WO2022042176A1 - 一种导热凝胶及其制备方法 - Google Patents

一种导热凝胶及其制备方法 Download PDF

Info

Publication number
WO2022042176A1
WO2022042176A1 PCT/CN2021/108575 CN2021108575W WO2022042176A1 WO 2022042176 A1 WO2022042176 A1 WO 2022042176A1 CN 2021108575 W CN2021108575 W CN 2021108575W WO 2022042176 A1 WO2022042176 A1 WO 2022042176A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
metal
filler
particle size
parts
Prior art date
Application number
PCT/CN2021/108575
Other languages
English (en)
French (fr)
Inventor
任琳琳
曾小亮
孙蓉
李海同
许永伦
Original Assignee
深圳先进电子材料国际创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进电子材料国际创新研究院 filed Critical 深圳先进电子材料国际创新研究院
Publication of WO2022042176A1 publication Critical patent/WO2022042176A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0812Aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the invention belongs to the technical field of polymer composite materials, and particularly relates to a thermally conductive gel and a preparation method thereof.
  • Thermal interface materials are the best option to help solve thermal problems. Thermal interface materials are divided into thermally conductive gels, thermally conductive gaskets, thermally conductive pastes, and thermally conductive phase transitions. Thermally conductive gel is a curable thermally conductive paste and a dispenseable thermally conductive gasket. It has the advantages of easy operation and low interface contact thermal resistance. It is considered to be a material that meets the development needs of thermal interface materials in the future. wide attention.
  • CN 109415619 A discloses a thermal interface material comprising at least one polysiloxane; at least one thermally conductive filler; and at least one adhesion promoter containing both amine and alkyl functional groups. Designed to address dripping and cracking of thermally conductive gel products during temperature cycling testing, including the potential for products to fail under extreme conditions. But the patent does not mention thermal conductivity values.
  • CN 105419339A discloses a high-performance silicon-based thermally conductive gel and a preparation method thereof.
  • the silicon-based thermal conductive gel is composed of organic silicon gel, hydrogen-containing silicone oil, hydroxyl silicone oil and thermal conductive powder.
  • the thermally conductive powder is made of different types of powders and is compounded according to three particle sizes of large, medium and small.
  • the thermal conductivity of the thermally conductive gel obtained in this patent does not exceed 4.5W/mK, and the viscosity is high.
  • CN106398226A discloses a thermally conductive silicone gel and a preparation method thereof, comprising a base polymer, a crosslinking agent, a filler, and a silane coupling agent.
  • the technical solution can obtain a thermal interface material with higher stability than the commonly used silicone grease, silicone paste and thermally conductive mud on the market at present, and solve the problem of long-term use of the currently commonly used silicone grease, silicon paste and thermally conductive mud at high temperature on the market. It will dry out, so as to ensure the thermal conductivity efficiency of the thermal interface material for a long time. However, the thermal conductivity of the thermally conductive gel does not exceed 4.0 W/mK.
  • the purpose of the present invention is to provide a thermally conductive gel and a preparation method thereof.
  • the present invention provides a metal hybrid thermal conductive filler, wherein the metal hybrid thermal conductive filler is a nano metal filler supported on the surface of the metal filler;
  • the metal filler is selected from at least one of aluminum powder, silver powder, and copper powder; the nanometer metal filler is selected from at least one of aluminum powder, silver powder, and copper powder.
  • the mass ratio of the nano metal filler to the metal filler is 5:95-20:80;
  • the particle size of the metal filler is 0.5-30 ⁇ m; the particle size of the nano metal filler is 0.05-500 nm.
  • the present invention provides a preparation method of any of the above-mentioned metal hybrid thermally conductive fillers, wherein nanometer metal fillers are deposited on the surface of a metal filler by a chemical reduction method;
  • the preparation method specifically includes: adding metal fillers into absolute ethanol, then adding a reducing agent and stirring to obtain a first solution; adding a precursor of nano metal fillers to absolute ethanol and stirring to obtain a second solution; using
  • the second solution is added to the first solution at 25-90 ° C under stirring, and the reaction is continued for 1-6 hours after the dropwise addition to obtain a metal hybrid thermally conductive filler; more preferably, the nanometer
  • the precursor of the metal filler is at least one of Al(NO 3 ) 3 , AgNO 3 , and Cu(NO 3 ) 2
  • the reducing agent is selected from N,N-dimethylformamide, sodium borohydride, ascorbic acid, At least one of hydrazine hydrate.
  • the present invention provides an application of any of the above-mentioned metal hybrid thermally conductive fillers in the preparation of thermally conductive gels.
  • the present invention provides a thermally conductive gel, which is made from the following raw material components by mass:
  • the metal hybrid thermally conductive filler is composed of the aforementioned metal hybrid thermally conductive fillers with large, medium and small particle sizes in a weight ratio of 8:2:1 to 5:4:1, wherein the large particle size It is 10-30 ⁇ m; the medium particle size is 1-10 ⁇ m, and the small particle size is 500nm-1.0 ⁇ m;
  • the mass fraction of the metal hybrid thermally conductive filler is 80%-91%, preferably 85%-91%.
  • the viscosity of the organopolysiloxane containing at least two vinyl groups at 25°C is 20-1000 mPa.s;
  • the polyorganosiloxane having at least 2 silicon-bonded hydrogen atoms has a molecular structural formula of wherein R is a hydrogen atom, or, a hydrogen atom and at least one of methyl (CH 3 ), phenyl (C 6 H 5 ), and ethyl (C 2 H 5 ) (that is, R in the molecular structure can be the same or can be different);
  • the polyorganosiloxane having at least 2 silicon-bonded hydrogen atoms has a viscosity of 20-100 mPa.s at 25°C.
  • the hydrosilylation reaction catalyst is a hydrosilylation reaction catalyst capable of initiating the hydrosilylation reaction of components (A) and (B); preferably, the hydrosilylation reaction catalyst is selected from the group consisting of Platinum catalyst;
  • the general structural formula of the platinum-containing catalyst is More preferably, the platinum-containing catalyst includes platinum cyclovinylmethylsiloxane complex, platinum carbonyl cyclovinylmethylsiloxane complex, platinum divinyltetramethyldisiloxane dimethylsiloxane At least one of the base fumarate complex and the platinum divinyltetramethyldisiloxane dimethyl maleate complex;
  • the hydrosilylation reaction inhibitor is a hydrosilylation reaction inhibitor capable of inhibiting the hydrosilylation reaction of components (A) and (B); preferably, the hydrosilylation reaction inhibitor selected from alkynols;
  • the alkynols include 1-ethynyl-1-cyclohexanol, 2-methyl-3-butyn-2-ol, 2-phenyl-3-butyn-2-ol, 2-acetylene At least one of alkynyl-isopropanol, 2-ethynyl-butan-2-ol, 3,5-dimethyl-1-hexyn-3-ol, methanosilylated alkynol.
  • raw material component (F) additives Further, it also includes raw material component (F) additives;
  • the additive includes a silane coupling agent
  • the additives further include plasticizers, flame retardants and colorants;
