WO2020019404A1 - 一种消除Renè104镍基高温合金激光增材制造裂纹的方法 - Google Patents

一种消除Renè104镍基高温合金激光增材制造裂纹的方法 Download PDF

Info

Publication number
WO2020019404A1
WO2020019404A1 PCT/CN2018/103322 CN2018103322W WO2020019404A1 WO 2020019404 A1 WO2020019404 A1 WO 2020019404A1 CN 2018103322 W CN2018103322 W CN 2018103322W WO 2020019404 A1 WO2020019404 A1 WO 2020019404A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
nickel
laser
renè104
additive manufacturing
Prior art date
Application number
PCT/CN2018/103322
Other languages
English (en)
French (fr)
Inventor
刘祖铭
彭凯
吕学谦
赵凡
李全
魏冰
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Priority to US17/254,303 priority Critical patent/US11872625B2/en
Publication of WO2020019404A1 publication Critical patent/WO2020019404A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention provides a method for eliminating cracks of René104 nickel-based superalloy laser additive manufacturing, and belongs to the fields of additive manufacturing and superalloys.
  • Nickel-based superalloys have excellent yield resistance, fatigue resistance, creep resistance, and corrosion resistance at temperatures above 600 ° C. They are widely used in aerospace, energy, transportation, and nuclear power industries, especially aviation engines. Critical hot-end components such as engines, rocket engines and gas turbines. Because nickel-based superalloy contains a large amount of refractory alloy elements, powder forming is difficult, deformation processing is difficult, manufacturing processes are complicated, and processes are complicated. Especially the parts with complex shapes severely restrict the application of nickel-based superalloys.
  • Laser additive manufacturing technology is also called laser 3D printing. It uses laser as a heat source and melts metal powder to layer by layer. It can form entities of any geometric shape. It has unique advantages in the field of preparing complex nickel-based superalloys. However, during the laser additive manufacturing process, large thermal gradients and repeated remelting cause large residual stresses in the formed parts, which are prone to cracking. Especially nickel-based superalloys with high Al and Ti content and poor welding performance are easy to be formed during the forming process. Cracks occur in the steel and severely reduce the mechanical properties of the formed part. Therefore, how to prevent the formation of cracks in laser additive manufacturing of nickel-based superalloys has become the key to the application of laser additive manufacturing of nickel-based superalloys.
  • Chinese patent discloses a laser additive manufacturing process for high-temperature alloy parts.
  • a high-power laser beam is used to melt and deposit high-temperature alloy powder layer by layer according to a pre-planned scanning path to manufacture a high-temperature alloy part.
  • a stress control method is adopted, that is, ultrasonic stress relief technology is introduced in the laser additive manufacturing process to prevent problems such as deformation and cracking of the laser additive manufacturing part.
  • Chinese patent (CN107971491) discloses a method for eliminating micro-cracks of nickel-based superalloy parts produced by selective melting and addition of electron beams, and sequentially performing hot isostatic pressing treatment, solution treatment and aging treatment on nickel-based superalloys manufactured by additive processing. , It is possible to obtain a dense additive-free nickel-based superalloy material without microcracks.
  • the parameters of the hot isostatic pressing process are temperature 1220 °C -1230 °C, time 2h-4h, and the temperature is higher than the recrystallization temperature.
  • the present invention attempts to control additive manufacturing parameters for the first time in combination with stress-relief annealing and spark plasma sintering (SPS) processing to obtain products without cracks (including internal and surface cracks) and greatly improved mechanical properties.
  • SPS spark plasma sintering
  • the invention proposes a method for eliminating cracks in René104 nickel-based superalloy laser additive manufacturing.
  • the nickel-based superalloys with poor Ti and Ti content have cracks during the forming process, which improves the mechanical properties of the formed parts.
  • the invention relates to a method for eliminating cracks of René104 nickel-based superalloy laser additive manufacturing.
  • a strip partitioning and checkerboard partitioning scanning strategy is designed. Through the synergy of scanning strategies and process parameters, the generation of residual stress in the forming process is reduced. And superposition, suppress the generation of large-scale cracks, and then use stress relief annealing and discharge plasma sintering post-processing on the formed part, eliminate the internal cracks of the formed part and greatly improve the mechanical properties of the product.
  • the invention provides a method for eliminating cracks in René104 nickel-based superalloy laser additive manufacturing, which includes the following steps:
  • the scanning method includes contour scanning and solid scanning. For each layer scanning, the contour scanning is performed first and then the solid scanning is performed. The solid scanning uses partition scanning. Strategy, and then contour scanning again; the whole step is the powder coating and laser melting process;
  • the particle size of the René104 nickel-based superalloy powder is 15-53 ⁇ m, and D10 is 15-20 ⁇ m, D50 is 25-31 ⁇ m, and D90 is 40-48 ⁇ m;
  • the contour scanning parameters are: the laser spot diameter is 0.08-0.1mm, the laser power is 100W-150W, and the scanning speed is 1000-1400mm / s;
  • the physical scanning parameters are: laser power 200W-250W, laser spot diameter 0.10-0.13mm, scanning speed 450-650mm / s, scanning pitch 0.08-0.14mm, and powder layer thickness 30-35 ⁇ m;
  • the partition scanning strategy is as follows: the solid area of each slice layer is divided into multiple regions, and each region is sequentially subjected to laser scanning melting; the partition scanning strategy includes a strip partition scanning strategy or a checkerboard partition scanning strategy. ;
  • the parameters of the stripe partition scanning strategy are: the stripe width is 6-8mm, and the overlap between the strips is 0.1-0.15mm;
  • the parameters of the chessboard partition scanning strategy are: the size of the chessboard is 4-6mm, the overlap between the chessboards is 0.08-0.12mm, and the laser scanning directions between adjacent chessboards are perpendicular to each other;
  • step (2) Repeat step (2) until the entire part is printed, and then separate the formed part from the substrate to obtain a formed part;
  • the annealing temperature is (0.3-0.4) T and then °C, and the time is 1h-3h.
  • SPS spark plasma sintering
  • the invention relates to a method for eliminating cracks of a René104 nickel-based superalloy by laser additive manufacturing.
  • the René104 nickel-based superalloy contains Al and Ti, and (Al + Ti) accounts for 5wt% of the total mass of the René104 nickel-based superalloy. And above.
  • the invention relates to a method for eliminating cracks in René104 nickel-based superalloy laser additive manufacturing.
  • the substrate used for printing is a stainless steel substrate or similar nickel-based superalloy. Before printing, the substrate pre-heating temperature is 100-200 ° C.
  • the invention discloses a method for eliminating cracks in René104 nickel-based superalloy laser additive manufacturing.
  • an inert protective gas such as argon or nitrogen must be introduced into the working chamber of the equipment, so that the oxygen content in the working chamber is less than 0.1%. .
  • the invention relates to a method for eliminating cracks in René104 nickel-based superalloy laser additive manufacturing, which is performed under stress relief annealing in a protective atmosphere.
  • the temperature is raised at 5-15 ° C / min, preferably 8-12 ° C / min.
  • the temperature rises to the annealing temperature, keeps for 1 ⁇ 3h, and cools with the furnace.
  • the invention relates to a method for eliminating cracks in René104 nickel-based superalloy laser additive manufacturing.
  • the protective atmosphere is selected from at least one of argon and nitrogen.
  • the invention relates to a method for eliminating cracks of René104 nickel-based superalloy laser additive manufacturing.
  • the heating rate is controlled to be 50-100 ° C / min
  • the cooling rate is controlled to be 50-100 ° C / min.
  • the invention relates to a method for eliminating cracks of René104 nickel-based superalloy laser additive manufacturing, and the control pressure is 30-50 MPa during discharge plasma sintering.
  • the sintering temperature is controlled to be 1020 ° C or lower.
  • the invention relates to a method for eliminating cracks in a René104 nickel-based superalloy laser additive manufacturing method.
  • the René104 nickel-based superalloy laser is used to selectively melt formed samples, and then sequentially undergoes stress relief annealing and discharge plasma sintering treatment.
  • the tensile strength is the same as that of the samples before processing. 1.6-2.0 times.
  • the invention relates to a method for eliminating cracks of René104 nickel-based superalloy laser additive manufacturing, which adopts a long-term high-pressure discharge plasma sintering process at a low temperature, which effectively eliminates internal cracks in a formed part while maintaining the original grain size inside the formed part. It solves the problem that the formed parts adopt post-treatment to eliminate cracks and easy to grow. At the same time, through the synergistic effect of annealing parameters and SPS parameters, shaped parts with uniform structure, no cracks and excellent mechanical properties can be obtained.
  • the invention relates to a method for eliminating cracks in René104 nickel-based superalloy laser additive manufacturing.
  • a graphite abrasive is used, and the diameter is adjusted according to actual needs.
  • the invention can also be used for the treatment of special-shaped parts. It only needs to be filled with conductive powder that does not react with the substrate before the SPS is sintered.
  • the present invention proposes a method for eliminating cracks in René104 nickel-based superalloy laser additive manufacturing.
  • a strip partition and a checkerboard partition are designed for nickel-based superalloys with high Al and Ti content and poor welding performance.
  • the scanning strategy through the synergy of the scanning strategy and the process parameters, effectively controls the generation and superposition of residual stress and suppresses the occurrence of large-scale cracks in the forming process of the alloy; and then uses stress relief annealing to completely eliminate the residual stress in the formed part; Spark plasma sintering, under the synergistic effect of pressure and discharge plasma, enables cracks to achieve metallurgical bonding, thereby eliminating internal cracks in the formed part, and suppressing grain growth during sintering;
  • the present invention proposes a method for eliminating cracks in René104 nickel-based superalloy laser additive manufacturing, designing a stripe and checkerboard partition scanning strategy, regulating the length of the laser scanning line, and effectively controlling the generation of residual stress;
  • the present invention proposes a method for eliminating cracks in René104 nickel-based superalloy laser additive manufacturing.
  • a laser additive manufacturing parameter for nickel-based superalloy is designed.
  • the parameters of laser power, laser scanning speed, and scanning interval are used. Synergistic effect improves the surface flatness of the formed part and the uniformity of the internal microstructure;
  • the present invention proposes a method for eliminating cracks in René104 nickel-based superalloy laser additive manufacturing. Through the synergistic effect of process parameters and scanning strategies, it not only ensures the forming quality of the formed part, but also controls the residual stress during the forming process. Generation and superposition, effectively suppressing the occurrence of large-scale cracks in forming;
  • the present invention proposes a method for eliminating cracks in René104 nickel-based superalloy laser additive manufacturing, which eliminates internal residual stress through stress-relief annealing and prevents deformation and cracking of the formed part caused by residual stress;
  • the present invention proposes a method for eliminating cracks in René104 nickel-based superalloy laser additive manufacturing. Through the synergy of high temperature and high pressure of discharge plasma sintering, it promotes local deformation and local high temperature in defects such as cracks during sintering. The cracks are metallurgically bonded, thereby eliminating cracks, and effectively preventing the growth of grains.
  • the present invention proposes a method for eliminating cracks in laser additive manufacturing of René104 nickel-based superalloys, which effectively eliminates cracks in laser additive manufacturing of nickel-based superalloys with poor welding performance containing high Al and Ti content.
  • the prepared René104 alloy has no cracks in the formed part, and its tensile strength at room temperature can reach more than 1300MPa.
  • the present invention proposes a method for eliminating cracks in René104 nickel-based superalloy laser additive manufacturing.
  • the laser forming parameters and The partition scanning strategy suppresses the occurrence of large-scale cracks in the formed part; the use of stress relief annealing and discharge plasma sintering eliminates small-sized cracks in the formed part.
  • René104 nickel base with high Al and Ti content is prepared at high temperature, no cracks are found in the formed part, and its room temperature tensile strength can reach more than 1300 MPa.
  • FIG. 1 is a schematic diagram of a stripe partition scanning strategy in the first embodiment.
  • FIG. 2 is a photograph of the crack morphology inside the René104 alloy by laser selective melting and forming in the first embodiment.
  • FIG. 3 shows the internal microstructure of the René104 alloy after the laser selective melting and forming in the first embodiment, and no cracks were observed.
  • FIG. 4 is a schematic diagram of a chessboard scanning strategy in the second embodiment.
  • FIG. 5 is a schematic diagram of a chessboard scanning strategy in the second embodiment.
  • FIG. 5 is a crack morphology inside the laser selective melting and forming René104 alloy in the second embodiment.
  • FIG. 6 shows the internal microstructure of the René104 alloy after laser selective melting and forming in the second embodiment, and no cracks were observed.
  • FIG. 7 is a crack morphology of the melt-formed René104 alloy in the laser selection of Comparative Example 1.
  • FIG. 8 shows the internal crack morphology of the comparative example 1 after laser selective melting and forming of René104 alloy after treatment.
  • the 3D design software was used to construct a 3D cylinder model with a diameter of 40mm and a height of 15mm.
  • the 3D cylinder model was converted into an STL file and imported into the laser selection melting construction software.
  • the software sliced it and imported it into the SLM printing system.
  • René104 nickel-based superalloy powder is added to the powder supply cylinder and powdered, and argon is introduced into the working chamber to an oxygen content of less than 100 ppm.
  • René104 nickel-based superalloy powder is 15-53 ⁇ m
  • D10 is 17.5 ⁇ m
  • D50 is 29.3 ⁇ m
  • D90 is 46.9 ⁇ m.
  • SLM process parameters are: laser power is 250W, spot diameter is 0.12mm, scanning speed is 500mm / s, scanning interval is 0.12mm, and powder coating thickness is 0.03mm.
  • the scanning strategy used by SLM is the stripe scanning strategy. As shown in Figure 1, the stripe scanning strategy diagram is adopted. It uses the method of scanning layer by layer from bottom to top. The laser scanning direction between adjacent layers is rotated by 67 °, and the strip size is 7mm. The overlap between the strips is 0.11mm.
  • the stress-relief annealing parameters are: temperature 420 ° C, holding for 90 min, and then cooling with the furnace.
  • the parameters of discharge plasma sintering are: graphite grinding tools with a diameter of 40mm, a heating rate of 60 ° C / min, a cooling rate of 60 ° C / min, a sintering pressure of 45MPa, a sintering temperature of 1020 ° C, and a holding time of 15min.
  • the stress-relief annealing and discharge plasma sintering processes are collectively referred to as post-processing.
  • the densities before and after printing the printed parts were 99.18% and 99.55%, respectively, and the room temperature mechanical properties were 987MPa and 1376MPa, respectively.
  • the 3D design software was used to construct a 3D cylinder model with a diameter of 40mm and a height of 15mm.
  • the 3D cylinder model was converted into an STL file and imported into the laser selection melting construction software.
  • the software sliced it and imported it into the SLM printing system.
  • René104 nickel-based superalloy powder is added to the powder supply cylinder and powdered, and argon is introduced into the working chamber to an oxygen content of less than 0.1%.
  • René104 nickel-based superalloy powder is 15-53 ⁇ m
  • D10 is 17.5 ⁇ m
  • D50 is 29.3 ⁇ m
  • D90 is 46.9 ⁇ m.
  • SLM process parameters are: laser power is 225W, spot diameter is 0.12mm, scanning speed is 600mm / s, scanning interval is 0.11mm, and powder coating thickness is 0.03mm.
  • the scanning strategy used by SLM is a checkerboard scanning strategy.
  • Figure 4 is a schematic diagram of a checkerboard scanning strategy. It uses a layer-by-layer scanning method. The laser scanning direction between adjacent layers is rotated by 67 °. The size of the checkerboard grid is 5mm. The interval is 0.09mm, and the laser scanning directions between adjacent checkerboard grids are perpendicular to each other.
  • the stress-relief annealing parameters are: temperature 420 ° C, holding for 90 min, and then cooling with the furnace.
  • the parameters of the discharge plasma sintering are: a graphite abrasive tool with a diameter of 40mm, a heating rate of 60 ° C / min, a cooling rate of 60 ° C / min, a sintering pressure of 45MPa, a sintering temperature of 1020 ° C, and a holding time of 15min.
  • the densities before and after printing the printed parts were 99.14% and 99.51%, respectively, and the room temperature mechanical properties were 934 MPa and 1366 MPa, respectively.
  • the 3D design software was used to construct a 3D cylinder model with a diameter of 40mm and a height of 15mm.
  • the 3D cylinder model was converted into an STL file and imported into the laser selection melting construction software.
  • the software sliced it and imported it into the SLM printing system.
  • René104 nickel-based superalloy powder is added to the powder supply cylinder and powdered, and argon is introduced into the working chamber to an oxygen content of less than 0.1%.
  • René104 nickel-based superalloy powder is 15-53 ⁇ m
  • D10 is 17.5 ⁇ m
  • D50 is 29.3 ⁇ m
  • D90 is 46.9 ⁇ m.
  • SLM process parameters are: laser power is 225W, spot diameter is 0.12mm, scanning speed is 600mm / s, scanning interval is 0.11mm, and powder coating thickness is 0.03mm. (No partitioning strategy)
  • the stress-relief annealing parameters are: temperature 420 ° C, holding for 90 min, and then cooling with the furnace.
  • the parameters of discharge plasma sintering are: a graphite abrasive with a diameter of 40mm, a heating rate of 60 ° C / min, a cooling rate of 60 ° C / min, a sintering pressure of 45MPa, a sintering temperature of 1020 ° C, and a holding time of 15min.
  • the densities before and after printing the printed parts were 98.12% and 99.02%, respectively, and the room temperature mechanical properties were 751 MPa and 916 MPa, respectively.
  • the 3D design software was used to construct a 3D cylinder model with a diameter of 40mm and a height of 15mm.
  • the 3D cylinder model was converted into an STL file and imported into the laser selection melting construction software.
  • the software sliced it and imported it into the SLM printing system.
  • René104 nickel-based superalloy powder is added to the powder supply cylinder and powdered, and argon is introduced into the working chamber to an oxygen content of less than 0.1%.
  • René104 nickel-based superalloy powder is 15-53 ⁇ m
  • D10 is 17.5 ⁇ m
  • D50 is 29.3 ⁇ m
  • D90 is 46.9 ⁇ m.
  • SLM process parameters are: laser power is 420W, spot diameter is 0.12mm, scanning speed is 800mm / s, scanning interval is 0.12mm, and powder coating thickness is 0.03mm.
  • the scanning strategy used by SLM is a strip scanning strategy. As shown in Figure 1, it is a schematic diagram of the strip scanning strategy. It uses a layer-by-layer scanning method. The laser scanning direction between adjacent layers is rotated by 67 °, and the strip size is 7mm. The overlap between the strips is 0.11mm, the purpose is to reduce the superposition of residual stress during printing. (Not using contour + solid scanning method, and the laser power is too high)
  • the stress-relief annealing parameters are: temperature 420 ° C, holding for 90 min, and then cooling with the furnace.
  • the parameters of discharge plasma sintering are: a graphite abrasive with a diameter of 40mm, a heating rate of 60 ° C / min, a cooling rate of 60 ° C / min, a sintering pressure of 45MPa, a sintering temperature of 1020 ° C, and a holding time of 15min.
  • the densities before and after printing the printed parts are 97.89 %% and 98.38%, respectively, and the mechanical properties at room temperature are 645MPa and 901Mpa, respectively.
  • the 3D design software was used to construct a 3D cylinder model with a diameter of 40mm and a height of 15mm.
  • the 3D cylinder model was converted into an STL file and imported into the laser selection melting construction software.
  • the software sliced it and imported it into the SLM printing system.
  • René104 nickel-based superalloy powder is added to the powder supply cylinder and powdered, and argon is introduced into the working chamber to an oxygen content of less than 0.1%.
  • René104 nickel-based superalloy powder is 0-53 ⁇ m
  • D10 is 10.3 ⁇ m
  • D50 is 23.7 ⁇ m
  • D90 is 35.5 ⁇ m.
  • SLM process parameters are: laser power is 250W, spot diameter is 0.12mm, scanning speed is 500mm / s, scanning interval is 0.12mm, and powder coating thickness is 0.03mm.
  • the scanning strategy used by SLM is a strip scanning strategy, which uses a layer-by-layer scanning method.
  • the laser scanning direction between adjacent layers is rotated by 67 °, the strip size is 7mm, and the overlap between the strips is 0.11mm. It reduces the superposition of residual stress during printing. (Not using contour + solid scanning)
  • the stress-relief annealing parameters are: temperature 420 ° C, holding for 90 min, and then cooling with the furnace.
  • the parameters of the discharge plasma sintering are: a graphite abrasive tool with a diameter of 40mm, a heating rate of 60 ° C / min, a cooling rate of 60 ° C / min, a sintering pressure of 45MPa, a sintering temperature of 1020 ° C, and a holding time of 15min.
  • the densities of the printed molded parts before and after the post-treatment are 98.03% and 98.45%, respectively, and the mechanical properties at room temperature are 725MPa and 921Mpa, respectively.
  • the 3D design software was used to construct a 3D cylinder model with a diameter of 40mm and a height of 15mm.
  • the 3D cylinder model was converted into an STL file and imported into the laser selection melting construction software.
  • the software sliced it and imported it into the SLM printing system.
  • René104 nickel-based superalloy powder is added to the powder supply cylinder and powdered, and argon is introduced into the working chamber to an oxygen content of less than 0.1%.
  • René104 nickel-based superalloy powder is 15-53 ⁇ m
  • D10 is 17.5 ⁇ m
  • D50 is 29.3 ⁇ m
  • D90 is 46.9 ⁇ m.
  • SLM process parameters are: laser power is 250W, spot diameter is 0.12mm, scanning speed is 500mm / s, scanning interval is 0.12mm, and powder coating thickness is 0.03mm.
  • the scanning strategy used by SLM is a strip scanning strategy, which uses a layer-by-layer scanning method from bottom to top.
  • the laser scanning direction between adjacent layers is rotated by 67 °, the strip size is 5mm, and the overlap between the strips is 0.10mm. (Not using contour + solid scanning)
  • the stress-relief annealing parameters are: temperature 420 ° C, holding for 90 min, and then cooling with the furnace.
  • the parameters of the discharge plasma sintering are: a graphite abrasive tool with a diameter of 40mm, a heating rate of 60 ° C / min, a cooling rate of 60 ° C / min, a sintering pressure of 45MPa, a sintering temperature of 1020 ° C, and a holding time of 15min.
  • the densities of the printed parts before and after the post-treatment are 98.34% and 99.02%, respectively, and the room temperature mechanical properties are 987MPa and 1065MPa, respectively.
  • the 3D design software was used to construct a 3D cylinder model with a diameter of 40mm and a height of 15mm.
  • the 3D cylinder model was converted into an STL file and imported into the laser selection melting construction software.
  • the software sliced it and imported it into the SLM printing system.
  • René104 nickel-based superalloy powder is added to the powder supply cylinder and powdered, and argon is introduced into the working chamber to an oxygen content of less than 0.1%.
  • René104 nickel-based superalloy powder is 15-53 ⁇ m
  • D10 is 17.5 ⁇ m
  • D50 is 29.3 ⁇ m
  • D90 is 46.9 ⁇ m.
  • SLM process parameters are: laser power is 225W, spot diameter is 0.12mm, scanning speed is 600mm / s, scanning interval is 0.11mm, and powder coating thickness is 0.03mm.
  • the scanning strategy used by SLM is a chessboard scanning strategy, which uses a layer-by-layer scanning method.
  • the laser scanning direction between adjacent layers is rotated by 67 °.
  • the size of the checkerboard grid is 10mm.
  • the space between checkerboard grids is 0.13mm.
  • the laser scanning directions are perpendicular to each other. (Not using contour + solid scanning)
  • the stress-relief annealing parameters are: temperature 420 ° C, holding for 90 min, and then cooling with the furnace.
  • the parameters of the discharge plasma sintering are: a graphite abrasive tool with a diameter of 40mm, a heating rate of 60 ° C / min, a cooling rate of 60 ° C / min, a sintering pressure of 45MPa, a sintering temperature of 1020 ° C, and a holding time of 15min.
  • the densities of the printed molded parts before and after the post-processing are 98.01% and 98.55%, respectively, and the room temperature mechanical properties are 723 MPa and 912 MPa, respectively.
  • the 3D design software was used to construct a 3D cylinder model with a diameter of 40mm and a height of 15mm.
  • the 3D cylinder model was converted into an STL file and imported into the laser selection melting construction software.
  • the software sliced it and imported it into the SLM printing system.
  • René104 nickel-based superalloy powder is added to the powder supply cylinder and powdered, and argon is introduced into the working chamber to an oxygen content of less than 0.1%.
  • René104 nickel-based superalloy powder is 15-53 ⁇ m
  • D10 is 17.5 ⁇ m
  • D50 is 29.3 ⁇ m
  • D90 is 46.9 ⁇ m.
  • SLM process parameters are: laser power is 250W, spot diameter is 0.12mm, scanning speed is 500mm / s, scanning interval is 0.12mm, and powder coating thickness is 0.03mm.
  • the scanning strategy used by SLM is a strip scanning strategy, which uses a layer-by-layer scanning method from bottom to top.
  • the laser scanning direction between adjacent layers is rotated by 67 °, the strip size is 7mm, and the overlap between the strips is 0.11mm. (Not using contour + solid scanning)
  • the plasma plasma sintering is directly performed without annealing.
  • the specific parameters are: a graphite abrasive with a diameter of 40mm, a heating rate of 60 ° C / min, a cooling rate of 60 ° C / min, a sintering pressure of 45MPa, and a sintering temperature of 1020. °C, holding time 15min.
  • the densities of the printed molded parts before and after post-processing are 99.18% and 99.54%, respectively, and the mechanical properties at room temperature are 987MPa and 1156MPa, respectively.
  • the 3D design software was used to construct a 3D cylinder model with a diameter of 40mm and a height of 15mm.
  • the 3D cylinder model was converted into an STL file and imported into the laser selection melting construction software.
  • the software sliced it and imported it into the SLM printing system.
  • René104 nickel-based superalloy powder is added to the powder supply cylinder and powdered, and argon is introduced into the working chamber to an oxygen content of less than 0.1%.
  • René104 nickel-based superalloy powder is 15-53 ⁇ m
  • D10 is 17.5 ⁇ m
  • D50 is 29.3 ⁇ m
  • D90 is 46.9 ⁇ m.
  • SLM process parameters are: laser power is 250W, spot diameter is 0.12mm, scanning speed is 500mm / s, scanning interval is 0.12mm, and powder coating thickness is 0.03mm.
  • the scanning strategy used by SLM is a strip scanning strategy, which uses a layer-by-layer scanning method.
  • the laser scanning direction between adjacent layers is rotated by 67 °, the strip size is 7mm, and the overlap between the strips is 0.11mm. It reduces the superposition of residual stress during printing. (Not using contour + solid scanning)
  • the stress-relief annealing parameters are: the temperature is 1000 ° C, the temperature is maintained for 90 minutes, and then the furnace is cooled.
  • the parameters of the discharge plasma sintering are: a graphite abrasive tool with a diameter of 40mm, a heating rate of 60 ° C / min, a cooling rate of 60 ° C / min, a sintering pressure of 45MPa, a sintering temperature of 1020 ° C, and a holding time of 15min.
  • the densities of the printed molded parts before and after the post-treatment were 99.18% and 99.55%, respectively, and the room temperature mechanical properties were 987 MPa and 1033 MPa, respectively.
  • the 3D design software was used to construct a 3D cylinder model with a diameter of 40mm and a height of 15mm.
  • the 3D cylinder model was converted into an STL file and imported into the laser selection melting construction software.
  • the software sliced it and imported it into the SLM printing system.
  • René104 nickel-based superalloy powder is added to the powder supply cylinder and powdered, and argon is introduced into the working chamber to an oxygen content of less than 0.1%.
  • René104 nickel-based superalloy powder is 15-53 ⁇ m
  • D10 is 17.5 ⁇ m
  • D50 is 29.3 ⁇ m
  • D90 is 46.9 ⁇ m.
  • SLM process parameters are: laser power is 250W, spot diameter is 0.12mm, scanning speed is 500mm / s, scanning interval is 0.12mm, and powder coating thickness is 0.03mm.
  • the scanning strategy used by SLM is a strip scanning strategy, which uses a layer-by-layer scanning method.
  • the laser scanning direction between adjacent layers is rotated by 67 °, the strip size is 7mm, and the overlap between the strips is 0.11mm. It reduces the superposition of residual stress during printing.
  • the stress-relief annealing parameters are: temperature 420 ° C, holding for 90 min, and then cooling with the furnace.
  • the parameters of the discharge plasma sintering are: a graphite abrasive with a diameter of 40mm, a heating rate of 60 ° C / min, a cooling rate of 60 ° C / min, a sintering pressure of 45MPa, a sintering temperature of 1120 ° C, and a holding time of 15min.
  • the density of the printed forming parts before and after the post-treatment are 99.18% and 99.60%, respectively, and the mechanical properties at room temperature are 987MPa and 1076Mpa, respectively.
  • the inventors also tried sintering at 1120 ° C for a short period of time during discharge plasma sintering, but the performance of the resulting product was also not ideal.
  • the present invention can obtain a product with superior performance through the synergistic effect of various condition parameters and processes.
  • the performance of the product is much lower than the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种消除Renè104镍基高温合金激光增材制造裂纹的方法,针对高Al、Ti含量(Al+Ti>5%)的Renè104镍基高温合金激光增材制造易产生裂纹的问题,通过设计激光成形参数和分区扫描策略,抑制了成形件内部大尺寸裂纹的产生;再采用去应力退火完全消除成形件内部的残余应力;采用放电等离子烧结处理,消除了成形件内部的裂纹,并抑制了烧结过程中晶粒的长大。

