CN114990411B - 一种高铜含量的3d打印镍钛铜合金及其制备方法 - Google Patents
一种高铜含量的3d打印镍钛铜合金及其制备方法 Download PDFInfo
- Publication number
- CN114990411B CN114990411B CN202210390759.XA CN202210390759A CN114990411B CN 114990411 B CN114990411 B CN 114990411B CN 202210390759 A CN202210390759 A CN 202210390759A CN 114990411 B CN114990411 B CN 114990411B
- Authority
- CN
- China
- Prior art keywords
- titanium
- nickel
- copper
- printing
- copper alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/007—Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/057—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/058—Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0836—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with electric or magnetic field or induction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0844—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid in controlled atmosphere
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0896—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid particle transport, separation: process and apparatus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Powder Metallurgy (AREA)
Abstract
一种高铜含量的3D打印镍钛铜合金及其制备方法,该制备方法包括:步骤S1,将钛镍铜按照比例配料、熔炼,再通过气雾化法制取镍钛铜预合金粉末,接着筛分、烘干,得到镍钛铜合金粉末;步骤S2,绘制镍钛铜合金块状零件,切片,设定打印路径、扫描策略和工艺参数,将工程文件拷入SLM设备;步骤S3,调试SLM设备,将制好的镍钛铜合金粉末送入SLM设备中;步骤S4,SLM设备扫描打印;步骤S5,打印完成后,停止加热基板,待基板降温,降低成型室内压力,扫去余粉,取下带有打印件的基板,将基板和打印件置于炉内保温,空冷至室温,再将打印件从基板上切下,并研磨零件表面,得到镍钛铜合金。使用本发明制造出来的镍钛铜合金致密度高、成形性好、综合力学性能好。
Description
技术领域
本发明涉及合金增材制造技术领域,尤其指一种高铜含量的3D打印镍钛铜合金及其制备方法。
背景技术
镍钛合金由于优异的形状记忆效应、超弹性、良好的力学性能、耐腐蚀性和生物相容性,广泛应用于汽车工业、航空航天、智能制造和生物医学等多个领域。然而由于镍钛合金具有高强度、高延展性和强烈加工硬化的特性,采用铸造、机械加工传统制备方法难以制造复杂零件。因此,急需发展高效的镍钛合金制备方法。
选区激光熔化(Selective Laser Melting,SLM)作为一种精确控制成形的3D打印方法,能够保证零件的光洁度和几何精度,可实现结构—功能一体化镍钛基形状记忆合金的制造。因此,SLM技术被认为是金属智能材料打印和复杂结构镍钛合金成形的关键技术。
相变温度决定了形状记忆合金器件应用的温度窗口,近等原子比镍钛合金的相变点对成分变化非常敏感,相变滞后较宽。第三组元Cu的添加能够显著改变相变温度、降低相变滞后,改善合金疲劳性能。Cu元素能够置换NiTi合金中的Ni元素,抑制NiTi二元合金中马氏体相变中亚稳相R相的出现,促使NiTiCu合金中B2→B19→B19’相转变进行,后者相变滞后小,相变过程更彻底。高Cu含量的添加能使镍钛合金热弹性马氏体相变中二级相变的相变温度差增大,更具应用价值。
目前已有相关研究采用SLM技术制备得到了性能良好的NiTi二元合金,例如中国专利(CN109648082A)等。但对于更易开裂的高铜含量的NiTiCu三元合金而言,采用同样的工艺进行制造,3D打印成形还是个问题,至今也没得到很好的解决。
发明内容
本发明所要解决的技术问题是提供一种可以改善合金疲劳性能的高铜含量的3D打印镍钛铜合金以及该镍钛铜合金的制备方法,使用该制备方法制造出来的镍钛铜合金块体致密度高、成形性好、综合力学性能好。
为了解决上述技术问题,本发明采用如下技术方法:一种高铜含量的3D打印镍钛铜合金,其成分按质量百分比计,包括:
镍45.1~46%;
铜10.0~11.2%;
硅≤0.12%;
氧≤0.10%;
铝≤0.10%;
铁≤0.05%;
铬≤0.05%;
钴≤0.05%;
钼≤0.05%;
锆≤0.05%;
其他不可避免元素:每种≤0.03%,合计≤0.10%;
钛为余量。
进一步地,所述镍钛铜合金的主要成分按质量百分比计为:钛44.1wt.%,镍45.3wt.%,铜10.6wt.%。
进一步地,所述镍钛铜合金的致密度为98.8±0.1%,维氏硬度为322.5±15.2HV5.0,抗压强度为776.46±12.1MPa,压缩应变为7.46±0.40%。
作为本发明的另一面,一种高铜含量的3D打印镍钛铜合金的制备方法,包括如下步骤:
步骤S1,粉末制备及处理:将纯钛、纯镍和纯铜按照如下比例进行铸锭配料、熔炼,得到镍钛铜合金棒材,然后通过气雾化法制得镍钛铜预合金粉末,对镍钛铜预合金粉末进行筛分处理,再真空烘干,得到镍钛铜合金粉末;
所述镍钛铜合金棒材的成分按质量百分比计为:
镍45.1~46%;铜10.0~11.2%;硅≤0.12%;氧≤0.10%,铝≤0.10%;铁≤0.05%;铬≤0.05%;钴≤0.05%;钼≤0.05%;锆≤0.05%;其他不可避免元素:每种≤0.03%,合计≤0.10%;钛为余量;
步骤S2,工艺参数设定:使用Materialise-Magics3软件绘制镍钛铜合金块状零件,并进行切片处理,片层厚度按最小层厚0.01mm分层,然后逐步设定打印路径、扫描策略和工艺参数,将设定好的工程文件拷入SLM设备。
步骤S3,设备调试:将SLM设备的粉仓清理干净,关闭成型室仓门,通入氩气,待成形室内氧含量低于300ppm时,设定基板预热温度为180℃,当基板温度升至150℃,将步骤S1中制得的镍钛铜合金粉末送入SLM设备中,进行手动铺粉,观察铺粉平整且流动性良好,开始进入打印程序;
步骤S4,打印成形:所述SLM设备根据步骤S2中设定的切片数据开始扫描打印,每完成一层的制造,工作台下降一个铺粉层厚,刮刀重新将镍钛铜合金粉末铺平,进行下一层的制造,不断循环往复,直至完成整个零件的打印;
步骤S5,后处理:打印完成后,停止加热基板,待基板温度降温至70℃以下,降低成型室内压力,扫去余粉,取下带有打印件的基板,将基板和打印件置于炉内保温,去应力退火,随后空冷至室温,再利用线切割将打印件从基板上切下,并用自动研磨机处理零件表面,磨去线切割形成的氧化皮,得到表面平整光亮的镍钛铜合金零件。
进一步地,在步骤S1中,得到的镍钛铜合金棒材的主要成分按质量百分比计为:钛44.1wt.%,镍45.3wt.%,铜10.6wt.%。
进一步地,在步骤S1中,气雾化法制取镍钛铜预合金粉末时采用小型真空感应气雾化制粉设备进行,整个过程控制氧含量在600ppm以下。
再进一步地,在步骤S1中,通过气雾化法制得镍钛铜预合金粉末后,对镍钛铜预合金粉末过200目筛网,筛去大颗粒粉末,而后放入100℃的真空干燥箱内烘干2h以上,得到镍钛铜合金粉末。
再进一步地,在步骤S1中,得到的镍钛铜合金粉末的粒径为15-53μm,球形度为95%以上。
更进一步地,所述SLM设备为BLT-A320选区激光熔化金属3D打印机。
更进一步地,在步骤S2中,所述镍钛铜合金块状零件的尺寸为8mm×8mm×6mm。
再进一步地,在步骤S2中,设定扫描策略为条带分区加层间旋转,其中条带宽度为4mm,层间旋转角度为67°,起始扫描夹角为57°。
再进一步地,在步骤S2中,设定工艺参数如下:激光功率为100-240W,扫描速度为800-1600mm/s,扫描间距为60-120μm,光斑直径为60-100μm,铺粉层厚为50μm。
优选地,在步骤S3中,所述基板为厚度大于300mm的镍钛合金板。
优选地,在步骤S4中,所述SLM设备在打印成形时,成型室内通入氩气,并降低氧气的含量至300ppm以下,气压保持为10-20mbar,且根据残渣数量改变出风口风速。
优选地,在步骤S5中,所述基板和打印件在炉内保温的温度为200℃,时间为2h。
与传统的钛镍合金相比,本发明提供的高铜含量的3D打印镍钛铜合金通过在钛镍中添加高铜含量Cu-9at%,显著改变了钛镍合金的相变温度,减小了相变滞后,增强相稳定性,改善合金疲劳性能,且本发明添加的铜元素成本较低,可操作性强。再有,相比于传统的制备钛镍二元合金的选区激光熔化技术,本发明提供的高铜含量的3D打印镍钛铜合金的制备方法,采用选区激光熔化技术逐层累积制造镍钛铜三元合金,沿袭了选区激光熔化技术成形效率高,热影响区小的优点,且通过改变激光扫描的工艺参数,大幅度调整了成形件的微区成分、组织和性能,克服了成形件裂纹敏感的问题,使之制备得到的高铜含量的3D打印镍钛铜合金致密度高、组织均匀、成形性良好、综合性能优异。另外,本发明采用气雾化制备镍钛铜合金粉末,相较于传统的机械混合方法,气雾化粉末成分更加均匀,且不易引入杂质元素,应用于选区激光熔化技术时,能够进一步避免打印件因成分不均导致的夹杂和开裂。综合来说,使用本发明提供的制备方法制造出来的镍钛铜合金块体致密度高、成形性好、综合力学性能好。
附图说明
图1为本发明所涉高铜含量的3D打印镍钛铜合金的制备方法的流程图;
图2为本发明所涉高铜含量的3D打印镍钛铜合金的制备方法中选区激光熔化扫描策略示意图;
图3为本发明实施例1-4分别采用不同工艺打印得到的镍钛铜合金的硬度对比图;
图4为本发明实施例1-4分别采用不同工艺得到的块状样品的轴向压缩实验结果图。
具体实施方式
为了便于本领域技术人员的理解,下面结合实施例与附图对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。
实施例1
一种高铜含量的3D打印镍钛铜合金的制备方法,如图1所示,具体步骤如下:
步骤S1,粉末制备及处理:将纯钛、纯镍和纯铜按质量百分比计为Ti-44.1wt.%,Ni-45.3wt.%,Cu-10.6wt.%进行配料、熔炼、铸锭,得到镍钛铜合金棒材,然后将镍钛铜合金棒材放入小型真空感应气雾化制粉设备中,整个过程控制氧含量在600ppm以下,通过气雾化法制得镍钛铜预合金粉末,接着对镍钛铜预合金粉末过200目筛网,筛去大颗粒粉末,而后放入100℃的真空干燥箱内烘干2h以上,得到粒径为15-53μm,球形度为95%以上的镍钛铜合金粉末。
步骤S2,工艺参数设定:使用Materialise-Magics3软件绘制8mm×8mm×6mm的镍钛铜合金块状零件,并进行切片处理,片层厚度按最小层厚0.01mm分层。然后逐步设定打印路径、扫描策略和工艺参数,具体的,如图2所示,设定扫描策略为条带分区加层间旋转,选用改扫描策略可有效防止打印样品发生翘曲和层间开裂,在改扫描策略中条带宽度为4mm,层间旋转角度为67°,起始扫描夹角为57°;设定工艺参数:激光功率为130W,扫描速度为1000mm/s,扫描间距为100μm,光斑直径为100μm,铺粉层厚为50μm,激光能量密度为26.0J/mm3。将设定好的工程文件拷入SLM设备,该SLM设备选取BLT-A320选区激光熔化金属3D打印机。
步骤S3,设备调试:打印基板选取厚度大于300mm的镍钛合金板。将SLM设备的粉仓清理干净,关闭成型室仓门,通入氩气,待成形室内氧含量低于300ppm时,设定基板预热温度为180℃。当基板温度升至150℃时,将步骤S1中制得的镍钛铜合金粉末送入SLM设备中,进行手动铺粉,观察铺粉平整且流动性良好,开始进入打印程序。
步骤S4,打印成形:SLM设备根据步骤S2中设定的切片数据开始扫描打印镍钛铜合金零件,每完成一层的制造,工作台下降一个铺粉层厚,即50μm,刮刀重新将镍钛铜合金粉末铺平,进行下一层的制造,不断循环往复,直至完成整个零件的打印,若出现严重翘曲则停止对应工艺的打印,值得注意的是,打印过程中,成型室内通入氩气,为保护氩气,需降低氧气的含量至300ppm以下,气压则保持为10-20mbar,另外成型室内保持对流吹风,根据残渣数量改变出风口风速,去除杂质残留。
步骤S5,后处理:打印完成后,停止加热基板,待基板温度降温至70℃以下,降低成型室内压力,扫去余粉,取下带有打印件的基板。将基板和打印件置于200℃炉内保温2h,去应力退火,随后空冷至室温。利用线切割将打印件从基板上切下,并用自动研磨机处理零件表面,磨去线切割形成的氧化皮,得到表面平整光亮的镍钛铜合金零件。
采用本实施例1所制得的高铜含量的3D打印镍钛铜合金性能为:致密度为96.2%,维氏硬度(HV)为286.7HV5.0,抗压强度(σ)为705.90MPa,压缩应变(δ)为6.63%。
实施例2
一种高铜含量的3D打印镍钛铜合金的制备方法,参照实施例1,与实施例1的不同之处仅在于:在步骤S2中,设定工艺参数:激光功率为160W,扫描速度为1100mm/s,激光能量密度为29.1J/mm3。
而采用实施例2所制得的高铜含量的3D打印镍钛铜合金性能为:致密度为97.3%,维氏硬度(HV)为299.3HV5.0,抗压强度(σ)为720.53MPa,压缩应变(δ)为6.58%。
实施例3
一种高铜含量的3D打印镍钛铜合金的制备方法,参照实施例1,与实施例1的不同之处仅在于:在步骤S2中,设定工艺参数:激光功率为140W,扫描间距为80μm,激光能量密度为35.0J/mm3。
而采用实施例3所制得的高铜含量的3D打印镍钛铜合金性能为:致密度为98.8%,维氏硬度(HV)为322.5HV5.0,抗压强度(σ)为776.46MPa,压缩应变(δ)为6.67%。
实施例4
一种高铜含量的3D打印镍钛铜合金的制备方法,参照实施例1,与实施例1的不同之处仅在于:在步骤S2中,设定工艺参数:激光功率为140W,扫描间距为60μm,光斑直径为80μm,激光能量密度为46.6J/mm3。
而采用实施例4所制得的高铜含量的3D打印镍钛铜合金性能为:致密度为98.5%,维氏硬度(HV)为302.1HV5.0,抗压强度(σ)为728.33MPa,压缩应变(δ)为7.46%。
如下表1所示,为实施例1-4分别采用的工艺参数以及打印得到的镍钛铜合金的致密度对比,由表1可知,在激光能量密度低于35J/mm3时,打印样品致密度随激光能量密度升高而增加;而减小扫描间距,当激光能量密度升高至46.6J/mm3,合金致密度略有下降。实施例3所制得的镍钛铜合金的致密度达到98.8%,成形性良好。
表1实施例1-4采用的工艺参数和打印态成形性比较
如图3所示,为实施例1-4在不同激光能量密度下制得的镍钛铜合金的维氏硬度对比图,由图可知,打印块体的维氏硬度随激光能量密度提高,先增大后减小,最高硬度为322.5HV5.0,优于文献报道结果。
如图4和下表2所示,为实施例1-4中所得镍钛铜合金块状样品的轴向压缩实验结果,由这些数据可以知道,本实施例1-4中打印得到的镍钛铜合金块体最大抗压强度为776MPa,最大压缩应变为7.46%,综合力学性能好。对比文献[S.Shiva et al.Journal ofMaterials Processing Technology 238(2016)142–151]中高铜含量3D打印NiTiCu合金的性能:抗压强度412MPa,压缩应变0.08%,本发明提供的实施例的镍钛铜合金的性能均远优于该文献。由此可知,使用本发明制备出来的镍钛铜合金块体致密度高、成形性好、综合力学性能好。
表2实施例1-4所得镍钛铜合金块状样品的轴向压缩实验结果
上述实施例为本发明较佳的实现方案,除此之外,本发明还可以其它方式实现,在不脱离本技术方案构思的前提下任何显而易见的替换均在本发明的保护范围之内。
为了让本领域普通技术人员更方便地理解本发明相对于现有技术的改进之处,本发明的一些附图和描述已经被简化,并且为了清楚起见,本申请文件还省略了一些其他元素,本领域普通技术人员应该意识到这些省略的元素也可构成本发明的内容。
Claims (8)
2.根据权利要求1所述的高铜含量的3D打印镍钛铜合金,其特征在于:所述镍钛铜合金的主要成分按质量百分比计为:钛44.1wt.%,镍45.3wt.%,铜10.6wt.%。
3.一种高铜含量的3D打印镍钛铜合金的制备方法,用于制备如权利要求1-2中任意一项所述的高铜含量的3D打印镍钛铜合金,其特征在于,包括如下步骤:
步骤S1,粉末制备及处理:将纯钛、纯镍和纯铜按照比例进行铸锭配料、熔炼,得到镍钛铜合金棒材,然后通过气雾化法制得镍钛铜预合金粉末,对镍钛铜预合金粉末进行筛分处理,再真空烘干,得到镍钛铜合金粉末;
步骤S2,工艺参数设定:使用Materialise-Magics3软件绘制镍钛铜合金块状零件,并进行切片处理,片层厚度按最小层厚0.01 mm分层,然后逐步设定打印路径、扫描策略和工艺参数,将设定好的工程文件拷入SLM设备;设定工艺参数如下:激光功率为100-240W,扫描速度为800-1600 mm/s,扫描间距为60-120,光斑直径为60-100,铺粉层厚为50,激光能量密度不大于35J/mm3;
步骤S3,设备调试:将SLM设备的粉仓清理干净,关闭成型室仓门,通入氩气,待成形室内氧含量低于300 ppm时,设定基板预热温度为180℃,当基板温度升至150℃,将步骤S1中制得的镍钛铜合金粉末送入SLM设备中,进行手动铺粉,观察铺粉平整且流动性良好,开始进入打印程序;
步骤S4,打印成形:所述SLM设备根据步骤S2中设定的切片数据开始扫描打印,每完成一层的制造,工作台下降一个铺粉层厚,刮刀重新将镍钛铜合金粉末铺平,进行下一层的制造,不断循环往复,直至完成整个零件的打印;
步骤S5,后处理:打印完成后,停止加热基板,待基板温度降温至70℃以下,降低成型室内压力,扫去余粉,取下带有打印件的基板,将基板和打印件置于炉内保温,去应力退火,随后空冷至室温,再利用线切割将打印件从基板上切下,并用自动研磨机处理零件表面,磨去线切割形成的氧化皮,得到表面平整光亮的镍钛铜合金零件。
5.根据权利要求4所述的高铜含量的3D打印镍钛铜合金的制备方法,其特征在于:所述SLM设备为BLT-A320选区激光熔化金属3D打印机。
6.根据权利要求5所述的高铜含量的3D打印镍钛铜合金的制备方法,其特征在于:在步骤S2中,设定扫描策略为条带分区加层间旋转,其中条带宽度为4mm,层间旋转角度为67°,起始扫描夹角为57°。
7.根据权利要求6所述的高铜含量的3D打印镍钛铜合金的制备方法,其特征在于:在步骤S4中,所述SLM设备在打印成形时,成型室内通入氩气,并降低氧气的含量至300ppm以下,气压保持为10-20 mbar,且根据残渣数量改变出风口风速。
8.根据权利要求7所述的高铜含量的3D打印镍钛铜合金的制备方法,其特征在于:在步骤S3中,所述基板为厚度大于300 mm的镍钛合金板;在步骤S5中,所述基板和打印件在炉内保温的温度为200℃,时间为2h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210390759.XA CN114990411B (zh) | 2022-04-14 | 2022-04-14 | 一种高铜含量的3d打印镍钛铜合金及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210390759.XA CN114990411B (zh) | 2022-04-14 | 2022-04-14 | 一种高铜含量的3d打印镍钛铜合金及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114990411A CN114990411A (zh) | 2022-09-02 |
CN114990411B true CN114990411B (zh) | 2023-01-31 |
Family
ID=83023539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210390759.XA Active CN114990411B (zh) | 2022-04-14 | 2022-04-14 | 一种高铜含量的3d打印镍钛铜合金及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114990411B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115714256A (zh) * | 2022-10-26 | 2023-02-24 | 江苏鉴恒科技有限公司 | 一种基于3d打印的微带阵列天线及制造工艺 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102703766A (zh) * | 2012-06-25 | 2012-10-03 | 镇江忆诺唯记忆合金有限公司 | 一种提高镍钛铜记忆合金记忆性能的中温处理方法 |
CN108941560A (zh) * | 2018-07-27 | 2018-12-07 | 中南大学 | 一种消除Renè104镍基高温合金激光增材制造裂纹的方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH606456A5 (zh) * | 1976-08-26 | 1978-10-31 | Bbc Brown Boveri & Cie | |
JP2706273B2 (ja) * | 1988-09-26 | 1998-01-28 | 古河電気工業株式会社 | 超弾性Ni−Ti−Cu系合金およびその製造方法 |
CN106756233B (zh) * | 2016-12-26 | 2019-04-19 | 华南理工大学 | 一种窄温区控温Ni-Ti形状记忆合金及制备方法和应用 |
CN109022920B (zh) * | 2018-08-30 | 2020-08-04 | 中南大学 | 一种无裂纹的4d打印钛镍形状记忆合金及其制备方法 |
CN109648082B (zh) * | 2019-01-24 | 2021-08-06 | 华南理工大学 | 一种钛镍形状记忆合金的4d打印方法及应用 |
CN109746445B (zh) * | 2019-01-28 | 2020-07-10 | 华中科技大学 | 一种适用于4d打印镍钛形状记忆合金的加工方法 |
CN110465662B (zh) * | 2019-08-09 | 2021-01-19 | 华南理工大学 | 一种原位调控镍钛合金功能特性的4d打印方法及应用 |
-
2022
- 2022-04-14 CN CN202210390759.XA patent/CN114990411B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102703766A (zh) * | 2012-06-25 | 2012-10-03 | 镇江忆诺唯记忆合金有限公司 | 一种提高镍钛铜记忆合金记忆性能的中温处理方法 |
CN108941560A (zh) * | 2018-07-27 | 2018-12-07 | 中南大学 | 一种消除Renè104镍基高温合金激光增材制造裂纹的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114990411A (zh) | 2022-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Montero-Sistiaga et al. | Effect of temperature on the microstructure and tensile properties of micro-crack free hastelloy X produced by selective laser melting | |
EP4134459A1 (en) | Nickel-based superalloy and manufacturing method therefor, and component and application | |
EP1925683B1 (en) | Cobalt-base alloy with high heat resistance and high strength and process for producing the same | |
RU2245760C2 (ru) | Способ изготовления подвергаемых холодной обработке изделий из металлического сплава (варианты) | |
CN1256004C (zh) | 由铁铝金属化合物合金制成的电阻加热元件 | |
CN111304512B (zh) | 一种中高熵合金材料、其制备方法及应用 | |
CN114395717B (zh) | 一种Co-Ni-Cr-Fe-W系高密度高塑性的高熵合金及其制备方法 | |
CN114990411B (zh) | 一种高铜含量的3d打印镍钛铜合金及其制备方法 | |
Fan et al. | Martensite decomposition during post-heat treatments and the aging response of near-α Ti–6Al–2Sn–4Zr–2Mo (Ti-6242) titanium alloy processed by selective laser melting (SLM) | |
CN113073235B (zh) | 一种无裂纹镍基高温合金及其成分设计方法和制备方法 | |
CN114669751B (zh) | 一种增材制造用无裂纹镍钛铜合金的制备方法 | |
CN113073274B (zh) | 一种新型制备双相超细晶高熵合金的方法 | |
CN115198162B (zh) | 高强韧异质多相“核壳”组织结构中熵合金及其制备方法 | |
Veerappan et al. | Characterization and properties of silicon carbide reinforced Ni-10Co-5Cr (Superalloy) matrix composite produced via powder metallurgy route | |
CN115041706A (zh) | 一种改善3d打印镍钛铜合金综合性能的热处理方法 | |
Behera et al. | Effect of nickel on mechanical properties of alloy steel produced by powder metallurgy | |
Maurya et al. | Additive manufacturing of TiC-based cermets: A detailed comparison with spark plasma sintered samples | |
Horvay et al. | Development of nitinol alloys for additive manufacturing | |
Huang et al. | Effects of process parameters and heat treatment on the microstructure and mechanical properties of selective laser melted Inconel 718 | |
Fa et al. | The microstrcture and high-temperature oxidation resistance of tungsten carbide with high entropy alloys as binder | |
Hutasoit et al. | Tensile properties of vacuum heat-treated Ti6Al4V alloy processed by selective laser melting | |
CN112935275B (zh) | 一种梯度TiNi形状记忆合金的电子束熔丝增材制造方法 | |
CN114101703A (zh) | 一种基于选区激光熔化的TiZrNb高温形状记忆合金的4D打印优化方法 | |
Naiju et al. | Effect of Cryogenic Treatment on Inconel 718 Produced by DMLS Technique | |
JPH0790432A (ja) | 等軸組織からなる極低塩素α+β型焼結チタン合金 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |