WO2022041327A1 - 适用于退役锂电池中电解液的浸取溶剂以及利用其从退役锂电池中分离回收电解液的方法 - Google Patents

适用于退役锂电池中电解液的浸取溶剂以及利用其从退役锂电池中分离回收电解液的方法 Download PDF

Info

Publication number
WO2022041327A1
WO2022041327A1 PCT/CN2020/114735 CN2020114735W WO2022041327A1 WO 2022041327 A1 WO2022041327 A1 WO 2022041327A1 CN 2020114735 W CN2020114735 W CN 2020114735W WO 2022041327 A1 WO2022041327 A1 WO 2022041327A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
leaching
electrolyte
lithium battery
steam
Prior art date
Application number
PCT/CN2020/114735
Other languages
English (en)
French (fr)
Inventor
韩延欣
李旭东
帅宏奎
曹鹏举
王建荣
李巨锋
Original Assignee
甘肃电气装备集团生物科技工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 甘肃电气装备集团生物科技工程有限公司 filed Critical 甘肃电气装备集团生物科技工程有限公司
Publication of WO2022041327A1 publication Critical patent/WO2022041327A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the field of lithium battery material recovery, and in particular relates to a leaching solvent suitable for electrolyte in decommissioned lithium batteries and a method for separating and recovering electrolyte from decommissioned lithium batteries by utilizing the solvent.
  • Waste lithium-ion power batteries contain a large amount of cobalt, lithium, nickel, manganese, copper, aluminum and other scarce non-ferrous metal elements, as well as toxic and harmful substances such as electrolyte, electrolyte lithium hexafluorophosphate, binders, especially electrolyte lithium hexafluorophosphate in the electrolyte.
  • the thermal stability is poor, and it will decompose to generate PF 5 at 60 ° C, and at the same time, HF gas will be associated, and then the extremely harmful hydrofluoric acid will be generated.
  • Pretreatment step There is usually residual power in the used lithium battery, so it is necessary to discharge the battery before recycling the battery.
  • the electrolyte (electrolyte) contained in lithium batteries can generate toxic HF when it encounters water.
  • the pretreatment steps mainly include a deep discharge process and an inert gas protection process in the crushing process, and the methods are well known in the industry and adopted by mainstream processes.
  • Secondary treatment step The purpose of the secondary treatment step is to achieve complete separation of the positive and negative electrode active materials of the lithium battery from the copper-aluminum pole pieces.
  • the commonly used methods include pyrolysis, organic solvent dissolution, acid-base solution dissolution and Electrolysis.
  • Pyrothermal decomposition is to place the battery at a temperature of 380°C to 500°C to promote the decomposition and volatilization of the electrolyte (electrolyte) and the binder, thereby realizing the separation of the positive and negative electrode materials from the copper and aluminum foil electrodes.
  • the pyrothermal decomposition process is simple, the operation is convenient, and the electrolyte (electrolyte) and the binder can be effectively removed.
  • the thermal decomposition process will inevitably produce a large amount of toxic and harmful gases. If the absorption and purification are improper, it is easy to cause serious secondary pollution.
  • the organic solvent dissolution method is a method of separating positive and negative materials from copper and aluminum foil.
  • the electrolyte is dissolved through organic solvents such as dichloromethane, chloroform, acetone, and ethanol, and then the electrolyte and solvent are separated by distillation.
  • organic solvents such as dichloromethane, chloroform, acetone, and ethanol
  • these solvents are all flammable and explosive substances with high danger.
  • the electrolyte lithium hexafluorophosphate in the electrolyte will decompose and produce toxic Harmful fluoride, endangering production and environmental safety.
  • the positive and negative electrode materials of lithium batteries, copper and aluminum foils, and residual solvents attached to the surface of plastics cannot be recovered, which inevitably causes fire hazards and secondary pollution.
  • the acid-alkali solution method is to first place the broken battery in an alkaline solution, in which the aluminum foil will dissolve in the alkaline solution, while the copper foil will not react with the alkali; the copper foil and carbon powder materials after alkali leaching are calcined at high temperature Or dissolve in organic matter to decompose or dissolve the binder, and then acid leaching the residue to achieve the separation of active materials.
  • This method cannot completely remove fluoride, and at the same time, the intervention of acid-base solution will inevitably cause pollution to the production environment, water environment and air environment; in addition, this method needs to consume a large amount of acid and alkali solution, and a large amount of AlO 2 -1 is produced after dissolving. , and is not conducive to the subsequent separation and purification of active materials.
  • the electrolysis method means that the lead plate is used as the anode, the positive electrode of the battery is the cathode, and the electrolyte is a sulfuric acid solution.
  • the method can realize the separation of the positive electrode material and the aluminum foil to obtain pure aluminum foil, and can also promote the electrolytic conversion of part of the positive electrode material into an ionic form to exist in the electrolyte, which is convenient for subsequent processing.
  • the disadvantage is that the power consumption is large and the electrolysis efficiency is low; the decommissioned sulfuric acid needs to be treated harmlessly; the hydrogen generated during the electrolysis process poses a fire hazard in the production environment.
  • the present invention provides a leaching solvent suitable for the electrolyte in the retired lithium battery and a method for separating and recovering the electrolyte from the retired lithium battery by using the solvent.
  • a solvent suitable for leaching an electrolyte in a retired lithium battery comprising: tetrafluoropropylene.