Description

一种消除Renè104镍基高温合金激光增材制造裂纹的方法 技术领域
本发明提供一种消除Renè104镍基高温合金激光增材制造裂纹的方法,属于增材制造及高温合金领域。
背景技术
镍基高温合金在600℃以上高温具有优异的抗屈服能力,抗疲劳能力、抗蠕变能力以及抗腐蚀能力,广泛应用于航空航天、能源动力、交通运输和核电工业等领域,特别是航空发动机、火箭发动机和燃气轮机等的关键热端部件。由于镍基高温合金含有大量难熔合金元素,粉末成形困难,变形加工难度大,制造工序繁琐,工艺复杂等问题,特别是形状复杂的零件,严重制约了镍基高温合金的应用。
激光增材制造技术也叫激光3D打印,采用激光作为热源通过熔化金属粉末来逐层叠加,可以成形任意几何形状的实体,在复杂形状镍基高温合金的制备领域具有独特的优势。但是,在激光增材制造过程中热梯度大、反复重熔,导致成形件残余应力大,易产生开裂,特别是具有高Al、Ti含量、焊接性能差的镍基高温合金,容易在成形过程中产生裂纹,严重降低成形件的力学性能。因此,如何防止镍基高温合金激光增材制造裂纹的形成,成为实现激光增材制造镍基高温合金应用的关键。
针对上述问题,国内外进行了探索性的研究。中国专利(CN104785778A)公开了一种高温合金零件的激光增材制造工艺,采用高功率激光束按照预先规划的扫描路径逐层熔化堆积高温合金粉末,制造出高温合金零件。激光增材制造工艺过程中,采用应力控制方法,即在激光增材制造过程中引入超声波应力消除技术,防止出现激光增材制造零件的变形开裂等问题。中国专利(CN107971491)公开了一种消除电子束选区熔化增材制造镍基高温合金零部件微裂纹的方法,对增材制造镍基高温合金依次进行热等静压处理、固溶处理和时效处理,可以获得致密无微裂纹的增材制造镍基高温合金材料。采用的热等静压工艺参数为温度1220℃-1230℃,时间2h-4h,温度高于再结晶温度。
本发明首次尝试了通过控制增材制造参数,并结合去应力退火、放电等离子烧结(SPS)处理,得到了无裂纹(包括内部和表面的裂纹)而且力学性能大幅度提高的产品。
技术问题
本发明提出一种消除Renè104镍基高温合金激光增材制造裂纹的方法,通过控制增材制造参数,结合去应力退火、SPS处理,可以有效消除Renè104镍基高温合金中的裂纹,特别是高Al、Ti 含量的焊接性能差的镍基高温合金在成形过程中裂纹的产生,提高成形件的力学性能。
本发明一种消除Renè104镍基高温合金激光增材制造裂纹的方法,设计了一种条带分区和棋盘分区扫描策略,通过扫描策略和工艺参数的协同作用,减少了成形过程中残余应力的产生和叠加,抑制了大尺寸裂纹的产生,然后对成形件采用去应力退火和放电等离子烧结后处理,消除了成形件内部的裂纹并大幅度提高产品的力学性能。
技术解决方案
本发明一种消除Renè104镍基高温合金激光增材制造裂纹的方法,包括如下步骤:
(1)激光增材制造前准备
根据所需零件的形状,在三维设计软件里设计零件的三维模型,然后将三维模型导入激光增材制造设备,软件自行切片处理后,将每一切片层的数据导入激光增材制造的系统中;
(2)通过激光选区熔化进行增材制造
铺设Renè104镍基高温合金粉末,然后激光根据切片层的信息开始选择熔化粉床,扫描方式包括轮廓扫描和实体扫描,每一层扫描时,先进行轮廓扫描再进行实体扫描,实体扫描采用分区扫描策略,之后再一次轮廓扫描;整个步骤为铺粉和激光熔化过程;
所述Renè104镍基高温合金粉末的粒径为15-53μm,且D10为15-20μm、D50为25-31μm、D90为40-48μm;
所述轮廓扫描参数为:激光光斑直径为0.08-0.1mm,激光功率为100W-150W,扫描速度为1000-1400mm/s;
所述的实体扫描参数为:激光功率200W-250W,激光光斑直径0.10-0.13mm,扫描速度450-650mm/s,扫描间距0.08-0.14mm,铺粉层厚为30-35μm;
所述的分区扫描策略是:将每一切片层的实体区域划分为多个区域,分别对每个区域依次进行激光扫描熔化;所述的分区扫描策略包含条带分区扫描策略或棋盘分区扫描策略;
所述条带分区扫描策略的参数为:条带宽度为6-8mm,条带间的搭接为0.1-0.15mm;
所述棋盘分区扫描策略的参数为:棋盘大小为4-6mm,棋盘间的搭接为0.08-0.12mm,相邻棋盘间的激光扫描方向相互垂直;
(3)重复步骤(2)直到整个零件打印完成,之后将成形的零件从基板上分离,得到成形件;
(4)成形件去应力退火,退火温度为(0.3-0.4)T ℃,时间为1h-3h;
(5)对去应力退火后的成形件进行放电等离子烧结(SPS)处理,SPS参数:温度为(0.8-0.9)T ℃,时间为10-20min。
所述的T 为合金的再结晶温度,单位为℃。所述的Renè104镍基高温合金T 为1180℃。
本发明一种消除Renè104镍基高温合金激光增材制造裂纹的方法,所述Renè104镍基高温合金中含有Al和Ti,且(Al+Ti)占所述Renè104镍基高温合金总质量的5wt%及以上。
本发明一种消除Renè104镍基高温合金激光增材制造裂纹的方法,打印所用的基板为不锈钢基板或同类镍基高温合金,打印前,基板预加热温度为100-200℃。
本发明一种消除Renè104镍基高温合金激光增材制造裂纹的方法,激光增材制造过程中需在设备工作腔内通入氩气或氮气等惰性保护气体,使工作腔内氧气含量<0.1%。
本发明一种消除Renè104镍基高温合金激光增材制造裂纹的方法,在保护气氛下进行去应力退火,去应力退火时,以5-15℃/min、优选为8-12℃/min的升温速率升温至退火温度,保温1~3h,随炉冷却。
本发明一种消除Renè104镍基高温合金激光增材制造裂纹的方法,去应力退火时,所述保护气氛选自氩气、氮气中的至少一种。
本发明一种消除Renè104镍基高温合金激光增材制造裂纹的方法,放电等离子烧结时,控制升温速率为50-100℃/min,控制降温速率为50-100℃/min。
本发明一种消除Renè104镍基高温合金激光增材制造裂纹的方法,放电等离子烧结时,控制压力为30-50MPa。作为优选,放电等离子烧结时,控制烧结温度小于等于1020℃。
本发明一种消除Renè104镍基高温合金激光增材制造裂纹的方法,Renè104镍基高温合金激光选区熔化成形件样品,依次经去应力退火、放电等离子烧结处理后,抗拉强度为处理前样品的1.6-2.0倍。
本发明一种消除Renè104镍基高温合金激光增材制造裂纹的方法,采用低温下长时间高压力放电等离子烧结工艺,有效的消除了成形件内部裂纹,同时维持了成形件内部原本的晶粒大小,解决了成形件采用后处理消除裂纹易发生晶粒长大的问题。同时,通过退火参数和SPS参数的协同作用,可以得到组织均匀、无裂纹、力学性能优良的成形件。
本发明一种消除Renè104镍基高温合金激光增材制造裂纹的方法;SPS烧结时,采用石墨磨具,直径根据实际需求进行调整。本发明同时还可以用于异型件的处理,只需在SPS烧结前,填充不与基体反应的导电粉末即可。
有益效果
(1)本发明提出一种消除Renè104镍基高温合金激光增材制造裂纹的方法,本发明针对高Al、Ti含量、焊接性能差的镍基高温合金,设计了一种条带分区和棋盘分区扫描策略,通过扫描策略和工艺参数的协同作用,有效控制了残余应力的产生和叠加,抑制了合金在成形过程中大尺寸裂纹的产生;再采用去应力退火完全消除成形件内部残余应力;采用放电等离子烧结,在压力和放电等离子的协同作用下,使裂纹实现冶金结合从而消除了成形件内部裂纹,抑制了烧结过程中晶粒长大;
(2)本发明提出一种消除Renè104镍基高温合金激光增材制造裂纹的方法,设计了条带和棋盘分区扫描策略,调控了激光扫描线的长度,有效控制了残余应力的产生;
(3)本发明提出一种消除Renè104镍基高温合金激光增材制造裂纹的方法,设计了一种镍基高温合金的激光增材制造参数,通过激光功率、激光扫描速度和扫描间距等参数的协同作用,提升了成形件表面平整性和内部显微组织的均匀性;
(4)本发明提出一种消除Renè104镍基高温合金激光增材制造裂纹的方法,通过工艺参数和扫描策略的协同作用,既保证了成形件的成形质量,也控制了成形过程中的残余应力产生和叠加,有效抑制了成形中大尺寸裂纹的产生;
(5)本发明提出一种消除Renè104镍基高温合金激光增材制造裂纹的方法,通过去应力退火消除内部残余应力,防止残余应力导致成形件变形和开裂;
(6)本发明提出一种消除Renè104镍基高温合金激光增材制造裂纹的方法,通过放电等离子烧结高温和高压的协同作用,促进了烧结过程中在裂纹等缺陷处产生局部变形和局部高温,使裂纹产生冶金结合,从而消除了裂纹;同时有效防止了晶粒的长大。
(7)本发明提出一种消除Renè104镍基高温合金激光增材制造裂纹的方法,有效消除了含有高Al、Ti含量的焊接性能差的镍基高温合金的激光增材制造裂纹,采用本方法制备的Renè104合金,成形件内未见裂纹,其室温抗拉强度可达1300MPa以上。
综上所述,本发明提出一种消除Renè104镍基高温合金激光增材制造裂纹的方法,针对高Al、Ti含量的镍基高温合金激光增材制造易开裂的问题,通过设计激光成形参数和分区扫描策略,抑制了成形件内部大尺寸裂纹的产生;采用去应力退火和放电等离子烧结,消除了成形件内的小尺寸裂纹。使用该方法,制备高Al、Ti含量的Renè104镍基高温,成形件内未见裂纹,其室温抗拉强度可达1300MPa以上。
附图说明
图1为在实施例一的条带分区扫描策略示意图。
图2为在实施例一的激光选区熔化成形Renè104合金内部的裂纹形貌照片。
图3为在实施例一的激光选区熔化成形Renè104合金后处理后内部显微组织,未观察到裂纹。
图4为在实施例二的图5为在实施例二的棋盘扫描策略示意图。
图5为在实施例二激光选区熔化成形Renè104合金内部的裂纹形貌。
图6为在实施例二激光选区熔化成形Renè104合金后处理后内部显微组织,未观察到裂纹。
图7为在对比例一激光选区熔化成形Renè104合金内部的裂纹形貌。
图8为在对比例一激光选区熔化成形Renè104合金后处理后内部的裂纹形貌。
[根据细则91更正 28.11.2018]
本发明的最佳实施方式
在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
下面结合附图和具体实施例,对本发明做进一步的阐述。
实施例一:
利用三维设计软件利用三维构图软件构建直径为40mm,高度为15mm的三维圆柱体模型,转换成STL文件后导入激光选区熔化建造软件中,软件自行切片处理后导入SLM打印系统中。基板加热到150℃后,将Renè104镍基高温合金粉末加入供粉缸并进行铺粉,往工作腔内通入氩气至氧含量低于100ppm。之后进入打印程序,不断重复铺粉、激光扫描粉末的步骤,直到打印完成,得到圆柱体。之后将打印得到的圆柱体依次进行去应力退火、放电等离子烧结。
其中Renè104镍基高温合金粉末粒径为15-53μm,D10为17.5μm,D50为29.3μm,D90为46.9μm。
SLM工艺参数为:激光功率为250W,光斑直径为0.12mm,扫描速度为500mm/s,扫描间距为0.12mm,铺粉层厚为0.03mm。
SLM所用扫描策略为条带扫描策略,如图1所示为条带扫描策略示意图,采用由下至上逐层扫描的方式,相邻层之间的激光扫描方向旋转67°,条带大小为7mm,条带间的搭接为0.11mm。
去应力退火参数为:温度420℃,保温90min,然后随炉冷却。
放电等离子烧结参数为:直径为40mm的石墨磨具,升温速率为60℃/min,降温速率为60℃/min,烧结压力45MPa,烧结温度1020℃,保温时间15min。
将去应力退火、放电等离子烧结处理统称为后处理。
打印成形件后处理前、后的致密度分别为99.18%和99.55%,室温力学性能分别为987MPa和1376MPa。
图2结果表明,打印成形件内部裂纹细小,未见大尺寸裂纹存在;图3结果表明,经后处理的成形件内部无裂纹。
 
