
(2)采用SLM成形,调节基板加热温度至150℃,设置扫描层间旋转角度为67°、激光输入功率为300W、扫描速度为750mm/s、扫描间距为0.12mm、铺粉层厚为30μm,选择激光光斑直径为0.12mm、成形扫描方式为蛇形扫描,通入氩气开始打印,成形件尺寸为10×10×10mm尺寸的立方块。待打印完成后,将成形的零件从基板上分离,得到成形件。
经上述步骤获得的成形件致密度为98.78%,出现少量微裂纹,其在X-Y平面的室温抗拉强度为915MPa。
由实施例和对比例可以看出,本发明各工序和各条件参数之间是存在协同作用的,当某一个参数或者某一个工艺环节不在本发明保护范围内时,其所得制件的性能远差于本发明。

Claims (9)

  1. 一种预防选区激光熔融镍基高温合金开裂的方法,其特征在于;包括下述步骤:
    步骤一:调整合金成分
    降低镍基高温合金中Zr、B的含量,并调整镍基高温合金中Al、Ti的总含量至≤4.5wt%,得到所需镍基高温合金粉末;
    步骤二:选区激光熔融成形
    以所需镍基高温合金粉末为原料,在保护气氛下,采用选区激光熔融成形工艺,制备成形件。
  2. 根据权利要求1所述的一种预防选区激光熔融镍基高温合金开裂的方法,其特征在于:
    步骤一中,所需镍基高温合金粉末中的Zr含量为0%。
  3. 根据权利要求1所述的一种预防选区激光熔融镍基高温合金开裂的方法,其特征在于:
    步骤一中,所需镍基高温合金粉末中B元素的含量为0~0.02wt%。
  4. 根据权利要求1所述的一种预防选区激光熔融镍基高温合金开裂的方法,其特征在于:
    选区激光熔融成形工艺过程中,控制基板加热温度为150℃,控制扫描层间旋转角度为67.5°,控制激光输入功率为300W-350W,优选为315-335W,控制扫描速度为750-850mm/s,优选为785-815mm/s,控制扫描间距为0.11-0.13mm,控制铺粉层厚为30-40μm。
  5. 根据权利要求1所述的一种预防选区激光熔融镍基高温合金开裂的方法,其特征在于:
    选区激光熔融成形工艺过程中,控制激光光斑直径为0.12mm;
    选区激光熔融成形工艺过程中,采用蛇形扫描方式进行扫描。
  6. 根据权利要求1所述的一种预防选区激光熔融镍基高温合金开裂的方法,其特征在于:
    步骤二中,所述所需镍基高温合金粉末为采用氩气雾化法或等离子旋转电极雾化法制备的镍基高温合金粉末。
  7. 根据权利要求1所述的一种预防选区激光熔融镍基高温合金开裂的方法,其特征在于:
    步骤二中,所述保护气氛为氩气气氛。
  8. 根据权利要求1所述的一种预防选区激光熔融镍基高温合金开裂的方法,其特征在于:
    所述所需镍基高温合金粉末以质量百分比计,包括下述组分:
    Co:20.6wt%;
    Cr:13.0wt%;
    Mo:3.8wt%;
    W:2.1wt%;
    Al:2.0wt%;
    Ti:2.5wt%;
    Ta:2.4wt%;
    Nb:0.9wt%;
    Zr:0wt%;
    B:0.01wt%;
    C:0.04wt%;
    Ni:余量;
    采用氩气雾化法制备上述镍基高温合金粉末,并筛分出适合选区激光熔融成形的镍基高温合金粉末;
    采用选区激光熔融成形,调节基板加热温度至150℃,设置扫描层间旋转角度为67°、激光输入功率为325W、扫描速度为800mm/s、扫描间距为0.12mm、铺粉层厚为30μm,选择激光光斑直径为0.12mm、成形扫描方式为蛇形扫描,通入氩气后开始打印,得到成形件;成形件致密度为99.35%且无裂纹,其在X-Y平面的室温抗拉强度为1145MPa。
  9. 根据权利要求1所述的一种预防选区激光熔融镍基高温合金开裂的方法,其特征在于:
    所述所需镍基高温合金粉末以质量百分比计,包括下述组分:
    Co:8.5wt%;
    Cr:16wt%;
    Mo:1.75wt%;
    W:2.6wt%;
    Al:2.0wt%;
    Ti:2.5wt%;
    Ta:1.75wt%;
    Nb:0.9wt%;
    Zr:0wt%;
    B:0.01wt%;
    C:0.11wt%;
    Ni:余量;
    采用氩气雾化法制备上述镍基高温合金粉末,并筛分出适合选区激光熔融成形的镍基高温合金粉末;
    采用选区激光熔融成形,调节基板加热温度至150℃,设置扫描层间旋转角度为67°、激光输入功率为300W、扫描速度为750mm/s、扫描间距为0.12mm、铺粉层厚为30μm,选择激光光斑直径为0.12mm、成形扫描方式为蛇形扫描,通入氩气后开始打印,得到成形件;成形件致密度为99.28%且无裂纹;其在X-Y平面的室温抗拉强度为1127MPa。
PCT/CN2021/109546 2020-08-30 2021-07-30 一种预防选区激光熔融镍基高温合金开裂的方法 WO2022042204A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/490,355 US20220062995A1 (en) 2020-08-30 2021-09-30 Method for preventing cracking of nickel-based superalloy fabricated by selective laser melting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010891107.5 2020-08-30
CN202010891107.5A CN111906311B (zh) 2020-08-30 2020-08-30 一种预防选区激光熔融镍基高温合金开裂的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/490,355 Continuation US20220062995A1 (en) 2020-08-30 2021-09-30 Method for preventing cracking of nickel-based superalloy fabricated by selective laser melting

