CN110465662B - 一种原位调控镍钛合金功能特性的4d打印方法及应用 - Google Patents

一种原位调控镍钛合金功能特性的4d打印方法及应用 Download PDF

Info

Publication number
CN110465662B
CN110465662B CN201910733028.9A CN201910733028A CN110465662B CN 110465662 B CN110465662 B CN 110465662B CN 201910733028 A CN201910733028 A CN 201910733028A CN 110465662 B CN110465662 B CN 110465662B
Authority
CN
China
Prior art keywords
nickel
powder
titanium alloy
discharge treatment
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910733028.9A
Other languages
English (en)
Other versions
CN110465662A (zh
Inventor
杨超
卢海洲
李元元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201910733028.9A priority Critical patent/CN110465662B/zh
Publication of CN110465662A publication Critical patent/CN110465662A/zh
Priority to PCT/CN2020/083670 priority patent/WO2021027300A1/zh
Priority to US17/288,924 priority patent/US20210394269A1/en
Application granted granted Critical
Publication of CN110465662B publication Critical patent/CN110465662B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0836Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with electric or magnetic field or induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于增材制造技术领域,公开了一种原位调控镍钛合金功能特性的4D打印方法及应用。将镍钛合金棒材通过雾化制粉,获得粒径为15~53μm的镍钛合金粉末,然后置于放电等离子体辅助球磨机中进行放电处理,促进粉末活性激活,然后加入粒径为100~800nm的纳米级镍粉,得到混合粉末,继续进行放电处理,使镍钛合金粉末与纳米镍粉之间实现冶金结合,得到改性粉末,最后将改性粉末通过增材制造技术制备成形,得到功能化的镍钛合金。本发明通过在放电处理过程中加入纳米级镍粉与大尺寸球形镍钛合金粉末实现冶金结合,有利于制备出成分、组织、性能均匀的块体合金及其零件。

Description

一种原位调控镍钛合金功能特性的4D打印方法及应用
技术领域
本发明属于增材制造技术领域,具体涉及一种原位调控镍钛合金功能特性的4D打印方法及应用。
背景技术
镍钛基形状记忆合金具有优异的生物相容性,广泛应用于牙列矫正丝、脊柱矫形棒、血管成形环和手术用微型钳子等生物医疗领域。同时,利用其优良的形状记忆效应和超弹性,广泛应用于管路接头、管路固定、弹簧驱动装置、温度控制器、温度传感器触发器等领域;利用其高阻尼性能,广泛应用于振动控制构件、锥形阻尼器等领域;利用其优良的耐腐蚀性能,在化工、船舶零件等领域也存在广泛的应用前景。
然而,对于镍钛形状记忆合金而言,其相变温度对化学成分很敏感,在熔炼、铸造、轧制等过程中会引入杂质元素(如C、N等),改变其相转变温度,进而影响其功能特性(参考文献1:Acta Mater.58(2010)3444-3458.)。此外,镍钛形状记忆合金热导率较低、加工性能差,降低了其加工生产效率,因而对于精密复杂镍钛合金零件,譬如多孔结构、薄壁结构等,采用传统工艺无法成形或成形及其困难(参考文献2:Prog.Mater.Sci.57(2012)911-946.)。在4D打印制备镍钛合金过程中,由于激光与粉末作用使得熔池温度很高,镍原子会存在挥发现象,这会导致成型件的镍钛原子比发生变化,进而相转变温度发生较大变化,无法满足特定的服役要求(参考文献3:Scr.Mater.146(2018)164-168.)。因此,探索新的镍钛合金成形工艺,且有效调控其相转变温度,成为急需解决的问题。目前,4D打印镍钛合金的相转变温度一般采用热处理方式进行调控,关于原位调控4D打印镍钛合金相转变温度及其功能特性,同时制备出高致密度的镍钛合金及其零部件的案例鲜有报道(参考文献4:Prog.Mater.Sci.83(2016)630-663.)。
4D打印是对智能材料的增材制造(3D打印)制备技术,4D打印技术能够实现结构功能一体化设计。作为一种重要的智能材料,镍钛合金4D打印技术已经得到了研究者的广泛关注,其能按照三维数据模型直接将金属粉末在外加热源作用下完全熔化,并凝固成形为具有良好冶金结合和高精度的金属零件,特别适合薄壁、内腔复杂、内流道等传统加工技术难以实现的复杂薄壁精密构件的制造。在4D打印成形过程中存在高纯氩气保护,氧含量低于300ppm,可以极大地减少成形件的杂质含量。目前,增材制造的粉末制备技术主要包括气雾化法和水雾化法,针对镍钛合金粉末,目前主要采用旋转电极气雾化法制备,一次只能制备出单一组分的镍钛合金粉末,调控成分困难、成本高,商业化应用的镍钛合金成分单一。
发明内容
针对以上现有技术存在的缺点和不足之处,本发明的首要目的在于提供一种原位调控镍钛合金功能特性的4D打印方法。该方法提出采用4D打印技术实现对镍钛合金粉末+纳米级镍粉的混合粉末的增材制造成形,通过调控镍钛合金粉末和纳米镍粉的混合比例,进而精确调控4D打印镍钛合金的镍钛原子比,最终调控其相转变温度和功能特性,以拓展镍钛合金的产业化应用领域。
本发明的另一目的在于提供一种通过上述方法得到的镍钛合金。
本发明的再一目的在于提供上述镍钛合金在制备脊柱矫形棒、髓内针/钉、血管成形环或手术用微型钳子等生物医疗器械;管路接头、智能控温器件、弹簧驱动装置、温度传感器触发器等化工、卫浴装置;振动控制构件、锥形阻尼器;自展开桁架、自展开通讯卫星零部件等航空航天领域部件中的应用。
本发明目的通过以下技术方案实现:
一种原位调控镍钛合金功能特性的4D打印方法,包括如下步骤:
(1)制粉:将纯钛和纯镍进行配料、熔炼,得到镍钛合金棒材,然后通过旋转电极雾化法制取合金粉末,对粉末进行筛分处理,获得粒径为15~53μm的镍钛合金粉末;
(2)粉末改性:将步骤(1)所得镍钛合金粉末置于放电等离子体辅助球磨机中进行放电处理,促进粉末活性激活,然后加入粒径为100~800nm的纳米级镍粉,得到混合粉末,继续进行放电处理,使镍钛合金粉末与纳米镍粉之间实现冶金结合,得到改性粉末;
(3)4D打印成形:将步骤(2)处理后的改性粉末通过增材制造技术制备成形,得到功能化的镍钛合金。
优选地,步骤(1)中所述镍钛合金粉末的原子百分比元素组成为:Ti50~60at.%,余量为Ni。
优选地,步骤(2)中所述纳米级镍粉的加入量使得混合粉末的原子百分比元素组成为:Ti 45~50at.%,余量为Ni。
优选地,步骤(2)中促进粉末活性激活的放电处理条件为:电压120~130V,电流1~1.4A,电极转速800~1000r/min,每次放电处理持续时间为0.5~1.5h,相邻两次放电处理的间隔为30~60min,放电处理次数为3~6次;加入纳米级镍粉后,继续进行放电处理降低电极转速到500~700r/min,调整电流到1.5~1.8A,继续处理2~4h。
优选地,步骤(3)中所述增材制造技术是指选区激光熔化(SLM)成形技术,具体参数条件为:激光功率P>60W,激光扫描速度v>100mm/s,激光扫描间距h=80~120μm,铺粉层厚t=25~40μm。
一种镍钛合金,通过上述方法制备得到。
上述镍钛合金在制备脊柱矫形棒、髓内针/钉、血管成形环或手术用微型钳子等生物医疗器械;管路接头、智能控温器件、弹簧驱动装置、温度传感器触发器等化工、卫浴装置;振动控制构件、锥形阻尼器;自展开桁架、自展开通讯卫星零部件等航空航天领域部件中的应用。
本发明的原理为:本发明通过在放电处理过程中加入纳米级镍粉,采用放电等离子球磨使纳米镍粉均匀涂敷于大尺寸球形镍钛合金粉末表面,实现冶金结合,一方面有利于使粉末维持较好的球形形态,另一方面能够直接有效地控制4D打印镍钛合金基体的镍含量,进而调控其相转变温度,进而有利于制备出成分、组织、性能均匀的块体合金及其零件。
相对于现有技术,本发明具有如下优点及有益效果:
(1)由于镍钛形状记忆合金的相转变温度对其镍含量十分敏感,采用原位添加一定量镍粉的混合粉末作为原材料,能够直接有效地控制4D打印镍钛合金基体的镍含量,进而调控其相转变温度,同时基于混合粉末制备的镍钛合金的致密度超过99%,硬度大于300HV,由单一B2奥氏体相组成,超弹性能应变达到5.2%。
(2)相对单纯混粉或混粉球磨来说,本发明采用放电等离子球磨使纳米镍粉均匀涂敷于大尺寸球形镍钛合金粉末表面,实现冶金结合,进而有利于制备出成分、组织、性能均匀的块体合金及其零件。
(3)本发明采用4D打印成形工艺制备镍钛形状记忆合金,根据设计的三维模型可以完成复杂形状镍钛合金零件的成形,实现复杂结构镍钛合金零件的快速制造,可以大大拓展镍钛合金在医疗、卫浴、航空航天等领域的应用。
附图说明
图1为实施例1中改性混合粉末的粒径分布图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
1.雾化制粉。按照下述镍钛原子比进行配料:Ti 50.6at.%,Ni 49.4at.%。在真空条件下熔炼出镍钛合金棒材。棒材雾化,收集所得到的原始粉末,进行筛选处理,控制目标粉末的粒径在15~53μm范围内。
2.粉末改性。运用Plasma-BM-S型等离子体球磨机对筛选出的镍钛合金粉末(质量m1)进行放电处理。控制参数为:电压130V,电流1.4A,电极转速800r/min,每次放电处理持续时间为0.5h,相邻两次放电处理的间隔为30min,放电等离子体处理次数为6次。随后,添加粒径为100nm的镍粉至放电等离子体处理的镍钛合金粉末,添加质量m2,控制m1:m2=30:1,使得混合粉末中Ti:Ni=49.1:50.9(at.%),调整电极转速至600r/min,电流控制在1.8A,对混合粉末继续放电处理2h,得到最终的改性混合粉末。
所得改性混合粉末的粒径分布图如图1所示。所得改性混合粉末与未改性的原始粉末的粒径对比如表1所示。
表1
Figure BDA0002161262970000051
由图1及表1结果可见:纳米镍粉添加、等离子体处理对粉末形貌影响小,纳米镍粉在镍钛合金粉末表面涂覆均匀,混合粉末粒径分布均匀。
3.4D打印成形。运用增材制造成形设备对放电等离子体处理的改性混合粉末和未改性的原始粉末分别进行4D打印成形,工艺参数为:激光功率P=70W,激光扫描速度ν=105mm/s,激光扫描间距h=100μm,铺粉层厚t=30μm。