  • the additives include 0-1.0 parts by mass of plasticizers, 0.5-1.0 parts by mass of silane coupling agents, 0-1.0 parts by mass of flame retardants and 0-0.5 parts by mass of colorants.
  • thermal conductivity of the thermally conductive gel is 3.0-15 W/mK, and the viscosity is 200-500 Pa.s.
  • Another aspect of the present invention provides a preparation method of any of the above thermally conductive gels, comprising the following steps:
  • metal hybrid thermal conductive fillers with large, medium and small particle sizes, wherein the large particle size is 10-30 ⁇ m; the medium particle size is 1-10 ⁇ m, and the small particle size is 500 nm-1.0 ⁇ m;
  • the metal hybrid thermally conductive filler is compounded in particle size, and the metal hybrid thermally conductive fillers with three particle sizes of large, medium and small are weighed and premixed according to the weight ratio of 8:2:1-5:4:1;
  • the composite metal hybrid thermal conductive filler obtained in step 1) is stirred and mixed with organopolysiloxane containing at least two vinyl groups, polyorganosiloxane with at least two silicon-bonded hydrogen atoms, catalyst and inhibitor
  • the thermally conductive gel is obtained in 30-60 minutes, preferably, the mixing temperature is 25-50°C.
  • Another aspect of the present invention provides a thermally conductive gel layer, which is obtained by curing the thermally conductive gel prepared above to obtain the thermally conductive gel layer;
  • the curing temperature is 100-150° C.
  • the curing time is 1-2 hours.
  • the present invention has the following beneficial effects:
  • the nanometer metal filler is loaded on the surface of a metal heat-conducting filler to reduce the interface thermal resistance between the metal heat-conducting fillers, so that the heat-conducting gel has high thermal conductivity.
  • the thermally conductive gel prepared by the invention has low viscosity (200-500 Pa.s), so that it can be operated by a glue dispenser, and the production efficiency is improved.
  • the thermally conductive gel provided by the invention has high thermal conductivity (15W/mK), low viscosity (200-500Pa.s), simple preparation method and easy operation, and is a novel thermally conductive gel with large-scale industrial production prospects.
  • FIG. 1 is a schematic structural diagram of the metal hybrid thermal conductive filler of the present invention.
  • Preparation of large particle size aluminum powder@silver hybrid thermal conductive filler Add aluminum powder (100 g) with a particle size of 30 ⁇ m into anhydrous ethanol solvent, and then add 0.5 g N,N-dimethylformamide and stir evenly to obtain the first solution; dissolve 2.0 g of AgNO 3 in 20 mL of anhydrous ethanol to obtain the second solution; adopt the method of dropwise addition, add the second solution to the first solution at 25°C under stirring, and complete the dropwise addition for 2 hours. Then, the reaction was kept for 2 h to obtain large particle size aluminum powder@silver metal hybrid thermal conductive filler.
  • Preparation of medium-sized aluminum powder@silver hybrid thermally conductive filler Add aluminum powder (100 g) with a particle size of 10 ⁇ m into anhydrous ethanol solvent, and then add 0.5 g of sodium borohydride and stir to obtain the first solution; 2.0 g of AgNO 3 was dissolved in 20 mL of anhydrous ethanol to obtain the second solution; the second solution was added to the first solution at 25 ° C under stirring by dropwise addition, the dropwise addition was completed for 2 h, and then the reaction was incubated for 2 h to obtain Medium particle size aluminum powder@silver metal hybrid thermal conductive filler.
  • Preparation of small particle size aluminum powder@silver hybrid thermally conductive filler add aluminum powder (100g) with a particle size of 1.0 ⁇ m into anhydrous ethanol solvent, then add 0.5g ascorbic acid and stir to obtain the first solution; add 2.0g AgNO 3. Dissolve in 20 mL of absolute ethanol to obtain the second solution; adopt the method of dropwise addition, add the second solution to the first solution at 25 ° C under stirring, complete the dropwise addition for 2 hours, and then keep the reaction for 2 hours to obtain a small solution. Particle size aluminum powder@silver metal hybrid thermal conductive filler.
  • Vinyl terminated polydimethylsiloxane (Ambiya Specialty Silicones (Nantong) Co., Ltd., model Andisi VS100, viscosity: 100 cst, vinyl content 0.37 mmoles/g) 100 parts, 2 silicon-bonded Hydrogen atomic polyorganosiloxane (Ambiya Special Silicone (Nantong) Co., Ltd., model Andisi XL-11, viscosity: 45cst, silicon-hydrogen content 4.35mmoles/g) 10 parts, hydrosilylation catalyst platinum ring 10 parts of vinylmethylsiloxane complex, 0.5 part of hydrosilylation reaction inhibitor 1-ethynyl-1-cyclohexanol, 1.0 part of silane coupling agent decyltrimethoxysilane, according to the weight ratio of 8 :2:1 compounded large, medium and small metal aluminum powder @ silver metal hybrid thermal conductive filler 1200 parts, mixed in a high-speed mixer for 30 minutes, the
  • Preparation of large particle size aluminum powder@copper hybrid thermally conductive filler Add aluminum powder (100g) with a particle size of 30 ⁇ m into anhydrous ethanol solvent, then add 0.5g N,N-dimethylformamide and stir evenly to obtain the first solution; dissolve 4.0 g of Cu(NO 3 ) 2 in 20 mL of absolute ethanol to obtain a second solution; add the second solution to the first solution at 25°C under stirring by dropwise addition for 2 h After the dropwise addition was completed, the reaction was kept for 2 hours to obtain a large particle size aluminum powder@silver metal hybrid thermal conductive filler.
  • Preparation of medium-sized aluminum powder@copper hybrid thermally conductive filler Add aluminum powder (100 g) with a particle size of 10 ⁇ m into anhydrous ethanol solvent, then add 0.5 g of sodium borohydride and stir to obtain the first solution; 2.0 g of Cu(NO 3 ) 2 was dissolved in 20 mL of absolute ethanol to obtain the second solution; the second solution was added dropwise to the first solution at 25°C under stirring, and the dropwise addition was completed for 2 h, and then the temperature was kept warm. The reaction was carried out for 2 h, and the aluminum powder@silver metal hybrid thermal conductive filler with medium particle size was obtained.
  • Preparation of small particle size aluminum powder@copper hybrid thermally conductive filler add aluminum powder (100 g) with a particle size of 1.0 ⁇ m into anhydrous ethanol solvent, then add 0.5 g ascorbic acid and stir to obtain the first solution; add 2.0 g of Cu (NO 3 ) 2 was dissolved in 20 mL of anhydrous ethanol to obtain the second solution; the second solution was added to the first solution at 25° C. under stirring by dropwise addition, and the dropwise addition was completed for 2 h, and then the reaction was incubated for a period of time. 2h, the aluminum powder@silver metal hybrid thermal conductive filler with small particle size was obtained.
  • Vinyl terminated polydimethylsiloxane (Ambiya Specialty Silicones (Nantong) Co., Ltd., model Andisi VS100, viscosity: 100 cst, vinyl content 0.37 mmoles/g) 100 parts, 2 silicon-bonded Hydrogen atomic polyorganosiloxane (Ambiya Special Silicone (Nantong) Co., Ltd., model Andisi XL-11, viscosity: 45cst, silicon-hydrogen content 4.35mmoles/g) 50 parts, hydrosilylation catalyst platinum ring 0.1 part of vinylmethylsiloxane complex, 0.1 part of hydrosilylation inhibitor 2-methyl-3-butyn-2-ol, 1.0 part of silane coupling agent decyltrimethoxysilane, according to 900 parts of large, medium and small metal aluminum powder@copper metal hybrid thermally conductive fillers in a weight ratio of 5:4:1 were mixed in a high-speed mixer for 60 minutes at a mixing temperature of
  • Vinyl terminated polydimethylsiloxane (Ambiya Specialty Silicones (Nantong) Co., Ltd., model Andisi VS100, viscosity: 100 cst, vinyl content 0.37 mmoles/g) 100 parts, 2 silicon-bonded Hydrogen atom polyorganosiloxane (Ambiya Special Silicone (Nantong) Co., Ltd., model Andisi XL-11, viscosity: 45cst, silicon-hydrogen content 4.35mmoles/g) 100 parts, hydrosilylation catalyst platinum two 10 parts of vinyltetramethyldisiloxane dimethyl fumarate complex, 0.3 part of hydrosilylation inhibitor 2-phenyl-3-butyn-2-ol, silane coupling agent decyl 1.0 part of trimethoxysilane, 1000 parts of large, medium and small metal aluminum powder @ silver metal hybrid thermal conductive filler according to the weight ratio of 7:2:1, mixed in a high-speed mixer for 60 minutes, and the
  • Vinyl terminated polydimethylsiloxane (Ambiya Specialty Silicones (Nantong) Co., Ltd., model Andisi VS500, viscosity: 500 cst, vinyl content 0.15 mmoles/g) 100 parts, 2 silicon-bonded Hydrogen atom polyorganosiloxane (Ambiya Special Silicone (Nantong) Co., Ltd., model Andisi XL-13, viscosity: 100cst, silicon-hydrogen content 3.80mmoles/g) 100 parts, hydrosilylation catalyst platinum two 10 parts of vinyltetramethyldisiloxane dimethyl fumarate complex, 0.3 part of hydrosilylation inhibitor 2-phenyl-3-butyn-2-ol, silane coupling agent decyl 1.0 part of trimethoxysilane, 1200 parts of large, medium and small metal aluminum powder @ copper metal hybrid thermal conductive filler compounded in a weight ratio of 6:2:1, mixed in a high-speed mixer for 60
  • Vinyl terminated polydimethylsiloxane (Ambiya Specialty Silicones (Nantong) Co., Ltd., model Andisi VS100, viscosity: 100 cst, vinyl content 0.37 mmoles/g) 100 parts, 2 silicon-bonded Hydrogen atomic polyorganosiloxane (Ambiya Special Silicone (Nantong) Co., Ltd., model Andisi XL-13, viscosity: 100cst, silicon-hydrogen content 3.80mmoles/g) 50 parts, hydrosilylation catalyst platinum two 10 parts of vinyltetramethyldisiloxane dimethyl fumarate complex, 0.3 part of hydrosilylation inhibitor 2-phenyl-3-butyn-2-ol, silane coupling agent decyl 1.0 part of trimethoxysilane, 800 parts of large, medium and small metal aluminum powder @ copper metal hybrid thermal conductive filler in a weight ratio of 6:3:1, mixed in a high-speed mixer for 60 minutes, and the
  • Vinyl terminated polydimethylsiloxane (Ambiya Specialty Silicones (Nantong) Co., Ltd., model Andisi VS100, viscosity: 100 cst, vinyl content 0.37 mmoles/g) 100 parts, 2 silicon-bonded Hydrogen atomic polyorganosiloxane (Ambiya Special Silicone (Nantong) Co., Ltd., model Andisi XL-11, viscosity: 45cst, silicon-hydrogen content 4.35mmoles/g) 10 parts, hydrosilylation catalyst platinum ring 10 parts of vinylmethylsiloxane complex, 0.5 part of hydrosilylation reaction inhibitor 1-ethynyl-1-cyclohexanol, 1.0 part of silane coupling agent decyltrimethoxysilane, the large particle size 1200 parts of aluminum powder (30 ⁇ m), medium particle size aluminum powder (10 ⁇ m) and small particle size aluminum powder (1.0 ⁇ m) were mixed in a weight ratio of 8:2:
  • Comparative example 2 Large particle size aluminum powder @ silver hybrid thermal conductive filler filling
  • Vinyl terminated polydimethylsiloxane (Ambiya Specialty Silicones (Nantong) Co., Ltd., model Andisi VS100, viscosity: 100 cst, vinyl content 0.37 mmoles/g) 100 parts, 2 silicon-bonded Hydrogen atomic polyorganosiloxane (Ambiya Special Silicone (Nantong) Co., Ltd., model Andisi XL-11, viscosity: 45cst, silicon-hydrogen content 4.35mmoles/g) 10 parts, hydrosilylation catalyst platinum ring 10 parts of vinylmethylsiloxane complex, 0.5 part of hydrosilylation inhibitor 1-ethynyl-1-cyclohexanol, 1.0 part of silane coupling agent decyltrimethoxysilane, large particle size aluminum Powder @ silver hybrid thermal conductive filler (30 ⁇ m) 1200 parts. Mix in a high-speed mixer for 30 minutes at a mixing temperature of 25° C. to obtain a thermally conductive
  • Vinyl terminated polydimethylsiloxane (Ambiya Specialty Silicones (Nantong) Co., Ltd., model Andisi VS100, viscosity: 100 cst, vinyl content 0.37 mmoles/g) 100 parts, 2 silicon-bonded Hydrogen atomic polyorganosiloxane (Ambiya Special Silicone (Nantong) Co., Ltd., model Andisi XL-11, viscosity: 45cst, silicon-hydrogen content 4.35mmoles/g) 10 parts, hydrosilylation catalyst platinum ring 10 parts of vinylmethylsiloxane complex, 0.5 part of hydrosilylation inhibitor 1-ethynyl-1-cyclohexanol, 1.0 part of silane coupling agent decyltrimethoxysilane, large particle size aluminum Powder @ silver hybrid thermal conductive filler (15um) 1200 copies. Mix in a high-speed mixer for 30 minutes at a mixing temperature of 25° C. to obtain a thermally conductive gel
  • Vinyl terminated polydimethylsiloxane (Ambiya Specialty Silicones (Nantong) Co., Ltd., model Andisi VS100, viscosity: 100 cst, vinyl content 0.37 mmoles/g) 100 parts, 2 silicon-bonded Hydrogen atomic polyorganosiloxane (Ambiya Special Silicone (Nantong) Co., Ltd., model Andisi XL-11, viscosity: 45cst, silicon-hydrogen content 4.35mmoles/g) 10 parts, hydrosilylation catalyst platinum ring 10 parts of vinylmethylsiloxane complex, 0.5 part of hydrosilylation inhibitor 1-ethynyl-1-cyclohexanol, 1.0 part of silane coupling agent decyltrimethoxysilane, small particle size aluminum Powder @ silver hybrid thermal conductive filler (1.0um) 1200 parts. Mix in a high-speed mixer for 30 minutes at a mixing temperature of 25° C. to obtain a thermally conductive
  • FIG. 1 The schematic diagram of the structure of the metal hybrid thermal conductive filler of the present invention is shown in Figure 1. Since there are small metal fillers on the surface of the large metal filler, a strawberry-shaped metal hybrid particle is formed, which reduces the interfacial heat between the filler and the filler. resistance, so that the thermal conductive gel has high thermal conductivity and low viscosity.
  • the standard test method for measuring vertical heat conduction by steady-state method is LW-9389TIM resistance conductivity measuring instrument.
  • the specific steps are: place the thermal interface composite material between the instrument bars, and establish a stable heat flow through the components; One or more sites monitor the temperature in the meter strip along its length; from the temperature readings obtained, the temperature difference across the interface is calculated and used to determine the thermal conductivity of the interface.
  • the viscosity of the thermally conductive gel was measured using a rheometer.
  • thermal conductivity and viscosity of the thermally conductive gels provided in Examples 1 to 5 and Comparative Examples 1 to 4 were tested according to the above method, and the test results are shown in Table 1:
  • the present invention illustrates the thermally conductive gel provided by the present invention and the process method for its preparation through the above-mentioned embodiments, but the present invention is not limited to the above-mentioned process steps, that is, it does not mean that the present invention must rely on the above-mentioned process steps to be implemented .
  • Those skilled in the art should understand that any improvement of the present invention, the equivalent replacement of the selected raw materials of the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the protection scope and disclosure scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种导热凝胶及其制备方法,所述导热凝胶的组份包括金属杂化导热填料,所述金属杂化导热填料为金属填料表面负载纳米金属填料。金属杂化导热填料可以降低金属导热填料之间的界面热阻,实现导热凝胶具有高的导热系数。

Description

一种导热凝胶及其制备方法 技术领域
本发明属于高分子复合材料技术领域,具体涉及一种导热凝胶及其制备方法。
背景技术
对高性能电子设备的要求越来越高,现代电子器件的高封装和高功率密度组件,不可避免地导致热故障。有效散热成为影响电子器件寿命和性能的关键技术。热界面材料是帮助解决散热问题的最佳选择。热界面材料分为导热凝胶、导热垫片、导热膏、导热相变等形式。导热凝胶是可固化的导热膏和可点胶的导热垫片,具有易操作和界面接触热阻低等优点,被认为是满足未来热界面材料的发展需求的材料,受到了国内外产业界的广泛关注。
CN 109415619 A公开了一种热界面材料,其包含至少一种聚硅氧烷;至少一种导热填料;以及至少一种含有胺和烷基官能团两者的粘附促进剂。旨在解决导热凝胶产品在温度循环测试中有滴落和裂化问题,包括产品可潜在地更可能在极端情况下失效。但是该专利未提及导热系数值。
CN 105419339A公开了一种高性能硅基导热凝胶及其制备方法。该硅基导热凝胶由有机硅凝胶、含氢硅油、羟基硅油和导热粉体组成。导热粉体选用不同种类的粉体并按大、中、小三种粒径复配而成。但是该专利得到的导热凝胶的导热系数不超过4.5W/mK,且粘度大。
CN106398226A公开了一种导热硅凝胶及其制备方法,包括基础聚合物、交联剂、填料、硅烷偶联剂。所述技术方案能够获得较目前市面上普遍使用的硅脂、硅膏及导热泥稳定性更高的热界面材料,解决目前市面上普遍使用的硅脂、硅膏及导热泥在高温下长期使用会变干的问题,进而保证导热界面材料长期使用的导热效率。但是,所述导热凝胶的导热系数不超过4.0W/mK。
基于此,开发一种导热系数高的导热凝胶,是本领域亟待解决的问题。
发明内容
为了解决上述背景技术中所提出的问题,本发明的目的在于提供一种导热凝胶及其制备方法。
为了达到上述目的,本发明所采用的技术方案为:一方面,本发明提供了一种金属杂化导热填料,所述金属杂化导热填料为金属填料表面负载纳米金属填料;
所述金属填料选自铝粉、银粉、铜粉中的至少一种;所述纳米金属填料选自铝粉、银粉、 铜粉中的至少一种。
进一步地,所述纳米金属填料、金属填料的质量比为5:95-20:80;
优选地,所述金属填料的粒径为0.5-30μm;所述纳米金属填料的粒径为0.05-500nm。
另一方面,本发明提供了一种上述任一所述的金属杂化导热填料的制备方法,通过化学还原方法,在一种金属填料表面沉积纳米金属填料;
优选地,所述制备方法具体包括:将金属填料加入无水乙醇中,然后加入还原剂搅拌均匀得到第一溶液;将纳米金属填料的前驱体加入无水乙醇中搅拌均匀得到第二溶液;采用滴加的方式,在搅拌状态下将第二溶液加入到25-90℃的第一溶液中,滴加完毕后继续反应1-6小时,得到金属杂化导热填料;更优选地,所述纳米金属填料的前驱体为Al(NO 3) 3、AgNO 3、Cu(NO 3) 2中的至少一种,所述还原剂选自N,N-二甲基甲酰胺、硼氢化钠、抗坏血酸、水合肼中的至少一种。
另一方面,本发明提供了一种上述任一所述的金属杂化导热填料在制备导热凝胶中的应用。
再一方面,本发明提供了一种导热凝胶,由以下质量份的原料组份制成:
(A)含有至少两个乙烯基的有机聚硅氧烷100份;
(B)具有至少2个硅键合的氢原子的聚有机硅氧烷10-90份;
(C)硅氢加成反应催化剂0.1-10份;
(D)硅氢加成反应抑制剂0.1-0.5份;
(E)金属杂化导热填料800-1200份;
优选地,所述金属杂化导热填料由大、中、小三种粒径的上述所述的金属杂化导热填料按照8:2:1-5:4:1的重量比组成,其中大粒径为10-30μm;中粒径为1-10μm,小粒径为500nm-1.0μm;
优选地,所述金属杂化导热填料的质量分数为80%-91%,优选为85%-91%。
进一步地,所述含有至少两个乙烯基的有机聚硅氧烷,其分子结构式为
Figure PCTCN2021108575-appb-000001
其中R为甲基(CH 3)、苯基(C 6H 5)、乙基(C 2H 5)中的至少一种(即分子结构式中的R可以相同也可以不相同),m=0-100,n=1-2000;
优选地,所述含有至少两个乙烯基的有机聚硅氧烷25℃下粘度为20-1000mPa.s;
优选地,所述具有至少2个硅键合的氢原子的聚有机硅氧烷,其分子结构式为
Figure PCTCN2021108575-appb-000002
其中R为氢原子,或,氢原子和甲基(CH 3)、苯基(C 6H 5)、乙基(C 2H 5)中的至少一种(即分子结构式中的R可以相同也可以不相同);
优选地,所述具有至少2个硅键合的氢原子的聚有机硅氧烷25℃下粘度为20-100mPa.s。
进一步地,所述硅氢加成反应催化剂为能够引发组分(A)和(B)硅氢加成反应的硅氢加成反应催化剂;优选地,所述硅氢加成反应催化剂选自含铂催化剂;
优选地,所述含铂催化剂的结构通式为
Figure PCTCN2021108575-appb-000003
更优选地,所述含铂催化剂包括铂环乙烯基甲基硅氧烷络合物、铂羰基环乙烯基甲基硅氧烷络合物、铂二乙烯基四甲基二硅氧烷二甲基富马酸酯络合物、铂二乙烯基四甲基二硅氧烷二甲基马来酸酯络合物中的至少一种;
优选地,所述硅氢加成反应抑制剂为能够抑制组分(A)和(B)硅氢加成反应的硅氢加成反应抑制剂;优选地,所述硅氢加成反应抑制剂选自炔醇;
优选地,所述炔醇包括1-乙炔基-1-环己醇、2-甲基-3-丁炔-2-醇、2-苯基-3-丁炔-2-醇、2-乙炔基-异丙醇、2-乙炔基-丁烷-2-醇、3,5-二甲基-1-己炔-3-醇、甲烷硅基化炔醇中的至少一种。
进一步地,还包括原料组份(F)添加剂;
优选地,所述添加剂包括硅烷偶联剂;
优选地,所述添加剂还包括增塑剂、阻燃剂和着色剂;
优选地,所述添加剂包括增塑剂0-1.0质量份、硅烷偶联剂0.5-1.0质量份、阻燃剂0-1.0质量份和着色剂0-0.5质量份。
进一步地,所述导热凝胶的导热系数在3.0-15W/mK,粘度在200-500Pa.s。
本发明再一方面提供了一种上述任一所述的导热凝胶的制备方法,包括以下步骤:
1)金属杂化导热填料的复配(通过复配,提高填料的含量,进而进一步达到提高导热系数,降低粘度的效果)
制备大、中、小三种粒径的金属杂化导热填料,其中大粒径为10-30μm;中粒径为1-10μm,小粒径为500nm-1.0μm;
将金属杂化导热填料进行粒径复配,按照8:2:1-5:4:1的重量比,称取大、中、小三种粒 径的金属杂化导热填料预混合;
2)无溶剂混合
将步骤1)所得的复配金属杂化导热填料与含有至少两个乙烯基的有机聚硅氧烷、具有至少2个硅键合的氢原子的聚有机硅氧烷、催化剂、抑制剂搅拌混合30-60分钟得到所述导热凝胶,优选地,所述混合温度25-50℃。
本发明再一方面提供了一种导热凝胶层,将上述制备得到的导热凝胶固化得到导热凝胶层;
优选地,所述固化的温度为100-150℃,固化时间为1-2小时。
相对于现有技术,本发明具有以下有益效果:
本发明通过在一种金属导热填料表面负载纳米金属填料,降低金属导热填料之间的界面热阻,实现导热凝胶具有高的导热系数。同时本发明制备的导热凝胶具有低的粘度(200-500Pa.s),使其可以采用点胶机进行操作,提高生产效率。本发明提供的导热凝胶导热系数高(15W/mK)、粘度低(200-500Pa.s),制备方法简单、易于操作,是一种具有大规模工业化生产前景的新型导热凝胶。
附图说明
图1为本发明金属杂化导热填料的结构示意图。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
大粒径铝粉@银杂化导热填料的制备:将粒径为30μm的铝粉(100g)加入无水乙醇溶剂中,然后加入0.5g N,N-二甲基甲酰胺搅拌均匀得到第一溶液;将2.0g的AgNO 3溶解在20mL的无水乙醇中得到第二溶液;采用滴加的方式,在搅拌状态下将第二溶液加入到25℃的第一溶液中,2h滴加完毕,然后保温反应2h,得到大粒径的铝粉@银金属杂化导热填料。
中粒径铝粉@银杂化导热填料的制备:将粒径为10μm的铝粉(100g)加入无水乙醇溶剂中,然后加入0.5g硼氢化钠搅拌均匀得到第一溶液;将2.0g的AgNO 3溶解在20mL的无水乙醇中得到第二溶液;采用滴加的方式,在搅拌状态下将第二溶液加入到25℃的第一溶液中,2h滴加完毕,然后保温反应2h,得到中粒径的铝粉@银金属杂化导热填料。
小粒径铝粉@银杂化导热填料的制备:将粒径为1.0μm的铝粉(100g)加入无水乙醇溶 剂中,然后加入0.5g抗坏血酸搅拌均匀得到第一溶液;将2.0g的AgNO 3溶解在20mL的无水乙醇中得到第二溶液;采用滴加的方式,在搅拌状态下将第二溶液加入到25℃的第一溶液中,2h滴加完毕,然后保温反应2h,得到小粒径的铝粉@银金属杂化导热填料。
导热凝胶的制备:
乙烯基封端的聚二甲基硅氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi VS100,粘度:100cst,乙烯基含量0.37mmoles/g)100份、2个硅键合的氢原子的聚有机硅氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi XL-11,粘度:45cst,硅氢含量4.35mmoles/g)10份、硅氢加成催化剂铂环乙烯基甲基硅氧烷络合物10份、硅氢加成反应抑制剂1-乙炔基-1-环己醇0.5份,硅烷偶联剂癸基三甲氧基硅烷1.0份,按照重量比8:2:1复配的大、中、小金属铝粉@银金属杂化导热填料1200份,在高速混料机中混合30分钟,混合温度为25℃,得到导热凝胶。将上述制备得到的导热凝胶在150℃固化1小时,得到导热凝胶层。
实施例2
大粒径铝粉@铜杂化导热填料的制备:将粒径为30μm的铝粉(100g)加入无水乙醇溶剂中,然后加入0.5g N,N-二甲基甲酰胺搅拌均匀得到第一溶液;将4.0g的Cu(NO 3) 2溶解在20mL的无水乙醇中得到第二溶液;采用滴加的方式,在搅拌状态下将第二溶液加入到25℃的第一溶液中,2h滴加完毕,然后保温反应2h,得到大粒径的铝粉@银金属杂化导热填料。
中粒径铝粉@铜杂化导热填料的制备:将粒径为10μm的铝粉(100g)加入无水乙醇溶剂中,然后加入0.5g硼氢化钠搅拌均匀得到第一溶液;将2.0g的Cu(NO 3) 2溶解在20mL的无水乙醇中得到第二溶液;采用滴加的方式,在搅拌状态下将第二溶液加入到25℃的第一溶液中,2h滴加完毕,然后保温反应2h,得到中粒径的铝粉@银金属杂化导热填料。
小粒径铝粉@铜杂化导热填料的制备:将粒径为1.0μm的铝粉(100g)加入无水乙醇溶剂中,然后加入0.5g抗坏血酸搅拌均匀得到第一溶液;将2.0g的Cu(NO 3) 2溶解在20mL的无水乙醇中得到第二溶液;采用滴加的方式,在搅拌状态下将第二溶液加入到25℃的第一溶液中,2h滴加完毕,然后保温反应2h,得到小粒径的铝粉@银金属杂化导热填料。
导热凝胶的制备:
乙烯基封端的聚二甲基硅氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi VS100,粘度:100cst,乙烯基含量0.37mmoles/g)100份、2个硅键合的氢原子的聚有机硅氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi XL-11,粘度:45cst,硅氢含量4.35mmoles/g)50份、硅氢加成催化剂铂环乙烯基甲基硅氧烷络合物0.1份、硅氢加成反应 抑制剂2-甲基-3-丁炔-2-醇0.1份,硅烷偶联剂癸基三甲氧基硅烷1.0份,按照重量比5:4:1复配的大、中、小金属铝粉@铜金属杂化导热填料900份,在高速混料机中混合60分钟,混合温度为25℃,得到导热凝胶。将上述制备得到的导热凝胶在100℃固化2小时,得到导热凝胶层。
实施例3
铝粉@银杂化导热填料的制备与实施例1一样。
导热凝胶的制备:
乙烯基封端的聚二甲基硅氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi VS100,粘度:100cst,乙烯基含量0.37mmoles/g)100份、2个硅键合的氢原子的聚有机硅氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi XL-11,粘度:45cst,硅氢含量4.35mmoles/g)100份、硅氢加成催化剂铂二乙烯基四甲基二硅氧烷二甲基富马酸酯络合物10份、硅氢加成反应抑制剂2-苯基-3-丁炔-2-醇0.3份,硅烷偶联剂癸基三甲氧基硅烷1.0份,按照重量比7:2:1复配的大、中、小金属铝粉@银金属杂化导热填料1000份,在高速混料机中混合60分钟,混合温度为25℃,得到导热凝胶。将上述制备得到的导热凝胶在100℃固化2小时,得到导热凝胶层。
实施例4
铝粉@铜杂化导热填料的制备与实施例2一样。
导热凝胶的制备:
乙烯基封端的聚二甲基硅氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi VS500,粘度:500cst,乙烯基含量0.15mmoles/g)100份、2个硅键合的氢原子的聚有机硅氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi XL-13,粘度:100cst,硅氢含量3.80mmoles/g)100份、硅氢加成催化剂铂二乙烯基四甲基二硅氧烷二甲基富马酸酯络合物10份、硅氢加成反应抑制剂2-苯基-3-丁炔-2-醇0.3份,硅烷偶联剂癸基三甲氧基硅烷1.0份,按照重量比6:2:1复配的大、中、小金属铝粉@铜金属杂化导热填料1200份,在高速混料机中混合60分钟,混合温度为25℃,得到导热凝胶。将上述制备得到的导热凝胶在100℃固化2小时,得到导热凝胶层。
实施例5
铝粉@银杂化导热填料的制备与实施例1一样。
导热凝胶的制备:
乙烯基封端的聚二甲基硅氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi  VS100,粘度:100cst,乙烯基含量0.37mmoles/g)100份、2个硅键合的氢原子的聚有机硅氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi XL-13,粘度:100cst,硅氢含量3.80mmoles/g)50份、硅氢加成催化剂铂二乙烯基四甲基二硅氧烷二甲基富马酸酯络合物10份、硅氢加成反应抑制剂2-苯基-3-丁炔-2-醇0.3份,硅烷偶联剂癸基三甲氧基硅烷1.0份,按照重量比6:3:1复配的大、中、小金属铝粉@铜金属杂化导热填料800份,在高速混料机中混合60分钟,混合温度为25℃,得到导热凝胶。将上述制备得到的导热凝胶在100℃固化2小时,得到导热凝胶层。
对比例1 普通铝粉填充
乙烯基封端的聚二甲基硅氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi VS100,粘度:100cst,乙烯基含量0.37mmoles/g)100份、2个硅键合的氢原子的聚有机硅氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi XL-11,粘度:45cst,硅氢含量4.35mmoles/g)10份、硅氢加成催化剂铂环乙烯基甲基硅氧烷络合物10份、硅氢加成反应抑制剂1-乙炔基-1-环己醇0.5份,硅烷偶联剂癸基三甲氧基硅烷1.0份,将大粒径铝粉(30μm)、中粒径铝粉(10μm)和小粒径铝粉(1.0μm)按照重量比8:2:1混合1200份。在高速混料机中混合30分钟,混合温度为25℃,得到导热凝胶。将上述制备得到的导热凝胶在150℃固化1小时,得到导热凝胶层。
对比例2 大粒径铝粉@银杂化导热填料填充
大粒径铝粉@银杂化导热填料的制备与实施例1一样。
乙烯基封端的聚二甲基硅氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi VS100,粘度:100cst,乙烯基含量0.37mmoles/g)100份、2个硅键合的氢原子的聚有机硅氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi XL-11,粘度:45cst,硅氢含量4.35mmoles/g)10份、硅氢加成催化剂铂环乙烯基甲基硅氧烷络合物10份、硅氢加成反应抑制剂1-乙炔基-1-环己醇0.5份,硅烷偶联剂癸基三甲氧基硅烷1.0份,大粒径铝粉@银杂化导热填料(30μm)1200份。在高速混料机中混合30分钟,混合温度为25℃,得到导热凝胶。将上述制备得到的导热凝胶在150℃固化1小时,得到导热凝胶层。
对比例3 中粒径铝粉@银杂化导热填料填充
中粒径铝粉@银杂化导热填料的制备与实施例1一样。
乙烯基封端的聚二甲基硅氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi VS100,粘度:100cst,乙烯基含量0.37mmoles/g)100份、2个硅键合的氢原子的聚有机硅 氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi XL-11,粘度:45cst,硅氢含量4.35mmoles/g)10份、硅氢加成催化剂铂环乙烯基甲基硅氧烷络合物10份、硅氢加成反应抑制剂1-乙炔基-1-环己醇0.5份,硅烷偶联剂癸基三甲氧基硅烷1.0份,大粒径铝粉@银杂化导热填料(15um)1200份。在高速混料机中混合30分钟,混合温度为25℃,得到导热凝胶。将上述制备得到的导热凝胶在150℃固化1小时,得到导热凝胶层。
对比例4 小粒径铝粉@银杂化导热填料填充
小粒径铝粉@银杂化导热填料的制备与实施例1一样。
乙烯基封端的聚二甲基硅氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi VS100,粘度:100cst,乙烯基含量0.37mmoles/g)100份、2个硅键合的氢原子的聚有机硅氧烷(安必亚特种有机硅(南通)有限公司,型号为Andisi XL-11,粘度:45cst,硅氢含量4.35mmoles/g)10份、硅氢加成催化剂铂环乙烯基甲基硅氧烷络合物10份、硅氢加成反应抑制剂1-乙炔基-1-环己醇0.5份,硅烷偶联剂癸基三甲氧基硅烷1.0份,小粒径铝粉@银杂化导热填料(1.0um)1200份。在高速混料机中混合30分钟,混合温度为25℃,得到导热凝胶。将上述制备得到的导热凝胶在150℃固化1小时,得到导热凝胶层。
本发明金属杂化导热填料的结构示意图如图1所示,由于在大的金属填料表面,存在小的金属填料,形成一种草莓状金属杂化颗粒,降低了填料与填料之间的界面热阻,从而实现导热凝胶具有高的导热系数和低的粘度。
(1)导热系数测试:
稳态法测定垂直方向导热的标准试验方法,测试仪器为LW-9389TIM电阻电导率测量仪,具体步骤为:将热界面复合材料放置于仪表棒之间,通过组件建立稳定的热流;然后在两个或两个以上的位点沿其长度监测电表条中的温度;根据得到的温度读数计算出跨越界面的温度差,并用来确定界面的导热系数。
(2)粘度测量
采用流变仪测量导热凝胶的粘度。
根据上述方法测试实施例1~5、对比例1~4提供的导热凝胶的导热系数、粘度,测试结果如表1所示:
表1
Figure PCTCN2021108575-appb-000004
Figure PCTCN2021108575-appb-000005
申请人声明,本发明通过上述实施例来说明本发明提供的导热凝胶及其制备的工艺方法,但本发明并不局限于上述工艺步骤,即不意味着本发明必须依赖上述工艺步骤才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种金属杂化导热填料,其特征在于,所述金属杂化导热填料为金属填料表面负载纳米金属填料;
    所述金属填料选自铝粉、银粉、铜粉中的至少一种;所述纳米金属填料选自铝粉、银粉、铜粉中的至少一种。
  2. 根据权利要求1所述的金属杂化导热填料,其特征在于,所述纳米金属填料、金属填料的质量比为5:95-20:80;
    优选地,所述金属填料的粒径为0.5-30μm;所述纳米金属填料的粒径为0.05-500nm。
  3. 权利要求1或2所述的金属杂化导热填料的制备方法,其特征在于,通过化学还原方法,在一种金属填料表面沉积纳米金属填料;
    优选地,所述制备方法具体包括:将金属填料加入无水乙醇中,然后加入还原剂搅拌均匀得到第一溶液;将纳米金属填料的前驱体加入无水乙醇中搅拌均匀得到第二溶液;采用滴加的方式,在搅拌状态下将第二溶液加入到25-90℃的第一溶液中,滴加完毕后继续反应1-6小时,得到金属杂化导热填料;更优选地,所述纳米金属填料的前驱体为Al(NO 3) 3、AgNO 3、Cu(NO 3) 2中的至少一种,所述还原剂选自N,N-二甲基甲酰胺、硼氢化钠、抗坏血酸、水合肼中的至少一种。
  4. 权利要求1或2所述的金属杂化导热填料在制备导热凝胶中的应用。
  5. 一种导热凝胶,其特征在于,由以下质量份的原料组份制成:
    (A)含有至少两个乙烯基的有机聚硅氧烷100份;
    (B)具有至少2个硅键合的氢原子的聚有机硅氧烷10-90份;
    (C)硅氢加成反应催化剂0.1-10份;
    (D)硅氢加成反应抑制剂0.1-0.5份;
    (E)金属杂化导热填料100-1200份;
    优选地,所述金属杂化导热填料由大、中、小三种粒径的权利要求1或2所述的金属杂化导热填料按照8:2:1-5:4:1的重量比组成,其中大粒径为10-30μm;中粒径为1-10μm,小粒径为500nm-1.0μm;
    优选地,所述金属杂化导热填料的质量分数为80%-91%,优选为85%-91%。
  6. 根据权利要求5所述的导热凝胶,其特征在于,所述含有至少两个乙烯基的有机聚硅氧烷,其分子结构式为
    Figure PCTCN2021108575-appb-100001
    其中R为甲基、苯基、 乙基中的至少一种,m=0-100,n=1-2000;
    优选地,所述含有至少两个乙烯基的有机聚硅氧烷25℃下粘度为20-1000mPa.s;
    优选地,所述具有至少2个硅键合的氢原子的聚有机硅氧烷,其分子结构式为
    Figure PCTCN2021108575-appb-100002
    其中R为氢原子,或,氢原子和甲基、苯基、乙基中的至少一种;
    优选地,所述具有至少2个硅键合的氢原子的聚有机硅氧烷25℃下粘度为20-100mPa.s。
  7. 根据权利要求5所述的导热凝胶,其特征在于,所述硅氢加成反应催化剂为能够引发组分(A)和(B)硅氢加成反应的硅氢加成反应催化剂;优选地,所述硅氢加成反应催化剂选自含铂催化剂;
    优选地,所述含铂催化剂的结构通式为
    Figure PCTCN2021108575-appb-100003
    更优选地,所述含铂催化剂包括铂环乙烯基甲基硅氧烷络合物、铂羰基环乙烯基甲基硅氧烷络合物、铂二乙烯基四甲基二硅氧烷二甲基富马酸酯络合物、铂二乙烯基四甲基二硅氧烷二甲基马来酸酯络合物中的至少一种;
    优选地,所述硅氢加成反应抑制剂为能够抑制组分(A)和(B)硅氢加成反应的硅氢加成反应抑制剂;优选地,所述硅氢加成反应抑制剂选自炔醇;
    优选地,所述炔醇包括1-乙炔基-1-环己醇、2-甲基-3-丁炔-2-醇、2-苯基-3-丁炔-2-醇、2-乙炔基-异丙醇、2-乙炔基-丁烷-2-醇、3,5-二甲基-1-己炔-3-醇、甲烷硅基化炔醇中的至少一种。
  8. 根据权利要求5所述的导热凝胶,其特征在于,还包括原料组份(F)添加剂;
    优选地,所述添加剂包括硅烷偶联剂;
    优选地,所述添加剂还包括增塑剂、阻燃剂和着色剂;
    优选地,所述添加剂包括增塑剂0-1.0质量份、硅烷偶联剂0.5-1.0质量份、阻燃剂0-1.0质量份和着色剂0-0.5质量份。
  9. 权利要求5-8任一所述的导热凝胶的制备方法,其特征在于,包括以下步骤:
    1)金属杂化导热填料的复配
    制备大、中、小三种粒径的金属杂化导热填料,其中大粒径为10-30μm;中粒径为1-10μm,小粒径为500nm-1.0μm;
    将金属杂化导热填料进行粒径复配,按照8:2:1-5:4:1的重量比,称取大、中、小三种粒径的金属杂化导热填料预混合;
    2)无溶剂混合
    将步骤1)所得的复配金属杂化导热填料与含有至少两个烯基的有机聚硅氧烷、具有至少2个硅键合的氢原子的聚有机硅氧烷、催化剂、抑制剂搅拌混合30-60分钟得到所述导热凝胶,优选地,所述混合温度25-50℃。
  10. 一种导热凝胶层,其特征在于,将权利要求9中制备得到的导热凝胶固化得到导热凝胶层;
    优选地,所述固化的温度为100-150℃,固化时间为1-2小时。
PCT/CN2021/108575 2020-08-27 2021-07-27 一种导热凝胶及其制备方法 WO2022042176A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010878393.1 2020-08-27
CN202010878393.1A CN111961255B (zh) 2020-08-27 2020-08-27 一种导热凝胶及其制备方法

Publications (1)

Publication Number Publication Date
WO2022042176A1 true WO2022042176A1 (zh) 2022-03-03

Family

ID=73399342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108575 WO2022042176A1 (zh) 2020-08-27 2021-07-27 一种导热凝胶及其制备方法

Country Status (2)

Country Link
CN (1) CN111961255B (zh)
WO (1) WO2022042176A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115521462A (zh) * 2022-10-28 2022-12-27 北京天山新材料技术有限公司 填料处理剂及其制备方法、导热硅凝胶、封装材料和电子元器件
CN115627074A (zh) * 2022-09-22 2023-01-20 深圳先进电子材料国际创新研究院 一种抗疲劳导热凝胶及其制备方法
CN115627076A (zh) * 2022-10-31 2023-01-20 长沙先进电子材料工业技术研究院有限公司 一种导热凝胶及其制备方法和应用
CN115651411A (zh) * 2022-10-26 2023-01-31 福建臻璟新材料科技有限公司 一种高柔性低渗出的导热凝胶及其制备方法
CN115785677A (zh) * 2022-12-09 2023-03-14 东莞市博恩复合材料有限公司 一种单组份相变有机硅导热凝胶及其制备方法
CN116574383A (zh) * 2023-05-23 2023-08-11 江西天永诚高分子材料有限公司 一种低挥发高导热单组份加成型导热胶泥及其制备方法
CN116606608A (zh) * 2023-05-23 2023-08-18 江西天永诚高分子材料有限公司 一种导热填料、包含其的双组份有机硅灌封胶及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961255B (zh) * 2020-08-27 2021-12-14 深圳先进电子材料国际创新研究院 一种导热凝胶及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610725A (zh) * 2001-12-27 2005-04-27 英特尔公司 热材料的链延长
CN103788661A (zh) * 2014-01-21 2014-05-14 万炜涛 一种应力控制型高导热高分子界面材料及其制备方法
CN105838079A (zh) * 2016-04-13 2016-08-10 成都硅宝科技股份有限公司 低油离度导热硅脂组合物及其制备方法
JP2017043717A (ja) * 2015-08-27 2017-03-02 信越化学工業株式会社 熱伝導性シリコーン組成物
CN106832782A (zh) * 2017-02-17 2017-06-13 深圳先进技术研究院 一种片状填料粒子/高分子复合材料及其制备方法
JP2020066713A (ja) * 2018-10-26 2020-04-30 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
CN111961255A (zh) * 2020-08-27 2020-11-20 深圳先进电子材料国际创新研究院 一种导热凝胶及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070219312A1 (en) * 2006-03-17 2007-09-20 Jennifer Lynn David Silicone adhesive composition and method for preparing the same
CN105295360B (zh) * 2015-10-10 2018-06-29 惠州市沃特新材料有限公司 高导热阻燃尼龙复合材料及其制备方法
CN109161167B (zh) * 2018-08-29 2021-11-05 中国科学院深圳先进技术研究院 一种氮化硼-银/环氧树脂复合材料及其制备方法和应用
CN109265762B (zh) * 2018-08-30 2020-08-18 北京石油化工学院 一种核壳结构银基导热橡胶复合材料及其制备方法
CN111004510A (zh) * 2019-12-19 2020-04-14 苏州赛伍应用技术股份有限公司 一种导热硅凝胶及其制备方法和用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610725A (zh) * 2001-12-27 2005-04-27 英特尔公司 热材料的链延长
CN103788661A (zh) * 2014-01-21 2014-05-14 万炜涛 一种应力控制型高导热高分子界面材料及其制备方法
JP2017043717A (ja) * 2015-08-27 2017-03-02 信越化学工業株式会社 熱伝導性シリコーン組成物
CN105838079A (zh) * 2016-04-13 2016-08-10 成都硅宝科技股份有限公司 低油离度导热硅脂组合物及其制备方法
CN106832782A (zh) * 2017-02-17 2017-06-13 深圳先进技术研究院 一种片状填料粒子/高分子复合材料及其制备方法
JP2020066713A (ja) * 2018-10-26 2020-04-30 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
CN111961255A (zh) * 2020-08-27 2020-11-20 深圳先进电子材料国际创新研究院 一种导热凝胶及其制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115627074A (zh) * 2022-09-22 2023-01-20 深圳先进电子材料国际创新研究院 一种抗疲劳导热凝胶及其制备方法
CN115627074B (zh) * 2022-09-22 2024-04-19 深圳先进电子材料国际创新研究院 一种抗疲劳导热凝胶及其制备方法
CN115651411A (zh) * 2022-10-26 2023-01-31 福建臻璟新材料科技有限公司 一种高柔性低渗出的导热凝胶及其制备方法
CN115521462A (zh) * 2022-10-28 2022-12-27 北京天山新材料技术有限公司 填料处理剂及其制备方法、导热硅凝胶、封装材料和电子元器件
CN115627076A (zh) * 2022-10-31 2023-01-20 长沙先进电子材料工业技术研究院有限公司 一种导热凝胶及其制备方法和应用
CN115627076B (zh) * 2022-10-31 2023-10-20 长沙先进电子材料工业技术研究院有限公司 一种导热凝胶及其制备方法和应用
CN115785677A (zh) * 2022-12-09 2023-03-14 东莞市博恩复合材料有限公司 一种单组份相变有机硅导热凝胶及其制备方法
CN116574383A (zh) * 2023-05-23 2023-08-11 江西天永诚高分子材料有限公司 一种低挥发高导热单组份加成型导热胶泥及其制备方法
CN116606608A (zh) * 2023-05-23 2023-08-18 江西天永诚高分子材料有限公司 一种导热填料、包含其的双组份有机硅灌封胶及其制备方法
CN116606608B (zh) * 2023-05-23 2024-04-05 江西天永诚高分子材料有限公司 一种导热填料、包含其的双组份有机硅灌封胶及其制备方法
CN116574383B (zh) * 2023-05-23 2024-05-10 江西天永诚高分子材料有限公司 一种低挥发高导热单组份加成型导热胶泥及其制备方法

Also Published As

Publication number Publication date
CN111961255A (zh) 2020-11-20
CN111961255B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
WO2022042176A1 (zh) 一种导热凝胶及其制备方法
US9441086B2 (en) Curable silicone compositions, electrically conductive silicone adhesives, methods of making and using same, and electrical devices containing same
CN103030976B (zh) 一种单组份加热固化液体硅橡胶及其制备方法
US9428680B2 (en) Conductive silicone materials and uses
CN112552688B (zh) 一种高导热有机硅凝胶片材及其制备方法
US9447308B2 (en) Curable silicone compositions, electrically conductive silicone adhesives, methods of making and using same, and electrical devices containing same
TWI462968B (zh) A heat dissipating material and a semiconductor device using the same
CN112521754B (zh) 一种MXene纳米片复合的具有热自修复性能的导热凝胶及其制备方法
TWI743247B (zh) 導熱性聚矽氧組成物及其之硬化物,以及製造方法
TW200404843A (en) Heat conductive composite sheet and process for producing same
JP4917380B2 (ja) 放熱用シリコーングリース組成物及びその製造方法
KR102172821B1 (ko) 단결정 알루미나 충전 다이 부착 페이스트
CN104098914A (zh) 有机硅导热界面材料
TW200305595A (en) Curable silicone gum thermal interface material
CN110982277B (zh) 一种单组分耐温导热硅泥组合物及其制备方法
CN105838079A (zh) 低油离度导热硅脂组合物及其制备方法
CN112961657A (zh) 一种复合导热材料及其制备方法、导热凝胶及其制备方法
CN107177345A (zh) 一种导热硅凝胶及制备方法
CN111849169B (zh) 一种导热硅脂及其制备方法
CN102775792B (zh) 改性含氢硅油及其制备方法和用途以及包含其的硅橡胶
CN104530710B (zh) 一种高导热阻燃材料、制备方法及其应用
WO2014159792A1 (en) Curable silicone compositions, electrically conductive silicone adhesives, methods of making and using same, and electrical devices containing same
TW526242B (en) Titanium oxide-filled addition reaction-curable silicone rubber composition and its cured material
KR20160150290A (ko) 방열 성능이 우수한 실리콘 중합체 조성물
CN113528082B (zh) 硅凝胶组合物、包括其的硅凝胶、封装结构及半导体器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21860016

Country of ref document: EP

Kind code of ref document: A1