Publications (1)

Publication Number Publication Date
WO2022042204A1 true WO2022042204A1 (zh) 2022-03-03

Family

ID=73266440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109546 WO2022042204A1 (zh) 2020-08-30 2021-07-30 一种预防选区激光熔融镍基高温合金开裂的方法

Country Status (3)

Country Link
US (1) US20220062995A1 (zh)
CN (1) CN111906311B (zh)
WO (1) WO2022042204A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114570945A (zh) * 2022-03-10 2022-06-03 中国人民解放军第五七一九工厂 用于高性能空气涡流器的激光选区熔化制造方法
CN117001014A (zh) * 2023-10-07 2023-11-07 苏州倍丰智能科技有限公司 一种无开裂3d打印用金属材料快速开发方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111906311B (zh) * 2020-08-30 2021-05-28 中南大学 一种预防选区激光熔融镍基高温合金开裂的方法
CN112589115B (zh) * 2020-11-24 2022-04-19 北京星航机电装备有限公司 一种gh4099镍基合金构件的激光选区熔化成形工艺
CN112921206B (zh) * 2021-01-20 2021-12-28 北京钢研高纳科技股份有限公司 增材制造用高γ′含量镍基高温合金粉末、其使用方法、镍基高温合金构件
CN113042751A (zh) * 2021-03-12 2021-06-29 上海理工大学 一种用于提高合金slm工艺稳定性与拓宽工艺窗口的方法
CN113061782B (zh) * 2021-03-16 2021-11-30 山东大学 一种gh3230镍基高温合金材料及其消除激光选区熔化成形微裂纹的方法与应用
CN113201667B (zh) * 2021-04-13 2022-05-24 中国科学院金属研究所 一种镍基高温合金及其设计方法
CN114211000A (zh) * 2021-12-16 2022-03-22 上海工程技术大学 一种减少合金表面裂纹的选区激光熔化方法
CN114425624A (zh) * 2021-12-20 2022-05-03 中南大学 一种提高增材制造镍基高温合金综合性能的方法以及镍基高温合金粉末
CN114480893B (zh) * 2021-12-31 2022-11-11 中南大学 一种减少镍基高温合金增材制造裂纹的方法及镍基高温合金
CN114592144A (zh) * 2022-03-09 2022-06-07 上海交通大学 镍基高温合金粉末、镍基高温合金工件和制备方法
CN114669751B (zh) * 2022-04-14 2023-02-28 中南大学 一种增材制造用无裂纹镍钛铜合金的制备方法
CN115555555A (zh) * 2022-10-24 2023-01-03 北京工业大学 一种抑制激光增材制造高温合金热裂纹的方法
CN116079070A (zh) * 2022-11-07 2023-05-09 南京航空航天大学 一种优化原位重熔扫描策略slm成形高致密度合金的技术方法
CN116445765A (zh) * 2022-12-06 2023-07-18 苏州三峰激光科技有限公司 一种增材制造用高温合金及其增材制造方法
CN116213755A (zh) * 2022-12-27 2023-06-06 哈尔滨工程大学 一种镍基高温合金k447a及其制备方法
CN116144962B (zh) * 2023-04-17 2023-06-27 北京科技大学 一种高强韧哈氏合金及其制备工艺

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2886225A1 (en) * 2013-12-23 2015-06-24 Alstom Technology Ltd Gamma prime precipitation strengthened nickel-base superalloy for use in powder based additive manufacturing process
EP2949768A1 (en) * 2014-05-28 2015-12-02 Alstom Technology Ltd Gamma prime precipitation strengthened nickel-base superalloy for use in powder based additive manufacturing process
CN106623959A (zh) * 2016-12-19 2017-05-10 西安欧中材料科技有限公司 一种增材制造用Waspalloy球形粉末的制备方法
EP3293276A1 (en) * 2016-09-13 2018-03-14 Rolls-Royce plc Nickel-base superalloy and use thereof
CN108941588A (zh) * 2018-07-27 2018-12-07 中南大学 一种激光成形用镍基高温合金粉末的制备方法
CN108941560A (zh) * 2018-07-27 2018-12-07 中南大学 一种消除Renè104镍基高温合金激光增材制造裂纹的方法
WO2019021015A1 (en) * 2017-07-28 2019-01-31 Oxmet Technologies Limited ALLOY BASED ON NICKEL
CN109439962A (zh) * 2018-07-27 2019-03-08 中南大学 一种选区激光熔化成形镍基高温合金的方法
CN110616354A (zh) * 2019-11-12 2019-12-27 湖南人文科技学院 一种用于激光近净成形的镍基高温合金粉末及其制备方法与应用
CN110747377A (zh) * 2019-11-15 2020-02-04 清华大学 一种高铬镍基高温合金及其制备方法与应用
CN111500898A (zh) * 2020-06-19 2020-08-07 北京钢研高纳科技股份有限公司 镍基高温合金及其制造方法、部件和应用
CN111906311A (zh) * 2020-08-30 2020-11-10 中南大学 一种预防选区激光熔融镍基高温合金开裂的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1195446A1 (en) * 2000-10-04 2002-04-10 General Electric Company Ni based superalloy and its use as gas turbine disks, shafts, and impellers
JP5232492B2 (ja) * 2008-02-13 2013-07-10 株式会社日本製鋼所 偏析性に優れたNi基超合金
CH705662A1 (de) * 2011-11-04 2013-05-15 Alstom Technology Ltd Prozess zur Herstellung von Gegenständen aus einer durch Gamma-Prime-Ausscheidung verfestigten Superlegierung auf Nickelbasis durch selektives Laserschmelzen (SLM).
US20160348216A1 (en) * 2014-12-16 2016-12-01 Honeywell International Inc. Nickel-based superalloys and additive manufacturing processes using nickel-based superalloys
CN105344436B (zh) * 2015-03-09 2017-11-21 中南大学 一种消除雾化合金粉末空心缺陷的方法
CN105689730A (zh) * 2016-02-24 2016-06-22 西安欧中材料科技有限公司 一种制备Inconel 625合金球形粉末的方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2886225A1 (en) * 2013-12-23 2015-06-24 Alstom Technology Ltd Gamma prime precipitation strengthened nickel-base superalloy for use in powder based additive manufacturing process
EP2949768A1 (en) * 2014-05-28 2015-12-02 Alstom Technology Ltd Gamma prime precipitation strengthened nickel-base superalloy for use in powder based additive manufacturing process
EP3293276A1 (en) * 2016-09-13 2018-03-14 Rolls-Royce plc Nickel-base superalloy and use thereof
CN106623959A (zh) * 2016-12-19 2017-05-10 西安欧中材料科技有限公司 一种增材制造用Waspalloy球形粉末的制备方法
WO2019021015A1 (en) * 2017-07-28 2019-01-31 Oxmet Technologies Limited ALLOY BASED ON NICKEL
CN108941588A (zh) * 2018-07-27 2018-12-07 中南大学 一种激光成形用镍基高温合金粉末的制备方法
CN108941560A (zh) * 2018-07-27 2018-12-07 中南大学 一种消除Renè104镍基高温合金激光增材制造裂纹的方法
CN109439962A (zh) * 2018-07-27 2019-03-08 中南大学 一种选区激光熔化成形镍基高温合金的方法
CN110616354A (zh) * 2019-11-12 2019-12-27 湖南人文科技学院 一种用于激光近净成形的镍基高温合金粉末及其制备方法与应用
CN110747377A (zh) * 2019-11-15 2020-02-04 清华大学 一种高铬镍基高温合金及其制备方法与应用
CN111500898A (zh) * 2020-06-19 2020-08-07 北京钢研高纳科技股份有限公司 镍基高温合金及其制造方法、部件和应用
CN111906311A (zh) * 2020-08-30 2020-11-10 中南大学 一种预防选区激光熔融镍基高温合金开裂的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114570945A (zh) * 2022-03-10 2022-06-03 中国人民解放军第五七一九工厂 用于高性能空气涡流器的激光选区熔化制造方法
CN117001014A (zh) * 2023-10-07 2023-11-07 苏州倍丰智能科技有限公司 一种无开裂3d打印用金属材料快速开发方法
CN117001014B (zh) * 2023-10-07 2024-01-05 苏州倍丰智能科技有限公司 一种无开裂3d打印用金属材料快速开发方法

Also Published As

Publication number Publication date
US20220062995A1 (en) 2022-03-03
CN111906311A (zh) 2020-11-10
CN111906311B (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2022042204A1 (zh) 一种预防选区激光熔融镍基高温合金开裂的方法
CN110218897B (zh) 一种航空发动机燃烧室内衬用耐高温Cu-Cr-Nb-Ce合金的制备方法
JP7368641B2 (ja) ニッケル基高温合金、その製造方法、部品および使用
WO2022041252A1 (zh) 一种消除3d打印镍基高温合金裂纹的方法
WO2020019404A1 (zh) 一种消除Renè104镍基高温合金激光增材制造裂纹的方法
CN112008079B (zh) 一种原位热处理提高3d打印镍基高温合金力学性能的方法
CN112589115B (zh) 一种gh4099镍基合金构件的激光选区熔化成形工艺
CN105828983A (zh) 用于基于粉末的增材制造过程的γ’沉淀增强镍基超合金
CN113201667B (zh) 一种镍基高温合金及其设计方法
CN113020598B (zh) 一种选区激光熔化成形镍基高温合金及其制备方法
JP7450639B2 (ja) 低積層欠陥エネルギー超合金、構造部材及びその使用
KR20200036082A (ko) 적층 가공법에 의해 제작된 니오븀 함유 니켈기 초내열합금의 결정립계 특성 향상을 위한 열처리 방법 및 이에 의해 열처리된 니켈기 초내열합금
Zhang et al. Mechanical properties improvement of nickel-based alloy 625 fabricated by powder-fed laser additive manufacturing based on linear beam oscillation
WO2024119780A1 (zh) 一种增材制造用高温合金及其增材制造方法
CN112958784A (zh) 一种颗粒增强钛基复合材料中增强相均匀分布及生长方向主动控制方法
CN116652206A (zh) 一种具有骨架增强结构的钛铝合金零件及其制备方法
CN114934211B (zh) 镍基高温合金、镍基高温合金粉末和镍基高温合金构件
CN114855030B (zh) 适应选区激光熔化成形的Ni-Cr-W基高温合金及制备方法
CN114737083A (zh) 一种用于激光增材制造的gh3536原料粉末及其制备方法及其合金的制备方法
CN114559054A (zh) 一种激光粉末床熔融制备gh99镍基合金成形工艺
CN111001807B (zh) 一种调控激光3D打印镍基高温合金中富Nb相析出行为的方法
LU504880B1 (en) Preparation Method for and the Application of Anti-crack Nickel-based Superalloy Powder
CN115287501A (zh) 激光增材制造用gh3536高温合金粉末及其制备方法
CN111926231B (zh) 制备氧化物弥散强化MoNbTaVW难熔高熵合金方法
CN115505801B (zh) 一种高强度3d打印铝合金材料、打印方法及铝合金零件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860044

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21860044

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21860044

Country of ref document: EP

Kind code of ref document: A1