4.改性效果评估。将以上步骤4D打印成形的试样表面磨光,通过阿基米德排水法测其致密度,采用DHV-1000Z设备、X射线衍射仪和差示扫描量热法测试其硬度、相组成和相转变温度,通过Instron 8862设备测试其超弹性。结果表明,本实施例中改性混合粉末4D打印成形的镍钛合金致密度为99.5%,硬度为327±8HV,由单一B2奥氏体相组成,马氏体转峰值温度与奥氏体转变峰值温度分别为:-12.7℃和9.4℃。此外,在压缩条件下,改性混合粉末4D打印成形件在室温下(奥氏体状态)其超弹性应变达到5.29%,应变回复率超过93.6%。未改性混合粉末4D打印成形的镍钛合金致密度为98.1%,硬度为281±9HV,由单一B2奥氏体相组成,马氏体转峰值温度与奥氏体转变峰值温度分别为:-17.1℃和8.3℃,在压缩条件下,未改性混合粉末4D打印成形件在室温下(奥氏体状态)其超弹性应变达到4.03%,应变回复率超过85.1%。
实施例2
1.制粉。按照下述镍钛原子比进行配料:Ti 60at.%,Ni 40at.%。在真空条件下熔炼出镍钛合金棒材。棒材雾化,收集所得到的原始粉末,进行筛选处理,控制目标粉末的粒径在15~53μm范围内。
2.粉末改性。运用Plasma-BM-S型等离子体球磨机对筛选出的镍钛合金粉末(质量m1)进行放电处理。控制参数为:电压120V,电流控制在1A,电极转速1000r/min,每次放电处理持续时间为1h,相邻两次放电处理的间隔为45min,放电处理次数为3次。原始粉末处理结束后添加粒径为500nm的镍粉,添加质量m2,控制m1:m2=4.91:1,使得混合粉末中钛镍原子比为Ti 49.2Ni 50.8(at.%),调整电极转速至700r/min,电流控制在1.8A,接着对混合粉末继续进行放电处理4h,得到最终改性混合粉末。分析结果表明球形粉末形貌变化小,纳米镍粉在镍钛合金粉末表面涂覆均匀,混合粉末粒径分布均匀。
3.4D打印成形。运用增材制造成形设备对改性混合粉末和未改性的原始粉末分别进行4D打印成形,工艺参数为:激光功率P=250W,激光扫描速度ν=1250mm/s,激光扫描间距h=100μm,铺粉层厚t=35μm。
4.改性以及成形效果评估。将以上步骤4D打印成形的试样表面磨光,通过阿基米德排水法测其致密度,采用DHV-1000Z设备、X射线衍射仪和差示扫描量热法测试其硬度、相组成和相转变温度,通过Instron 8862设备测试其超弹性。结果表明,本实施例中改性混合粉末通过4D打印技术制备得到的镍钛合金的致密度为99.1%,硬度为319±9HV,混合粉体4D打印成形件由单一B2奥氏体相组成,马氏体转峰值温度与奥氏体转变峰值温度分别为:-2.4℃和17.1℃,此外,在压缩条件下,混合粉体4D打印成形件在室温下(奥氏体状态)其超弹性应变达到5.21%,应变回复率超过94.2%。未改性混合粉末4D打印成形的镍钛合金致密度为98.3%,硬度为279±7HV,由单一B2奥氏体相组成,马氏体转峰值温度与奥氏体转变峰值温度分别为:-4.3℃和10.3℃,在压缩条件下,未改性混合粉末4D打印成形件在室温下(奥氏体状态)其超弹性应变达到4.26%,应变回复率超过74.2%。
实施例3
1.制粉。按照下述镍钛原子比进行配料:Ti 50at.%,Ni 50at.%。在真空条件下熔炼出镍钛合金棒材。棒材雾化,收集所得到的原始粉末,进行筛选处理,控制目标粉末的粒径在15~53μm范围内。
2.粉末改性。运用Plasma-BM-S型等离子体球磨机对筛选出的镍钛合金粉末(质量m1)进行放电处理。控制参数为:电压125V,电流控制在1.4A,电极转速800r/min,每次放电处理持续时间为1.5h,相邻两次放电处理的间隔为30min,放电处理次数为3次。原始粉末处理结束后添加粒径为300nm的镍粉,添加质量m2,控制m1:m2=44.4:1,使得混合粉末中钛镍原子比为Ti 49Ni 51(at.%),调整电极转速至500r/min,电流控制在1.8A,接着对混合粉末继续进行放电处理3h,得到最终改性混合粉末。分析结果表明球形粉末形貌变化小,纳米镍粉在镍钛合金粉末表面涂覆均匀,混合粉末粒径分布均匀。
3.4D打印成形。运用增材制造成形设备对改性混合粉末和未改性的原始粉末分别进行4D打印成形,工艺参数为:激光功率P=200W,激光扫描速度ν=1000mm/s,激光扫描间距h=80μm,铺粉层厚t=40μm。