  • the beneficial effects of the invention are as follows: the application uses tetrafluoropropylene as the electrolyte leaching solvent of the retired lithium battery, which has the characteristics of low toxicity and non-flammability, can dissolve electrolytes such as lithium hexafluorophosphate, and its boiling point is lower than the pyrolysis temperature of lithium hexafluorophosphate, The electrolyte will not release harmful substances during the leaching and fractionation process, so electrolytes such as lithium hexafluorophosphate can be fully recovered without causing pollution to the environment.
  • tetrafluoropropene is 1,3,3,3-tetrafluoropropene and/or 2,3,3,3-tetrafluoropropene.
  • the solvent further includes tetrafluoroethane, and the volume percentage of the tetrafluoroethane in the solvent is 10%-90%.
  • tetrafluoroethane As the electrolyte leaching solvent for retired lithium batteries, tetrafluoroethane has the characteristics of low toxicity and non-flammability. It can dissolve electrolytes such as lithium hexafluorophosphate. Its boiling point is lower than the pyrolysis temperature of lithium hexafluorophosphate. It releases harmful substances, so it can be mixed with tetrafluoropropylene to fully recover electrolytes such as lithium hexafluorophosphate without causing pollution to the environment.
  • the present application also discloses a separation and recovery method for leaching electrolyte from decommissioned lithium batteries, comprising the above solvent and the following steps:
  • the electrolyte/electrolyte in the decommissioned electromagnetic can be leached and separated in two steps.
  • the method is simple and efficient.
  • the recovery rate of the electrolyte can reach more than 97%, and the recovered solvent can be reused.
  • Mixing the leaching solution and decommissioning lithium batteries reduces the chance and time that the electrolyte or electrolyte comes into contact with the air to produce hazardous substances, thereby making the entire leaching process more environmentally friendly.
  • the fractionation step includes:
  • the solvent is fractionated in three stages, and the solvent can be sufficiently fractionated from the electrolyte.
  • step S100 it also includes a step S300: heating the insoluble solid to 20°C-50°C under the condition of -0.08MPa-1.6MPa, removing the residual solvent on the surface of the insoluble solid and recycling, to obtain the first 2. Recover solvent and solid material for lithium battery.
  • the step of recovering the residual solvent includes:
  • S304 Mix the first residual solvent, the second residual solvent and the third residual solvent to obtain the second recovered solvent.
  • the residual solvent on the surface of the insoluble solid is distilled through three stages, which can effectively remove and collect the residual solvent on the surface of the insoluble solid.
  • step S400 is further included: collecting and mixing the first recovery solvent and the second recovery solvent to obtain a recovery solvent, and using the recovery solvent for leaching decommissioned lithium batteries in the electrolyte.
  • the first recovered solvent and the second recovered solvent are collected and mixed, which can be recycled and reduced in cost.
  • the solid:liquid volume ratio of the decommissioned lithium battery and the solvent is 1:1-1:4.
  • the leaching step includes: leaching for 20-40 min at a stirring speed of 3-5r/Min and repeating 1-4 times.
  • the electrolyte can be sufficiently dissolved by leaching for multiple times under stirring conditions.
  • Fig. 1 is the general flow chart of this application
  • Fig. 2 is the schematic flow sheet of fractionation step in step S100;
  • step S300 is a schematic flowchart of the step of recovering the residual solvent on the surface of the insoluble solid in step S300;
  • the following discloses a variety of different implementations or examples for implementing the described subject solutions. In order to simplify the disclosure, one or more specific embodiments of the arrangement of each feature are described below, but the cited embodiments are not intended to limit the present invention.
  • the first feature and the second feature described later in the specification are connected, that is, It may include embodiments that are directly related to each other, and may also include embodiments that form additional features, and further include the use of one or more other intervening features to indirectly connect or combine the first feature and the second feature with each other, so that the first feature and the second feature are indirectly connected or combined.
  • the second feature may not be directly related.
  • the present disclosure is based on experiments carried out on industrial production equipment, and it is difficult to keep the temperature and pressure at a precise specific value during production, and the pressure usually varies with the temperature. Therefore, in the following disclosed embodiments, the working pressure and temperature are the same. is adjusted within the range value.
  • the solvent is selected as a single component 1,3,3,3-tetrafluoropropene (HFO-1234ze (E type)), which is denoted as solvent 1. Its main parameters are:
  • fractionation can be carried out by the following specific steps:
  • S203 Heating the leaching mixture at 20°C-50°C, and pumping steam through a vacuum pump, until the inside of the container changes from positive pressure to vacuum, and stably reaches the working gauge pressure in the range of -0.08 to -0.09MPa, and maintains the temperature 20°C-50°C for more than 5 minutes, indicating that the leaching solvent has evaporated completely, pressurize the steam to 0.6Mpa-1.3Mpa and condense to obtain the third fractional liquid;
  • the evaporated residual solvent can be recovered, and specifically, it can be carried out through the following steps:
  • S304 Mix the first residual solvent, the second residual solvent and the third residual solvent to obtain the second recovered solvent.
  • the principle of the present application is based on the fact that the boiling point of the electrolyte is greater than 90°C and cannot be evaporated in the range of 20°C-50°C, so that the leaching mixture can be fractionated into electrolyte and solvent in this temperature range; the heat of the electrolyte lithium hexafluorophosphate in the electrolyte
  • the decomposition temperature is 60 °C, and the electrolyte lithium hexafluorophosphate does not decompose when the working temperature is not more than 50 °C, so as to avoid the occurrence of environmental hazards.
  • the leaching solvent can be effectively recovered at the same time, thereby avoiding environmental pollution and material waste, effectively saving energy and reducing costs.
  • HFO-1234yf 2,3,3,3-tetrafluoropropene
  • solvent II A single component of 2,3,3,3-tetrafluoropropene (HFO-1234yf) is selected as the solvent, which is designated as solvent II. Its main parameters are:
  • the volume of solvent II added is 1 to 3 times the volume of the lithium battery material, wherein the leaching temperature is 25°C-40°C, the pressure is 0.6-1.6Mpa, and the leaching is stirred for 25-40 minutes.
  • the solvent is 90% by volume 1,3,3,3-tetrafluoropropene (HFO-1234ze (type E)), and 10% by volume of tetrafluoroethane (R134a) is added to it to prepare leaching solvent III. Its main parameters are:
  • the volume of solvent III added is 1 to 4 times the volume of the lithium battery material, the leaching temperature is 30°C-50°C, the pressure is 0.7-1.4Mpa, and the leaching is stirred for 30-35 minutes.
  • Example 1 Refer to the steps in Example 1 for electrolyte leaching, fractionation and recovery.
  • the solvent is 10% by volume 2,3,3,3-tetrafluoropropene (HFO-1234yf), and 90% by volume of tetrafluoroethane (R134a) is added to it to prepare a leaching solvent IV.
  • HFO-1234yf 2,3,3,3-tetrafluoropropene
  • R134a tetrafluoroethane
  • the added volume of solvent IV is 1 to 2.5 times the volume of the lithium battery material, the leaching temperature is 30°C-45°C, the pressure is 0.6Mpa-1.2Mpa, and the leaching is stirred for 20-40 minutes.
  • Example 1 Refer to the steps in Example 1 for electrolyte leaching, fractionation and recovery.
  • the leaching solvent is 1/3 1,3,3,3-tetrafluoropropene (HFO-1234ze (E type)), 1/3 2,3,3,3-tetrafluoropropene (HFO-1234yf), Add 1/3 of tetrafluoroethane (R134a) to it to prepare leaching solvent V.
  • HFO-1234ze E type
  • HFO-1234yf 2,3,3,3-tetrafluoropropene
  • R134a tetrafluoroethane
  • the volume of solvent V added is 2 to 3 times the volume of the lithium battery material, the leaching temperature is 30°C to 50°C, the pressure is 0.75Mpa-1.5Mpa, and the leaching is stirred for 30 minutes.
  • Example 1 Refer to the steps in Example 1 for electrolyte leaching, fractionation and recovery.
  • the embodiments disclosed in this application can effectively recover the electrolyte in the decommissioned lithium battery, and the recovery rate has reached more than 97%.
  • the solvent can be fully recovered after leaching, and the recovery rate is 95%. % or more, so that the recycling of the solvent can be realized for leaching the subsequent decommissioned lithium batteries with less waste.
  • the recovery rate of the electrolyte and electrolyte of the lithium battery cannot reach the above-mentioned level by using the existing industry technology, and it will cause a lot of pollution.
  • the present application is aimed at decommissioning lithium batteries that have lost their use value, using suitable solvents, under low energy consumption conditions, after leaching and recovering the electrolyte in the lithium batteries and dissolving the electrolyte therein, to eliminate the hidden safety hazards and environmental hazards of decommissioned lithium batteries, Further, the positive and negative materials, copper foil, aluminum foil, plastic, and iron casing can be separated under the open condition of normal temperature and normal pressure. At the same time, the solvent used in this embodiment can be efficiently recovered and recycled.
  • the contact between the electrolyte or the electrolyte and the air is reduced, thereby reducing the probability and time of generating hazardous substances, and can effectively alleviate the environmental pollution and fire hazards that may be caused by the electrolyte of the lithium battery entering the surrounding environment.
  • the leaching and separation process is carried out in a fully closed container, and there is no polluting gas or liquid discharge in the whole process.
  • Low-toxic, non-flammable tetrafluoropropylene and tetrafluoroethane are used as solvents for leaching the electrolyte and electrolyte in lithium batteries.
  • the viscosity of the mixed solution during the leaching process is reduced and the fluidity is improved, which is conducive to leaching The process proceeded smoothly;
  • the boiling points of low-boiling tetrafluoropropene and tetrafluoroethane were much lower than the pyrolysis temperature (60°C) of the electrolyte lithium hexafluorophosphate in the electrolyte, so that the premise that the electrolyte lithium hexafluorophosphate in the electrolyte did not decompose
  • the solvent can be fully recovered and recycled, and the process is green and environmentally friendly;
  • the boiling points of the leaching solvents disclosed in the present application are all less than 0° C., and solvent evaporation and condensation recovery can be realized under mild conditions, avoiding the waste of energy in traditional solvent recovery methods.
  • the solid battery material is in a completely loosely mixed state, which lays the foundation for further separation of nickel, cobalt, lithium, manganese, copper, aluminum, iron and other materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明涉及一种适用于退役锂电池中电解液的浸取溶剂以及利用其从退役锂电池中分离回收电解液的方法,其包括:四氟丙烯。本申请以四氟丙烯作为退役锂电池的电解液浸取溶剂,其具有低毒、不易燃的特性,能溶解六氟磷酸锂等电解质,其沸点低于六氟磷酸锂的热解温度,在浸取分馏过程中电解液不会释放有害物质,因此能够充分回收六氟磷酸锂等电解质,且不会对环境造成污染。

Description

适用于退役锂电池中电解液的浸取溶剂以及利用其从退役锂电池中分离回收电解液的方法 技术领域
本发明属于锂电池材料回收领域,具体涉及一种适用于退役锂电池中电解液的浸取溶剂以及利用其从退役锂电池中分离回收电解液的方法。
背景技术
近年来,随着电动汽车和大规模储能市场的快速发展,锂离子动力电池的产量也随之快速增长,伴随产生的废旧锂离子电池的数量呈现出爆发式的增长。废旧锂离子动力电池中含有大量的钴、锂、镍、锰、铜、铝等紧缺有色金属元素,同时含有电解液、电解质六氟磷酸锂、粘结剂等有毒有害物质,特别是电解液中的电解质六氟磷酸锂热稳定性差,在60℃时就会发生分解生成PF 5,同时伴生HF气体并进而产生危害性极大的氢氟酸。
在传统退役锂电池处理过程中,极易产生PF 5、HF或其他氟化物污染大气、水体及土壤,造成严重的环境污染。此外,正极材料中的重金属化合物也会造成水体和土壤污染;负极材料会引发粉尘污染;隔膜材料会造成白色污染。与此同时,铜、镍、钴、锰、锂等高价值金属的流失造成资源浪费,因此,对退役锂电池进行资源化回收和无害化处理具有重大经济社会价值。
目前,锂离子动力电池的回收和再利用问题已经成为社会广泛关注的焦点。确保废旧锂离子电池材料安全处置和回收利用,对实现循环经济和可持续发展具有深远意义。
现有的锂离子动力电池的回收工艺路线繁杂,在现有的理论研究和工业 化应用案例中,概况起来主要分为以下三个步骤:预处理、二次处理和深度处理。具体方法概述如下:
预处理步骤:废旧锂电池中通常都存在残余的电量,因此在回收处理电池之前,需要对电池进行放电处理。此外,锂电池中含有的电解液(电解质)遇水会生成有毒的HF。有鉴于此,回收锂电池首先应进行合适的预处理,消除潜在的危险。预处理步骤主要包括深度放电过程以及破碎环节的惰性气体保护过程,其方法均为行业所共知并被主流工艺所采用。
二次处理步骤:二次处理步骤的目的在于实现锂电池正负极活性材料与铜铝极片的完全分离,目前常用的方法有火法热分解、有机溶剂溶解法、酸碱液溶解法以及电解法。
火法热分解是将电池置于380℃~500℃温度下,促使电解液(电解质)、粘结剂分解挥发,从而实现正负极材料与铜铝箔极片的分离。火法热分解工艺简单,操作方便,可以有效去除电解液(电解质)、粘结剂。但是,热分解过程必然产生大量有毒有害气体,如果吸收净化不当,极易引发严重的二次污染。
有机溶剂溶解法是一种分离正负极材料与铜铝箔的方法,通过有机溶剂二氯甲烷、氯仿、丙酮、乙醇等溶出电解液,再通过蒸馏分离电解液与溶剂。但是该类溶剂均为易燃易爆物质,危险性高,更重要的是在蒸馏分离电解液(电解质)与溶剂的过程中,由于工作温度较高,电解液中的电解质六氟磷酸锂会分解产生有毒有害的氟化物,危及生产和环境安全。并且通常条件下,锂电池正负极材料、铜铝箔以及塑料表面附着的残留溶剂无法回收,不可避免的形成消防隐患和二次污染。
酸碱液溶解法是首先将破碎电池置于碱性溶液中,其中铝箔会溶解于碱液中,而铜箔不与碱发生反应;将碱浸后的铜箔、碳粉材料在高温下煅烧或在有机物中溶解,使粘结剂分解或溶解,然后对剩余物进行酸浸,实现活性材料的分离。该方法不能完全除去氟化物,同时酸碱溶液的介入,必然对生 产环境、水体环境、空气环境造成污染;此外,该方法需要消耗大量的酸、碱溶液,溶解后产生大量的AlO 2 -1,也不利于后续活性材料的分离提纯。
电解法是指以铅板为阳极,电池正极为阴极,电解液为硫酸溶液,在外加电场的作用下实现正极材料的脱落,同时回收铝箔。该方法能够实现正极材料与铝箔的分离,得到纯净的铝箔,同时也能促使部分正极材料电解转化为离子形式存在于电解液中,便于后续处理。但缺点是电能消耗大,电解效率低;退役硫酸需要进行无害化处理;电解过程产生的氢气,使生产环境存在消防隐患。
深度处理:采用传统“湿法冶炼”工艺,对锂电池正极材料所含的镍、钴、锰、锂等重金属进行回收再生,其方法均为行业共知并被主流工艺所采用。
综上所述,行业现存方法,可以达到部分分离回收锂电池材料的目的,但不同程度的都存在能源消耗高、酸碱损耗大、环境污染严重、燃爆风险大的共性问题,特别是电解液(电解质)无法回收,制约了退役锂电池回收再利用的产业化应用进程。上述问题是本领域亟需解决的技术问题。
发明内容
本发明为了解决上述技术问题,提供了一种适用于退役锂电池中电解液的浸取溶剂以及利用其从退役锂电池中分离回收电解液的方法。
本发明解决上述技术问题的技术方案如下:一种适用于退役锂电池中电解液浸取的溶剂,其包括:四氟丙烯。
本发明的有益效果是:本申请以四氟丙烯作为退役锂电池的电解液浸取溶剂,其具有低毒、不易燃的特性,能溶解六氟磷酸锂等电解质,其沸点低于六氟磷酸锂的热解温度,在浸取分馏过程中电解液不会释放有害物质,因此能够充分回收六氟磷酸锂等电解质,且不会对环境造成污染。
进一步的是,所述四氟丙烯为1,3,3,3-四氟丙烯和/或2,3,3,3-四氟丙烯。
进一步的是,所述溶剂还包括四氟乙烷,所述溶剂中所述四氟乙烷的体积百分比为10%-90%。
四氟乙烷作为退役锂电池的电解液浸取溶剂,具有低毒、不易燃的特性,能溶解六氟磷酸锂等电解质,其沸点低于六氟磷酸锂的热解温度,在浸取分馏过程中电解液不会释放有害物质,因此能够与四氟丙烯混合以充分回收六氟磷酸锂等电解质,且不会对环境造成污染。
本申请还公开了一种退役锂电池中电解液浸取的分离回收方法,包括上述溶剂,还包括以下步骤:
S100:将放电、破碎后的退役锂电池在真空环境下与所述溶剂混合,然后于20℃-50℃,0.6MPa-1.6MPa的条件下浸取,分别得到浸取混合液和不溶性固体;
S200:将所述浸取混合溶液加热至20℃-50℃并于-0.08MPa-1.6MPa的条件下分馏,得到第一回收溶剂和电解液。
本申请通过两步即可将退役电磁中的电解液/电解质浸取分离出来,方法简单、高效,其中电解液的回收率可达97%以上,且回收的溶剂可以重复使用,在真空条件下混合浸取液和退役锂电池,减少了电解液或电解质与空气接触产生危害性物质的几率和时间,从而使整个浸取过程更加环保。
进一步的是,所述步骤S200中,所述分馏步骤包括:
S201:于0.6Mpa-1.6Mpa条件下将所述浸取混合液加热至20℃-50℃,直至工作压力降至0.6Mpa以下,收集蒸汽并冷凝,得到第一分馏液;
S202:于20℃-50℃条件下加热所述浸取混合液,直至工作压力降至0.2Mpa以下,将蒸汽加压至0.6Mpa-1.6Mpa冷凝,得到第二分馏液;
S203:于20℃-50℃条件下加热所述浸取混合液,通过真空抽吸蒸汽,直至工作压力降至-0.08Mpa以下,而后将蒸汽加压至0.6Mpa-1.6Mpa并冷凝,得到第三分馏液;
S204:将所述第一分馏液、第二分馏液和第三分馏液混合,得到所述第一回收溶剂,收集剩余未蒸发液体,得到所述电解液。
本申请通过三个阶段对溶剂进行分馏,能够充分的将溶剂从电解质中分馏出来。
进一步的是,所述步骤S100之后还包括步骤S300:于-0.08MPa-1.6MPa条件下将所述不溶性固体加热至20℃-50℃,除去所述不溶性固体表面的残留溶剂并回收,得到第二回收溶剂和锂电池固体材料。
进一步的是,所述步骤S300中,所述回收残留溶剂步骤包括:
S301:于0.6Mpa-1.6Mpa条件下将所述不溶性固体加热至20℃-50℃,直至工作压力降至0.6Mpa以下,收集蒸汽并冷凝,得到第一残留溶剂;
S302:于20℃-50℃条件下加热所述不溶性固体,直至工作压力降至0.2Mpa以下,将蒸汽并加压至0.6Mpa-1.6Mpa冷凝,得到第二残留溶剂;
S303:于20℃-50℃条件下加热所述不溶性固体,通过真空抽吸蒸汽,直至工作压力降至-0.08Mpa以下,而后将蒸汽加压至0.6Mpa-1.6Mpa并冷凝,得到第三残留溶剂;
S304:将所述第一残留溶剂、第二残留溶剂和第三残留溶剂混合,得到所述第二回收溶剂。
本申请通过三个阶段对不溶性固体表面的残留溶剂进行蒸馏,能够有效的除去并收集不溶性固体表面的残留溶剂。
进一步的是,所述步骤S200和步骤S300之后还包括步骤S400:收集并混合所述第一回收溶剂和所述第二回收溶剂,得到回收溶剂,使用所述回收溶剂用于浸取退役锂电池中的电解液。
本申请将第一回收溶剂和第二回收溶剂进行收集和混合,能够循环使用,降低成本。
进一步的是,所述步骤S100中,所述退役锂电池与所述溶剂的固:液体积比为1:1-1:4。
进一步的是,所述步骤S100中,所述浸取步骤包括:于搅拌速度为3-5r/Min条件下浸取20-40min并重复1-4次。
本申请通过在搅拌条件下多次浸取,能够充分的溶解电解液。
附图说明
图1为本申请总的流程图;
图2为步骤S100中分馏步骤的流程示意图;
图3为步骤S300中回收不溶性固体表面残留溶剂步骤的流程示意图;
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
下述公开了多种不同的实施所述的主题技术方案的实施方式或实施例。为简化公开内容,下面描述了各特征存在的一个或多个排列的具体实施例,但所举实施例不作为对本发明的限定,在说明书中随后记载的第一特征与第二特征连接,即可以包括直接联系的实施方式,也可以包括形成附加特征的实施方式,进一步的,也包括采用一个或多个其他介入特征使第一特征和第二特征彼此间接连接或结合,从而第一特征和第二特征可以不直接联系。
所应理解的是,本申请提供的以下实施例中,步骤并非不可变动的,在不影响本申请实验结果的情况下,部分步骤可以变换顺序或同步进行。
所应理解的是,本公开基于工业生产设备进行实验,生产中温度和压力难以保持在一个精确的特定数值,且压力通常随温度变化,因此下述公开的实施例中,工作压力和温度均是在范围值内进行调节。
实施例1
溶剂选取单一组分1,3,3,3-四氟丙烯(HFO-1234ze(E型)),记为溶剂Ι。其主要参数为:
沸点 ODP GWP 安全等级 毒性 20℃压力 50℃压力
-19℃ 0 6 A1 无毒 0.6MPa 1.3MPa
S101:将破碎后的锂电池装入适当密闭容器,常温下抽真空,工作表压为-0.06Mpa至-0.08Mpa,排除容器内部的残留气体;
S102:将溶剂Ι添加到密闭容器中,溶剂Ι的添加体积为锂电池材料体积的1至2倍,升温至20℃-50℃,升压至0.6-1.3Mpa,搅拌浸取20-40分钟,使电解液及其中的电解质充分溶解在该溶剂Ι中;
S103:开启容器内部的过滤系统,使液体透过滤网从而与固体分离,分别得到溶解有电解液和电解质的浸取混合液和不溶性固体,重复浸取、过滤1-2次,使电池中的电解液和电解质被完全浸取;
S200:在密闭容器中,将电解液的浸取混合液持续加热至20℃-50℃,对溶剂进行分馏。
在本实施例中,分馏可以通过以下具体步骤进行:
S201:于1.3Mpa条件下将所述浸取混合液加热至20℃-50℃,直至工作压力降至0.6Mpa,收集蒸汽并冷凝得到第一分馏液;
S202:于20℃-50℃条件下加热蒸发浸取混合液,将蒸汽通过压缩机抽吸、加压至0.6Mpa-1.3Mpa,冷凝得到第二分馏液,直至工作压力降至0.2Mpa;
S203:于20℃-50℃条件下加热所述浸取混合液,通过真空泵抽吸蒸汽,直至容器内部由正压变为真空,并且稳定达到工作表压-0.08至-0.09MPa范围,保持温度20℃-50℃,持续超过5分钟,表明浸取溶剂已蒸发完全,将蒸汽加压至0.6Mpa-1.3Mpa并冷凝,得到第三分馏液;
S204、将所述第一分馏液、第二分馏液和第三分馏液混合得得到所述第一回收溶剂,收集剩余液体,得到所述电解液。
S300:在密闭容器中,将不溶性固体材料持续加热至20℃-50℃,直至不溶性固体表面的残留溶剂解析蒸发。
在本申请的实施例中,可以对蒸发的残留溶剂进行回收,具体的,可以通过以下几个步骤进行:
S301:于1.3Mpa条件下将所述不溶性固体加热至20℃-50℃,直至工作压力降至0.6Mpa,收集蒸汽并冷凝,得到第一残留溶剂;
S302:于20℃-50℃条件下加热蒸发所述不溶性固体,通过压缩机抽吸直至容器内部工作压力降至0.2Mpa,通过压缩机将蒸汽加压至0.6Mpa-1.3Mpa,冷凝得到第二残留溶剂;
S303:于20℃-50℃条件下加热所述不溶性固体,启动真空泵真空抽取蒸汽,直至工作压力降至-0.08Mpa,而后通过压缩机将蒸汽加压至0.6Mpa-1.3Mpa并冷凝,得到第三残留溶剂,直至容器内部由正压变为真空,并且稳定达到工作表压-0.08至-0.09Mpa超过5分钟,表明浸取溶剂已蒸发完全;
S304:将所述第一残留溶剂、第二残留溶剂和第三残留溶剂混合,得到所述第二回收溶剂。
本申请的原理是基于电解液沸点大于90℃,在20℃-50℃范围不能蒸发,从而能够在该温度范围下将浸取混合液分馏为电解液和溶剂;电解液中的电解质六氟磷酸锂的热分解温度为60℃,在工作温度不大于50℃时电解质六氟磷酸锂不发生分解,从而避免环境危害的发生。
本实施例中,在有效分离了退役锂电池材料的基础上,能够同时有效的回收浸取溶剂,从而避免了环境污染和材料的浪费,有效的节约了能源,降低了成本。
实施例2
溶剂选取单一组分的2,3,3,3-四氟丙烯(HFO-1234yf),记为溶剂Ⅱ。其主要参数为:
沸点 ODP GWP 安全等级 毒性 25℃压力 40℃压力
-29℃ 0 4 A2 低毒 0.67MPa <1.6MPa
溶剂Ⅱ添加体积为锂电池材料体积的1至3倍,其中浸取温度为25℃-40℃,压力为0.6-1.6Mpa,搅拌浸取25-40分钟。
参考实施例1中的步骤对电解液分馏和回收。
实施例3
溶剂选取体积百分比90%的1,3,3,3-四氟丙烯(HFO-1234ze(E型)),在其中添加体积百分比10%的四氟乙烷(R134a)配制成浸取溶剂Ⅲ。其主要参数为:
沸点 ODP 安全等级 毒性 30℃压力 50℃压力
约-20℃ 0 A2 低毒 0.7MPa 1.4MPa
将破碎后的锂电池装入适当密闭容器,抽真空,工作表压-0.06至-0.08Mpa,排除容器内部的气体。
其中,溶剂Ⅲ添加体积为锂电池材料体积的1至4倍,浸取温度为30℃-50℃,压力为0.7-1.4Mpa,搅拌浸取30-35分钟。
参考实施例1中的步骤对电解液浸取、分馏和回收。
实施例4
溶剂选取体积百分比10%的2,3,3,3-四氟丙烯(HFO-1234yf),在其中添加体积百分比90%的四氟乙烷(R134a)配制成浸取溶剂Ⅳ。其主要参数为:
沸点 ODP 安全等级 毒性 30℃压力 45℃压力
约-29℃ 0 A2 低毒 0.75MPa 1.2MPa
将破碎后的锂电池装入适当密闭容器,抽真空,工作表压-0.06至-0.08Mpa,排除容器内部的气体。
溶剂Ⅳ的添加体积为锂电池材料体积的1至2.5倍,浸取温度为30℃-45℃,压力为0.6Mpa-1.2Mpa,搅拌浸取20-40分钟。
参考实施例1中的步骤对电解液浸取、分馏和回收。
实施例5
浸取溶剂选取1/3的1,3,3,3-四氟丙烯(HFO-1234ze(E型)),1/3的2,3,3,3-四氟丙烯(HFO-1234yf),在其中添加1/3的四氟乙烷(R134a)配制成浸取溶剂Ⅴ。其主要参数为:
沸点 ODP 安全等级 毒性 30℃压力 50℃压力
约-29℃ 0 A2 低毒 0.75MPa 1.5MPa
将破碎后的锂电池装入适当密闭容器,抽真空,工作表压-0.06至-0.08Mpa,排除容器内部的气体。
溶剂Ⅴ的添加体积为锂电池材料体积的2至3倍,浸取温度为30℃至50℃,压力为0.75Mpa-1.5Mpa,搅拌浸取30分钟。
参考实施例1中的步骤对电解液浸取、分馏和回收。
对本申请公开的各个实施例中电解液和溶剂的回收率进行测试,其结果如下表所示:
Figure PCTCN2020114735-appb-000001
通过上表可以看出,本申请公开的实施例均能够有效的回收退役锂电池中的电解液,其回收率均达到了97%以上,其中溶剂在浸取后可以充分回收,回收率达95%以上,从而可以实现溶剂的循环利用,以对后续的退役锂电池进行浸取,浪费少。而采用现有行业技术对锂电池的电解液和电解质进行回收,其回收率无法达到上述水平,并且会造成大量的污染。
本申请针对失去使用价值的退役锂电池,采用适宜的溶剂,在低耗能条件下,浸取回收锂电池中的电解液及溶解其中的电解质后,消除退役锂电池的安全隐患和环境危害,进而能够在常温常压的开放条件下,实现正负极材料、铜箔、铝箔、塑料、铁外壳分离,同时,本实施例中所采用的溶剂能够高效回收并循环利用。
本申请具有以下优点:
减少了电解液或电解质与空气接触,进而减少产生危害性物质的几率和时间,能够有效缓解锂电池电解液汇入周边环境可能带来的环境污染和消防隐患。同时,浸取、分离过程在全密闭的容器内部进行,整个过程没有污染性气体、液体排放。
将低毒、不易燃的四氟丙烯和四氟乙烷作为溶剂用于浸取锂电池中的电解液及电解质,首先,浸取过程中的混合液粘度降低,流动性提高,有利于浸取过程的顺利进行;其次,低沸点的四氟丙烯和四氟乙烷的沸点远低于电解液中的电解质六氟磷酸锂的热解温度(60℃),从而使电解液中电解质六氟磷酸锂不发生分解的前提下获得充分的回收,同时,能够充分回收溶剂循环使用,工艺过程绿色环保;再次,采用无毒、不燃的四氟丙烯和四氟乙烷作为浸取溶剂,也能够大幅度降低了锂电池电解液的可燃性,使生产过程得以在安全的环境中进行。
本申请公开的浸取溶剂,其沸点均小于0℃,在温和条件下即可实现溶剂蒸发及冷凝回收,避免传统溶剂回收方法所存在的能源浪费。
将退役锂电池中的电解液浸取脱除后,固体电池材料处于完全松散的混合状态,从而为进一步分离镍、钴、锂、锰、铜、铝、铁等材料奠定了基础。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种适用于退役锂电池中电解液浸取的溶剂,其特征在于,溶剂包括:四氟丙烯。
  2. 如权利要求1所述的适用于退役锂电池中电解液浸取的溶剂,其特征在于,所述四氟丙烯为1,3,3,3-四氟丙烯和/或2,3,3,3-四氟丙烯。
  3. 如权利要求1或2所述的适用于退役锂电池中电解液浸取的溶剂,其特征在于,所述溶剂还包括四氟乙烷,所述溶剂中所述四氟乙烷的体积百分比为10%-90%。
  4. 一种退役锂电池中电解液浸取的分离回收方法,包括权利要求1至3中任一项所述的溶剂,其特征在于,包括以下步骤:
    S100:将放电、破碎后的退役锂电池在真空环境下与所述溶剂混合,然后于20℃-50℃,0.6MPa-1.6MPa的条件下浸取,分别得到浸取混合液和不溶性固体;
    S200:将所述浸取混合溶液加热至20℃-50℃并于-0.08MPa-1.6MPa的条件下分馏,得到第一回收溶剂和电解液。
  5. 如权利要求4所述的分离回收方法,其特征在于,所述步骤S200中,所述分馏步骤包括:
    S201:于0.6Mpa-1.6Mpa条件下将所述浸取混合液加热至20℃-50℃,所述浸取混合液蒸发,直至工作压力降至0.6Mpa以下,收集蒸汽并冷凝,得到第一分馏液;
    S202:于20℃-50℃条件下加热蒸发所述浸取混合液,直至工作压力降至0.2Mpa以下,将蒸汽加压至0.6Mpa-1.6Mpa冷凝,得到第二分馏液;
    S203:于20℃-50℃条件下加热所述浸取混合液,通过真空抽吸蒸汽,直至工作压力降至-0.08Mpa以下,而后将蒸汽加压至0.6Mpa-1.6Mpa并冷凝,得到第三分馏液;
    S204:将所述第一分馏液、第二分馏液和第三分馏液混合得,得到所述第一回收溶剂,收集剩余未蒸发液体,得到所述电解液。
  6. 如权利要求4所述的分离回收方法,其特征在于,所述步骤S100之后还包括步骤S300:于-0.08MPa-1.6MPa条件下将所述不溶性固体加热至20℃-50℃,蒸发除去所述不溶性固体表面的残留溶剂并回收,得到第二回收溶剂和锂电池固体材料。
  7. 如权利要求6所述的分离回收方法,其特征在于,所述步骤S300中,所述回收残留溶剂步骤包括:
    S301:于0.6Mpa-1.6Mpa条件下将所述不溶性固体加热至20℃-50℃,直至工作压力降至0.6Mpa以下,收集蒸汽并冷凝,得到第一残留溶剂;
    S302:于20℃-50℃条件下加热所述不溶性固体,直至工作压力降至0.2Mpa以下,将蒸汽并加压至0.6Mpa-1.6Mpa冷凝,得到第二残留溶剂;
    S303:于20℃-50℃条件下加热所述不溶性固体,通过真空抽吸蒸汽,直至工作压力降至-0.08Mpa以下,而后将蒸汽加压至0.6Mpa-1.6Mpa并冷凝,得到第三残留溶剂;
    S304:将所述第一残留溶剂、第二残留溶剂和第三残留溶剂混合,得到所述第二回收溶剂。
  8. 如权利要求6或7所述的分离回收方法,其特征在于,所述步骤S200和步骤S300之后还包括步骤S400:收集并混合所述第一回收溶剂和所述第二回收溶剂,得到回收溶剂,使用所述回收溶剂循环用于浸取退役锂电池中的电解液。
  9. 如权利要求4所述的分离回收方法,其特征在于,所述步骤S100中,所述退役锂电池与所述溶剂的固液体积比为1:1-1:4v/v。
  10. 如权利要求4或9所述的分离回收方法,其特征在于,所述步骤S100中,所述浸取步骤包括:于搅拌速度为3-5r/Min条件下浸取20-40min并重复1-4次。
PCT/CN2020/114735 2020-08-28 2020-09-11 适用于退役锂电池中电解液的浸取溶剂以及利用其从退役锂电池中分离回收电解液的方法 WO2022041327A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010888128.1A CN112054262A (zh) 2020-08-28 2020-08-28 适用于退役锂电池中电解液的浸取溶剂以及利用其从退役锂电池中分离回收电解液的方法
CN202010888128.1 2020-08-28

Publications (1)

Publication Number Publication Date
WO2022041327A1 true WO2022041327A1 (zh) 2022-03-03

Family

ID=73607020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114735 WO2022041327A1 (zh) 2020-08-28 2020-09-11 适用于退役锂电池中电解液的浸取溶剂以及利用其从退役锂电池中分离回收电解液的方法

Country Status (4)

Country Link
CN (1) CN112054262A (zh)
DE (1) DE102020129186A1 (zh)
FR (1) FR3113682B1 (zh)
WO (1) WO2022041327A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116525989A (zh) * 2023-02-03 2023-08-01 广东杰成新能源材料科技有限公司 一种退役锂电池电解液的无害化处理方法及装置
CN116646633A (zh) * 2023-05-31 2023-08-25 科立鑫(珠海)新能源有限公司 一种回收锂离子正极材料中的活性物质的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353088B (zh) * 2022-08-24 2023-09-12 广东邦普循环科技有限公司 一种回收锂离子电池电解液的方法
CN116531851B (zh) * 2023-07-06 2023-09-26 东莞市鹏锦机械科技有限公司 一种废旧锂电池电解液回收系统及工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482557A (zh) * 2009-09-11 2012-05-30 阿克马法国公司 用于高容量制冷的三元组合物
CN104177219A (zh) * 2014-08-01 2014-12-03 巨化集团技术中心 一种制备1,3,3,3-四氟丙烯的方法
CN104837952A (zh) * 2012-12-26 2015-08-12 阿克马法国公司 包含2,3,3,3-四氟丙烯的组合物
JP2016035809A (ja) * 2014-08-01 2016-03-17 トヨタ自動車株式会社 硫化物固体電池の正極活物質回収方法
CN106661438A (zh) * 2014-09-26 2017-05-10 大金工业株式会社 卤代烯类组合物及其使用
CN109777957A (zh) * 2018-12-28 2019-05-21 韩延欣 一种适用于废弃锂电池材料浸取分离的溶剂组合物及浸取分离方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19924707A1 (de) 1999-05-28 2000-11-30 Merck Patent Gmbh Verfahren zum Recycling von Kathodenmassen gebrauchter Lithiumbatterien
US7279451B2 (en) * 2002-10-25 2007-10-09 Honeywell International Inc. Compositions containing fluorine substituted olefins
JP2006324286A (ja) * 2005-05-17 2006-11-30 Tdk Corp 電気化学キャパシタ用電極の製造方法
TWI482748B (zh) * 2005-06-24 2015-05-01 Honeywell Int Inc 含有經氟取代之烯烴之組合物
EP3406688B1 (en) * 2010-04-16 2021-07-28 The Chemours Company FC, LLC Chillers containing a composition comprising 2,3,3,3-tetrafluoropropene and 1,1,1,2-tetrafluoroethane
WO2013111822A1 (ja) 2012-01-24 2013-08-01 ダイキン工業株式会社 結着剤、正極合剤及び負極合剤
JP2019157008A (ja) * 2018-03-14 2019-09-19 セントラル硝子株式会社 二置換ハロゲン化ポリエーテルおよびそれを含むポリマー電解質
JP2022510241A (ja) 2018-11-28 2022-01-26 リー インダストリーズ インコーポレイテッド バッテリの拡張可能な直接リサイクルのための方法およびシステム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482557A (zh) * 2009-09-11 2012-05-30 阿克马法国公司 用于高容量制冷的三元组合物
CN104837952A (zh) * 2012-12-26 2015-08-12 阿克马法国公司 包含2,3,3,3-四氟丙烯的组合物
JP2021008624A (ja) * 2012-12-26 2021-01-28 アルケマ フランス 2,3,3,3−テトラフルオロプロペンを含む組成物
CN104177219A (zh) * 2014-08-01 2014-12-03 巨化集团技术中心 一种制备1,3,3,3-四氟丙烯的方法
JP2016035809A (ja) * 2014-08-01 2016-03-17 トヨタ自動車株式会社 硫化物固体電池の正極活物質回収方法
CN106661438A (zh) * 2014-09-26 2017-05-10 大金工业株式会社 卤代烯类组合物及其使用
US10913881B2 (en) * 2014-09-26 2021-02-09 Daikin Industries, Ltd. Method of stabilization of a haloolefin-based composition
CN109777957A (zh) * 2018-12-28 2019-05-21 韩延欣 一种适用于废弃锂电池材料浸取分离的溶剂组合物及浸取分离方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116525989A (zh) * 2023-02-03 2023-08-01 广东杰成新能源材料科技有限公司 一种退役锂电池电解液的无害化处理方法及装置
CN116525989B (zh) * 2023-02-03 2024-01-19 广东杰成新能源材料科技有限公司 一种退役锂电池电解液的无害化处理方法及装置
CN116646633A (zh) * 2023-05-31 2023-08-25 科立鑫(珠海)新能源有限公司 一种回收锂离子正极材料中的活性物质的方法
CN116646633B (zh) * 2023-05-31 2023-12-12 科立鑫(珠海)新能源有限公司 一种回收锂离子正极材料中的活性物质的方法

Also Published As

Publication number Publication date
FR3113682A1 (fr) 2022-03-04
FR3113682B1 (fr) 2023-12-08
CN112054262A (zh) 2020-12-08
DE102020129186A1 (de) 2022-03-03

Similar Documents

Publication Publication Date Title
WO2022041327A1 (zh) 适用于退役锂电池中电解液的浸取溶剂以及利用其从退役锂电池中分离回收电解液的方法
CN102637921B (zh) 一种新型高效废旧锂离子电池资源化综合利用方法
CN101818251B (zh) 从废锂离子电池中回收钴和锂的方法
CN109536713B (zh) 一种利用离子液体分离废旧锂离子电池正极活性物质与铝箔的方法
CN107275700A (zh) 一种基于湿式破碎的废旧锂离子电池回收处理方法
CN101847763A (zh) 一种废旧磷酸铁锂电池综合回收的方法
CN106191466A (zh) 一种从废旧磷酸铁锂电池中回收锂的方法
CN110085939A (zh) 一种废旧磷酸铁锂电池正极片的分离回收方法
CN101969148A (zh) 一种回收废旧锂离子电池正极材料有价金属预处理的方法
CN110635191A (zh) 一种废旧动力锂电池全组分清洁回收方法
CN104810566A (zh) 一种废旧磷酸铁锂动力电池绿色回收处理方法
CN110620277A (zh) 一种从废弃锂离子电池正极材料中分离回收有价金属的方法
CN107706476A (zh) 一种废旧锂离子电池的溶剂分选预处理方法
CN112510280B (zh) 一种基于动力电池箔片中特征元散列的物理方法
CN106953132A (zh) 一种回收锂离子电池正极材料和集流体的方法
CN111778401A (zh) 基于电解硫酸钠的废旧三元动力锂离子电池绿色回收方法
CN105244560A (zh) 一种锂离子电池的资源化回收方法
CN108963370A (zh) 废旧锂电池处理回收方法
CN113067028A (zh) 一种磷酸铁锂退役锂离子电池回收再利用方法
CN110649344A (zh) 一种利用超声强化萃取法分离回收废旧动力锂电池中电解液的方法
CN109659642B (zh) 分离废旧锂离子电池正极片中铝箔和正极活性物质的方法
CN109777957B (zh) 一种适用于废弃锂电池材料浸取分离的溶剂组合物及浸取分离方法
CN103276406A (zh) 一种电化学回收锂的方法
Liu et al. Effects of incineration and pyrolysis on removal of organics and liberation of cathode active materials derived from spent ternary lithium-ion batteries
Sun Lithium-Ion Battery Recycling: Challenges and Opportunities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950996

Country of ref document: EP

Kind code of ref document: A1