实施例二:
利用三维设计软件利用三维构图软件构建直径为40mm,高度为15mm的三维圆柱体模型,转换成STL文件后导入激光选区熔化建造软件中,软件自行切片处理后导入SLM打印系统中。基板加热到150℃后,将Renè104镍基高温合金粉末加入供粉缸并进行铺粉,往工作腔内通入氩气至氧含量低于0.1%。之后进入打印程序,不断重复铺粉、激光扫描粉末的步骤,直到打印完成,得到圆柱体。
其中Renè104镍基高温合金粉末粒径为15-53μm,D10为17.5μm,D50为29.3μm,D90为46.9μm。
SLM工艺参数为:激光功率为225W,光斑直径为0.12mm,扫描速度为600mm/s,扫描间距为0.11mm,铺粉层厚为0.03mm。
SLM所用扫描策略为棋盘扫描策略,如图4所示为棋盘扫描策略示意图,采用由下至上逐层扫描的方式,相邻层之间的激光扫描方向旋转67°,棋盘格子大小5mm,棋盘格子间间距为0.09mm,相邻棋盘格子间的激光扫描方向相互垂直。
去应力退火参数为:温度420℃,保温90min,然后随炉冷却。
放电等离子烧结参数为:直径为40mm的石墨磨具,升温速率为60℃/min,降温速率为60℃/min,烧结压力45MPa,烧结温度1020℃,保温时间15min。
打印成形件后处理前、后的致密度分别为99.14%和99.51%,室温力学性能分别为934MPa和1366MPa。
图5结果表明,打印成形件内部裂纹细小,未见大尺寸裂纹存在;图6结果表明,经后处理的成形件内部无裂纹存在。
 
对比例一:
利用三维设计软件利用三维构图软件构建直径为40mm,高度为15mm的三维圆柱体模型,转换成STL文件后导入激光选区熔化建造软件中,软件自行切片处理后导入SLM打印系统中。基板加热到150℃后,将Renè104镍基高温合金粉末加入供粉缸并进行铺粉,往工作腔内通入氩气至氧含量低于0.1%。之后进入打印程序,不断重复铺粉、激光扫描粉末的步骤,直到打印完成,得到圆柱体。
其中Renè104镍基高温合金粉末粒径为15-53μm,D10为17.5μm,D50为29.3μm,D90为46.9μm。
SLM工艺参数为:激光功率为225W,光斑直径为0.12mm,扫描速度为600mm/s,扫描间距为0.11mm,铺粉层厚为0.03mm。(不采用分区策略)
去应力退火参数为:温度420℃,保温90min,然后随炉冷却。
放电等离子烧结参数为:直径为40mm的石墨磨具,升温速率为60℃/min,降温速率为60℃/min,烧结压力为45MPa,烧结温度为1020℃,保温时间15min。
打印成形件后处理前、后的致密度分别为98.12%和99.02%,室温力学性能分别为751MPa和916MPa。
图7结果表明,成形件内部有大尺寸和小尺寸裂纹存在,图8结果表明,经后处理的成形件内部仍有部分裂纹存在。
 
对比例二:
利用三维设计软件利用三维构图软件构建直径为40mm,高度为15mm的三维圆柱体模型,转换成STL文件后导入激光选区熔化建造软件中,软件自行切片处理后导入SLM打印系统中。基板加热到150℃后,将Renè104镍基高温合金粉末加入供粉缸并进行铺粉,往工作腔内通入氩气至氧含量低于0.1%。之后进入打印程序,不断重复铺粉、激光扫描粉末的步骤,直到打印完成,得到圆柱体。
其中Renè104镍基高温合金粉末粒径为15-53μm,D10为17.5μm,D50为29.3μm,D90为46.9μm。
SLM工艺参数为:激光功率为420W,光斑直径为0.12mm,扫描速度为800mm/s,扫描间距为0.12mm,铺粉层厚为0.03mm。
SLM所用扫描策略为条带扫描策略,如图1所示为条带扫描策略示意图,采用由下至上逐层扫描的方式,相邻层之间的激光扫描方向旋转67°,条带大小为7mm,条带间的搭接为0.11mm,目的是减少打印过程中残余应力的叠加。(不采用轮廓+实体扫描方式、且激光功率过高)
去应力退火参数为:温度420℃,保温90min,然后随炉冷却。
放电等离子烧结参数为:直径为40mm的石墨磨具,升温速率为60℃/min,降温速率为60℃/min,烧结压力为45MPa,烧结温度为1020℃,保温时间15min。
打印成形件后处理前、后的致密度分别为97.89%%和98.38%,室温力学性能分别为645MPa和901Mpa。
 
对比例三:
利用三维设计软件利用三维构图软件构建直径为40mm,高度为15mm的三维圆柱体模型,转换成STL文件后导入激光选区熔化建造软件中,软件自行切片处理后导入SLM打印系统中。基板加热到150℃后,将Renè104镍基高温合金粉末加入供粉缸并进行铺粉,往工作腔内通入氩气至氧含量低于0.1%。之后进入打印程序,不断重复铺粉、激光扫描粉末的步骤,直到打印完成,得到圆柱体。
其中Renè104镍基高温合金粉末粒径为0-53μm,D10为10.3μm,D50为23.7μm,D90为35.5μm。
SLM工艺参数为:激光功率为250W,光斑直径为0.12mm,扫描速度为500mm/s,扫描间距为0.12mm,铺粉层厚为0.03mm。
SLM所用扫描策略为条带扫描策略,采用由下至上逐层扫描的方式,相邻层之间的激光扫描方向旋转67°,条带大小为7mm,条带间的搭接为0.11mm,目的是减少打印过程中残余应力的叠加。(不采用轮廓+实体扫描方式)
去应力退火参数为:温度420℃,保温90min,然后随炉冷却。
放电等离子烧结参数为:直径为40mm的石墨磨具,升温速率为60℃/min,降温速率为60℃/min,烧结压力45MPa,烧结温度1020℃,保温时间15min。
打印成形件经后处理前、后的致密度分别为98.03%和98.45%,室温力学性能分别为725MPa和921Mpa。
 
对比例四:
利用三维设计软件利用三维构图软件构建直径为40mm,高度为15mm的三维圆柱体模型,转换成STL文件后导入激光选区熔化建造软件中,软件自行切片处理后导入SLM打印系统中。基板加热到150℃后,将Renè104镍基高温合金粉末加入供粉缸并进行铺粉,往工作腔内通入氩气至氧含量低于0.1%。之后进入打印程序,不断重复铺粉、激光扫描粉末的步骤,直到打印完成,得到圆柱体。
其中Renè104镍基高温合金粉末粒径为15-53μm,D10为17.5μm,D50为29.3μm,D90为46.9μm。
SLM工艺参数为:激光功率为250W,光斑直径为0.12mm,扫描速度为500mm/s,扫描间距为0.12mm,铺粉层厚为0.03mm。
SLM所用扫描策略为条带扫描策略,采用由下至上逐层扫描的方式,相邻层之间的激光扫描方向旋转67°,条带大小为5mm,条带间的搭接为0.10mm。(不采用轮廓+实体扫描方式)
去应力退火参数为:温度420℃,保温90min,然后随炉冷却。
放电等离子烧结参数为:直径为40mm的石墨磨具,升温速率为60℃/min,降温速率为60℃/min,烧结压力45MPa,烧结温度1020℃,保温时间15min。
打印成形件经后处理前、后的致密度分别为98.34%和99.02%,室温力学性能分别为987MPa和1065MPa。
 
对比例五:
利用三维设计软件利用三维构图软件构建直径为40mm,高度为15mm的三维圆柱体模型,转换成STL文件后导入激光选区熔化建造软件中,软件自行切片处理后导入SLM打印系统中。基板加热到150℃后,将Renè104镍基高温合金粉末加入供粉缸并进行铺粉,往工作腔内通入氩气至氧含量低于0.1%。之后进入打印程序,不断重复铺粉、激光扫描粉末的步骤,直到打印完成,得到圆柱体。
其中Renè104镍基高温合金粉末粒径为15-53μm,D10为17.5μm,D50为29.3μm,D90为46.9μm。
SLM工艺参数为:激光功率为225W,光斑直径为0.12mm,扫描速度为600mm/s,扫描间距为0.11mm,铺粉层厚为0.03mm。
SLM所用扫描策略为棋盘扫描策略,采用由下至上逐层扫描的方式,相邻层之间的激光扫描方向旋转67°,棋盘格子大小10mm,棋盘格子间间距为0.13mm,相邻棋盘格子间的激光扫描方向相互垂直。(不采用轮廓+实体扫描方式)
去应力退火参数为:温度420℃,保温90min,然后随炉冷却。
放电等离子烧结参数为:直径为40mm的石墨磨具,升温速率为60℃/min,降温速率为60℃/min,烧结压力45MPa,烧结温度1020℃,保温时间15min。
打印成形件经后处理前、后的致密度分别为98.01%和98.55%,室温力学性能分别为723MPa和912Mpa。
 
对比例六:
利用三维设计软件利用三维构图软件构建直径为40mm,高度为15mm的三维圆柱体模型,转换成STL文件后导入激光选区熔化建造软件中,软件自行切片处理后导入SLM打印系统中。基板加热到150℃后,将Renè104镍基高温合金粉末加入供粉缸并进行铺粉,往工作腔内通入氩气至氧含量低于0.1%。之后进入打印程序,不断重复铺粉、激光扫描粉末的步骤,直到打印完成,得到圆柱体。
其中Renè104镍基高温合金粉末粒径为15-53μm,D10为17.5μm,D50为29.3μm,D90为46.9μm。
SLM工艺参数为:激光功率为250W,光斑直径为0.12mm,扫描速度为500mm/s,扫描间距为0.12mm,铺粉层厚为0.03mm。
SLM所用扫描策略为条带扫描策略,采用由下至上逐层扫描的方式,相邻层之间的激光扫描方向旋转67°,条带大小为7mm,条带间的搭接为0.11mm。(不采用轮廓+实体扫描方式)
SLM打印成形后,不经退火,直接进行放电等离子烧结,具体参数为:直径为40mm的石墨磨具,升温速率为60℃/min,降温速率为60℃/min,烧结压力45MPa,烧结温度1020℃,保温时间15min。
打印成形件经后处理前、后的致密度分别为99.18%和99.54%,室温力学性能分别为987MPa和1156MPa。
 
对比例七:
利用三维设计软件利用三维构图软件构建直径为40mm,高度为15mm的三维圆柱体模型,转换成STL文件后导入激光选区熔化建造软件中,软件自行切片处理后导入SLM打印系统中。基板加热到150℃后,将Renè104镍基高温合金粉末加入供粉缸并进行铺粉,往工作腔内通入氩气至氧含量低于0.1%。之后进入打印程序,不断重复铺粉、激光扫描粉末的步骤,直到打印完成,得到圆柱体。
其中Renè104镍基高温合金粉末粒径为15-53μm,D10为17.5μm,D50为29.3μm,D90为46.9μm。
SLM工艺参数为:激光功率为250W,光斑直径为0.12mm,扫描速度为500mm/s,扫描间距为0.12mm,铺粉层厚为0.03mm。
SLM所用扫描策略为条带扫描策略,采用由下至上逐层扫描的方式,相邻层之间的激光扫描方向旋转67°,条带大小为7mm,条带间的搭接为0.11mm,目的是减少打印过程中残余应力的叠加。(不采用轮廓+实体扫描方式)
去应力退火参数为:温度1000℃,保温90min,然后随炉冷却。
放电等离子烧结参数为:直径为40mm的石墨磨具,升温速率为60℃/min,降温速率为60℃/min,烧结压力45MPa,烧结温度1020℃,保温时间15min。
打印成形件经后处理前、后的致密度分别为99.18%和99.55%,室温力学性能分别为987MPa和1033MPa。
 
对比例八:
利用三维设计软件利用三维构图软件构建直径为40mm,高度为15mm的三维圆柱体模型,转换成STL文件后导入激光选区熔化建造软件中,软件自行切片处理后导入SLM打印系统中。基板加热到150℃后,将Renè104镍基高温合金粉末加入供粉缸并进行铺粉,往工作腔内通入氩气至氧含量低于0.1%。之后进入打印程序,不断重复铺粉、激光扫描粉末的步骤,直到打印完成,得到圆柱体。
其中Renè104镍基高温合金粉末粒径为15-53μm,D10为17.5μm,D50为29.3μm,D90为46.9μm。
SLM工艺参数为:激光功率为250W,光斑直径为0.12mm,扫描速度为500mm/s,扫描间距为0.12mm,铺粉层厚为0.03mm。
SLM所用扫描策略为条带扫描策略,采用由下至上逐层扫描的方式,相邻层之间的激光扫描方向旋转67°,条带大小为7mm,条带间的搭接为0.11mm,目的是减少打印过程中残余应力的叠加。
去应力退火参数为:温度420℃,保温90min,然后随炉冷却。
放电等离子烧结参数为:直径为40mm的石墨磨具,升温速率为60℃/min,降温速率为60℃/min,烧结压力45MPa,烧结温度1120℃,保温时间15min。
打印成形件经后处理前、后致的密度分别为99.18%和99.60%,室温力学性能分别为987MPa和1076Mpa。
发明人还尝试了放电等离子烧结时,采用1120℃,短时间60S的烧结,但所得产品的性能也不理想。
通过实施例和对比例可以看出,本发明通过各条件参数和工艺的协同作用,才能得到性能优越的产品,当实施步骤或者实施条件参数中有一个或几个不在本发明所要求的保护的范围内时,产品的性能远远低于本发明。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (10)

  1. 一种消除Renè104镍基高温合金激光增材制造裂纹的方法,其特征在于:
    包括如下步骤:
    (1)激光增材制造前准备
    根据所需零件的形状,在三维设计软件里设计零件的三维模型,然后将三维模型导入激光增材制造设备,软件自行切片处理后,将每一切片层的数据导入激光增材制造的系统中;
    (2)激光选区熔化增材制造
    铺设Renè104镍基高温合金粉末,然后激光根据切片层的信息开始选择熔化粉床,扫描方式包括轮廓扫描和实体扫描,每一层扫描时,先进行轮廓扫描再进行实体扫描,实体扫描采用分区扫描策略,之后再一次轮廓扫描;整个步骤为铺粉和激光熔化过程;
    所述Renè104镍基高温合金粉末的粒径为15-53μm,且D10为15-20μm、D50为25-31μm、D90为40-48μm;
    所述轮廓扫描参数为:激光光斑直径为0.08-0.1mm,激光功率为100W-150W,扫描速度为1000-1400mm/s;
    所述的实体扫描参数为:激光功率200W-250W,激光光斑直径0.10-0.13mm,扫描速度450-650mm/s,扫描间距0.08-0.14mm,铺粉层厚为30-35μm;
    所述的分区扫描策略是:将每一切片层的实体区域划分为多个区域,分别对每个区域依次进行激光扫描熔化;所述的分区扫描策略包含条带分区扫描策略和/或棋盘分区扫描策略;
    所述条带分区扫描策略的参数为:条带宽度为6-8mm,条带间的搭接为0.1-0.15mm;
    所述棋盘分区扫描策略的参数为:棋盘大小为4-6mm,棋盘间的搭接为0.08-0.12mm,相邻棋盘间的激光扫描方向相互垂直;
    (3)重复步骤(2)直到整个零件打印完成,之后将成形的零件从基板上分离,得到成形件;
    (4)对成形件进行去应力退火,退火温度为(0.3-0.4)T ℃,时间为1h-3h;
    (5)对去应力退火后的成形件进行放电等离子烧结(SPS)处理,SPS参数:温度为(0.8-0.9)T ℃,时间为10-20min;
    所述T 为合金的再结晶温度,单位为℃。
  2. 根据权利要求1所述的一种消除Renè104镍基高温合金激光增材制造裂纹的方法,其特征在于:所述Renè104镍基高温合金中含有Al和Ti,且(Al+Ti)占所述Renè104镍基高温合金总质量的5wt%及以上。
  3. 根据权利要求1所述的一种消除Renè104镍基高温合金激光增材制造裂纹的方法,其特征在于:打印所用的基板为不锈钢基板或同类镍基高温合金,打印前,基板预加热温度为100-200℃。
  4. 根据权利要求1所述的一种消除Renè104镍基高温合金激光增材制造裂纹的方法,其特征在于:激光增材制造过程中需在设备工作腔内通入氩气或氮气等惰性保护气体,使工作腔内氧气含量<0.1%。
  5. 根据权利要求1所述的一种消除Renè104镍基高温合金激光增材制造裂纹的方法,其特征在于:在保护气氛下进行去应力退火,去应力退火时,以5-15℃/min、优选为8-12℃/min的升温速率升温至退火温度,保温1~3h,随炉冷却。
  6. 根据权利要求5所述的一种消除Renè104镍基高温合金激光增材制造裂纹的方法,其特征在于:去应力退火时,所述保护气氛选自氩气、氮气中的至少一种。
  7. 根据权利要求1所述的一种消除Renè104镍基高温合金激光增材制造裂纹的方法,其特征在于:放电等离子烧结时,控制升温速率为50-100℃/min,控制降温速率为50-100℃/min。
  8. 根据权利要求1所述的一种消除Renè104镍基高温合金激光增材制造裂纹的方法,其特征在于:放电等离子烧结时,控制压力为30-50MPa。
  9. 根据权利要求1所述的一种消除Renè104镍基高温合金激光增材制造裂纹的方法,其特征在于:放电等离子烧结时,控制烧结温度小于等于1020℃。
  10. 根据权利要求1所述的一种消除Renè104镍基高温合金激光增材制造裂纹的方法,其特征在于:Renè104镍基高温合金激光选区熔化成形件样品依次经去应力退火、放电等离子烧结处理后,抗拉强度为处理前样品的1.6-2.0倍。
PCT/CN2018/103322 2018-07-27 2018-08-30 一种消除Renè104镍基高温合金激光增材制造裂纹的方法 WO2020019404A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/254,303 US11872625B2 (en) 2018-07-27 2018-08-30 Method for eliminating cracks in rené 104 nickel-based superalloy prepared by laser additive manufacturing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810846786.7A CN108941560B (zh) 2018-07-27 2018-07-27 一种消除Renè104镍基高温合金激光增材制造裂纹的方法
CN201810846786.7 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020019404A1 true WO2020019404A1 (zh) 2020-01-30

Family

ID=64465393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103322 WO2020019404A1 (zh) 2018-07-27 2018-08-30 一种消除Renè104镍基高温合金激光增材制造裂纹的方法

Country Status (3)

Country Link
US (1) US11872625B2 (zh)
CN (1) CN108941560B (zh)
WO (1) WO2020019404A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113770379A (zh) * 2021-08-26 2021-12-10 南方科技大学 基于slm的金属构件3d打印方法
CN114247898A (zh) * 2021-12-29 2022-03-29 中国科学院重庆绿色智能技术研究院 一种原位降低薄壁件残余应力的选区激光熔化成形方法
US20220395908A1 (en) * 2021-06-10 2022-12-15 Sodick Co., Ltd. Method of additive manufacturing
CN116213755A (zh) * 2022-12-27 2023-06-06 哈尔滨工程大学 一种镍基高温合金k447a及其制备方法
US12005498B2 (en) 2020-07-31 2024-06-11 General Electric Company Additive manufacturing systems and methods including build characteristic contribution profiles

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109648080B (zh) * 2018-12-29 2021-12-31 西安铂力特增材技术股份有限公司 一种用于增材制造三维物体的激光扫描路径规划方法
JP7141967B2 (ja) * 2019-03-12 2022-09-26 川崎重工業株式会社 造形体製造方法、中間体および造形体
JP7141966B2 (ja) * 2019-03-12 2022-09-26 川崎重工業株式会社 造形体製造方法および造形体
CN110090954B (zh) * 2019-04-24 2020-11-06 中国石油大学(北京) 一种增材制造NiTi形状记忆合金及其制备方法
CN111974990A (zh) * 2019-05-24 2020-11-24 天津大学 激光选区熔化成形相邻分区搭接位置缺陷的修复方法
CN112453395B (zh) * 2019-09-09 2023-05-12 天津大学 一种基于选区激光熔化的石墨烯—316l不锈钢的制备方法
CN110586937B (zh) * 2019-09-23 2021-10-15 南京中科煜宸激光技术有限公司 民用火箭发动机金属燃烧室的3d打印方法
CN111168999B (zh) * 2019-12-31 2022-07-05 鑫精合激光科技发展(北京)有限公司 切片处理方法、增材制造控制方法及设备、增材制造系统
CN111207985B (zh) * 2020-04-22 2020-08-07 中国航发上海商用航空发动机制造有限责任公司 裂纹缺陷的无损检测方法、检测标准件及其制造方法
CN111957962B (zh) * 2020-08-13 2021-10-29 飞而康快速制造科技有限责任公司 一种用于钛合金成型的激光选区熔化的增材制造方法及增材制造装置
CN112011713B (zh) * 2020-08-30 2021-11-23 中南大学 一种消除3d打印镍基高温合金裂纹的方法
CN111906311B (zh) * 2020-08-30 2021-05-28 中南大学 一种预防选区激光熔融镍基高温合金开裂的方法
CN111992717B (zh) * 2020-08-30 2021-11-09 中南大学 一种选区激光熔融制备金属梯度材料的方法
CN112008087A (zh) * 2020-08-30 2020-12-01 中南大学 一种提高碳纳米材料增强镍基高温合金综合性能的方法
JP2022047023A (ja) * 2020-09-11 2022-03-24 川崎重工業株式会社 造形体製造方法および造形体
JP2022047024A (ja) * 2020-09-11 2022-03-24 川崎重工業株式会社 造形体製造方法、中間体および造形体
CN112475316A (zh) * 2020-11-05 2021-03-12 上海云铸三维科技有限公司 一种复合强化的激光熔化扫描方法
CN112276088A (zh) * 2020-11-19 2021-01-29 成都天齐增材智造有限责任公司 3d打印激光均匀扫描的光路控制方法
CN112719295A (zh) * 2020-12-29 2021-04-30 贵州电网有限责任公司 一种316l不锈钢电力非标金具工器具激光3d打印方法
CN114713841A (zh) * 2021-01-04 2022-07-08 北京星驰恒动科技发展有限公司 一种Ni-Cr-W系高温合金的激光选区熔化成形方法
CN112921206B (zh) * 2021-01-20 2021-12-28 北京钢研高纳科技股份有限公司 增材制造用高γ′含量镍基高温合金粉末、其使用方法、镍基高温合金构件
CN115213426A (zh) * 2021-04-16 2022-10-21 广州汽车集团股份有限公司 激光熔化成型方法及系统
CN113351880A (zh) * 2021-05-31 2021-09-07 中国石油大学(北京) 一种镍钛合金构件的制造方法以及镍钛合金构件
CN113634766B (zh) * 2021-08-10 2023-02-24 上海毅速激光科技有限公司 一种基于3d打印技术的模具镶件的制备方法
CN113414407B (zh) * 2021-08-23 2021-11-30 西安赛隆金属材料有限责任公司 一种镍基合金增材制造方法和镍基合金零件
CN113732280A (zh) * 2021-09-08 2021-12-03 泉州信息工程学院 一种激光选区熔化用石墨烯增强镍基高温合金粉末及其制备方法
CN113751724B (zh) * 2021-11-08 2022-02-15 天津大学 激光选区熔化成形gh4099合金构件的热处理方法
CN114029509A (zh) * 2021-11-11 2022-02-11 贵州航越科技有限公司 一种内置管道零件的3d打印工艺
CN114054775B (zh) * 2021-11-22 2022-12-06 北京钢研高纳科技股份有限公司 时效强化型镍基高温合金3d打印工艺及制得的3d打印件
CN114226750B (zh) * 2021-11-22 2024-02-23 南京联空智能增材研究院有限公司 一种仿贝壳结构的合金激光增材制造方法
CN114535605B (zh) * 2022-02-16 2022-08-26 柳州职业技术学院 一种用于制备有序多孔石墨转子的模板结构及采用3d技术成型的方法
CN114535608B (zh) * 2022-02-25 2024-03-19 南京晨光集团有限责任公司 选区激光熔化条状结构的多件同舱零件排布与扫描策略
CN114523125B (zh) * 2022-03-01 2023-11-07 中国钢研科技集团有限公司 一种slm原位合金化制备合金块体的方法
CN114734058B (zh) * 2022-03-31 2024-02-09 西安航天发动机有限公司 一种多激光拼接扫描路径规划方法及多激光拼接扫描方法
CN114990411B (zh) * 2022-04-14 2023-01-31 中南大学 一种高铜含量的3d打印镍钛铜合金及其制备方法
CN114799216B (zh) * 2022-04-14 2023-06-27 武汉大学 钛合金的热处理方法
CN114686732B (zh) * 2022-04-19 2022-10-18 北航(四川)西部国际创新港科技有限公司 高温合金修复材料及制备方法、高温合金修复零件的增材再制造方法和再服役评价方法
CN114770933A (zh) * 2022-04-21 2022-07-22 深圳市华阳新材料科技有限公司 一种复合式3d打印扫描方法
CN114951697B (zh) * 2022-05-13 2023-07-25 南京铖联激光科技有限公司 一种基于slm技术的3d打印扫描方法
CN114799212A (zh) * 2022-06-17 2022-07-29 暨南大学 一种抑制激光增材制造镍基高温合金热裂纹的方法
CN115026307A (zh) * 2022-06-22 2022-09-09 华南理工大学 一种高耐腐蚀不锈钢增材制造工艺
CN115365502B (zh) * 2022-08-08 2023-12-29 中国地质大学(武汉) 一种用于立体花丝的激光增材制造方法
CN115319113A (zh) * 2022-08-12 2022-11-11 中国航发北京航空材料研究院 一种航空发动机旋流机匣激光选区熔化制造方法
CN115071135A (zh) * 2022-08-18 2022-09-20 杭州爱新凯科技有限公司 一种3d打印路径填充方法
CN115283695B (zh) * 2022-08-31 2023-05-05 中国船舶重工集团公司第十二研究所 基于激光增材制造柴油机凸轮轴的方法
CN115488353A (zh) * 2022-09-26 2022-12-20 南昌航空大学 一种高温合金材料的slm成型方法
CN115555555A (zh) * 2022-10-24 2023-01-03 北京工业大学 一种抑制激光增材制造高温合金热裂纹的方法
CN115740501A (zh) * 2022-12-14 2023-03-07 南京中科神光科技有限公司 一种消除大幅面结构件成形裂纹的激光增材制造方法
CN115786909B (zh) * 2023-01-09 2023-05-02 西安国盛激光科技有限公司 导卫激光熔覆修复方法
CN116144962B (zh) * 2023-04-17 2023-06-27 北京科技大学 一种高强韧哈氏合金及其制备工艺
CN116604036A (zh) * 2023-05-18 2023-08-18 安庆瑞迈特科技有限公司 一种钨及钨合金光栅的3d打印方法
CN117428210B (zh) * 2023-12-20 2024-03-08 中国商用飞机有限责任公司 多激光选区熔融搭接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3030321A1 (fr) * 2014-12-17 2016-06-24 Sagem Defense Securite Fabrication par fusion laser d'une piece telle qu'un boitier d'un dispositif optronique ou avionique et pieces associees
CN106825568A (zh) * 2017-01-24 2017-06-13 中国地质大学(武汉) 一种金属基金刚石复合材料及其零部件的3d打印制造方法
CN107790720A (zh) * 2017-11-21 2018-03-13 湖南顶立科技有限公司 一种高温合金增材制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG81940A1 (en) * 1998-11-12 2001-07-24 Univ Singapore Method of laser casting copper-based composites
EP2737965A1 (en) * 2012-12-01 2014-06-04 Alstom Technology Ltd Method for manufacturing a metallic component by additive laser manufacturing
CN104785778A (zh) * 2014-01-17 2015-07-22 中国科学院沈阳自动化研究所 一种高温合金零件的激光增材制造工艺
CN104550950B (zh) * 2014-11-24 2015-09-16 湖南华曙高科技有限责任公司 用于选区激光熔化的激光扫描方法
CN104985181B (zh) * 2015-08-05 2017-07-28 湖南华曙高科技有限责任公司 用于制造三维物体的激光扫描方法
CN105750543B (zh) * 2016-03-03 2018-05-18 西安铂力特增材技术股份有限公司 一种棋盘式激光扫描路径规划方法
CN105773967B (zh) * 2016-03-03 2018-04-20 西安铂力特增材技术股份有限公司 一种条带式激光扫描路径规划方法
CN105903961B (zh) * 2016-04-20 2018-05-15 华南理工大学 一种提高金属零件增材制造成型质量的扫描成型方法
EP3257956B2 (en) * 2016-06-13 2022-02-16 General Electric Technology GmbH Ni-base superalloy composition and method for slm processing such ni-base superalloy composition
CN107876766A (zh) * 2017-11-23 2018-04-06 攀钢集团攀枝花钢铁研究院有限公司 激光烧结扫描方法
CN107971491B (zh) 2017-11-28 2020-01-07 北京航空航天大学 一种消除电子束选区熔化增材制造镍基高温合金零部件微裂纹的方法
CN108046768B (zh) * 2017-12-23 2020-05-05 东北大学 双掺杂稀土离子的钆镓铝闪烁陶瓷及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3030321A1 (fr) * 2014-12-17 2016-06-24 Sagem Defense Securite Fabrication par fusion laser d'une piece telle qu'un boitier d'un dispositif optronique ou avionique et pieces associees
CN106825568A (zh) * 2017-01-24 2017-06-13 中国地质大学(武汉) 一种金属基金刚石复合材料及其零部件的3d打印制造方法
CN107790720A (zh) * 2017-11-21 2018-03-13 湖南顶立科技有限公司 一种高温合金增材制造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12005498B2 (en) 2020-07-31 2024-06-11 General Electric Company Additive manufacturing systems and methods including build characteristic contribution profiles
US20220395908A1 (en) * 2021-06-10 2022-12-15 Sodick Co., Ltd. Method of additive manufacturing
US11806786B2 (en) * 2021-06-10 2023-11-07 Sodick Co., Ltd. Method of additive manufacturing
CN113770379A (zh) * 2021-08-26 2021-12-10 南方科技大学 基于slm的金属构件3d打印方法
CN114247898A (zh) * 2021-12-29 2022-03-29 中国科学院重庆绿色智能技术研究院 一种原位降低薄壁件残余应力的选区激光熔化成形方法
CN114247898B (zh) * 2021-12-29 2022-08-12 中国科学院重庆绿色智能技术研究院 一种原位降低薄壁件残余应力的选区激光熔化成形方法
CN116213755A (zh) * 2022-12-27 2023-06-06 哈尔滨工程大学 一种镍基高温合金k447a及其制备方法

Also Published As

Publication number Publication date
CN108941560B (zh) 2019-06-11
US20210170487A1 (en) 2021-06-10
US11872625B2 (en) 2024-01-16
CN108941560A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
WO2020019404A1 (zh) 一种消除Renè104镍基高温合金激光增材制造裂纹的方法
CN107971491B (zh) 一种消除电子束选区熔化增材制造镍基高温合金零部件微裂纹的方法
CN107790720B (zh) 一种高温合金增材制造方法
CN107774997B (zh) 一种镍基定向高温合金激光定向增材方法
WO2022042204A1 (zh) 一种预防选区激光熔融镍基高温合金开裂的方法
CN108994304B (zh) 一种消除金属材料增材制造裂纹提高力学性能的方法
EP2589449B2 (en) A process for the production of articles made of a gamma-prime precipitation-strengthened nickel-base superalloy by selective laser melting (SLM)
CN107699831B (zh) 基于复合结构设计的包套轧制铸态TiAl合金板材方法
CN112008079B (zh) 一种原位热处理提高3d打印镍基高温合金力学性能的方法
CN110303156A (zh) 一种航空用钛合金复杂构件的增材制造和热处理组织调控方法
CN113814413B (zh) 激光增材制造无裂纹、强度和韧性可控的高温合金的方法
CN113020598B (zh) 一种选区激光熔化成形镍基高温合金及其制备方法
CN114226750B (zh) 一种仿贝壳结构的合金激光增材制造方法
CN113996812B (zh) 一种提高激光选区熔化α-β型钛合金疲劳性能的热处理方法
CN114850494B (zh) 一种高熵合金泡沫状结构多束电子束增材制造方法
CN107685220A (zh) 一种复杂薄壁高温合金热端部件裂纹的修复方法
CN113042755A (zh) 一种增材制造用gh3536高温合金的热处理方法
CN113059189A (zh) 一种gh4099合金激光选区熔化成形零件的热处理工艺
CN114411035A (zh) 适用于激光增材制造的析出强化型中熵合金及其制备方法
CN114433871A (zh) 一种钴基高温合金挡板的激光选区熔化成形制造工艺
CN110344049B (zh) 一种单晶/定向凝固镍基高温合金的修复方法及其应用
Zhang et al. Mechanical properties improvement of nickel-based alloy 625 fabricated by powder-fed laser additive manufacturing based on linear beam oscillation
CN103834923B (zh) 钨钛靶材的制作方法
CN114934211B (zh) 镍基高温合金、镍基高温合金粉末和镍基高温合金构件
CN114737083A (zh) 一种用于激光增材制造的gh3536原料粉末及其制备方法及其合金的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928106

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18928106

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 18928106

Country of ref document: EP

Kind code of ref document: A1