4.改性以及成形效果评估。将以上步骤4D打印成形的试样表面磨光,通过阿基米德排水法测其致密度,采用DHV-1000Z设备、X射线衍射仪和差示扫描量热法测试其硬度、相组成和相转变温度,通过Instron 8862设备测试其超弹性。结果表明,本实施例中改性混合粉末通过4D打印技术制备得到的镍钛合金的致密度为99.2%,硬度为304±9HV,混合粉体4D打印成形件由单一B2奥氏体相组成,马氏体转峰值温度与奥氏体转变峰值温度分别为:-12.1℃和7.9℃,此外,在压缩条件下,混合粉体4D打印成形件在室温下(奥氏体状态)其超弹性应变达到5.17%,应变回复率超过91.2%。未改性混合粉末4D打印成形的镍钛合金致密度为97.1%,硬度为271±6HV,由单一B2奥氏体相组成,马氏体转峰值温度与奥氏体转变峰值温度分别为:-14.7℃和6.1℃,在压缩条件下,未改性混合粉末4D打印成形件在室温下(奥氏体状态)其超弹性应变达到3.91%,应变回复率超过69.2%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种原位调控镍钛合金功能特性的4D打印方法,其特征在于包括如下步骤:
(1)制粉:将纯钛和纯镍进行配料、熔炼,得到镍钛合金棒材,然后通过旋转电极雾化法制取合金粉末,对粉末进行筛分处理,获得粒径为15~53μm的镍钛合金粉末;
(2)粉末改性:将步骤(1)所得镍钛合金粉末置于放电等离子体辅助球磨机中进行放电处理,促进粉末活性激活,然后加入粒径为100~800 nm的纳米级镍粉,得到混合粉末,继续进行放电处理,使镍钛合金粉末与纳米镍粉之间实现冶金结合,得到改性粉末;
(3)4D打印成形:将步骤(2)处理后的改性粉末通过增材制造技术制备成形,得到功能化的镍钛合金。
2.根据权利要求1所述的一种原位调控镍钛合金功能特性的4D打印方法,其特征在于:步骤(1)中所述镍钛合金粉末的原子百分比元素组成为:Ti 50~60at.%,余量为Ni。
3.根据权利要求1所述的一种原位调控镍钛合金功能特性的4D打印方法,其特征在于:步骤(2)中所述纳米级镍粉的加入量使得混合粉末的原子百分比元素组成为:Ti 45~50at.%,余量为Ni。
4.根据权利要求1所述的一种原位调控镍钛合金功能特性的4D打印方法,其特征在于步骤(2)中促进粉末活性激活的放电处理条件为:电压120~130 V,电流1~1.4 A,电极转速800~1000 r/min,每次放电处理持续时间为0.5~1.5 h,相邻两次放电处理的间隔为30~60min,放电处理次数为3~6次;加入纳米级镍粉后,继续进行放电处理降低电极转速到500~700 r/min,调整电流到1.5~1.8 A,继续处理2~4 h。
5.根据权利要求1所述的一种原位调控镍钛合金功能特性的4D打印方法,其特征在于:步骤(3)中所述增材制造技术是指SLM成形技术,具体参数条件为:激光功率P> 60 W,激光扫描速度v>100 mm/s,激光扫描间距h=80~120μm,铺粉层厚t=25~40μm。
6.一种镍钛合金在制备脊柱矫形棒、髓内针/钉、血管成形环、手术用微型钳子、管路接头、智能控温器件、弹簧驱动装置、温度传感器触发器、振动控制构件、锥形阻尼器、自展开桁架、自展开通讯卫星零部件中的应用,其特征在于,所述镍钛合金通过权利要求1~5任一项所述的方法制备得到。
CN201910733028.9A 2019-08-09 2019-08-09 一种原位调控镍钛合金功能特性的4d打印方法及应用 Active CN110465662B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910733028.9A CN110465662B (zh) 2019-08-09 2019-08-09 一种原位调控镍钛合金功能特性的4d打印方法及应用
PCT/CN2020/083670 WO2021027300A1 (zh) 2019-08-09 2020-04-08 一种原位调控镍钛合金功能特性的4d打印方法及应用
US17/288,924 US20210394269A1 (en) 2019-08-09 2020-04-08 4d printing method for in-situ regulation of functional properties of nickel-titanium alloy and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910733028.9A CN110465662B (zh) 2019-08-09 2019-08-09 一种原位调控镍钛合金功能特性的4d打印方法及应用

Publications (2)

Publication Number Publication Date
CN110465662A CN110465662A (zh) 2019-11-19
CN110465662B true CN110465662B (zh) 2021-01-19

Family

ID=68511678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910733028.9A Active CN110465662B (zh) 2019-08-09 2019-08-09 一种原位调控镍钛合金功能特性的4d打印方法及应用

Country Status (3)

Country Link
US (1) US20210394269A1 (zh)
CN (1) CN110465662B (zh)
WO (1) WO2021027300A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110465662B (zh) * 2019-08-09 2021-01-19 华南理工大学 一种原位调控镍钛合金功能特性的4d打印方法及应用
CN113059156A (zh) * 2019-12-13 2021-07-02 中南大学 一种利用氢致膨胀效应的可调变形复合结构及其制备方法和应用
CN111151756B (zh) * 2020-01-20 2021-12-03 广东省科学院新材料研究所 一种形状记忆合金管接头的4d打印快速制造方法及产品
CN111961891A (zh) * 2020-09-10 2020-11-20 沈阳中核舰航特材科技有限公司 一种高性能医用镍钛合金导引针材料的制造方法
CN112548089B (zh) * 2020-11-04 2022-03-29 华南理工大学 一种放电等离子改性方法在处理雾化法制备的球形/类球形金属粉末中的应用
CN113145864A (zh) * 2020-12-23 2021-07-23 华南理工大学 一种钛镍形状记忆合金的4d打印装置及其构件调控方法
CN112974847B (zh) * 2021-02-08 2022-05-24 华南理工大学 基于弹性模量调控的核壳结构钛镍医疗植入件及4d打印成形方法与应用
CN113145859B (zh) * 2021-04-07 2022-09-09 山东大学 一种降低激光选区熔化镍钛合金相变对工艺敏感性的方法
CN113199036B (zh) * 2021-04-20 2022-06-10 华南理工大学 具有功能基元序构的超高超弹性钛镍形状记忆合金及其4d打印制备方法与应用
CN113351880A (zh) * 2021-05-31 2021-09-07 中国石油大学(北京) 一种镍钛合金构件的制造方法以及镍钛合金构件
CN113944564B (zh) * 2021-09-17 2022-09-20 中国地质大学(武汉) 一种基于4d打印技术的变孔径装置及其制备方法
CN114309649B (zh) * 2021-12-24 2024-05-28 吉林大学威海仿生研究院 一种通过热处理工艺改善激光选区熔化NiTi合金耐腐蚀性的方法
CN114749678B (zh) * 2022-03-02 2022-11-15 北京科技大学 一种γ基高温TiAl复合材料同轴送粉3D打印的制备方法
CN114990411B (zh) * 2022-04-14 2023-01-31 中南大学 一种高铜含量的3d打印镍钛铜合金及其制备方法
FR3134734A1 (fr) * 2022-04-20 2023-10-27 Pint Procédé de fabrication additive de pièces métalliques et pièces obtenues.
CN115070052B (zh) * 2022-05-18 2023-07-18 华南理工大学 一种新型双态组织镍钛形状记忆合金及其4d打印制备方法与应用
CN114918428B (zh) * 2022-05-23 2024-02-27 河北工业大学 一种基于增材制造自组装铝镍钴磁体的制造方法
WO2024008897A2 (en) * 2022-07-06 2024-01-11 Valls Besitz Gmbh Methods for manufacturing ultra high-performance metal additive manufacturing components
CN116275011B (zh) * 2023-05-19 2023-08-15 清华大学 增材制造用粉末、超高强韧钢及其制备方法和应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283233A (en) * 1980-03-07 1981-08-11 The United States Of America As Represented By The Secretary Of The Navy Method of modifying the transition temperature range of TiNi base shape memory alloys
US7192496B2 (en) * 2003-05-01 2007-03-20 Ati Properties, Inc. Methods of processing nickel-titanium alloys
CN101285134B (zh) * 2008-05-30 2011-08-31 华南理工大学 一种WC-Co硬质合金的制备方法
CN102744129B (zh) * 2012-07-02 2014-01-29 江苏大学 可直接送粉的高效微纳复合粉体湿法球磨制备方法
CN103240412B (zh) * 2013-05-22 2014-10-15 北京科技大学 一种近终形制备粉末超合金的方法
CN104128606A (zh) * 2014-08-20 2014-11-05 丹阳市德源精密工具有限公司 一种金刚石锯片的制备方法
CN105268973A (zh) * 2015-10-29 2016-01-27 沈阳海纳鑫科技有限公司 一种基于TiNi记忆合金丝材的功能材料部件增材制造方法
CN109022920B (zh) * 2018-08-30 2020-08-04 中南大学 一种无裂纹的4d打印钛镍形状记忆合金及其制备方法
CN109332680B (zh) * 2018-11-07 2021-08-10 南京航空航天大学 一种用于高能束3d打印的纳米氧化物颗粒/镍基高温合金复合球形粉末及其制备方法
CN109648082B (zh) * 2019-01-24 2021-08-06 华南理工大学 一种钛镍形状记忆合金的4d打印方法及应用
CN109648091A (zh) * 2019-01-25 2019-04-19 华中科技大学 一种增材制造原位制备铜基形状记忆合金的方法
CN110465662B (zh) * 2019-08-09 2021-01-19 华南理工大学 一种原位调控镍钛合金功能特性的4d打印方法及应用

Also Published As

Publication number Publication date
CN110465662A (zh) 2019-11-19
WO2021027300A1 (zh) 2021-02-18
US20210394269A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
CN110465662B (zh) 一种原位调控镍钛合金功能特性的4d打印方法及应用
CN109648082B (zh) 一种钛镍形状记忆合金的4d打印方法及应用
Zhang et al. A review on design and mechanical properties of additively manufactured NiTi implants for orthopedic applications
Chen et al. Controlling the microstructure and mechanical properties of a metastable β titanium alloy by selective laser melting
Hamidi et al. A review of biocompatible metal injection moulding process parameters for biomedical applications
CN107130138B (zh) 医用高耐磨钛合金复合材料及3d打印梯度原位纳米复相减磨医用钛合金的方法
Shang et al. Effects of scanning speed on in vitro biocompatibility of 316L stainless steel parts elaborated by selective laser melting
Zhou et al. Microstructure and mechanical properties of selective laser melted biomaterial Ti-13Nb-13Zr compared to hot-forging
WO2021139334A1 (zh) 一种含Si高强低模医用钛合金及其增材制造方法与应用
US20190084048A1 (en) Titanium-tantalum powders for additive manufacturing
CN101003868A (zh) 一种具有梯度孔隙率镍钛形状记忆合金的制备方法
CN108971500B (zh) 高耐蚀性原位纳米碳化物增强不锈钢植入体及其成形方法
CN108486408A (zh) 一种低弹性模量补牙用β型钛合金及其制造方法
CN110037813B (zh) 一种钛基氧化锆复合材料医疗植入体及其3d打印制备方法
CN107475564B (zh) 一种高强致密钛合金-陶瓷生物复合材料的制备方法
CN102021355A (zh) 一种生物医用多孔钛材料的制备方法
CN113234983A (zh) 一种NbTaTiZr双相等原子比高熵合金及其制备方法
CN110340343A (zh) 采用prep tc4粉末的激光熔化沉积增材制造及热处理方法
CN108166044A (zh) 一种调控3d打印医用tc4钛合金表面纳米管直径的方法
Bayraktaroglu et al. Effect of boron addition on injection molded 316L stainless steel: Mechanical, corrosion properties and in vitro bioactivity
CN112063886B (zh) 一种具有微/纳米孔隙的含镁生物β钛合金及其制备方法
Chhabra et al. 3d printable niti alloys for biomedical applications: a state of art
CN104762645B (zh) 医用植入体材料及其制备方法
Li et al. Biomedical metallic materials based on nanocrystalline and nanoporous microstructures: Properties and applications
CN113199036B (zh) 具有功能基元序构的超高超弹性钛镍形状记忆合金及其4d打印制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant