WO2022039203A1 - 車輪用軸受装置の予圧検査方法 - Google Patents

車輪用軸受装置の予圧検査方法 Download PDF

Info

Publication number
WO2022039203A1
WO2022039203A1 PCT/JP2021/030253 JP2021030253W WO2022039203A1 WO 2022039203 A1 WO2022039203 A1 WO 2022039203A1 JP 2021030253 W JP2021030253 W JP 2021030253W WO 2022039203 A1 WO2022039203 A1 WO 2022039203A1
Authority
WO
WIPO (PCT)
Prior art keywords
crimping
preload
rotational torque
temperature
post
Prior art date
Application number
PCT/JP2021/030253
Other languages
English (en)
French (fr)
Inventor
峻 玉置
正明 林
禎之 久保田
智子 馬場
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020138866A external-priority patent/JP7406473B2/ja
Priority claimed from JP2020138869A external-priority patent/JP7483555B2/ja
Priority claimed from JP2020144535A external-priority patent/JP7421451B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN202180057091.0A priority Critical patent/CN116057288A/zh
Priority to EP21858347.4A priority patent/EP4202243A4/en
Priority to US18/012,758 priority patent/US20230251152A1/en
Publication of WO2022039203A1 publication Critical patent/WO2022039203A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0078Hubs characterised by the fixation of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • F16C43/06Placing rolling bodies in cages or bearings
    • F16C43/08Placing rolling bodies in cages or bearings by deforming the cages or the races
    • F16C43/086Placing rolling bodies in cages or bearings by deforming the cages or the races by plastic deformation of the race
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/26Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0094Hubs one or more of the bearing races are formed by the hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/10Force connections, e.g. clamping
    • F16C2226/12Force connections, e.g. clamping by press-fit, e.g. plug-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2229/00Setting preload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/078Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing using pressure fluid as mounting aid

Definitions

  • the present invention relates to a preload inspection method for a wheel bearing device.
  • a wheel bearing device that rotatably supports a wheel in a suspension device such as an automobile is known.
  • a preload is applied between the rolling elements constituting the bearing device and the raceway wheels.
  • the preload applied to the bearing is obtained from the preload gap, for example, in a wheel bearing device having specifications in which the hub wheel is crimped to the inner ring to form an inner member
  • the amount of pushing of the inner ring when the hub wheel is crimped is calculated. It is possible to obtain the preload applied to the bearing device by converting it into the preload gap reduction amount and combining the preload gap reduction amount and the preload gap before the crimping process.
  • the rotational torque of the bearing device before and after the crimping process is measured, and the preload increase amount is obtained from the increase amount of the rotational torque before and after the crimping process. It is conceivable to calculate the preload applied to the bearing device by adding the preload increase amount to the preload of the bearing device before the crimping process.
  • the rotational torque of the bearing device varies depending on the temperature of the bearing device at the time of measurement, even if the bearing device has the same preload gap. As a result, the reliability of the calculated preload may decrease.
  • the hub ring is plastically deformed, so that the temperature near the inner ring rises and the inner ring expands.
  • the measured rotational torque shows a higher value than when measured in a state where the inner ring is not inflated, which may affect the measurement accuracy of the preload.
  • the appropriateness of the preload is judged depending on whether or not it is within the preset pressurization reference value, and the degree of abnormality is large. Since it can only be detected, there is room for further increasing the reliability when determining the suitability of preload.
  • the present invention provides a preload inspection method for a wheel bearing device that can inspect the preload applied to the wheel bearing device with higher reliability. Further, the present invention provides a method for inspecting a preload of a wheel bearing device, which can inspect the preload applied to the wheel bearing device with higher reliability by taking into consideration a change in rotational torque due to temperature. .. Further, in the present invention, a preload inspection method for a wheel bearing device capable of suppressing the influence of a temperature rise due to crimping and determining the quality of the preload applied to the wheel bearing device with higher accuracy. The purpose is to provide. Further, the present invention provides a method for preload inspection of a wheel bearing device, which can further increase the reliability when determining the suitability of the preload applied to the wheel bearing device.
  • the first invention is press-fitted into an outer member having a double-row outer raceway surface on the inner circumference, a hub ring having a small-diameter step portion extending in the axial direction on the outer periphery, and a small-diameter step portion of the hub ring.
  • the inner member is composed of an inner ring and has a double-row inner raceway surface facing the outer raceway surface of the double-row, and is rotatably accommodated between both racecourse surfaces of the outer member and the inner member.
  • a preload inspection method for a wheel bearing device including a double-row rolling element wherein the inner ring hits the hub wheel with respect to the small-diameter step portion of the hub wheel, and the inner ring hits the hub wheel in the axial direction.
  • a first bearing that calculates a first bearing preload value of the wheel bearing device based on a press-fitting step of press-fitting to a contact position and an axial negative gap between both raceway surfaces and the rolling element after the press-fitting step.
  • the crimping step of crimping the inner end of the small diameter step portion to the inner ring, and after the crimping step, the inner member and the outer member are relatively rotated.
  • the press-fitting obtained based on the post-crimping rotational torque measuring step of measuring the post-crimping rotational torque of the wheel bearing device at the time and the difference torque between the post-pressing rotational torque and the post-crimping rotational torque.
  • the preload of the wheel bearing device is characterized by comprising a determination step of determining the suitability of the preload applied to the wheel bearing device depending on whether or not the bearing preload value of the above is within the range of the reference value. It is an inspection method.
  • the preload change amount is obtained from the difference torque by using the relationship between the rotational torque and the preload according to the atmospheric temperature. Is.
  • the third invention is based on the difference torque using the relationship between the rotational torque and the preload according to the surface temperature of the wheel bearing device. The amount of change in preload is calculated.
  • the post-crimping rotational torque is subjected to the crimping process between the post-crimping rotational torque measuring step and the second bearing preload value calculation step.
  • a rotational torque correction step of calculating the corrected rotational torque after crimping by correcting based on the amount of temperature rise of the inner ring is provided, and in the second bearing preload value calculation step, the rotational torque after press-fitting is used.
  • a fifth aspect of the invention is the first invention, in which the temperature measuring step of measuring the temperature of the crimped portion between the hub wheel and the inner ring after the completion of the crimping process and the rotational torque after the crimping are measured as the temperature.
  • the second bearing preload value calculation step includes a rotation torque correction step of correcting based on the temperature of the crimping portion measured in the measurement step and calculating the corrected rotational torque after crimping. Based on the difference between the post-press-fit rotation torque and the corrected post-crimping rotation torque, the preload change amount between the press-fitting process and the post-crimping process is obtained, and the preload change amount is used as the first bearing.
  • the second bearing preload value is calculated by adding it to the preload value.
  • the sixth invention includes, in the first invention, a crimping work degree measuring step for measuring a crimping work degree of a crimping portion formed in the small diameter step portion in the crimping step, and the determination step is a determination step.
  • the first determination step of determining the suitability of the preload applied to the wheel bearing device based on whether or not the second bearing preload value is within the range of the reference value, the crimping degree, and the above.
  • a second determination step of collating with the value of the differential torque and determining the presence or absence of a crimping abnormality depending on whether or not the value of the differential torque with respect to the crimping degree is within the range of the torque reference value, and It is equipped with.
  • the seventh invention is an outer member having a double row of outer raceway surfaces on the inner circumference, a hub ring having a small diameter step portion extending in the axial direction on the outer periphery, and an inner ring press-fitted into the small diameter step portion of the hub ring.
  • An inner member having a double-row inner raceway surface facing the outer raceway surface of the double-row, and a double-row member rotatably housed between both racecourse surfaces of the outer member and the inner member.
  • a preload inspection method for a wheel bearing device including a row rolling element, wherein the inner ring abuts on the small-diameter step portion of the hub wheel, and the inner ring abuts on the hub ring in the axial direction.
  • a first inner ring height measuring step for measuring the height of the first inner ring from the outer side end portion of the hub wheel to the inner side end portion of the inner ring after the press-fitting step, and the first inner ring height measuring step.
  • First bearing preload value calculation step of measuring the axial negative gap between the two raceway surfaces and the rolling element after the press-fitting step and calculating the bearing preload value of the wheel bearing device based on the axial negative gap.
  • the post-press-fit rotational torque measuring step of measuring the post-press-fit rotational torque of the wheel bearing device when the inner member and the outer member are relatively rotated after the press-fitting step, and the first After the inner ring height measurement step and the post-press-fit rotation torque measurement step, a crimping step of crimping the inner end of the small diameter step portion to the inner ring, and a crimping step of the small diameter step portion and the inner ring after the crimping step.
  • the post-crimping temperature measuring step of measuring the temperature of the crimping portion and the height of the second inner ring from the outer side end portion of the hub wheel to the inner side end portion of the inner ring after the crimping step are measured.
  • the pushing amount of the inner ring is calculated from the difference between the second inner ring height measuring step and the difference between the first inner ring height and the second inner ring height, and the inner ring of the inner ring is calculated based on the temperature of the crimping portion.
  • the inner ring pushing amount estimation step of correcting the pushing amount and estimating the pushing amount of the inner ring after the correction with respect to the hub wheel, and the pushing amount of the inner ring after the estimated correction of the both raceway surfaces and the rolling element.
  • a final gap calculation step of calculating the gap reduction amount and calculating the final gap between the inner ring and the hub ring based on the gap reduction amount and the axial negative gap, and the calculated final gap.
  • a post-crimping rotational torque measurement step that measures the post-crimping rotational torque of the device, and a temperature change in the post-crimping rotational torque based on the temperature of the crimped portion after the crimping step.
  • the post-crimping rotational torque correction step of estimating the resulting torque increase and reducing the torque increase from the post-crimping rotational torque to correct the post-crimping rotational torque, and the post-pressing rotational torque and post-correction The preload change amount estimation step of calculating the difference torque from the post-crimping rotational torque and estimating the preload change amount due to the crimping process based on the differential torque, and the first bearing preload value. Whether or not the third bearing preload value calculation step of adding the preload change amount to calculate the third bearing preload value, the second bearing preload value, and the third bearing preload value are within predetermined threshold values, respectively.
  • the preload applied to the wheel bearing device can be inspected with higher reliability.
  • the change in the rotational torque due to the ambient temperature is taken into consideration
  • the change in the rotational torque due to the surface temperature of the wheel bearing device is taken into consideration for the wheel.
  • the preload applied to the bearing device can be inspected with higher reliability.
  • the fourth invention it is possible to suppress the influence of the temperature rise of the inner ring due to the crimping process and determine the quality of the preload applied to the wheel bearing device with higher accuracy.
  • the quality of the preload applied to the wheel bearing device can be determined with higher accuracy in consideration of the influence of the temperature rise of the inner ring due to the crimping process.
  • the sixth invention it is possible to further increase the reliability when determining the suitability of the preload applied to the wheel bearing device.
  • the preload applied to the wheel bearing device can be inspected with higher reliability.
  • FIG. 25A is a diagram showing the relationship between the height dimension of the crimping portion and the differential torque
  • FIG. 25B is a diagram showing the relationship between the outer diameter dimension of the crimping portion and the differential torque. It is a figure which shows the flow of the preload inspection method of 6th Embodiment. It is a side sectional view which shows the bearing device for a wheel in the state which the small diameter step part of a hub wheel is crimped to the inner ring. It is a figure which shows the relationship between the crimping part temperature and the rotational torque increase amount.
  • wheel bearing device 1 which is an embodiment of the wheel bearing device in which the preload inspection method according to the present invention is carried out will be described with reference to FIG. 1.
  • the wheel bearing device 1 shown in FIG. 1 rotatably supports wheels in a suspension device for a vehicle such as an automobile.
  • the wheel bearing device 1 has a configuration called a third generation, and has an outer ring 2 which is an outer member, a hub ring 3 and an inner ring 4 which are inner members, and two rows of inner rings which are rolling rows.
  • a side ball row 5 and an outer side ball row 6 and an inner side seal member 9 and an outer side seal member 10 are provided.
  • the inner side represents the vehicle body side of the wheel bearing device 1 when attached to the vehicle body
  • the outer side represents the wheel side of the wheel bearing device 1 when attached to the vehicle body.
  • the axial direction represents a direction along the rotation axis of the wheel bearing device 1.
  • An inner side opening 2a into which the inner side sealing member 9 can be fitted is formed at the inner side end of the outer ring 2.
  • An outer side opening 2b into which the outer side sealing member 10 can be fitted is formed at the outer side end of the outer ring 2.
  • An outer raceway surface 2c on the inner side and an outer raceway surface 2d on the outer side are formed on the inner peripheral surface of the outer ring 2.
  • a vehicle body mounting flange 2e for attaching the outer ring 2 to the vehicle body side member is integrally formed.
  • the vehicle body mounting flange 2e is provided with a bolt hole 2g into which a fastening member (here, a bolt) for fastening the vehicle body side member and the outer ring 2 is inserted.
  • a small diameter step portion 3a having a diameter smaller than that of the outer side end portion is formed on the outer peripheral surface of the inner side end portion of the hub ring 3.
  • a shoulder portion 3e is formed at the outer side end portion of the small diameter step portion 3a in the hub ring 3.
  • a wheel mounting flange 3b for mounting a wheel is integrally formed at the outer end of the hub wheel 3.
  • the wheel mounting flange 3b is provided with a bolt hole 3f into which a hub bolt for fastening the hub wheel 3 to the wheel or a brake component is press-fitted.
  • the hub ring 3 is provided with an inner raceway surface 3c on the outer side so as to face the outer raceway surface 2d on the outer side of the outer ring 2.
  • a lip sliding surface 3d to which the outer side sealing member 10 slides is formed on the base side of the wheel mounting flange 3b in the hub wheel 3.
  • the outer side seal member 10 is fitted to the outer end of the annular space formed by the outer ring 2 and the hub ring 3.
  • the hub wheel 3 has an outer end surface 3g at an end on the outer side of the wheel mounting flange 3b.
  • An inner ring 4 is provided on the small diameter step portion 3a of the hub ring 3.
  • the inner ring 4 is fixed to the small diameter step portion 3a of the hub ring 3 by press fitting and crimping.
  • the inner ring 4 applies a preload to the inner ball row 5 and the outer ball row 6 which are rolling rows.
  • the inner ring 4 has an inner side end surface 4b at the inner side end portion and an outer side end surface 4c at the outer side end portion.
  • a crimping portion 3h that is crimped to the inner side end surface 4b of the inner ring 4 is formed at the inner side end portion of the hub ring 3.
  • the portion where the crimping portion 3h of the hub ring 3 is in close contact is referred to as a crimping portion 4d on the inner ring 4 side.
  • the crimping portion 4d is a part of the inner side end surface 4b. That is, the crimping portion in the wheel bearing device 1 is composed of a crimping portion 3h on the hub wheel 3 side and a crimping portion 4d on the inner ring 4 side.
  • An inner raceway surface 4a is formed on the outer peripheral surface of the inner ring 4. That is, on the inner side of the hub ring 3, the inner raceway surface 4a is formed by the inner ring 4.
  • the inner raceway surface 4a of the inner ring 4 faces the outer raceway surface 2c on the inner side of the outer ring 2.
  • the inner side ball row 5 and the outer side ball row 6 which are rolling rows are configured by holding a plurality of balls 7 which are rolling elements by a cage 8.
  • the inner ball row 5 is rotatably sandwiched between the inner raceway surface 4a of the inner ring 4 and the outer raceway surface 2c on the inner side of the outer ring 2.
  • the outer ball row 6 is rotatably sandwiched between the inner raceway surface 3c of the hub ring 3 and the outer raceway surface 2d on the outer side of the outer ring 2.
  • a double row angular contact ball bearing is composed of an outer ring 2, a hub ring 3, an inner ring 4, an inner ball row 5, and an outer ball row 6.
  • the wheel bearing device 1 may be composed of double row conical roller bearings.
  • the preload inspection method in the present embodiment is performed during the assembly of the wheel bearing device 1.
  • the preload inspection method includes a temporary press-fitting process (S01), a press-fitting process (S02), a first bearing preload value calculation step (S03), a familiar process (S04), and a post-press-fitting rotational torque measurement step (S05).
  • the hub wheel 3 is placed on the support base 11 in a posture in which the axial direction is vertical and the outer end surface 3g is located downward.
  • the outer end surface 3g of the hub wheel 3 is in contact with the support base 11.
  • the outer ring 2 is rotatably mounted on the hub ring 3 mounted on the support base 11 via the inner ball row 5 and the outer ball row 6.
  • the outer side seal member 10 is fitted to the outer side end portion of the outer ring 2.
  • Grease is filled between the hub ring 3 and the outer ring 2.
  • the inner ring 4 is temporarily press-fitted into the small diameter step portion 3a of the hub ring 3 mounted on the support base 11.
  • Temporary press-fitting of the inner ring 4 is performed by press-fitting the inner ring 4 from above into the small diameter step portion 3a and stopping the press-fitting before the outer end surface 4c of the inner ring 4 abuts on the shoulder portion 3e of the hub ring 3.
  • the press-fitting operation of the inner ring 4 is performed in a state where a predetermined pressure is applied by using a pushing device such as a hydraulic cylinder or an air cylinder.
  • an axial positive gap G0 exists between the raceway surface (for example, the outer raceway surface 2c and the inner raceway surface 4a) and the rolling element.
  • This axial positive gap G0 can be measured, for example, from the amount of axial movement of the outer ring 2.
  • the axial dimension H0 between 3 g and the inner end surface 4b of the inner ring 4 is measured.
  • the axial dimension H0 can be measured by a measuring instrument 12 such as a dial gauge.
  • the press-fitting step (S02) is performed after the temporary press-fitting step (S01).
  • the inner ring 4 is press-fitted into the small diameter step portion 3a until the outer end surface 4c of the inner ring 4 comes into contact with the shoulder portion 3e of the hub ring 3.
  • the axial dimension H1 between the outer side end surface 3g of the hub ring 3 and the inner side end surface 4b of the inner ring 4 after the press-fitting of the inner ring 4 is measured.
  • the first bearing preload calculation step (S03) After the press-fitting step (S02), the first bearing preload calculation step (S03) is performed.
  • the first bearing preload value P1 given to the bearing after the press-fitting process is calculated based on the axial negative clearance G1.
  • the first bearing preload value P1 is calculated by obtaining the relationship between the axial negative clearance and the bearing preload value in the wheel bearing device 1 in advance by experiments or the like and applying the axial negative clearance G1 to this relationship. do. The relationship between this axial negative clearance and the bearing preload value can be obtained for each specification of the wheel bearing device 1.
  • the familiarization step (S04) is carried out.
  • the hub ring 3 into which the inner ring 4 is press-fitted and the outer ring 2 are relatively rotated, so that the grease filled between the hub ring 3 and the outer ring 2 is filled with the inner ball. Familiarize with the ball 7 in the row 5 and the outer ball row 6.
  • the outer ring 2 may be fixed and the hub ring 2 may be rotated, or the hub ring 3 may be fixed and the outer ring 2 may be rotated.
  • the resistance generated between the grease and the ball 7 when the hub ring 3 and the outer ring 2 are relatively rotated can be made constant.
  • the rotational torque of the wheel bearing device 1 is measured in the post-press-fit rotational torque measurement step (S05) and the post-crimping rotational torque measurement step (S08)
  • the measured rotational torque varies. It is possible to suppress this.
  • the rotation torque measurement step (S05) after press-fitting is carried out.
  • the press-fitting post-rotation torque measurement step (S05) the press-fitting post-rotation torque Ta when the hub ring 3 in which the inner ring 4 is press-fitted into the small diameter step portion 3a and the outer ring 2 are relatively rotated is a torque measuring instrument. Measure according to 13.
  • the post-press-fit rotational torque Ta is a rotational torque measured after the press-fitting step (S02) and before the crimping step (S06).
  • the outer ring 2 may be fixed and the hub ring 3 may be rotated, or the hub ring 3 may be fixed and the outer ring 2 may be rotated.
  • the hub wheel 3 When the hub wheel 3 is rotated, the revolution speed of the ball 7 in the inner ball row 5 and the outer ball row 6 is slower than when the outer ring 2 is rotated, and the rotation speed of the hub wheel 3 changes. It is preferable to rotate the hub wheel 3 in the rotational torque measuring step because the variation in the rotational torque value measured in 1 is small. When rotating the hub wheel 3, the hub wheel 3 can be rotated by rotating the support base 11 on which the hub wheel 3 is placed.
  • the rotational torque is measured instead of the starting torque of the bearing.
  • the starting torque is the peak value of the initial torque when the bearing starts to rotate, but it decreases with the passage of time and changes greatly with time. Therefore, the reproducibility is poor.
  • the rotational torque is the torque after the bearing has started to rotate, and shows a constant value with almost no change over time. Therefore, in the post-press-fit rotation torque measurement step (S05), it is possible to measure the torque value of the bearing with high accuracy by measuring the post-press-fit rotation torque Ta, which is the rotational torque.
  • the rotational torque of the bearing when the hub wheel 3 and the outer ring 2 are relatively rotated increases in the range where the rotational speed of the hub wheel 3 or the outer ring 2 is equal to or higher than a certain value.
  • the rotation speed of the hub wheel 3 or the outer ring 2 is extremely small, it decreases as the rotation speed increases, and then increases. That is, the rotational torque of the bearing has a region where the rotational torque changes from a decrease to an increase as the rotational speed increases, and in that region, the degree of fluctuation of the rotational torque with respect to the change in the rotational speed is small.
  • the hub wheel 3 or the outer ring 2 is rotated at a constant rotation speed so that the measured rotation torque does not vary. Further, the rotation speed of the hub wheel 3 or the outer ring 2 is set in the range of rotation speeds N1 to N2 in the region where the rotation torque changes from decrease to increase. As a result, even if the rotation speed changes during the measurement of the rotation torque Ta after press-fitting, it is possible to reduce the fluctuation of the rotation torque.
  • the rotational torque is measured in a state where a dynamic frictional force is generated between the inner members 3 and 4 and the outer member 2. Specifically, a dynamic frictional force is applied between the inner members 3 and 4 and the rolling element 7, between the hub ring 3 and the outer side sealing member 10, and between the outer ring 2 and the rolling element 7 and the outer side sealing member 10. The rotational torque is measured while the above is occurring.
  • the dynamic friction coefficient is smaller than the static friction coefficient and the variation is small, so that the rotational torque can be measured with high accuracy.
  • the rotation speed N1 which is the lower limit of the rotation speed range, is set to 10 rotations / min, which enables measurement of the rotation torque while a dynamic friction force is generated.
  • the rotation speed N2, which is the upper limit of the rotation speed range, is preferably set to 60 rotation speeds / min, which is the rotation speed at which the stirring resistance of the grease filled between the hub ring 3 and the outer ring 2 is minimized. This makes it possible to measure the rotational torque with high accuracy.
  • the rotation speed of the hub wheel 3 or the outer ring 2 is 10 rotations / min to 30 rotations / min, in which the fluctuation of the rotation torque with respect to the change in the rotation speed is the smallest in the range of 10 rotations / min to 60 rotations / min. It is more preferable to set the number of rotations. This makes it possible to measure the rotational torque with even higher accuracy.
  • the hub wheel 3 or the outer ring 2 is rotated in a small range of rotation speeds N1 to N2 in which the degree of fluctuation of the rotation torque with respect to the change in the rotation speed is small.
  • the rotation speed of the hub wheel 3 or the outer ring 2 changes, the fluctuation of the rotation torque can be minimized, and the rotation torque can be measured with high accuracy.
  • the wheel bearing device is in a state where the outer side seal member 10 is fitted to the outer side opening end of the annular space formed by the outer ring 2 and the hub ring 3.
  • the rotational torque of 1 is measured.
  • the outer side sealing member 10 is located on the side opposite to the small diameter step portion 3a of the hub ring 3 to be crimped for fixing the inner ring 4, the crimping step (S06) described below Even if an abnormality occurs in the inner ring raceway surface 4a or the like, the seal torque of the outer side seal member 10 is unlikely to be affected, and the rotational torque of the wheel bearing device 1 is also unlikely to change.
  • the rotational torque measuring step (S05) is followed by the crimping step (S06).
  • the crimping step (S06) a crimping process is performed in which the inner side end portion of the small diameter step portion 3a of the hub ring 3 is crimped to the inner side end surface 4b of the inner ring 4.
  • the crimping process can be performed by a rocking crimping process using a crimping tool such as a crimping punch 14.
  • the crimping punch 14 arranged above the small diameter step portion 3a in the hub ring 3 is lowered to bring it into contact with the inner side end portion of the small diameter step portion 3a to have a small diameter. This is performed by swinging the crimping punch 14 in a state of being in contact with the step portion 3a.
  • the crimping punch 14 is raised to separate it from the small diameter step portion 3a. After the crimping process, an axial negative gap is formed between the inner ring 4 and the hub ring 3.
  • the post-crimping rotational torque measuring step (S07) is carried out.
  • the rotational torque is applied in a state where a dynamic frictional force is generated between the inner members 3 and 4 and the outer member 2. I'm measuring.
  • the post-crimping rotational torque Tb is a rotational torque measured after the crimping step (S06) and before the inner side seal member mounting step (S10).
  • the outer ring 2 may be fixed and the hub wheel 3 may be rotated, or the hub ring 3 may be fixed and the outer ring 2 may be rotated. ..
  • the rotational torque measurement step (S05) after press fitting when the hub wheel 3 is rotated, the variation in the rotational torque value measured when the rotational speed of the hub wheel 3 changes becomes smaller. preferable.
  • the rotational torque is measured instead of the starting torque of the bearing, and the hub wheel 3 or the outer ring 2 is slowed down.
  • the rotation speed N1 is set to 10 rotations / min and the rotation speed N2 is set to 60 rotations / min, as in the case of the post-press-fit rotation torque measurement step (S05).
  • the rotation speed of the hub wheel 3 or the outer ring 2 is 10 rotations / min to 30 rotations / min to 30 in which the fluctuation of the rotation torque with respect to the change of the rotation speed is the smallest in the range of 10 rotations / min to 60 rotations / min.
  • the rotation speed is set to rotation / min.
  • the same process as the familiar step (S04), that is, between the hub ring 3 and the outer ring 2 is filled. It is possible to carry out a familiarization step in which the grease is applied to the balls 7 of the inner ball row 5 and the outer ball row 6. As a result, the resistance generated between the grease and the ball 7 when the hub wheel 3 and the outer ring 2 are relatively rotated can be made constant, and is used for wheels in the post-crimping rotational torque measurement step (S07).
  • the rotational torque Tb after crimping of the bearing device 1 is measured, it is possible to further suppress the variation in the measured rotational torque Tb after crimping.
  • the crimping step (S06) is performed. It is possible to omit the familiar step between the crimping and the rotational torque measuring step (S07).
  • the second bearing preload value calculation step (S08) is carried out.
  • the preload change amount ⁇ P between after the press-fitting process and after the crimping process is obtained based on the differential torque ⁇ T.
  • the second bearing preload value P2 is calculated by adding the preload change amount ⁇ P to the first bearing preload value P1 calculated in the first bearing preload value calculation step (S03).
  • the differential torque ⁇ T is the rotational torque increased by the crimping process performed in the crimping step (S06).
  • the preload change amount ⁇ P is a preload increased by the crimping process performed in the crimping step (S06).
  • the preload change amount ⁇ P is calculated by obtaining the relationship between the bearing preload of the wheel bearing device 1 and the rotational torque of the bearing in advance by experiments or the like and applying the differential torque ⁇ T to this relationship. do.
  • the relationship between the bearing preload and the rotational torque of the bearing can be obtained for each specification of the wheel bearing device 1.
  • a determination step (S09) is performed after the second bearing preload value calculation step (S08).
  • the suitability of the preload applied to the wheel bearing device 1 is determined depending on whether or not the second bearing preload value P2 is within a predetermined reference value range.
  • the determination step (S09) if the second bearing preload value P2 is within a predetermined reference value range, it is determined that the preload applied to the wheel bearing device 1 is appropriate, and the second bearing preload is determined to be appropriate. If the bearing preload value P2 is not within the range of the predetermined reference value, it is determined that the preload applied to the wheel bearing device 1 is not appropriate.
  • the preload change amount ⁇ P due to the crimping was obtained by using the post-pressing rotational torque Ta and the post-crimping rotational torque Tb, which are the rotational torques before and after the crimping. Then, the second bearing preload value P2 is calculated.
  • the amount of increase in the rotational torque before and after the crimping process increases. Since it becomes large, the calculated second bearing preload value P2 is out of the range of the predetermined reference value. Therefore, by determining the calculated second bearing preload value P2 in the determination step (S09), it becomes possible to detect that an abnormality has occurred in the wheel bearing device 1 after the crimping process, and it is possible to detect that an abnormality has occurred in the wheel bearing device 1. It is possible to increase the reliability of the measured value of the preload applied to the bearing device 1. This makes it possible to inspect the preload applied to the wheel bearing device 1 with higher reliability.
  • the post-pressing rotational torque Ta and the post-crimping rotational torque Tb used when calculating the second bearing preload value P2 are the values measured for the same wheel bearing device 1. Therefore, the difference torque ⁇ T between the press-fitting rotational torque Ta and the crimping rotational torque Tb is the wheel such as the lip tightening allowance of the outer side sealing member 10 and the amount of grease filled between the hub wheel 3 and the outer ring 2.
  • the variation of the bearing device 1 for each individual is not included, and only the amount of increase in the rotational torque due to the crimping process is extracted.
  • the second bearing preload value P2 can be calculated accurately from the differential torque ⁇ T, and the suitability of the preload applied to the wheel bearing device 1 can be determined with high accuracy in the determination step (S09). Is possible.
  • the reference value used when determining the suitability of the preload in the determination step (S09) is set in consideration of the variation in the rotational torque caused by the crimping process of crimping the small diameter step portion 3a to the inner ring 4. There is.
  • the range of the reference value is set to a smaller range than in the case where the variations are not taken into consideration.
  • the appropriateness of the preload applied to the wheel bearing device 1 can be determined with high accuracy in the determination step (S09), and it is possible to suppress the occurrence of erroneous determination.
  • the inner side seal member mounting step (S10) is performed.
  • the inner side seal member mounting step (S10) may be performed before the determination step (S09) or after the second bearing preload value calculation step (S08) if it is after the crimping and rotational torque measurement step (S07). It is also possible to do it before.
  • the inner ring member mounting step (S10) by fitting the inner side seal member 9 into the inner side opening 2a of the outer ring 2, the inner side end portion of the outer ring 2 and the inner ring 4 are fitted. The inner side seal member 9 is mounted between the inner side end portion and the inner side.
  • the inner side seal member 9 When the inner side seal member 9 is attached before the crimping step (S06), the inner ring 3 is slid between the outer ring 2 and the inner ring 4 depending on the degree of crimping of the hub ring 3 in the crimping step (S06). The dynamic resistance changes. Further, if the inner side seal member 9 is attached even after the crimping step (S06) but before the post-crimping rotational torque measurement step (S07), the inner side seal member 9 depends on the attached state of the inner side seal member 9. The sliding resistance between the outer ring 2 and the inner ring 4 of the above changes.
  • the inner side seal member 9 is mounted before the crimping step (S06) or the post-crimping rotational torque measuring step (S07), the post-crimping rotational torque measured in the post-crimping rotational torque measuring step (S07). It may affect the variation of Tb.
  • the press-fitting is measured in the post-press-fitting rotational torque measuring step (S05) depending on the mounting state of the inner side sealing member 9. It may affect the variation of the rear rotation torque Ta.
  • the inner side seal member mounting step (S10) is performed after the post-crimping rotational torque measuring step (S07), the post-pressing rotational torque measuring step (S05) and the crimping are performed.
  • the rotation torque Ta after press fitting and the rotation torque Tb after crimping of the wheel bearing device 1 are measured, the rotation torque may vary due to the influence of the inner side sealing member 9. It is possible to measure the rotational torque of the wheel bearing device 1 with high accuracy.
  • the inner side seal member mounting step (S10) is carried out after the crimping rotation torque measurement step (S07), but the cap member mounting step is carried out after the crimping rotation torque measurement step (S07). It can also be configured to carry out.
  • the cap member mounting step the cap member is fitted into the inner side opening 2a of the outer ring 2 instead of the inner side sealing member 9, and the inner side opening 2a is closed by the cap member.
  • the preload inspection method in the present embodiment includes a temporary press-fitting step (S01), a press-fitting step (S02), a first bearing preload value calculation step (S03), a familiar step (S04), and rotation after press-fitting.
  • Torque measurement process (S05), crimping process (S06), post-crimping rotation torque measurement process (S07), second bearing preload value calculation process (S08), determination process (S09), and inner side seal member mounting process. (S10) is provided. Each step of the preload inspection method will be described below.
  • the atmospheric temperature A around the wheel bearing device 1 is also measured.
  • a temperature sensor 140 may be provided in the torque measuring device 13 to measure the atmospheric temperature in the vicinity of the outer ring 2.
  • the measurement of the atmospheric temperature A may be performed in any of the steps from the temporary press-fitting step (S01) to the second bearing preload value calculation step (S08).
  • the second bearing preload value calculation step (S08) is carried out.
  • the preload change amount ⁇ P between after the press-fitting process and after the crimping process is obtained based on the differential torque ⁇ T.
  • the second bearing preload value P2 is calculated by adding the preload change amount ⁇ P to the first bearing preload value P1 calculated in the first bearing preload value calculation step (S03).
  • the differential torque ⁇ T is the rotational torque increased by the crimping process performed in the crimping step (S06).
  • the preload change amount ⁇ P is a preload increased by the crimping process performed in the crimping step (S06).
  • the relationship between the bearing preload of the wheel bearing device 1 and the rotational torque of the bearing is obtained in advance by experiments or the like according to a plurality of atmospheric temperatures.
  • the broken line shows the case where the atmospheric temperature A1
  • the solid line shows the case where the atmospheric temperature A2 (A2> A1)
  • the alternate long and short dash line shows the case where the ambient temperature A3 (A3> A2).
  • the preload change amount ⁇ P selects a relationship corresponding to the atmospheric temperature A measured in the post-pressing rotational torque measurement step (S05) (in the present embodiment, the atmospheric temperature A2 is selected), and as shown in FIG. It is calculated by applying the differential torque ⁇ T to the relationship.
  • the relationship between the bearing preload and the rotational torque of the bearing can be obtained for each specification of the wheel bearing device 1. Further, in FIG. 11, three atmospheric temperatures A1 to A3 are illustrated, but the present invention is not limited to this, and the relationship between the bearing preload and the rotational torque of the bearing at two or more atmospheric temperatures may be used, and the number thereof may be used. As the number increases, the accuracy improves.
  • the rotational torque Ta after press-fitting and the rotational torque Tb after crimping vary in measured values depending on the atmospheric temperature A at the time of measurement, even in the wheel bearing device 1 having the same axial positive clearance G0 or axial negative clearance G1. Occurs. This is because the viscosity of the grease filled between the hub ring 3 and the outer ring 2 changes, so that the thickness of the grease on the surface of the balls 7 of the inner ball row 5 and the outer ball row 6 changes, and the balls This is because the contact area of 7 changes. Therefore, as described above, it is possible to obtain a highly reliable preload change amount ⁇ P by obtaining the preload change amount ⁇ P from the differential torque ⁇ T using the relationship between the bearing preload and the bearing rotation torque according to the atmospheric temperature A. can. Further, since the second bearing preload value P2 is calculated from the highly reliable preload change amount ⁇ P in consideration of the ambient temperature A, the reliability of the measured value of the preload applied to the wheel bearing device 1 can be increased. ..
  • the atmospheric temperature A around the wheel bearing device 1 is measured in the post-press-fit rotational torque measurement step (S05), and the preload change amount ⁇ P is the atmosphere in the second bearing preload value calculation step (S08). It was calculated by selecting the relationship between the bearing preload and the bearing rotation torque according to the temperature A and applying the differential torque ⁇ T to this relationship, but instead of the atmospheric temperature A, the surface temperature B of the wheel bearing device 1 was used. You may use it. That is, the surface temperature B of the wheel bearing device 1 is measured in the post-press-fit rotational torque measurement step (S05), and the preload change amount ⁇ P corresponds to the surface temperature B in the second bearing preload value calculation step (S08).
  • the surface temperature B and the atmospheric temperature A of the wheel bearing device 1 usually show substantially the same temperature.
  • the place where the surface temperature B is measured may be, for example, the surface of the outer ring 2.
  • a contact type temperature sensor or a non-contact type temperature sensor can be used.
  • the preload inspection method in the present embodiment includes a temporary press-fitting step (S21), a press-fitting step (S22), a first bearing preload value calculation step (S23), a familiar step (S24), and rotation after press-fitting.
  • Torque measurement process (S25), crimping process (S26), machining time determination process (S27), post-crimping rotational torque measurement process (S28), rotational torque correction process (S29), second bearing preload value calculation process (S) S30), a determination step (S31), and an inner side seal member mounting step (S32) are provided.
  • Torque measurement process S25
  • crimping process S26
  • machining time determination process S27
  • S31 determination step
  • an inner side seal member mounting step (S32) an inner side seal member mounting step
  • the crimping time t which is the time required for the crimping.
  • the crimping processing time t to be measured starts from the time when the crimping punch 14 starts to descend in order to perform the crimping processing, the crimping processing is completed, and the crimping punch 14 starts to rise. It is the time until the point.
  • the machining time determination step (S27) is carried out.
  • the machining time determination step (S27) it is determined whether or not the measured crimping machining time t exceeds a predetermined upper limit value. If it is determined in step S27 that the crimping processing time t does not exceed a predetermined upper limit value (S27; N), then the post-crimping rotational torque measuring step (S28) is performed. On the other hand, if it is determined in step S27 that the crimping time t exceeds a predetermined upper limit value (S27; Y), the wheel bearing device 1 that has been crimped is discharged as an NG product (S). S33).
  • the predetermined upper limit value is set to 20 seconds.
  • the amount of temperature rise of the inner ring 4 due to the crimping process and the crimping process time t have a correlation, and the amount of the temperature increase of the inner ring 4 increases as the crimping process time t increases (there is a relationship). See graphs R1a, R1b, R1c shown in FIG. 13). Further, since the expansion amount of the inner ring 4 increases as the temperature rise amount increases, the increase amount of the rotational torque Tb after crimping also increases as the temperature rise amount of the inner ring 4 increases.
  • the rotational torque correction step (S29) the crimping process measured in the crimping process (S26) using the relationship between the crimping process time t and the rotational torque increase amount Ti shown in FIG.
  • the relationship between the crimping processing time t and the rotational torque increase amount Ti shown in FIG. 14 can be obtained in advance by experiments or the like. In this case, the relationship between the crimping time t and the rotational torque increase amount Ti can be obtained, for example, in the range until the crimping time t reaches a predetermined time. Further, the relationship between the crimping processing time t and the rotational torque increase amount Ti can be obtained for each specification of the wheel bearing device 1.
  • the relationship between the crimping processing time t and the temperature rise amount of the inner ring 4 shown in FIG. 13 differs depending on the ambient temperature of the wheel bearing device 1 when measuring the rotational torque Tb after crimping, and is crimped.
  • the processing time t is the same value, the higher the ambient temperature, the smaller the amount of temperature rise.
  • graph R1a shows the relationship when the atmospheric temperature is a ° C.
  • graph R1b shows the relationship when the atmospheric temperature is b ° C. (b ° C.> a ° C.) higher than a ° C.
  • the graph R1c shows the relationship when the atmospheric temperature is c ° C. (c ° C.> b ° C.) higher than b ° C.
  • the relationship between the crimping processing time t and the rotational torque increase amount Ti shown in FIG. 14 differs depending on the ambient temperature of the wheel bearing device 1 when measuring the rotational torque Tb after crimping.
  • the higher the ambient temperature the smaller the rotational torque increase amount Ti.
  • graph R2a shows the relationship when the atmospheric temperature is a ° C
  • graph R2b shows the relationship when the atmospheric temperature is b ° C
  • graph R1c shows the relationship when the atmospheric temperature is c ° C. Shows the relationship.
  • the relationship between the crimping processing time t and the rotational torque increase amount Ti differs depending on the atmospheric temperature. Therefore, in the preload inspection method, the relationship between the crimping processing time t and the rotational torque increase amount Ti at a plurality of atmospheric temperatures is obtained in advance, and when the rotational torque increase amount Ti is obtained from the crimping processing time t, the rotation torque increase amount Ti is obtained. From this plurality of relationships, the rotational torque increase amount Ti is obtained by using the relationship between the crimping processing time t corresponding to the atmospheric temperature during the crimping process and the rotational torque increase amount Ti.
  • the graph of FIG. 9 showing the relationship between the crimping processing time t corresponding to b ° C. and the rotational torque increase amount Ti.
  • the rotational torque increase amount Ti is obtained from the crimping processing time t. This makes it possible to obtain the rotational torque increase amount Ti with high accuracy.
  • a second bearing preload value calculation step (S30) is performed.
  • the preload change amount ⁇ P between after the press-fitting process and after the crimping process is obtained based on the differential torque ⁇ T.
  • the second bearing preload value P2 is calculated by adding the preload change amount ⁇ P to the first bearing preload value P1 calculated in the first bearing preload value calculation step (S23).
  • the differential torque ⁇ T is the rotational torque increased by the crimping process performed in the crimping step (S26).
  • the preload change amount ⁇ P is a preload increased by the crimping process performed in the crimping step (S26).
  • the differential torque ⁇ T and the preload change amount ⁇ P are both values obtained by removing the influence of the temperature rise of the inner ring 4 due to the crimping process.
  • the preload change amount ⁇ P is calculated by obtaining the relationship between the bearing preload of the wheel bearing device 1 and the rotational torque of the bearing in advance by experiments or the like and applying the differential torque ⁇ T to this relationship. do.
  • the relationship between the bearing preload and the rotational torque of the bearing can be obtained for each specification of the wheel bearing device 1.
  • the first bearing preload value P1 calculated based on the axial negative gap G1 between the raceway surface and the rolling element measured in the press-fitting step (S22), and after press-fitting. Since the second bearing preload value P2 is calculated using the rotational torque Ta and the preload change amount ⁇ P calculated based on the corrected rotational torque Tc, the second bearing preload value P2 is highly accurate. It is possible to ask for it.
  • a determination step (S31) is performed after the second bearing preload value calculation step (S30).
  • the quality of the preload applied to the wheel bearing device 1 is determined depending on whether or not the second bearing preload value P2 is within a predetermined reference value range.
  • the determination step (S31) if the second bearing preload value P2 is within a predetermined reference value range, it is determined that the preload applied to the wheel bearing device 1 is appropriate, that is, a good determination. (S31; Y), and then the inner side seal member mounting step (S32) is carried out. On the other hand, in the determination step (S31), if the second bearing preload value P2 is not within the range of the predetermined reference value, it is determined that the preload applied to the wheel bearing device 1 is not appropriate, that is, A rejection determination is made (S31; N), and the wheel bearing device 1 is discharged as an NG product (S33).
  • the preload change amount ⁇ P is obtained by using the corrected post-crimping rotation torque Tc in which the influence of the temperature rise of the inner ring 4 due to the crimping process is removed. Since the second bearing preload value P2 is calculated, it is possible to calculate the second bearing preload value P2 with high accuracy. As a result, in the determination step (S11), the influence of the temperature rise of the inner ring 4 due to the crimping process can be suppressed, and the quality of the preload applied to the wheel bearing device 1 can be determined with higher accuracy. ..
  • the rotational torque increase amount Ti which is the increase amount of the rotational torque Tb after crimping due to the temperature rise of the inner ring 4 due to the crimping process, is set to the crimping process time. Since the corrected rotational torque Tc is calculated by subtracting the rotational torque increase amount Ti from the tightened rotational torque Tb, which is obtained based on t, the corrected rotational torque Tc is easily and high. It is possible to calculate with accuracy.
  • the inner ring 4 measures the post-crimping rotational torque Tb after the crimping step (S26). There is no need to wait until the temperature returns to the temperature before crimping. As a result, the rotational torque Tb after crimping can be measured for all the wheel bearing devices 1 without deteriorating the production efficiency in the mass production line, and the quality of the preload applied to the wheel bearing devices 1 can be determined. It will be possible.
  • the rotation torque Ta after press-fitting and the rotational torque Tb after crimping can be measured in the same process equipment, the values of the rotational torque Ta after press-fitting and the rotational torque Tb after crimping are all for the wheel bearing device 1. It becomes easy to associate with the value of.
  • the preload is calculated using the rotational torque before and after the crimping process
  • the amount of increase in the rotational torque before and after the crimping process becomes large. Therefore, the calculated second bearing preload value P2 is out of the range of the predetermined reference value. Therefore, by determining the calculated second bearing preload value P2 in the determination step (S31), it becomes possible to detect that an abnormality has occurred in the wheel bearing device 1 after the crimping process, and it is possible to detect that an abnormality has occurred in the wheel bearing device 1. It is possible to increase the reliability of the measured value of the preload applied to the bearing device 1. This makes it possible to inspect the preload applied to the wheel bearing device 1 with higher reliability.
  • the rotational torque increase amount Ti is obtained by using the relationship between the time t and the rotational torque increase amount Ti. As a result, the rotational torque increase amount Ti can be obtained with high accuracy, and the quality of the preload applied to the wheel bearing device 1 can be determined with higher accuracy.
  • the relationship between the crimping processing time t and the rotational torque increase amount Ti shown in FIG. 14 is estimated based on the relationship in the range obtained by the experiment or the like even if it is outside the range actually obtained by the experiment or the like. It is possible. However, if the crimping time t deviates significantly from the range obtained by experiments or the like, the error that occurs in the relationship between the estimated crimping time t and the rotational torque increase amount Ti becomes large, and the rotation starts from the crimping time t. It may be difficult to accurately calculate the torque increase amount Ti.
  • the machining time determination step (S27) it is determined whether or not the crimping machining time t exceeds a predetermined upper limit value, and the crimping machining time t is set to a predetermined upper limit value. If it is determined that the amount is exceeded, it is difficult to correct the rotational torque Tb after crimping with high accuracy, and the wheel bearing device 1 that has been crimped is discharged as an NG product. There is.
  • the accuracy of the corrected rotational torque Tc calculated in the rotational torque correction step (S29) performed after the machining time determination step (S07) can be improved, and the accuracy of the corrected rotational torque Tc can be improved in the determination step (S31) for wheels. It is possible to determine the quality of the preload applied to the bearing device 1 with higher accuracy.
  • the inner side seal member mounting step (S32) is performed. By carrying out the inner side seal member mounting step (S32), the assembly step of the wheel bearing device 1 is completed.
  • the inner side seal member mounting step (S32) is before the determination step (S31) and before the second bearing preload value calculation step (S30) if it is after the crimping and rotational torque measurement step (S28). , Or it can be performed before the rotational torque correction step (S09).
  • the inner ring member mounting step (S32) by fitting the inner side seal member 9 into the inner side opening 2a of the outer ring 2, the inner side end portion of the outer ring 2 and the inner ring 4 are fitted. The inner side seal member 9 is mounted between the inner side end portion and the inner side.
  • the sliding between the outer ring 2 and the inner ring 4 of the inner side seal member 9 depends on the degree of crimping of the hub ring 3 in the crimping step (S26).
  • the dynamic resistance changes.
  • the inner side seal member 9 depends on the attached state of the inner side seal member 9. The sliding resistance between the outer ring 2 and the inner ring 4 of the above changes.
  • the inner side seal member 9 is mounted before the crimping step (S26) or the post-crimping rotational torque measuring step (S28), the post-crimping rotational torque measured in the post-crimping rotational torque measuring step (S28) is performed. It may affect the variation of Tb.
  • the press-fitting is measured in the post-press-fitting rotational torque measuring step (S25) depending on the mounting state of the inner side sealing member 9. It may affect the variation of the rear rotation torque Ta.
  • the inner side seal member mounting step (S32) is performed after the post-crimping rotational torque measuring step (S28), the post-pressing rotational torque measuring step (S25) and the crimping are performed.
  • the rotation torque Ta after press fitting and the rotation torque Tb after crimping of the wheel bearing device 1 are measured, the rotation torque may vary due to the influence of the inner side sealing member 9. It is possible to measure the rotational torque of the wheel bearing device 1 with high accuracy.
  • the inner side seal member mounting step (S32) is carried out after the crimping rotation torque measurement step (S28), but the cap member mounting step is carried out after the crimping rotation torque measurement step (S28). It can also be configured to carry out.
  • the cap member mounting step the cap member is fitted into the inner side opening 2a of the outer ring 2 instead of the inner side sealing member 9, and the inner side opening 2a is closed by the cap member.
  • the preload inspection method in the present embodiment includes a temporary press-fitting step (S41), a press-fitting step (S42), a first inner ring height measuring step (S43), and a first bearing preload value calculation step (. S44), familiar process (S45), post-pressing rotational torque measurement process (S46), crimping process (S47), temperature measurement process (S48), post-crimping rotational torque measurement process (S49), rotational torque correction process (S50). ), A second bearing preload value calculation step (S51), a determination step (S52), and an inner side seal member mounting step (S53). Each step of the preload inspection method will be described below.
  • the press-fitting step (S42) is performed after the temporary press-fitting step (S41). As shown in FIG. 4, in the press-fitting step (S42), the inner ring 4 is press-fitted into the small diameter step portion 3a until the outer end surface 4c of the inner ring 4 comes into contact with the shoulder portion 3e of the hub ring 3.
  • the first inner ring height measuring step (S43) is carried out. As shown in FIG. 4, in the inner ring height measuring step (S43), after the press-fitting of the inner ring 4 into the small diameter step portion 3a is completed, the outer side end surface 3g and the inner ring 4 of the hub ring 3 after the press-fitting of the inner ring 4 is completed. The height H1 of the first inner ring, which is the axial dimension between the inner ring side end surface 4b and the inner ring, is measured.
  • the temperature measuring step (S48) is carried out.
  • the temperature ti0 of the crimping portion between the hub ring 3 and the inner ring 4 after the crimping process is completed is measured.
  • the temperature ti0 of the crimping portion 3h formed on the inner side end portion of the hub ring 3 is measured by the temperature sensor 15.
  • the temperature ti0 of the crimping portion 3h can be measured immediately after the crimping process is completed or after a certain period of time has elapsed after the crimping process is completed.
  • the temperature sensor 15 is attached to, for example, a crimping machine provided with a crimping punch 14. That is, the temperature ti0 of the crimping portion 3h can be measured by the temperature sensor 15 attached to the crimping machine. In this way, by measuring the temperature ti0 of the crimping portion 3h with the temperature sensor 15 attached to the crimping machine, the temperature ti0 of the crimping portion 3h is smoothly measured after the crimping step (S47) is performed. It is possible to do.
  • a contact type temperature sensor or a non-contact type temperature sensor can be used as the temperature sensor 15.
  • the temperature sensor 15 is a contact type temperature sensor
  • the temperature ti0 of the crimping portion 3h can be directly measured with the contact of the temperature sensor 15 in contact with the crimping portion 3h.
  • the contact of the temperature sensor 15 is configured to be able to move up and down with respect to the crimping portion 3h, and the contact is lowered to contact the crimping portion 3h when measuring the temperature ti0. It can be configured to raise the child and separate it from the crimping portion 3h.
  • the temperature ti0 of the crimping portion 3h can be measured with the temperature sensor 15 arranged at a position away from the crimping portion 3h.
  • the temperature ti0 of the crimping portion 3h of the hub wheel 3 is measured from the inner side in the axial direction, but it is also possible to measure the temperature of the inner side end surface 4b of the inner ring 4.
  • the crimping portion 3h is located on the inner side in the axial direction with respect to the inner side end surface 4b, it is easier to measure the temperature ti0 of the crimping portion 3h than to measure the temperature of the inner side end surface 4b. Is.
  • the rotational torque measurement step (S49) is followed by the rotational torque correction step (S50).
  • the post-crimping rotational torque Tb measured in the post-crimping rotational torque measuring step (S49) is based on the temperature ti0 of the crimping portion 3h measured in the temperature measuring step (S08).
  • the corrected rotational torque Tc is calculated.
  • the rotational torque Tb after crimping is corrected as follows, and the value of the rotational torque after crimping is used when the temperature of the inner ring 4 does not rise due to the crimping process.
  • a certain corrected post-crimping rotation torque Tc is calculated.
  • the temperature of the inner ring 4 when the temperature does not rise due to the crimping process is the same as the ambient temperature of the wheel bearing device 1.
  • the rotational torque correction step (S50) from the temperature ti0 of the crimping portion 3h measured in the temperature measuring step (S48), the temperature of the crimping portion 3h shown in FIG. 18 and the inner raceway surface 4a of the inner ring 4 Using the relationship with the temperature, the temperature ti1 of the inner raceway surface 4a after the completion of the crimping process is calculated.
  • the relationship between the temperature of the crimping portion 3h shown in FIG. 18 and the temperature of the inner raceway surface 4a of the inner ring 4 can be obtained in advance by an experiment or the like. Further, the relationship between the temperature of the crimping portion 3h and the temperature of the inner raceway surface 4a of the inner ring 4 can be obtained for each specification of the wheel bearing device 1.
  • the temperature ti1 of the inner raceway surface 4a after the crimping step in which the rotary torque Tb after the crimping is measured is the same as the temperature of the inner raceway surface 4a before the crimping process.
  • the rotational torque change amount ⁇ T1 due to the temperature change of the inner ring 4 is obtained.
  • the rotational torque change amount ⁇ T1 is obtained by obtaining the relationship between the differential temperature ⁇ t and the rotational torque change amount ⁇ T1 in advance by experiments or the like, and applying the differential temperature ⁇ t to this relationship. calculate.
  • the relationship between the difference temperature ⁇ t and the rotational torque change amount ⁇ T1 can be obtained for each specification of the wheel bearing device 1.
  • the following method is adopted to improve the accuracy of the post-crimping rotational torque Tb. May be. As shown in FIG. 20, from when the temperature ti0 of the crimped portion 3h after machining is measured (measurement timing of the crimping portion temperature) to when the rotational torque Tb after crimping is measured (rotational torque measurement timing after crimping).
  • the relationship between the temperature and time of the inner raceway surface 4a shown in FIG. 20 can be obtained in advance by an experiment or the like. Further, the relationship between the temperature and time of the inner raceway surface 4a can be obtained for each specification of the wheel bearing device 1.
  • the temperature of the inner raceway surface 4a when the temperature ti0 of the crimping portion 3h is measured is ti1
  • the temperature of the inner raceway surface 4a is the temperature of the inner raceway surface 4a. It is rising. This is because, after measuring the temperature ti0 of the crimping portion 3h, the heat of the crimping portion 3h whose temperature has risen is transferred to the inner raceway surface 4a of the inner ring 4.
  • the rotational torque Tb after crimping is measured at the timing when the temperature of the inner raceway surface 4a rises from ti1 and then slightly drops to ti2.
  • a second bearing preload value calculation step (S51) is performed.
  • the preload change amount ⁇ P between after the press-fitting process and after the crimping process is obtained based on the differential torque ⁇ T2.
  • the second bearing preload value P2 is calculated by adding the preload change amount ⁇ P to the first bearing preload value P1 calculated in the first bearing preload value calculation step (S44).
  • the differential torque ⁇ T2 is the rotational torque increased by the crimping process performed in the crimping step (S47).
  • the preload change amount ⁇ P is a preload increased by the crimping process performed in the crimping step (S47).
  • the differential torque ⁇ T2 and the preload change amount ⁇ P are both values obtained by removing the influence of the temperature rise of the inner ring 4 due to the crimping process.
  • the preload change amount ⁇ P is calculated by obtaining the relationship between the bearing preload of the wheel bearing device 1 and the rotational torque of the bearing in advance by experiments or the like and applying the differential torque ⁇ T2 to this relationship. do.
  • the relationship between the bearing preload and the rotational torque of the bearing can be obtained for each specification of the wheel bearing device 1.
  • the first bearing preload value P1 calculated based on the axial negative clearance G1, the post-pressing rotational torque Ta, and the corrected post-crimping rotational torque Tc are used. Since the second bearing preload value P2 is calculated using the calculated preload change amount ⁇ P, it is possible to obtain the second bearing preload value P2 with high accuracy.
  • the second bearing preload calculation step (S51) the effect of the temperature rise of the inner ring 4 due to the crimping is removed based on the temperature ti0 of the crimping portion 3h measured after the crimping is completed. Since the post-tightening rotational torque Tc is obtained and the second bearing preload value P2 is calculated using this corrected post-tightening rotational torque Tc, it is possible to calculate the second bearing preload value P2 with high accuracy. It has become. As a result, in the determination step (S52), the quality of the preload applied to the wheel bearing device 1 can be determined with higher accuracy in consideration of the influence of the temperature rise of the inner ring 4 due to the crimping process. ..
  • the temperature ti1 of the inner raceway surface 4a after the completion of the crimping process is calculated from the temperature ti0 of the crimping portion 3h measured in the temperature measuring step (S48), and the crimping is performed.
  • the elapsed time s from the time when the temperature ti0 of the part 3h is measured to the time when the rotational torque Tb after crimping is measured, and the temperature ti2 of the inner raceway surface 4a when measuring the rotational torque Tb after crimping from the temperature ti1.
  • the rotational torque change amount ⁇ T1 due to the temperature change of the inner ring 4 is obtained, and the corrected rotation torque change amount ⁇ T1 is subtracted from the rotational torque Tb after crimping. Since the rotational torque Tc after crimping is calculated, it is possible to easily and highly accurately calculate the corrected rotational torque Tc after crimping.
  • the corrected post-crimp rotation torque Tc is calculated based on the temperature ti0 of the crimping portion 3h and the elapsed time s, so that the post-crimp rotation after the crimping step (S47) is performed. It is no longer necessary to wait for the torque Tb measurement until the temperature of the inner ring 4 returns to the temperature before the crimping process. This makes it possible to determine the quality of the preload applied to the wheel bearing device 1 without lowering the production efficiency in the mass production line.
  • the preload is calculated using the rotational torque before and after the crimping process
  • the amount of increase in the rotational torque before and after the crimping process becomes large. Therefore, the calculated second bearing preload value P2 is out of the range of the predetermined reference value. Therefore, by determining the calculated second bearing preload value P2 in the determination step (S52), it becomes possible to detect that an abnormality has occurred in the wheel bearing device 1 after the crimping process, and it is possible to detect that an abnormality has occurred in the wheel bearing device 1. It is possible to increase the reliability of the measured value of the preload applied to the bearing device 1. This makes it possible to inspect the preload applied to the wheel bearing device 1 with higher reliability.
  • the inner side seal member mounting step (S13) is performed.
  • the inner side seal member mounting step (S53) is before the determination step (S52) and before the second bearing preload value calculation step (S51) if it is after the crimping and rotational torque measurement step (S49). , Or it can be performed before the rotational torque correction step (S50).
  • the inner ring member mounting step (S53) by fitting the inner side seal member 9 into the inner side opening 2a of the outer ring 2, the inner side end portion of the outer ring 2 and the inner ring 4 are fitted. The inner side seal member 9 is mounted between the inner side end portion and the inner side.
  • the inner side seal member 9 When the inner side seal member 9 is attached before the crimping step (S47), the inner ring 3 is slid between the outer ring 2 and the inner ring 4 depending on the degree of crimping of the hub ring 3 in the crimping step (S47). The dynamic resistance changes. Further, if the inner side seal member 9 is attached even after the crimping step (S47) but before the post-crimping rotational torque measurement step (S49), the inner side seal member 9 depends on the attached state of the inner side seal member 9. The sliding resistance between the outer ring 2 and the inner ring 4 of the above changes.
  • the inner side seal member 9 is mounted before the crimping step (S47) or the post-crimping rotational torque measuring step (S49), the post-crimping rotational torque measured in the post-crimping rotational torque measuring step (S49) is performed. It may affect the variation of Tb.
  • the press-fitting is measured in the post-press-fitting rotational torque measuring step (S46) depending on the mounting state of the inner side sealing member 9. It may affect the variation of the rear rotation torque Ta.
  • the inner side seal member mounting step (S53) is performed after the post-crimping rotational torque measuring step (S49), the post-pressing rotational torque measuring step (S46) and the crimping are performed.
  • the rotation torque Ta after press fitting and the rotation torque Tb after crimping of the wheel bearing device 1 are measured, the rotation torque may vary due to the influence of the inner side sealing member 9. It is possible to measure the rotational torque of the wheel bearing device 1 with high accuracy.
  • the inner side seal member mounting step (S53) is carried out after the crimping rotation torque measurement step (S49), but the cap member mounting step is carried out after the crimping rotation torque measurement step (S49). It can also be configured to carry out.
  • the cap member mounting step the cap member is fitted into the inner side opening 2a of the outer ring 2 instead of the inner side sealing member 9, and the inner side opening 2a is closed by the cap member.
  • the preload inspection method in the present embodiment includes a temporary press-fitting step (S61), a press-fitting step (S62), a first bearing preload value calculation step (S63), a familiar step (S64), and rotation after press-fitting.
  • the crimping processability measuring step (S67) is carried out.
  • the crimping work degree measuring step (S67) the crimping work degree of the crimping portion 3h formed by the crimping work is measured.
  • the degree of crimping is the degree of deformation of the crimping portion 3h that has been plastically deformed by the crimping, and can be represented by the shape of the crimping portion 3h.
  • the shape of the crimping portion 3h to be measured includes a height dimension h in the axial direction of the crimping portion 3h, an outer diameter dimension r in a direction orthogonal to the axial direction of the crimping portion 3h, and the like. That is, the crimping degree includes the height dimension h in the axial direction of the crimping portion 3h and the outer diameter dimension r in the direction orthogonal to the axial direction of the crimping portion 3h.
  • the degree of crimping work of the crimping portion 3h is measured by measuring the height dimension h and the outer diameter dimension r.
  • the degree of crimping work of the crimping portion 3h can be measured by measuring only one of the height dimension h and the outer diameter dimension r.
  • the height dimension h and the outer diameter dimension r which are the crimping degree of the crimping portion 3h, can be measured by using, for example, a measuring instrument 150.
  • the measuring instrument 150 is a contact-type measuring instrument in which a contactor is brought into contact with the crimping portion 3h to perform measurement, and has a main body portion 151, a first contactor 152, and a second contactor 153.
  • the main body portion 151 is a long member extending along a direction orthogonal to the axial direction, and supports the first contact member 152 so as to be movable along the direction orthogonal to the axial direction.
  • the first contact 152 is a long member extending along the axial direction, and is provided in a pair on the main body portion 151.
  • the first contact 152 contacts the inner end surface 4b of the inner ring 4 and the outer diameter edge portion in the direction orthogonal to the axial direction of the crimping portion 3h when measuring the height dimension h and the outer diameter dimension r. ..
  • the second contactor 153 is a long member extending along a direction orthogonal to the axial direction, and is supported by the first contactor 152 so as to be movable along the axial direction.
  • the second contact 153 comes into contact with the inner end surface of the crimping portion 3h in the axial direction when measuring the height dimension h and the outer diameter dimension r.
  • the second contact 153 is moved along the axial direction with respect to the first contact 152.
  • the tip of the first contact 152 is brought into contact with the inner end surface 4b of the inner ring 4, and the second contact 153 is brought into contact with the inner end surface of the crimping portion 3h.
  • the inner side of the crimping portion 3h becomes the height dimension h of the crimping portion 3h.
  • the first contact piece 152 is moved in a direction orthogonal to the axial direction with respect to the main body portion 151 to make the first contact.
  • the child 152 is brought into contact with the outer diameter edge portion of the crimping portion 3h.
  • the outer diameter dimension r of the crimping portion 3h is measured by measuring the length between the first contactor 152 and the first contactor 152 in the direction orthogonal to the axial direction.
  • the crimping degree of the crimping portion 3h is measured by using the measuring instrument 150 having the main body portion 151, the first contactor 152, and the second contactor 153.
  • the degree of crimping of the crimping portion 3h can be measured by a contact-type measuring instrument having another configuration without limitation. As described above, when the degree of crimping is measured by using the contact type measuring instrument, it is easy to make the measuring instrument a simple structure.
  • the degree of crimping work of the crimping portion 3h can be measured by using a non-contact type measuring instrument that measures without contacting the crimping portion 3h.
  • a non-contact type measuring instrument for example, as shown in FIG. 24, a laser displacement meter that measures the height dimension h of the crimping portion 3h by irradiating the crimping portion 3h with a laser can be used.
  • the measurement can be performed without contacting the crimping portion 3h, so that the wheel bearing device 1 is assembled. It becomes easy to measure the degree of crimping on the production line.
  • the post-crimping rotational torque measurement step (S68) is performed after the crimping degree measurement step (S67), but the crimping is performed after the post-crimping rotational torque measuring step (S68). It is also possible to carry out the workability measuring step (S67).
  • the second determination step (S71) is carried out.
  • the crimping work degree of the crimping portion 3h and the value of the differential torque ⁇ T are collated, and the value of the differential torque ⁇ T with respect to the crimping work degree of the crimping portion 3h is the torque reference value. Whether or not there is a crimping abnormality is determined based on whether or not it is within the range of.
  • the first relational line X1 representing the relationship between the height dimension h of the crimping portion 3h and the differential torque ⁇ T is obtained in advance by experiments or the like, and the differential torque with respect to the height dimension h is obtained.
  • the range between the upper limit value X1U and the lower limit value X1L of the value of ⁇ T is set in advance as the range R1 of the first torque reference value when determining the presence or absence of a crimping abnormality. Further, as shown in FIG.
  • the second relational line X2 representing the relationship between the outer diameter dimension r of the crimping portion 3h and the differential torque ⁇ T is obtained in advance by experiments or the like, and the value of the differential torque ⁇ T with respect to the outer diameter dimension r.
  • the range between the upper limit value X2U and the lower limit value X2L is set in advance as the range R2 of the second torque reference value when determining the presence or absence of a crimping abnormality.
  • the height dimension h and the outer diameter dimension r of the crimping portion 3h are collated with the value of the differential torque ⁇ T, and the value of the differential torque ⁇ T with respect to the height dimension h falls within the range R1 of the first torque reference value. Whether or not the difference torque ⁇ T with respect to the outer diameter dimension r is within the range R2 of the second torque reference value determines whether or not there is a crimping abnormality.
  • the value of the difference torque ⁇ T with respect to the height dimension h is within the range R1 of the first torque reference value. If the value of the differential torque ⁇ T with respect to the outer diameter dimension r is within the range R2 of the second torque reference value, it is determined that no crimping abnormality has occurred. Further, when the height dimension h and the outer diameter dimension r are collated with the value of the differential torque ⁇ T, is the value of the differential torque ⁇ T with respect to the height dimension h at least within the range R1 of the first torque reference value? , Or, if the value of the differential torque ⁇ T with respect to the outer diameter dimension r is not within the range R2 of the second torque reference value, it is determined that a crimping abnormality has occurred.
  • the crimping portion 3h It is possible to detect the deformation of the inner raceway surface 4a of the inner ring 4 due to the bias of the shape of. In this case, the presence or absence of a crimping abnormality is determined by collating the crimping work degree of the crimping portion 3h with the value of the differential torque ⁇ T. It is possible to detect not only the deformation of the surface 4a but also the deformation of the inner raceway surface 4a to a small degree.
  • the height dimension h and the outer diameter dimension r are used as the degree of crimping to be measured, but the height dimension h and the outer diameter dimension r are relatively easy to measure. Therefore, it is possible to measure the degree of crimping without lowering the production efficiency in the mass production line.
  • the determination result of the appropriateness of the preload in the first determination step (S70) and the determination result of the presence or absence of the crimping abnormality in the second determination step (S71) are used. Based on this, it is determined whether or not the wheel bearing device 1 after the crimping process is a good product.
  • the addition is applied. It is determined that the wheel bearing device 1 after tightening is a good product. Further, when it is determined that the preload of the wheel bearing device 1 is not appropriate at least in the first determination step (S70), or it is determined that a crimping abnormality has occurred in the second determination step (S71). It is determined that the wheel bearing device 1 after the crimping process is not a good product.
  • the determination of the suitability of the preload in the first determination step (S70) can be determined by the second determination step. It can be supplemented by the determination of the presence or absence of the crimping abnormality in (S71). This makes it possible to further increase the reliability when determining the suitability of the preload applied to the wheel bearing device 1 and to manufacture a higher quality wheel bearing device 1.
  • the shape of the crimping portion 3h can be grasped, and the grasped shape of the crimping portion 3h can be obtained.
  • the crimping condition can be set based on this, and the crimping portion 3h can be adjusted to an appropriate shape.
  • the shape of the crimping portion 3h can be leveled at a plurality of manufacturing bases, manufacturing lots, and the like, and it becomes possible to manufacture a wheel bearing device 1 of uniform quality.
  • both the height dimension h and the outer diameter dimension r are measured as the measurement of the degree of crimping, but only one of the height dimension h and the outer diameter dimension r is crimped. It is also possible to measure it as the degree of processing. In this way, even when one of the height dimension h and the outer diameter dimension r is measured, the reliability when determining the suitability of the preload applied to the wheel bearing device 1 is further improved, and the quality is higher. It is possible to manufacture a bearing device 1 for wheels.
  • the appropriateness of the preload is determined in the first determination step (S70)
  • the presence or absence of the crimping abnormality is determined in the second determination step (S71). It is also possible to determine the appropriateness of the preload in the second determination step (S71) after determining the presence or absence of the crimping abnormality in the determination step (S70) of 1.
  • the inner side seal member mounting step (S72) is carried out.
  • the inner side seal member mounting step (S72) is before the second determination step (S71) and before the first determination step (S70) if it is after the crimping and rotational torque measurement step (S68). , Or it can be carried out before the second bearing preload value calculation step (S69).
  • the inner ring member mounting step (S72) by fitting the inner side seal member 9 into the inner side opening 2a of the outer ring 2, the inner side end portion of the outer ring 2 and the inner ring 4 are fitted. The inner side seal member 9 is mounted between the inner side end portion and the inner side.
  • the sliding between the outer ring 2 and the inner ring 4 of the inner side seal member 9 depends on the degree of crimping of the hub ring 3 in the crimping step (S66).
  • the dynamic resistance changes.
  • the inner side seal member 9 depends on the attached state of the inner side seal member 9. The sliding resistance between the outer ring 2 and the inner ring 4 of the above changes.
  • the inner side seal member 9 is mounted before the crimping step (S66) or the post-crimping rotational torque measuring step (S68), the post-crimping rotational torque measured in the post-crimping rotational torque measuring step (S68) is performed. It may affect the variation of Tb.
  • the press-fitting is measured in the post-press-fitting rotational torque measuring step (S65) depending on the mounting state of the inner side sealing member 9. It may affect the variation of the rear rotation torque Ta.
  • the inner side seal member mounting step (S72) is performed after the post-crimping rotational torque measuring step (S68), the post-pressing rotational torque measuring step (S65) and the crimping are performed.
  • the rear rotation torque measuring step (S68) when the rotation torque Ta after press-fitting and the rotation torque Tb after crimping of the wheel bearing device 1 are measured, the rotation torque does not vary due to the influence of the inner side sealing member 9. , It is possible to measure the rotational torque of the wheel bearing device 1 with high accuracy.
  • the inner side seal member mounting step (S72) is carried out after the crimping rotation torque measurement step (S68), but the cap member mounting step is carried out after the crimping rotation torque measurement step (S68). It can also be configured to carry out.
  • the cap member mounting step the cap member is fitted into the inner side opening 2a of the outer ring 2 instead of the inner side sealing member 9, and the inner side opening 2a is closed by the cap member.
  • the preload inspection method in the present embodiment includes a temporary press-fitting step (S81), a press-fitting step (S82), a first inner ring height measuring step (S83), and a first bearing preload value calculation step ( S84), familiarization step (S85), post-pressing rotation torque measuring step (S86), crimping step (S87), post-crimping temperature measuring step (S88), second inner ring height measuring step (S89), pushing change Amount estimation process (S90), inner ring indentation amount estimation process (S91), final clearance calculation process (S92), second bearing preload value calculation process (S93), post-crimping rotation torque measurement process (S94), torque increase amount Estimating step (S95), post-crimping rotation torque correction step (S96), preload change amount estimation step (S97), third bearing preload value calculation step (S98), determination step (S99), and inner side seal member mounting
  • S100 is provided.
  • the press-fitting step (S82) is performed after the temporary press-fitting step (S81). As shown in FIG. 4, in the press-fitting step (S82), the inner ring 4 is press-fitted into the small diameter step portion 3a until the outer end surface 4c of the inner ring 4 comes into contact with the shoulder portion 3e of the hub ring 3.
  • the first inner ring height measuring step (S83) is carried out. As shown in FIG. 4, after the press-fitting of the inner ring 4 into the small diameter step portion 3a is completed, the axial direction between the outer side end surface 3g of the hub ring 3 and the inner side end surface 4b of the inner ring 4 after the press-fitting of the inner ring 4.
  • the post-crimping temperature measuring step (S88) is carried out.
  • the post-crimping temperature measurement step (S88) as shown in FIG. 27, the crimping portion 3h / 4d in which the inner side end portion of the small diameter step portion 3a in the hub ring 3 is crimped to the inner side end surface 4b of the inner ring 4.
  • the temperature t1 of is measured.
  • the temperature t1 is measured by the temperature measuring device 141.
  • the wheel bearing device 1 in the process of being assembled is transferred to the crimping device for performing rocking crimping. It is preferable to provide a temperature measuring device 14 for measuring the temperature of the crimping portions 3h and 4d in a part of the transfer device. With such a configuration, the temperature can be efficiently measured in the middle of the process of transferring the wheel bearing device 1 in the process of assembly from the crimping device to the next process after the crimping process.
  • the temperature measuring device 141 a contact type and a non-contact type can be used.
  • the portion for measuring the temperature in the post-crimping temperature measuring step (S88) may be any portion as long as it can appropriately grasp the influence of the temperature rise due to the crimping process, and may be the inner end surface 4b of the inner ring 4. ..
  • the second inner ring height measuring step (S89) and the post-crimping rotational torque measuring step (S94) are carried out. It does not matter whether the timing of the second inner ring height measuring step (S89) and the post-crimping rotational torque measuring step (S94) is executed.
  • Each step (S89) to (S93) is a step related to the preload inspection method by the so-called clearance method.
  • the second inner ring height measuring step (S89) is carried out.
  • the second inner ring height measuring step (S89) as shown in FIG. 27, in the axial dimension between the outer side end surface 3g of the hub ring 3 and the inner side end surface 4b of the inner ring 4 after the crimping process.
  • a certain second inner ring height H2 is measured.
  • the pushing amount D of the inner ring 4 which is the value obtained by subtracting the second inner ring height H2 from the first inner ring height H1, is calculated.
  • D H1-H2
  • the pushing amount D of the inner ring 4 indicates the amount of movement of the inner ring 4 in the axial direction from the completion of press-fitting of the inner ring 4 to the completion of the crimping process of the small diameter step portion 3a.
  • the pushing change amount estimation step (S90) is carried out.
  • the push-in amount decrease amount ⁇ D which is the change amount of the push-in amount D of the inner ring 4 due to the temperature rise during the crimping process, based on the temperature t1 of the crimping portions 3h and 4d.
  • the pushing amount D corresponding to this reduction is the pushing amount reduction amount ⁇ D.
  • the indentation amount decrease amount ⁇ D is estimated by, for example, obtaining the relationship between the temperature t1 of the crimping portion 3h / 4d and the indentation amount decrease amount ⁇ D in advance by an experiment or the like, and applying the measured temperature t1 to this relationship. be able to.
  • the relationship between the temperature t1 of the crimping portions 3h and 4d and the pushing amount reduction amount ⁇ D can be obtained for each specification of the wheel bearing device 1.
  • the inner ring indentation amount estimation step (S91) is carried out.
  • the final clearance calculation step (S92) is performed after the inner ring pushing amount estimation step (S91).
  • the final gap G2 is calculated by subtracting the gap reduction amount ⁇ G calculated from the corrected push-in amount Dh of the inner ring 4 from the axial negative gap G1 before the crimping process.
  • G2 G1- ⁇ G
  • the gap reduction amount ⁇ G is estimated by obtaining the relationship between the push-in amount D and the gap reduction amount ⁇ G in advance by experiments or the like and applying the corrected push-in amount Dh measured to this relationship. can do.
  • the relationship between the push-in amount D and the clearance reduction amount ⁇ G can be obtained for each specification of the wheel bearing device 1.
  • the second bearing preload value calculation step (S93) is performed.
  • the bearing preload value P2 given to the bearing after the crimping process is calculated by the clearance method based on the final gap G2.
  • the bearing preload value P2 is calculated by obtaining the relationship between the final clearance in the wheel bearing device 1 and the bearing preload value in advance by experiments or the like, and applying the final clearance G2 to this relationship. The relationship between this final clearance and the bearing preload value can be obtained for each specification of the wheel bearing device 1.
  • Each step (S94) to (S98) is a step related to the preload inspection method by the so-called torque method. It should be noted that each step included in the series of steps (S89) to (S93) related to the preload inspection method by the clearance method described above and the series of steps (S94) to (S98) related to the preload inspection method by the torque method described below. ), Each series of steps can be performed in parallel regardless of the timing of implementation.
  • a post-crimping rotational torque measuring step (S94) is carried out.
  • the torque measuring device is used to obtain the second rotational torque Tb when the small diameter step portion 3a relatively rotates the hub ring and the outer ring crimped to the inner ring 4. Measure according to 13.
  • the rotational torque measurement step (S86) after press fitting when the hub wheel 3 is rotated, the variation in the rotational torque value measured when the rotational speed of the hub wheel 3 changes becomes smaller. preferable.
  • the post-crimping temperature measurement step (S88) is preferably carried out immediately before the post-crimping rotational torque measurement step (S94), from the post-crimping temperature measurement step (S88) to the post-crimping rotational torque measurement step (S94). It is preferable to shorten the time until the operation is performed as much as possible. By shortening the time from the post-crimping temperature measurement step (S88) to the post-crimping rotational torque measurement step (S94), the temperature drop can be reduced, and as a result, the third bearing preload, which will be described later, can be reduced. The calculation accuracy of the value P3 can be improved.
  • Torque increase estimation process After the crimping, the rotational torque measurement step (S94) is followed by the torque increase amount estimation step (S95).
  • the torque increase amount estimation step (S95) the second rotational torque due to the temperature rise during the crimping process is based on the temperature of the crimping portions 3h and 4d measured in the crimping post-crimping temperature measuring step (S88). The amount of increase in Tb ⁇ Tb is estimated.
  • the relationship between the temperature of the crimping portions 3h and 4d and the increase amount of the second rotational torque Tb is obtained in advance by an experiment or the like, and the relationship is crimped. It is estimated by applying the temperature t1 of the parts 3h and 4d. The relationship between the temperature of the crimping portions 3h and 4d and the increase amount of the second rotational torque Tb can be obtained for each specification of the wheel bearing device 1.
  • the post-crimping rotational torque correction step (S96) is performed.
  • the preload change amount estimation step (S97) is carried out.
  • the relationship (line R) between the bearing preload and the rotational torque is obtained in advance by experiments or the like as shown in FIG. 15, and the first rotational torque Ta and the first rotational torque Ta are related to this relationship.
  • the differential torque ⁇ T is calculated by applying the rotation torque Tc of 3.
  • the preload change amount estimation step (S97) the preload change amount ⁇ P due to the crimping process is estimated from the relationship shown in FIG. 15 based on the calculated differential torque ⁇ T.
  • the relationship between the bearing preload of the wheel bearing device 1 and the rotational torque of the bearing is obtained in advance by an experiment or the like, and the differential torque ⁇ T is applied to this relationship. Calculated by The relationship between the bearing preload and the rotational torque of the bearing can be obtained for each specification of the wheel bearing device 1.
  • a third bearing preload value calculation step (S98) is carried out.
  • the preload change amount ⁇ P is added to the first bearing preload value P1 to calculate the third bearing preload value P3.
  • the determination step (S99) is performed.
  • the suitability of the preload applied to the wheel bearing device 1 is determined based on the three conditions of whether or not the relative difference between the second bearing preload value P2 and the third bearing preload value P3 is within a predetermined threshold value. judge.
  • the final gap G3 is corrected in consideration of the temperature rise during the crimping process. Therefore, it is possible to accurately calculate the second bearing preload value P2 based on the clearance method, and in the determination step (S99), the determination accuracy based on the second bearing preload value P2 is improved. ing.
  • the preload inspection method when calculating the third bearing preload value P3 based on the post-pressing rotational torque and the post-crimping rotational torque, the temperature rise during the crimping process is taken into consideration.
  • the preload change amount ⁇ P is corrected. Therefore, it is possible to accurately calculate the third bearing preload value P3 based on the torque method, and in the determination step (S99), the determination accuracy based on the third bearing preload value P3 is improved. ing.
  • the second bearing preload value P2 calculated by the so-called clearance method and the third bearing preload value P3 calculated by the so-called torque method are collated and both are collated.
  • the preload value applied to the bearing of the wheel bearing device 1 With higher accuracy.
  • the determination step (S99) it is possible to verify whether or not the preload range of the wheel bearing device 1 is appropriate with higher accuracy than before, so that the wheel bearing device 1 having a ensured bearing life is stable. Can be supplied as a target.
  • the inner side seal member mounting step (S100) is a part of the assembly method of the wheel bearing device 1.
  • the inner side seal member mounting step (S100) is a part of the assembly method of the wheel bearing device 1.
  • the inner ring member mounting step (S100) by fitting the inner side seal member 9 into the inner side opening 2a of the outer ring 2, the inner side end portion of the outer ring 2 and the inner ring 4 are fitted. The inner side seal member 9 is mounted between the inner side end portion and the inner side.
  • the inner side seal member 9 When the inner side seal member 9 is attached before the crimping step (S87), the inner ring 3 is slid between the outer ring 2 and the inner ring 4 depending on the degree of crimping of the hub ring 3 in the crimping step (S87). The dynamic resistance changes. Further, if the inner side seal member 9 is attached even after the crimping step (S87) but before the post-crimping rotational torque measurement step (S94), the inner side seal member 9 depends on the attached state of the inner side seal member 9. The sliding resistance between the outer ring 2 and the inner ring 4 of the above changes.
  • the second rotational torque measured in the post-crimping rotational torque measuring step (S94) is performed. It may affect the variation of Tb.
  • the measurement is performed in the post-pressing rotating torque measuring step (S86) depending on the mounting state of the inner side sealing member 9. It may affect the variation of the rotation torque Ta of 1.
  • the inner side seal member mounting step (S100) is performed after the post-crimping rotational torque measuring step (S94), the post-pressing rotational torque measuring step (S86) and the crimping are performed.
  • the rotational torque varies due to the influence of the inner side sealing member 9. It is possible to measure the rotational torque of the wheel bearing device 1 with high accuracy.
  • the pre-crimping temperature measuring step (S101) before the crimping step (S87).
  • the crimping portion 3h before crimping the inner side end portion of the small diameter step portion 3a of the hub ring 3 to the inner side end surface 4b of the inner ring 4.
  • the temperature t0 of the portion corresponding to 4d is measured.
  • the temperature t1 of the crimped portion 3h / 4d after crimping is measured.
  • the temperature of the portion corresponding to the crimped portion 3h / 4d before crimping of the wheel bearing device 1 is assumed to be equal to the ambient temperature (normal temperature) of the wheel bearing device 1, and the crimped portion after crimping.
  • the temperature rise of 3h and 4d is calculated.
  • the ambient temperature of the wheel bearing device 1 changes depending on the difference in the installation environment (country / region / season / time, etc.) of the inspection device.
  • the temperature of the portion corresponding to the crimping portions 3h and 4d before the crimping process is accurately grasped after the crimping process.
  • the temperature rise value of the crimping portions 3h and 4d it is possible to further improve the accuracy of the preload inspection of the wheel bearing device 1.
  • the pre-crimping temperature measuring step (S101) is performed at the same time as the first inner ring height measuring step (S83).
  • a temperature measuring device 141 as a part of the measuring device for measuring the first inner ring height H1 in the first inner ring height measuring step (S83). can do.
  • the temperature measuring device a contact type and a non-contact type can be used.
  • the familiarizing step (S85) and the press-fitting are performed. It is also possible to eliminate the influence of the temperature change of the wheel bearing device 1 caused by the implementation of the rear rotation torque measuring step (S86). As a result, the estimation accuracy of the bearing preload value can be improved as compared with the case where the pre-crimping temperature measurement step (S101) is performed after the familiarization step (S85) and the post-press-fit rotation torque measurement step (S86) (see FIG. 29). Can be better.
  • the post-crimping temperature measuring step (S88) is performed at the same time as the second inner ring height measuring step (S89).
  • the temperature measuring device 141 is provided as a part of the measuring device for measuring the first inner ring height H1 in the first inner ring height measuring step (S83)
  • the wheels being assembled With respect to the bearing device 1, it is possible to measure the temperature of the crimping portions 3h and 4d at the same time as measuring the height H2 of the second inner ring.
  • a series of preload inspection steps can be further shortened.
  • the preload inspection method of each embodiment is also applied to the wheel bearing device for drive wheels having specifications for crimping the hub wheel. can do.
  • the present invention can be used as a preload inspection method for wheel bearing devices.

Abstract

車輪用軸受装置の予圧検査方法は、内輪(4)を小径段部(3a)に圧入する圧入工程(S02)と、圧入工程(S02)後における軌道面と転動体との軸方向負隙間(G1)に基づき第1の軸受予圧値(P1)を算出する第1の軸受予圧値算出工程(S03)と、圧入工程後に圧入後回転トルク(Ta)を測定する圧入後回転トルク測定工程(S05)と、圧入後回転トルク測定工程後に小径段部を内輪に加締める加締工程(S06)と、加締工程後に加締後回転トルク(Tb)を測定する加締後回転トルク測定工程(S07)と、圧入後回転トルク(Ta)と加締後回転トルク(Tb)との差分トルク(ΔT)に基づいた予圧変化量(ΔP)を第1の軸受予圧値(P1)に加えて第2の軸受予圧値(P2)を算出する第2の軸受予圧値算出工程(S08)と、第2の軸受予圧値(P2)が基準値の範囲内であるか否かにより予圧の適否を判定する判定工程(S09)とを備える。

Description

車輪用軸受装置の予圧検査方法
 本発明は車輪用軸受装置の予圧検査方法に関する。
 従来、自動車等の懸架装置において車輪を回転自在に支持する車輪用軸受装置が知られている。このような車輪用軸受装置においては、軸受装置を構成する転動体と軌道輪との間に予圧が付与されている。
 軸受装置に予圧を付与することにより、軸受装置の剛性を高めるとともに振動および騒音を抑制することができる。しかし、予圧を過大に付与すると回転トルクの増加や寿命の低下を招く原因となり得るため、軸受装置に適正な予圧が付与されているかどうかを確認することが重要である。
 軸受装置に付与されている予圧を確認する方法としては、例えば特許文献1に開示されるように、複列に転動体が設けられた転がり軸受において、軸方向における予圧隙間を測定することによって、当該軸受に付与された予圧を測定する予圧測定方法が知られている。
 軸受に付与された予圧を予圧隙間から求める場合、例えばハブ輪を内輪に加締めて内方部材を構成する仕様の車輪用軸受装置においては、ハブ輪を加締めた際の内輪の押込量を予圧隙間減少量に換算し、予圧隙間減少量と加締加工前の予圧隙間とを合わせることで、軸受装置に付与された予圧を求めることが可能である。
 また、ハブ輪を内輪に加締める構成の軸受装置においては、加締加工前と加締加工後とにおける軸受装置の回転トルクを測定し、加締加工前後における回転トルクの増加量から予圧増加量を算出し、加締加工前における軸受装置の予圧に予圧増加量を加えることで軸受装置に付与された予圧を算出することが考えられる。
特開平10-185717号公報
 しかし、ハブ輪を内輪に加締める構成の軸受装置においては、加締加工時に内輪軌道面の形状崩れ等の異常が生じた場合、内輪の押込量から予圧隙間減少量を精度良く求めることが困難となり、軸受装置に付与された予圧の測定値の信頼度が低下するおそれがある。
 また、軸受装置の回転トルクは、測定時の軸受装置の温度によって、同じ予圧隙間を有した軸受装置であっても測定値にばらつきが生じる。その結果、算出した予圧の信頼度が低下するおそれがある。
 また、加締加工直後は、ハブ輪が塑性変形したことにより内輪近傍の温度が上昇して内輪が膨張する。これにより、測定した回転トルクが、内輪が膨張していない状態で測定した場合に比べて高い値を示し、予圧の測定精度に影響を及ぼすおそれがあった。
 また、加締加工前後の回転トルクを用いて予圧を算出した場合、予圧の適否の判定は、予め設定された与圧基準値の範囲内に入っているか否かによって行われ、程度の大きな異常しか検出することができないため、予圧の適否を判定した際の信頼度を、さらに高める余地がある。
 そこで、本発明においては、車輪用軸受装置に付与されている予圧をより高い信頼度で検査することができる車輪用軸受装置の予圧検査方法を提供する。また本発明においては、温度による回転トルクの変化を加味することで、車輪用軸受装置に付与されている予圧をより高い信頼度で検査することができる車輪用軸受装置の予圧検査方法を提供する。また本発明においては、加締加工による温度上昇の影響を抑制して、車輪用軸受装置に付与されている予圧の良否をより高精度に判定することができる車輪用軸受装置の予圧検査方法を提供することを目的とする。また本発明においては、車輪用軸受装置に付与されている予圧の適否を判定した際の信頼度をさらに高めることができる車輪用軸受装置の予圧検査方法を提供する。
 即ち、第1の発明は、内周に複列の外側軌道面を有する外方部材と、外周に軸方向に延びる小径段部を有したハブ輪、および前記ハブ輪の小径段部に圧入された内輪からなり、前記複列の外側軌道面に対向する複列の内側軌道面を有する内方部材と、前記外方部材と前記内方部材との両軌道面間に転動自在に収容された複列の転動体と、を備えた車輪用軸受装置の予圧検査方法であって、前記ハブ輪の前記小径段部に対して、前記内輪を、軸方向において前記内輪が前記ハブ輪に当接する位置まで圧入する圧入工程と、前記圧入工程後における前記両軌道面と前記転動体との軸方向負隙間に基づいて前記車輪用軸受装置の第1の軸受予圧値を算出する第1の軸受予圧値算出工程と、前記圧入工程後に前記内方部材と前記外方部材とを相対的に回転させたときの前記車輪用軸受装置の圧入後回転トルクを測定する圧入後回転トルク測定工程と、前記圧入後回転トルク測定工程後に、前記小径段部のインナー側端部を前記内輪に加締める加締工程と、前記加締工程後に前記内方部材と前記外方部材とを相対的に回転させたときの前記車輪用軸受装置の加締後回転トルクを測定する加締後回転トルク測定工程と、前記圧入後回転トルクと前記加締後回転トルクとの差分トルクに基づいて求められた前記圧入工程後と前記加締工程後との間の予圧変化量を、前記第1の軸受予圧値に加えることにより第2の軸受予圧値を算出する第2の軸受予圧値算出工程と、前記第2の軸受予圧値が基準値の範囲内に入っているか否かによって、前記車輪用軸受装置に付与された予圧の適否を判定する判定工程と、を備えることを特徴とする車輪用軸受装置の予圧検査方法である。
 第2の発明は、第1の発明において、前記第2の軸受予圧値算出工程においては、雰囲気温度に応じた回転トルクと予圧との関係を用いて前記差分トルクから前記予圧変化量を求めるものである。
 第3の発明は、第1の発明において、前記第2の軸受予圧値算出工程においては、前記車輪用軸受装置の表面温度に応じた回転トルクと予圧との関係を用いて前記差分トルクから前記予圧変化量を求めるものである。
 第4の発明は、第1の発明において、前記加締後回転トルク測定工程と前記第2の軸受予圧値算出工程との間に、前記加締後回転トルクを、前記加締加工を行ったことによる前記内輪の温度上昇量に基づいて補正して、補正済加締後回転トルクを算出する回転トルク補正工程を備え、前記第2の軸受予圧値算出工程においては、前記圧入後回転トルクと前記補正済加締後回転トルクとの差分に基づいて前記圧入工程後と前記加締工程後との間の予圧変化量を求め、前記予圧変化量を前記第1の軸受予圧値に加えることにより第2の軸受予圧値を算出する請求項1に記載の車輪用軸受装置の予圧検査方法。
 第5の発明は、第1の発明において、前記加締加工完了後における前記ハブ輪と前記内輪との加締部の温度を測定する温度測定工程と、前記加締後回転トルクを、前記温度測定工程にて測定した前記加締部の温度に基づいて補正して、補正済加締後回転トルクを算出する回転トルク補正工程と、を備え、前記第2の軸受予圧値算出工程においては、前記圧入後回転トルクと前記補正済加締後回転トルクとの差分に基づいて前記圧入工程後と前記加締工程後との間の予圧変化量を求め、前記予圧変化量を前記第1の軸受予圧値に加えることにより第2の軸受予圧値を算出するものである。
 第6の発明は、第1の発明において、前記加締工程において前記小径段部に形成された加締部の加締加工度を測定する加締加工度測定工程を備え、前記判定工程は、前記第2の軸受予圧値が基準値の範囲内に入っているか否かによって、前記車輪用軸受装置に付与された予圧の適否を判定する第1の判定工程と、前記加締加工度と前記差分トルクの値とを照合し、前記加締加工度に対する前記差分トルクの値がトルク基準値の範囲内に入っているか否かによって、加締異常の有無を判定する第2の判定工程と、を備えるものである。
 第7の発明は、内周に複列の外側軌道面を有する外方部材と、外周に軸方向に延びる小径段部を有したハブ輪、および前記ハブ輪の小径段部に圧入された内輪からなり、前記複列の外側軌道面に対向する複列の内側軌道面を有する内方部材と、前記外方部材と前記内方部材との両軌道面間に転動自在に収容された複列の転動体と、を備えた車輪用軸受装置の予圧検査方法であって、前記ハブ輪の前記小径段部に対して、前記内輪を、軸方向において前記内輪が前記ハブ輪に当接する位置まで圧入する圧入工程と、前記圧入工程後における前記ハブ輪のアウター側端部から前記内輪のインナー側端部までの第1の内輪高さを測定する第1の内輪高さ測定工程と、前記圧入工程後における前記両軌道面と前記転動体との軸方向負隙間を測定し、前記軸方向負隙間に基づいて前記車輪用軸受装置の軸受予圧値を算出する第1の軸受予圧値算出工程と、前記圧入工程後に前記内方部材と前記外方部材とを相対的に回転させたときの前記車輪用軸受装置の圧入後回転トルクを測定する圧入後回転トルク測定工程と、前記第1の内輪高さ測定工程と前記圧入後回転トルク測定工程の後で、前記小径段部のインナー側端部を前記内輪に加締める加締工程と、前記加締工程後における前記小径段部と前記内輪との加締部の温度を測定する加締後温度測定工程と、前記加締工程後における前記ハブ輪のアウター側端部から前記内輪のインナー側端部までの第2の内輪高さを測定する第2の内輪高さ測定工程と、前記第1の内輪高さと前記第2の内輪高さの差分より前記内輪の押込み量を算出するとともに、前記加締部の温度に基づいて前記内輪の押込み量を補正し、前記ハブ輪に対する補正後の前記内輪の押込み量を推定する内輪押込み量推定工程と、推定した補正後の前記内輪の押込み量に基づいて前記両軌道面と前記転動体の隙間減少量を算出するとともに、前記隙間減少量と前記軸方向負隙間に基づいて前記内輪と前記ハブ輪の最終隙間を算出する最終隙間算出工程と、算出した前記最終隙間に基づいて前記車輪用軸受装置の第2の軸受予圧値を算出する第2の軸受予圧値算出工程と、前記加締工程後に前記内方部材と前記外方部材とを相対的に回転させたときの前記車輪用軸受装置の加締後回転トルクを測定する加締後回転トルク測定工程と、前記加締工程後の前記加締部の温度に基づいて前記加締後回転トルクにおける温度変化に起因するトルク増加量を推定するとともに、前記加締後回転トルクから前記トルク増加量を減じて前記加締後回転トルクを補正する加締後回転トルク補正工程と、前記圧入後回転トルクと補正後の前記加締後回転トルクとの差分トルクを算出するとともに、前記差分トルクに基づいて加締加工に起因する予圧変化量を推定する予圧変化量推定工程と、前記第1の軸受予圧値に前記予圧変化量を加えて第3の軸受予圧値を算出する第3の軸受予圧値算出工程と、前記第2の軸受予圧値と前記第3の軸受予圧値がそれぞれ所定の閾値内であるか否かと、前記第2の軸受予圧値と前記第3の軸受予圧値の相対差が所定の閾値内であるか否かと、に基づいて前記車輪用軸受装置に付与された予圧の適否を判定する判定工程と、を備えることを特徴とする車輪用軸受装置の予圧検査方法である。
 本発明の効果として、以下に示すような効果を奏する。
 第1の発明によれば、車輪用軸受装置に付与されている予圧をより高い信頼度で検査することができる。
 第2の発明によれば、雰囲気温度による回転トルクの変化を加味することで、また第3の発明によれば、車輪用軸受装置の表面温度による回転トルクの変化を加味することで、車輪用軸受装置に付与されている予圧をより高い信頼度で検査することができる。
 第4の発明によれば、加締加工による内輪の温度上昇の影響を抑制して、車輪用軸受装置に付与されている予圧の良否をより高精度に判定することができる。
 第5の発明によれば、加締加工による内輪の温度上昇の影響を考慮して、車輪用軸受装置に付与されている予圧の良否をより高精度に判定することができる。
 第6の発明によれば、車輪用軸受装置に付与されている予圧の適否を判定した際の信頼度をさらに高めることができる。
 第7の発明によれば、車輪用軸受装置に付与されている予圧をより高い信頼度で検査することができる。
予圧検査方法が実施される車輪用軸受装置を示す側面断面図である。 第1実施形態の予圧検査方法のフローを示す図である。 内輪がハブ輪の小径段部に仮圧入された状態の車輪用軸受装置を示す側面断面図である。 内輪がハブ輪の小径段部に圧入された状態の車輪用軸受装置を示す側面断面図である。 ハブ輪と外輪とを相対的に回転させたときの時間とトルクとの関係を示す図である。 ハブ輪と外輪とを相対的に回転させたときの回転数とトルクとの関係を示す図である。 ハブ輪の小径段部を内輪に加締めた状態の車輪用軸受装置を示す側面断面図である。 軸受予圧と回転トルクとの関係を示す図である。 加締後回転トルク測定工程後に外輪のインナー側端部にインナー側シール部材を装着する様子を示す側面断面図である。 内輪がハブ輪の小径段部に圧入された状態の車輪用軸受装置を示す側面断面図である。 雰囲気温度に応じた軸受予圧と回転トルクとの関係を示す図である。 第3実施形態の予圧検査方法のフローを示す図である。 加締加工時間と内輪の温度上昇量との関係を示す図である。 加締加工時間と回転トルク増加量との関係を示す図である。 軸受予圧と回転トルクとの関係を示す図である。 第4実施形態の予圧検査方法のフローを示す図である。 ハブ輪における加締部の温度測定が行われている状態の車輪用軸受装置を示す側面断面図である。 ハブ輪の加締部の温度と内輪の内側軌道面の温度との関係を示す図である。 内輪の内側軌道面の温度と時間との関係を示す図である。 加締め前後の差分温度と回転トルク変化量との関係を示す図である。 軸受予圧と回転トルクとの関係を示す図である。 第5実施形態の予圧検査方法のフローを示す図である。 接触型の測定器により加締部の高さ寸法および外径寸法を測定している状態の車輪用軸受装置を示す側面断面図である。 非接触型の測定器により加締部の高さ寸法を測定している状態の車輪用軸受装置を示す側面断面図である。 図25Aは加締部の高さ寸法と差分トルクとの関係を示す図、図25Bは加締部の外径寸法と差分トルクとの関係を示す図である。 第6実施形態の予圧検査方法のフローを示す図である。 ハブ輪の小径段部を内輪に加締めた状態の車輪用軸受装置を示す側面断面図である。 加締部温度と回転トルク増加量との関係を示す図である。 加締前温度測定工程を行う場合の予圧検査方法の第1実施例のフローを示す図である。 加締加工前の加締部に対応する部位の温度を測定している状態の車輪用軸受装置を示す側面断面図である 加締前温度測定工程を行う場合の予圧検査方法の第2実施例のフローを示す図である。
[車輪用軸受装置]
 以下に、図1を用いて、本発明に係る予圧検査方法が実施される車輪用軸受装置の一実施形態である車輪用軸受装置1について説明する。
 図1に示す車輪用軸受装置1は、自動車等の車両の懸架装置において車輪を回転自在に支持するものである。車輪用軸受装置1は第3世代と称呼される構成を備えており、外方部材である外輪2と、内方部材であるハブ輪3および内輪4と、転動列である二列のインナー側ボール列5およびアウター側ボール列6と、インナー側シール部材9およびアウター側シール部材10とを具備する。ここで、インナー側とは、車体に取り付けた際の車輪用軸受装置1の車体側を表し、アウター側とは、車体に取り付けた際の車輪用軸受装置1の車輪側を表す。また、軸方向とは、車輪用軸受装置1の回転軸に沿った方向を表す。
 外輪2のインナー側端部には、インナー側シール部材9が嵌合可能なインナー側開口部2aが形成されている。外輪2のアウター側端部には、アウター側シール部材10が嵌合可能なアウター側開口部2bが形成されている。外輪2の内周面には、インナー側の外側軌道面2cと、アウター側の外側軌道面2dとが形成されている。外輪2の外周面には、外輪2を車体側部材に取り付けるための車体取り付けフランジ2eが一体的に形成されている。車体取り付けフランジ2eには、車体側部材と外輪2とを締結する締結部材(ここでは、ボルト)が挿入されるボルト孔2gが設けられている。
 ハブ輪3のインナー側端部には、外周面にアウター側端部よりも縮径された小径段部3aが形成されている。ハブ輪3における小径段部3aのアウター側端部には肩部3eが形成されている。ハブ輪3のアウター側端部には、車輪を取り付けるための車輪取り付けフランジ3bが一体的に形成されている。車輪取り付けフランジ3bには、ハブ輪3と車輪又はブレーキ部品とを締結するためのハブボルトが圧入されるボルト孔3fが設けられている。
 ハブ輪3には、外輪2のアウター側の外側軌道面2dに対向するようにアウター側の内側軌道面3cが設けられている。ハブ輪3における車輪取り付けフランジ3bの基部側には、アウター側シール部材10が摺接するリップ摺動面3dが形成されている。アウター側シール部材10は、外輪2とハブ輪3とによって形成された環状空間のアウター側開口端に嵌合している。ハブ輪3は、車輪取りつけフランジ3bよりもアウター側の端部にアウター側端面3gを有している。
 ハブ輪3の小径段部3aには、内輪4が設けられている。内輪4は、圧入および加締加工によりハブ輪3の小径段部3aに固定されている。内輪4は、転動列であるインナー側ボール列5およびアウター側ボール列6に予圧を付与している。内輪4は、インナー側端部にインナー側端面4bを有しており、アウター側端部にアウター側端面4cを有している。ハブ輪3のインナー側端部には、内輪4のインナー側端面4bに加締められた加締部3hが形成されている。なお、内輪4において、ハブ輪3の加締部3hが密接されている部位を内輪4側の加締部4dと呼ぶ。加締部4dは、インナー側端面4bの一部である。即ち、車輪用軸受装置1における加締部は、ハブ輪3側の加締部3hと内輪4側の加締部4dにより構成されている。
 内輪4の外周面には、内側軌道面4aが形成されている。つまり、ハブ輪3のインナー側には、内輪4によって内側軌道面4aが構成されている。内輪4の内側軌道面4aは、外輪2のインナー側の外側軌道面2cと対向している。
 転動列であるインナー側ボール列5とアウター側ボール列6とは、転動体である複数のボール7が保持器8によって保持されることにより構成されている。インナー側ボール列5は、内輪4の内側軌道面4aと、外輪2のインナー側の外側軌道面2cとの間に転動自在に挟まれている。アウター側ボール列6は、ハブ輪3の内側軌道面3cと、外輪2のアウター側の外側軌道面2dとの間に転動自在に挟まれている。
 車輪用軸受装置1においては、外輪2と、ハブ輪3および内輪4と、インナー側ボール列5と、アウター側ボール列6とによって複列アンギュラ玉軸受が構成されている。なお、車輪用軸受装置1は複列円錐ころ軸受によって構成されていてもよい。
[予圧検査方法]
 次に車輪用軸受装置1の予圧検査方法について、第1実施形態から第6実施形態を例に説明する。
〈第1実施形態〉
 図2に示すように、本実施形態における予圧検査方法は、車輪用軸受装置1の組立を行う途中で行っている。具体的には、予圧検査方法は、仮圧入工程(S01)、圧入工程(S02)、第1の軸受予圧値算出工程(S03)、なじみ工程(S04)、圧入後回転トルク測定工程(S05)、加締工程(S06)、加締後回転トルク測定工程(S07)、第2の軸受予圧値算出工程(S08)、判定工程(S09)、およびインナー側シール部材装着工程(S10)を備えている。予圧検査方法の各工程について、以下に説明する。
(仮圧入工程)
 図3に示すように、ハブ輪3は、軸方向が垂直方向となり、アウター側端面3gが下方に位置する姿勢で、支持台11に載置されている。支持台11にはハブ輪3のアウター側端面3gが接地している。支持台11に載置されたハブ輪3には、外輪2がインナー側ボール列5およびアウター側ボール列6を介して回転可能に装着されている。外輪2のアウター側端部には、アウター側シール部材10が嵌合されている。ハブ輪3と外輪2との間にはグリースが充填されている。
 仮圧入工程(S01)においては、まず支持台11に載置されたハブ輪3の小径段部3aに、内輪4を仮圧入する。内輪4の仮圧入は、内輪4を上方から小径段部3aに圧入し、内輪4のアウター側端面4cがハブ輪3の肩部3eに当接する手前で圧入を停止することにより行われる。ここで、内輪4の圧入作業は、例えば、油圧シリンダ又はエアシリンダ等の押込装置を用いて所定の圧力を作用させた状態で行われる。内輪4の仮圧入が完了した時点では、軌道面(例えば外側軌道面2cおよび内側軌道面4a)と転動体との間には軸方向正隙間G0が存在している。この軸方向正隙間G0は、例えば外輪2の軸方向移動量から測定することができる。
 仮圧入工程(S01)においては、軌道面(例えば外側軌道面2cおよび内側軌道面4a)と転動体間の軸方向正隙間G0と、内輪4の仮圧入後における、ハブ輪3のアウター側端面3gと内輪4のインナー側端面4bとの間の軸方向寸法H0とを測定する。軸方向寸法H0は、ダイヤルゲージ等の計測器12により測定することができる。
(圧入工程)
 仮圧入工程(S01)の後に圧入工程(S02)を実施する。図4に示すように、圧入工程(S02)においては、内輪4のアウター側端面4cがハブ輪3の肩部3eに当接する位置まで、内輪4を小径段部3aに圧入する。内輪4の小径段部3aへの圧入が完了した後に、内輪4の圧入後におけるハブ輪3のアウター側端面3gと内輪4のインナー側端面4bとの間の軸方向寸法H1を測定する。また、軸方向寸法H0から軸方向寸法H1を引いた値を、仮圧入工程(S01)において測定した軌道面と転動体間の軸方向正隙間G0から引くことで、内輪4の圧入後における軌道面と転動体間との軸方向負隙間G1を求める(G1=G0-(H0-H1))。
(第1の軸受予圧値算出工程)
 圧入工程(S02)の後に第1の軸受予圧値算出工程(S03)を実施する。第1の軸受予圧値算出工程(S03)においては、軸方向負隙間G1に基づいて、圧入工程後の軸受に付与されている第1の軸受予圧値P1を算出する。第1の軸受予圧値P1は、車輪用軸受装置1における軸方向負隙間と軸受予圧値との関係を、予め実験等により求めておき、この関係に軸方向負隙間G1を当て嵌めることにより算出する。なお、この軸方向負隙間と軸受予圧値との関係は、車輪用軸受装置1の仕様毎に求めることができる。
(なじみ工程)
 第1の軸受予圧値算出工程(S03)の後になじみ工程(S04)を実施する。なじみ工程(S04)においては、内輪4が圧入されたハブ輪3と、外輪2とを相対的に回転させることにより、ハブ輪3と外輪2との間に充填されているグリースをインナー側ボール列5およびアウター側ボール列6のボール7になじませる。なじみ工程(S04)においては、外輪2を固定しておいて、ハブ輪2を回転させてもよいし、ハブ輪3を固定しておいて外輪2を回転させてもよい。
 なじみ工程(S04)を実施することで、ハブ輪3と外輪2とを相対的に回転させたときに、グリースとボール7との間に生じる抵抗を一定にすることができる。これにより、後に実施される圧入後回転トルク測定工程(S05)および加締後回転トルク測定工程(S08)において車輪用軸受装置1の回転トルクを測定したときに、測定した回転トルクにばらつきが生じることを抑制することが可能となる。なお、なじみ工程(S04)においては、回転トルクのばらつきを抑制する観点から、ハブ輪3と外輪2とを相対的に30回転以上回転させることが好ましい。
(圧入後回転トルク測定工程)
 なじみ工程(S04)の後に圧入後回転トルク測定工程(S05)を実施する。圧入後回転トルク測定工程(S05)においては、小径段部3aに内輪4が圧入されたハブ輪3と、外輪2とを相対的に回転させたときの圧入後回転トルクTaを、トルク測定器13により測定する。圧入後回転トルクTaは、圧入工程(S02)の後、かつ加締工程(S06)の前において測定された回転トルクである。圧入後回転トルク測定工程(S05)においては、外輪2を固定しておいて、ハブ輪3を回転させてもよいし、ハブ輪3を固定しておいて外輪2を回転させてもよい。
 ハブ輪3を回転させた場合は、外輪2を回転させた場合よりもインナー側ボール列5およびアウター側ボール列6におけるボール7の公転速度が遅くなり、ハブ輪3の回転速度が変化したときに測定される回転トルク値のばらつきが小さくなるため、回転トルク測定工程では、ハブ輪3を回転させるほうが好ましい。なお、ハブ輪3を回転させる場合には、ハブ輪3が載置されている支持台11を回転させることにより、ハブ輪3を回転させることができる。
 また、圧入後回転トルク測定工程(S05)においては、軸受の起動トルクではなく、回転トルクを測定している。図5に示すように、起動トルクは軸受の回転を開始したときの初動トルクのピーク値であるが、時間の経過に伴って低下していき、経時的な変化が大きい。よって、繰り返し再現性に乏しい。これに対し、回転トルクは軸受が回転を開始した後のトルクであり、経時的な変化が殆どなく一定の値を示す。従って、圧入後回転トルク測定工程(S05)においては、回転トルクである圧入後回転トルクTaを測定することにより、軸受のトルク値を高精度に測定することが可能となっている。
 図6に示すように、ハブ輪3と外輪2とを相対的に回転させたときの軸受の回転トルクは、ハブ輪3または外輪2の回転数が一定値以上の範囲においては回転数が増えるに従って増加していくが、ハブ輪3または外輪2の回転数が極小さいときには回転数が上昇するにつれて減少し、その後に増加転じている。つまり、軸受の回転トルクは、回転数の上昇に伴って減少から増加に転じる領域があり、その領域においては、回転数の変化に対する回転トルクの変動度合いが小さくなっている。
 圧入後回転トルク測定工程(S05)においては、ハブ輪3または外輪2は、測定される回転トルクにばらつきが生じないように一定回転数で回転させている。また、ハブ輪3または外輪2の回転数は、回転トルクが減少から増加に転じる領域における回転数N1~N2の範囲に設定している。これにより、圧入後回転トルクTaの測定中に仮に回転数が変化したとしても、回転トルクの変動を小さくすることが可能である。
 圧入後回転トルク測定工程(S05)においては、内方部材3,4と外方部材2との間に動摩擦力が発生している状態で回転トルクを測定している。具体的には、内方部材3、4と転動体7との間、ハブ輪3とアウター側シール部材10との間及び外輪2と転動体7、アウター側シール部材10との間に動摩擦力が発生している状態で、回転トルクの測定を行っている。一般的に、動摩擦係数は、静摩擦係数と比較して小さく、かつ、ばらつきが小さいので、回転トルクを高精度に測定することができる。
 回転数の範囲の下限値となる回転数N1は、動摩擦力が生じている状態で回転トルクの測定が可能となる10回転/minに設定することが好ましい。回転数の範囲の上限値となる回転数N2は、ハブ輪3と外輪2との間に充填されるグリースの撹拌抵抗が極力小さくなる回転数である60回転/minに設定することが好ましい。これにより、回転トルクを高精度で測定することが可能となる。
 また、ハブ輪3または外輪2の回転数は、10回転/min~60回転/minの範囲の中でも、回転数の変化に対する回転トルクの変動が最も小さくなる10回転/min~30回転/minの回転数となるように設定することがさらに好ましい。これにより、回転トルクをさらに高精度で測定することが可能となる。
 このように、圧入後回転トルク測定工程(S05)においては、ハブ輪3または外輪2を、回転数の変化に対する回転トルクの変動度合いが小さくなる、小さな回転数N1~N2の範囲にて回転させることで、仮にハブ輪3または外輪2の回転数が変化した場合でも、回転トルクの変動を最小限に抑えることができ、回転トルクを高精度で測定することが可能となっている。
 また、圧入後回転トルク測定工程(S05)においては、外輪2とハブ輪3とによって形成された環状空間のアウター側開口端にアウター側シール部材10が嵌合された状態で、車輪用軸受装置1の回転トルクが測定されている。ここで、アウター側シール部材10は、内輪4の固定のために加締められるハブ輪3の小径段部3aとは軸方向反対側に位置しているため、次に述べる加締工程(S06)において、仮に内輪軌道面4a等に異常が生じても、アウター側シール部材10のシールトルクに影響が生じ難く、車輪用軸受装置1の回転トルクにも変化が生じ難い。
(加締工程)
 圧入後回転トルク測定工程(S05)の後に加締工程(S06)を実施する。加締工程(S06)においては、ハブ輪3における小径段部3aのインナー側端部を内輪4のインナー側端面4bに加締める加締加工を行う。図7に示すように、加締加工は、例えば加締めパンチ14等の加締具を用いた揺動加締加工により行うことができる。揺動加締加工による加締加工は、例えば、ハブ輪3における小径段部3aの上方に配置された加締めパンチ14を下降させて小径段部3aのインナー側端部に当接させ、小径段部3aに当接した状態の加締めパンチ14を揺動させることにより行う。加締加工が完了すると、加締めパンチ14を上昇させて小径段部3aから離間させる。加締加工を行った後は、内輪4とハブ輪3との間には軸方向負隙間が生じている。
(加締後回転トルク測定工程)
 加締工程(S06)の後に加締後回転トルク測定工程(S07)を実施する。加締後回転トルク測定工程(S07)においては、圧入後回転トルク測定工程と同様に、内方部材3、4と外方部材2との間に動摩擦力が発生している状態で回転トルクを測定している。加締後回転トルク測定工程(S07)においては、小径段部3aが内輪4に加締められたハブ輪3と外輪2とを相対的に回転させたときの加締後回転トルクTbを、トルク測定器13により測定する。加締後回転トルクTbは、加締工程(S06)の後、かつインナー側シール部材装着工程(S10)の前において測定された回転トルクである。加締後回転トルク測定工程(S07)においては、外輪2を固定しておいて、ハブ輪3を回転させてもよいし、ハブ輪3を固定しておいて外輪2を回転させてもよい。
 但し、圧入後回転トルク測定工程(S05)の場合と同様に、ハブ輪3を回転させた方が、ハブ輪3の回転速度が変化したときに測定される回転トルク値のばらつきが小さくなるため好ましい。また、加締後回転トルク測定工程(S07)においても、圧入後回転トルク測定工程(S05)の場合と同様に、軸受の起動トルクではなく回転トルクを測定し、ハブ輪3または外輪2を低速の回転数N1~N2において一定回転数で回転させながら加締後回転トルクTbを測定することで、回転トルクを高精度で測定することが可能となっている。
 この場合、回転数N1および回転数N2は、圧入後回転トルク測定工程(S05)の場合と同様に、回転数N1を10回転/minに設定し、回転数N2を60回転/minに設定することが好ましい。本実施形態においては、ハブ輪3または外輪2の回転数は、10回転/min~60回転/minの範囲の中でも、回転数の変化に対する回転トルクの変動が最も小さくなる10回転/min~30回転/minの回転数となるように設定している。これにより、加締後回転トルクTbの測定中に仮に回転数が変化したとしても、加締後回転トルクTbの変動を小さくすることができ、回転トルクを安定して測定することが可能である。
 また、加締工程(S06)と加締後回転トルク測定工程(S07)との間には、なじみ工程(S04)と同様の工程、つまりハブ輪3と外輪2との間に充填されているグリースをインナー側ボール列5およびアウター側ボール列6のボール7になじませるなじみ工程を実施することができる。これにより、ハブ輪3と外輪2とを相対的に回転させたときのグリースとボール7との間に生じる抵抗を一定にすることができ、加締後回転トルク測定工程(S07)において車輪用軸受装置1の加締後回転トルクTbを測定したときに、測定した加締後回転トルクTbにばらつきが生じることをより抑制することが可能となる。
 ただし、なじみ工程(S04)を実施することにより、グリースとボール7とが十分になじんでいて、グリースとボール7との間に生じる抵抗が一定になっている場合は、加締工程(S06)と加締後回転トルク測定工程(S07)との間のなじみ工程を省略することができる。
(第2の軸受予圧値算出工程)
 加締後回転トルク測定工程(S07)の後に第2の軸受予圧値算出工程(S08)を実施する。第2の軸受予圧値算出工程(S08)においては、圧入後回転トルクTaと加締後回転トルクTbとの差分トルクΔT(Tb-Ta=ΔT)を算出する。また、差分トルクΔTに基づいて圧入工程後と加締加工後との間の予圧変化量ΔPを求める。さらに、第1の軸受予圧値算出工程(S03)にて算出した第1の軸受予圧値P1に予圧変化量ΔPを加えることにより、第2の軸受予圧値P2を算出する。
 この場合、差分トルクΔTは、加締工程(S06)において行った加締加工により増加した回転トルクである。また、予圧変化量ΔPは、加締工程(S06)において行った加締加工により増加した予圧である。予圧変化量ΔPは、図8に示すように、車輪用軸受装置1の軸受予圧と軸受の回転トルクとの関係を予め実験等により求めておき、この関係に差分トルクΔTを当て嵌めることにより算出する。なお、この軸受予圧と軸受の回転トルクとの関係は、車輪用軸受装置1の仕様毎に求めることができる。
(判定工程)
 第2の軸受予圧値算出工程(S08)の後に判定工程(S09)を実施する。判定工程(S09)においては、第2の軸受予圧値P2が所定の基準値の範囲内に入っているか否かによって、車輪用軸受装置1に付与された予圧の適否を判定する。判定工程(S09)においては、第2の軸受予圧値P2が所定の基準値の範囲内に入っていれば車輪用軸受装置1に付与されている予圧が適正であると判断し、第2の軸受予圧値P2が所定の基準値の範囲内に入っていなければ、車輪用軸受装置1に付与されている予圧が適正でないと判定する。
 第2の軸受予圧値算出工程(S08)においては、加締加工前後の回転トルクである圧入後回転トルクTaと加締後回転トルクTbとを用いて加締加工による予圧変化量ΔPを求めたうえで、第2の軸受予圧値P2を算出している。
 このように、加締加工前後の回転トルクを用いて予圧を算出する場合、例えば加締加工時に内輪軌道面の形状崩れ等の異常が生じたときには、加締加工前後の回転トルクの増加量が大きくなるため、算出された第2の軸受予圧値P2が所定の基準値の範囲内から外れることとなる。従って、算出された第2の軸受予圧値P2を判定工程(S09)において判定することで、加締加工後の車輪用軸受装置1に異常が生じたことを検出することが可能となり、車輪用軸受装置1に付与された予圧の測定値の信頼度を高めることができる。これにより、車輪用軸受装置1に付与されている予圧をより高い信頼度で検査することが可能となる。
 また、第2の軸受予圧値P2を算出する際に用いる加締加工前後の圧入後回転トルクTaと加締後回転トルクTbとは、同じ車輪用軸受装置1について測定した値である。従って、圧入後回転トルクTaと加締後回転トルクTbとの差分トルクΔTは、アウター側シール部材10のリップ締め代やハブ輪3と外輪2との間に充填されているグリース量などの車輪用軸受装置1の個体ごとのばらつきは含んでおらず、加締加工による回転トルクの増加量のみが抽出されたものとなっている。これにより、差分トルクΔTから第2の軸受予圧値P2を精度良く算出することができ、車輪用軸受装置1に付与されている予圧の適否を、判定工程(S09)において高精度に判定することが可能となっている。
 また、判定工程(S09)において予圧の適否を判定する際に用いる基準値は、小径段部3aを内輪4に加締める加締加工を行うことにより生じる回転トルクのばらつきを考慮して設定されている。
 つまり、圧入後回転トルクTaと加締後回転トルクTbとの間には、加締加工の前後におけるハブ輪3と外輪2との間のグリースの位置の移動、およびアウター側シール部材10のハブ輪3および外輪2に対する当たり具合の変化を起因とするばらつきが含まれることがある。また、加締加工前に測定した圧入後回転トルクTaと、加締加工後に測定した加締後回転トルクTbとの間には、回転トルク測定における繰り返しばらつきが含まれることがある。
 従って、本実施形態においては、これらのばらつきを考慮して、ばらつきを考慮しない場合に比べて基準値の範囲を小さく絞った範囲に設定している。これにより、車輪用軸受装置1に付与されている予圧の適判定を判定工程(S09)において高精度に行うことができ、誤判定が生じることを抑制することが可能となっている。
(インナー側シール部材装着工程)
 判定工程(S09)の後にインナー側シール部材装着工程(S10)を実施する。インナー側シール部材装着工程(S10)を実施することで、車輪用軸受装置1の組立工程が完了する。なお、インナー側シール部材装着工程(S10)は、加締後回転トルク測定工程(S07)の後であれば、判定工程(S09)の前、または第2の軸受予圧値算出工程(S08)の前に実施することも可能である。図9に示すように、インナー側シール部材装着工程(S10)においては、外輪2のインナー側開口部2aにインナー側シール部材9を嵌合することにより、外輪2のインナー側端部と内輪4のインナー側端部との間にインナー側シール部材9を装着する。
 インナー側シール部材9を加締工程(S06)の前に装着すると、加締工程(S06)におけるハブ輪3の加締め度合等によってインナー側シール部材9の外輪2および内輪4との間の摺動抵抗が変化する。また、加締工程(S06)の後であっても加締後回転トルク測定工程(S07)の前にインナー側シール部材9を装着すると、インナー側シール部材9の装着状態によってインナー側シール部材9の外輪2および内輪4との間の摺動抵抗が変化する。
 従って、インナー側シール部材9を加締工程(S06)または加締後回転トルク測定工程(S07)の前に装着すると、加締後回転トルク測定工程(S07)において測定される加締後回転トルクTbのばらつきに影響を及ぼすおそれがある。同様に、圧入後回転トルク測定工程(S05)の前にインナー側シール部材9を装着した場合は、インナー側シール部材9の装着状態によって、圧入後回転トルク測定工程(S05)において測定される圧入後回転トルクTaのばらつきに影響を及ぼすおそれがある。
 しかし、本実施形態においては、加締後回転トルク測定工程(S07)の後にインナー側シール部材装着工程(S10)を実施するようにしているので、圧入後回転トルク測定工程(S05)および加締後回転トルク測定工程(S07)おいて車輪用軸受装置1の圧入後回転トルクTaおよび加締後回転トルクTbを測定する際に、インナー側シール部材9の影響による回転トルクのばらつきが生じることがなく、車輪用軸受装置1の回転トルクを高精度に測定することが可能となっている。
 本実施形態においては、加締後回転トルク測定工程(S07)の後にインナー側シール部材装着工程(S10)を実施しているが、加締後回転トルク測定工程(S07)の後にキャップ部材装着工程を実施する構成とすることもできる。この場合、キャップ部材装着工程においては、インナー側シール部材9に代えてキャップ部材が外輪2のインナー側開口部2aに嵌合され、キャップ部材によりインナー側開口部2aが閉塞される。
〈第2実施形態〉
 図2に示すように、本実施形態における予圧検査方法は、仮圧入工程(S01)、圧入工程(S02)、第1の軸受予圧値算出工程(S03)、なじみ工程(S04)、圧入後回転トルク測定工程(S05)、加締工程(S06)、加締後回転トルク測定工程(S07)、第2の軸受予圧値算出工程(S08)、判定工程(S09)、及びインナー側シール部材装着工程(S10)を備えている。予圧検査方法の各工程について、以下に説明する。
(仮圧入工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(圧入工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(第1の軸受予圧値算出工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(なじみ工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(圧入後回転トルク測定工程)
 第1実施形態と同様の工程を実施する。
 また、圧入後回転トルク測定工程(S05)においては、車輪用軸受装置1周辺の雰囲気温度Aも測定する。例えば、図10に示すように、トルク測定器13に温度センサ140を設け、外輪2付近の雰囲気温度を測定してもよい。なお、本実施形態の予圧検査方法においては、車輪用軸受装置1を使用時のように高速で回転させる工程がないため、予圧検査方法の全工程において雰囲気温度Aはほぼ一定である。したがって、雰囲気温度Aの測定は仮圧入工程(S01)から第2の軸受予圧値算出工程(S08)の何れの工程で行ってもよい。
(加締工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(加締後回転トルク測定工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(第2の軸受予圧値算出工程)
 加締後回転トルク測定工程(S07)の後に第2の軸受予圧値算出工程(S08)を実施する。第2の軸受予圧値算出工程(S08)においては、圧入後回転トルクTaと加締後回転トルクTbとの差分トルクΔT(Tb-Ta=ΔT)を算出する。また、差分トルクΔTに基づいて圧入工程後と加締加工後との間の予圧変化量ΔPを求める。さらに、第1の軸受予圧値算出工程(S03)にて算出した第1の軸受予圧値P1に予圧変化量ΔPを加えることにより、第2の軸受予圧値P2を算出する。
 この場合、差分トルクΔTは、加締工程(S06)において行った加締加工により増加した回転トルクである。また、予圧変化量ΔPは、加締工程(S06)において行った加締加工により増加した予圧である。予圧変化量ΔPを求めるため、図11に示すように、複数の雰囲気温度に応じて車輪用軸受装置1の軸受予圧と軸受の回転トルクとの関係を予め実験等により求めておく。図11では、破線が雰囲気温度A1の場合、実線が雰囲気温度A2(A2>A1)の場合、一点鎖線が雰囲気温度A3(A3>A2)の場合を示している。そして、予圧変化量ΔPは、圧入後回転トルク測定工程(S05)において測定した雰囲気温度Aに応じた関係を選択し(本実施形態では雰囲気温度A2を選択)、図8に示すように、この関係に差分トルクΔTを当て嵌めることにより算出する。
 なお、この軸受予圧と軸受の回転トルクとの関係は、車輪用軸受装置1の仕様毎に求めることができる。また、図11では3つの雰囲気温度A1~A3について例示したが、これに限定されることはなく、2つ以上の雰囲気温度における軸受予圧と軸受の回転トルクとの関係を用いればよく、その数が増える程、精度は向上する。
 圧入後回転トルクTa及び加締後回転トルクTbは、測定時の雰囲気温度Aによって、同じ軸方向正隙間G0又は軸方向負隙間G1を有した車輪用軸受装置1であっても測定値にばらつきが生じる。これは、ハブ輪3と外輪2との間に充填されているグリースの粘度が変化することでインナー側ボール列5及びアウター側ボール列6のボール7表面のグリースの膜厚が変化し、ボール7の接触面積が変化するからである。そこで、上述したように雰囲気温度Aに応じた軸受予圧と軸受の回転トルクとの関係を用いて差分トルクΔTから予圧変化量ΔPを求めることにより、高い信頼度の予圧変化量ΔPを得ることができる。また、雰囲気温度Aを加味した高い信頼度の予圧変化量ΔPから第2の軸受予圧値P2を算出するため、車輪用軸受装置1に付与された予圧の測定値の信頼度を高めることができる。
(判定工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(インナー側シール部材装着工程)
 第1実施形態の工程と同様であるため、説明を省略する。
 本実施形態においては、圧入後回転トルク測定工程(S05)において車輪用軸受装置1周辺の雰囲気温度Aを測定し、第2の軸受予圧値算出工程(S08)において、予圧変化量ΔPは、雰囲気温度Aに応じた軸受予圧と軸受の回転トルクとの関係を選択し、この関係に差分トルクΔTを当て嵌めることにより算出したが、雰囲気温度Aの替わりに車輪用軸受装置1の表面温度Bを用いてもよい。すなわち、圧入後回転トルク測定工程(S05)において車輪用軸受装置1の表面温度Bを測定し、第2の軸受予圧値算出工程(S08)において、予圧変化量ΔPは、表面温度Bに応じた軸受予圧と軸受の回転トルクとの関係を選択し、この関係に差分トルクΔTを当て嵌めることにより算出してもよい。車輪用軸受装置1の表面温度Bと雰囲気温度Aとは、通常ほぼ同じ温度を示すものと考えられる。表面温度Bを測定する場所としては、例えば外輪2の表面とすることができる。表面温度Bの測定手段としては、接触型温度センサ又は非接触型温度センサを用いることができる。
〈第3実施形態〉
 図12に示すように、本実施形態における予圧検査方法は、仮圧入工程(S21)、圧入工程(S22)、第1の軸受予圧値算出工程(S23)、なじみ工程(S24)、圧入後回転トルク測定工程(S25)、加締工程(S26)、加工時間判定工程(S27)、加締後回転トルク測定工程(S28)、回転トルク補正工程(S29)、第2の軸受予圧値算出工程(S30)、判定工程(S31)、およびインナー側シール部材装着工程(S32)を備えている。予圧検査方法の各工程について、以下に説明する。
(仮圧入工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(圧入工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(第1の軸受予圧値算出工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(なじみ工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(圧入後回転トルク測定工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(加締工程)
 第1実施形態と同様の工程を実施する。
 また、加締工程(S26)においては、加締加工に要する時間である加締加工時間tを測定する。本実施形態の場合、測定する加締加工時間tは、加締加工を行うために加締めパンチ14の下降を開始した時点から、加締加工が完了して加締めパンチ14の上昇が開始された時点までの時間である。
(加工時間判定工程)
 加締工程(S26)の後に加工時間判定工程(S27)を実施する。加工時間判定工程(S27)においては、測定した加締加工時間tが所定の上限値を超えているか否かの判定を行う。ステップS27において、加締加工時間tが所定の上限値を超えていないと判定した場合には(S27;N)、次に加締後回転トルク測定工程(S28)を実施する。一方、ステップS27において、加締加工時間tが所定の上限値を超えていると判定した場合には(S27;Y)、加締加工を行った車輪用軸受装置1をNG品として排出する(S33)。本実施形態においては、所定の上限値は20秒に設定している。
(加締後回転トルク測定工程)
 測定した加締加工時間tが所定の上限値を超えていなかった場合には、加工時間判定工程(S27)の後に加締後回転トルク測定工程(S28)を、第1実施形態と同様に実施する。
(回転トルク補正工程)
 加締後回転トルク測定工程(S28)の後に回転トルク補正工程(S29)を実施する。回転トルク補正工程(S29)においては、加締後回転トルク測定工程(S28)において測定した加締後回転トルクTbを、加締加工を行ったことによる内輪4の温度上昇量に基づいて補正して、補正済加締後回転トルクTcを算出する。
 ハブ輪3の小径段部3aを内輪4に加締める加締加工を実施すると、小径段部3aにおける加締部3hが塑性変形したことによって温度上昇する。また、小径段部3aにおける加締部3hの熱は内輪4に伝達されて、内輪4の温度が上昇する。内輪4は温度上昇することにより膨張するため、加締後回転トルク測定工程(S28)において測定される加締後回転トルクTbは、加締加工による温度上昇がなかった場合に比べて大きい値となる。
 この場合、加締加工による内輪4の温度上昇量と加締加工時間tとは相関を有しており、加締加工時間tが増加するにつれて内輪4の温度上昇量が増大する関係にある(図13に示すグラフR1a、R1b、R1cを参照)。また、内輪4は温度上昇量が大きくなるにつれて膨張量が増加するため、内輪4の温度上昇量が増大すると加締後回転トルクTbの増加量も大きくなる。
 従って、加締加工時間tと加締後回転トルクTbの増加量である回転トルク増加量Tiとは相関を有しており、加締加工時間tが増加するにつれて回転トルク増加量Tiが大きくなる関係にある(図14に示すグラフR2a、R2b、R2cを参照)。
 これらのことより、回転トルク補正工程(S29)においては、図14に示した加締加工
時間tと回転トルク増加量Tiとの関係を用いて、加締工程(S26)において測定した加締加工時間tから回転トルク増加量Tiを求め、求めた回転トルク増加量Tiを加締後回転トルクTbから減じることで、補正済加締後回転トルクTcを算出している(Tc=Tb-Ti)。
 なお、図14に示した加締加工時間tと回転トルク増加量Tiとの関係は、予め実験等により求めておくことができる。この場合、加締加工時間tと回転トルク増加量Tiとの関係は、例えば加締加工時間tが所定の時間に達するまでの範囲において求めることができる。また、加締加工時間tと回転トルク増加量Tiとの関係は、車輪用軸受装置1の仕様毎に求めることができる。
 図13に示した加締加工時間tと内輪4の温度上昇量との関係は、加締後回転トルクTbを測定する際における車輪用軸受装置1の周囲の雰囲気温度によって異なっており、加締加工時間tが同じ値であった場合には、雰囲気温度が高いほど温度上昇量が小さくなる。例えば図13においては、グラフR1aは雰囲気温度がa℃のときの関係を示しており、グ
ラフR1bは雰囲気温度がa℃よりも高いb℃(b℃>a℃)のときの関係を示しており、グラフR1cは雰囲気温度がb℃よりも高いc℃(c℃>b℃)のときの関係を示している。
 同様に、図14に示した加締加工時間tと回転トルク増加量Tiとの関係は、加締後回転トルクTbを測定する際における車輪用軸受装置1の周囲の雰囲気温度によって異なっており、加締加工時間tが同じ値であった場合には、雰囲気温度が高いほど回転トルク増加量Tiが小さくなる。例えば図14においては、グラフR2aは雰囲気温度がa℃のときの関係を示しており、グラフR2bは雰囲気温度がb℃のときの関係を示しており、グラフ
R1cは雰囲気温度がc℃のときの関係を示している。
 このように、加締加工時間tと回転トルク増加量Tiとの関係は雰囲気温度によって異なる。従って、予圧検査方法においては、複数の雰囲気温度における加締加工時間tと回転トルク増加量Tiとの関係を予め求めておき、加締加工時間tから回転トルク増加量Tiを求める際には、この複数の関係の中から加締加工時の雰囲気温度に対応した加締加工時間tと回転トルク増加量Tiとの関係を用いて回転トルク増加量Tiを求めるようにしている。
 例えば、加締後回転トルクTbを測定する際の雰囲気温度がb℃であった場合には、b℃に対応する加締加工時間tと回転トルク増加量Tiとの関係を示す図9のグラフR2bを用いて、加締加工時間tから回転トルク増加量Tiを求める。これにより、回転トルク増加量Tiを高精度に求めることが可能となっている。
(第2の軸受予圧値算出工程)
 回転トルク補正工程(S29)の後に第2の軸受予圧値算出工程(S30)を実施する。第2の軸受予圧値算出工程(S30)においては、圧入後回転トルクTaと補正済加締後回転トルクTcとの差分トルクΔT(Tc-Ta=ΔT)を算出する。また、差分トルクΔTに基づいて圧入工程後と加締加工後との間の予圧変化量ΔPを求める。さらに、第1の軸受予圧値算出工程(S23)にて算出した第1の軸受予圧値P1に予圧変化量ΔPを加えることにより、第2の軸受予圧値P2を算出する。
 この場合、差分トルクΔTは、加締工程(S26)において行った加締加工により増加した回転トルクである。また、予圧変化量ΔPは、加締工程(S26)において行った加締加工により増加した予圧である。差分トルクΔTおよび予圧変化量ΔPは、共に加締加工による内輪4の温度上昇の影響が除去された値である。
 予圧変化量ΔPは、図15に示すように、車輪用軸受装置1の軸受予圧と軸受の回転トルクとの関係を予め実験等により求めておき、この関係に差分トルクΔTを当て嵌めることにより算出する。なお、この軸受予圧と軸受の回転トルクとの関係は、車輪用軸受装置1の仕様毎に求めることができる。
 第2の軸受予圧値算出工程(S30)においては、圧入工程(S22)において測定した軌道面と転動体間の軸方向負隙間G1に基づいて算出した第1の軸受予圧値P1と、圧入後回転トルクTaおよび補正済加締後回転トルクTcに基づいて算出した予圧変化量ΔPとを用いて第2の軸受予圧値P2を算出しているため、第2の軸受予圧値P2を高精度に求めることが可能となっている。
(判定工程)
 第2の軸受予圧値算出工程(S30)の後に判定工程(S31)を実施する。判定工程(S31)においては、第2の軸受予圧値P2が所定の基準値の範囲内に入っているか否かによって、車輪用軸受装置1に付与された予圧の良否を判定する。
 判定工程(S31)においては、第2の軸受予圧値P2が所定の基準値の範囲内に入っていれば車輪用軸受装置1に付与されている予圧が適正であるとの判定、即ち良判定を行い(S31;Y)、次にインナー側シール部材装着工程(S32)を実施する。一方、判定工程(S31)においては、第2の軸受予圧値P2が所定の基準値の範囲内に入っていなければ、車輪用軸受装置1に付与されている予圧が適正でないとの判定、即ち否判定を行い(S31;N)、車輪用軸受装置1をNG品として排出する(S33)。
 第2の軸受予圧値算出工程(S30)においては、加締加工による内輪4の温度上昇の影響が除去された補正済加締後回転トルクTcを用いて予圧変化量ΔPを求めたうえで、第2の軸受予圧値P2を算出しているため、第2の軸受予圧値P2を高精度で算出することが可能となっている。これにより、判定工程(S11)においては、加締加工による内輪4の温度上昇の影響を抑制して、車輪用軸受装置1に付与されている予圧の良否をより高精度に判定することができる。
 特に、回転トルク補正工程(S29)においては、加締加工を行ったことによる内輪4の温度上昇に起因した加締後回転トルクTbの増加量である回転トルク増加量Tiを、加締加工時間tに基づいて求め、回転トルク増加量Tiを加締後回転トルクTbから減じることで、補正済加締後回転トルクTcを算出しているため、補正済加締後回転トルクTcを容易かつ高精度に算出することが可能となっている。
 また、回転トルク補正工程(S29)において加締加工時間tに基づき補正済加締後回転トルクTcを算出することで、加締工程(S26)後に、加締後回転トルクTbの測定を内輪4の温度が加締加工前の温度に戻るまで待つ必要がなくなる。これにより、量産ラインにおいて生産効率を低下させることなく、全数の車輪用軸受装置1について加締後回転トルクTbを測定し、車輪用軸受装置1に付与されている予圧の良否を判定することが可能となる。さらに、同じ工程設備において圧入後回転トルクTaと加締後回転トルクTbとの測定を行うことができるため、全ての車輪用軸受装置1について圧入後回転トルクTaの値と加締後回転トルクTbの値との紐付けを行うことが容易となる。
 また、加締加工前後の回転トルクを用いて予圧を算出する場合、例えば加締加工時に内輪軌道面の形状崩れ等の異常が生じたときには、加締加工前後の回転トルクの増加量が大きくなるため、算出された第2の軸受予圧値P2が所定の基準値の範囲内から外れることとなる。従って、算出された第2の軸受予圧値P2を判定工程(S31)において判定することで、加締加工後の車輪用軸受装置1に異常が生じたことを検出することが可能となり、車輪用軸受装置1に付与された予圧の測定値の信頼度を高めることができる。これにより、車輪用軸受装置1に付与されている予圧をより高い信頼度で検査することが可能となる。
 また、回転トルク補正工程(S29)においては、複数の雰囲気温度について求められた加締加工時間tと回転トルク増加量Tiとの関係のうち、加締加工時の雰囲気温度に対応した加締加工時間tと回転トルク増加量Tiとの関係を用いて回転トルク増加量Tiを求めている。これにより、回転トルク増加量Tiを高精度に求めることができ、車輪用軸受装置1に付与されている予圧の良否をより高精度に判定することが可能となっている。
 また、図14に示した加締加工時間tと回転トルク増加量Tiとの関係は、実際に実験等により求めた範囲外であっても、実験等により求めた範囲における関係に基づいて推測することが可能である。しかし、加締加工時間tが実験等により求めた範囲から大きく外れると、推測した加締加工時間tと回転トルク増加量Tiとの関係に生じる誤差が大きくなって、加締加工時間tから回転トルク増加量Tiを精度良く算出することが困難となるおそれがある。
 そこで、本予圧検査方法においては、加工時間判定工程(S27)にて加締加工時間tが所定の上限値を超えているか否かの判定を行い、加締加工時間tが所定の上限値を超えていると判定した場合には、加締後回転トルクTbの補正を高い精度で行うことが困難であるとして、加締加工を行った車輪用軸受装置1をNG品として排出するようにしている。
 これにより、加工時間判定工程(S07)の後に行われる回転トルク補正工程(S29)において算出される補正済加締後回転トルクTcの精度を向上することができ、判定工程(S31)において車輪用軸受装置1に付与されている予圧の良否をより高精度に判定することが可能となっている。
(インナー側シール部材装着工程)
 判定工程(S31)の後にインナー側シール部材装着工程(S32)を実施する。インナー側シール部材装着工程(S32)を実施することで、車輪用軸受装置1の組立工程が完了する。なお、インナー側シール部材装着工程(S32)は、加締後回転トルク測定工程(S28)の後であれば、判定工程(S31)の前、第2の軸受予圧値算出工程(S30)の前、または回転トルク補正工程(S09)の前に実施することも可能である。図9に示すように、インナー側シール部材装着工程(S32)においては、外輪2のインナー側開口部2aにインナー側シール部材9を嵌合することにより、外輪2のインナー側端部と内輪4のインナー側端部との間にインナー側シール部材9を装着する。
 インナー側シール部材9を加締工程(S26)の前に装着すると、加締工程(S26)におけるハブ輪3の加締め度合等によってインナー側シール部材9の外輪2および内輪4との間の摺動抵抗が変化する。また、加締工程(S26)の後であっても加締後回転トルク測定工程(S28)の前にインナー側シール部材9を装着すると、インナー側シール部材9の装着状態によってインナー側シール部材9の外輪2および内輪4との間の摺動抵抗が変化する。
 従って、インナー側シール部材9を加締工程(S26)または加締後回転トルク測定工程(S28)の前に装着すると、加締後回転トルク測定工程(S28)において測定される加締後回転トルクTbのばらつきに影響を及ぼすおそれがある。同様に、圧入後回転トルク測定工程(S25)の前にインナー側シール部材9を装着した場合は、インナー側シール部材9の装着状態によって、圧入後回転トルク測定工程(S25)において測定される圧入後回転トルクTaのばらつきに影響を及ぼすおそれがある。
 しかし、本実施形態においては、加締後回転トルク測定工程(S28)の後にインナー側シール部材装着工程(S32)を実施するようにしているので、圧入後回転トルク測定工程(S25)および加締後回転トルク測定工程(S28)おいて車輪用軸受装置1の圧入後回転トルクTaおよび加締後回転トルクTbを測定する際に、インナー側シール部材9の影響による回転トルクのばらつきが生じることがなく、車輪用軸受装置1の回転トルクを高精度に測定することが可能となっている。
 本実施形態においては、加締後回転トルク測定工程(S28)の後にインナー側シール部材装着工程(S32)を実施しているが、加締後回転トルク測定工程(S28)の後にキャップ部材装着工程を実施する構成とすることもできる。この場合、キャップ部材装着工程においては、インナー側シール部材9に代えてキャップ部材が外輪2のインナー側開口部2aに嵌合され、キャップ部材によりインナー側開口部2aが閉塞される。
〈第4実施形態〉
 図16に示すように、本実施形態における予圧検査方法は、仮圧入工程(S41)、圧入工程(S42)、第1の内輪高さ測定工程(S43)、第1の軸受予圧値算出工程(S44)、なじみ工程(S45)、圧入後回転トルク測定工程(S46)、加締工程(S47)、温度測定工程(S48)、加締後回転トルク測定工程(S49)、回転トルク補正工程(S50)、第2の軸受予圧値算出工程(S51)、判定工程(S52)、およびインナー側シール部材装着工程(S53)を備えている。予圧検査方法の各工程について、以下に説明する。
(仮圧入工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(圧入工程)
 仮圧入工程(S41)の後に圧入工程(S42)を実施する。図4に示すように、圧入工程(S42)においては、内輪4のアウター側端面4cがハブ輪3の肩部3eに当接する位置まで、内輪4を小径段部3aに圧入する。
(第1の内輪高さ測定工程)
 圧入工程(S42)の後に第1の内輪高さ測定工程(S43)を実施する。図4に示すように、内輪高さ測定工程(S43)においては、内輪4の小径段部3aへの圧入が完了した後に、内輪4の圧入後におけるハブ輪3のアウター側端面3gと内輪4のインナー側端面4bとの間の軸方向寸法である第1の内輪高さH1を測定する。また、軸方向寸法H0から第1の内輪高さH1を引いた値を、仮圧入工程(S41)において測定した軌道面と転動体間の軸方向正隙間G0から引くことで、内輪4の圧入後における軌道面と転動体間の軸方向負隙間G1を求める(G1=G0-(H0-H1))。
(第1の軸受予圧値算出工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(なじみ工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(圧入後回転トルク測定工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(加締工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(温度測定工程)
 加締工程(S47)の後に温度測定工程(S48)を実施する。温度測定工程(S48)においては、加締加工完了後におけるハブ輪3と内輪4との加締部の温度ti0を測定する。図17に示すように、本実施形態においては、加締加工完了後に、ハブ輪3のインナー側端部に形成された加締部3hの温度ti0を温度センサ15によって測定する。加締部3hの温度ti0は、加締加工が完了した直後、または加締加工が完了して一定時間が経過した後に測定することができる。
 温度センサ15は、例えば加締めパンチ14を備える加締加工機に取り付けられている。つまり、加締部3hの温度ti0は、加締加工機に取り付けられた温度センサ15によって測定することができる。このように、加締部3hの温度ti0を加締加工機に取り付けられた温度センサ15によって測定することで、加締工程(S47)の実施後に、円滑に加締部3hの温度ti0を測定することが可能となっている。
 温度センサ15としては、接触型の温度センサまたは非接触型の温度センサを用いることができる。温度センサ15が接触型の温度センサである場合、温度センサ15の接触子を加締部3hに接触させた状態で加締部3hの温度ti0を直接測定することができる。この場合、温度センサ15の接触子を加締部3hに対して昇降可能に構成し、温度ti0の測定時には接触子を下降させて加締部3hに接触させ、温度ti0の測定が終了すると接触子を上昇させて加締部3hから離間させるように構成することができる。また、温度センサ15が非接触型の温度センサである場合、温度センサ15を加締部3hから離れた位置に配置した状態で加締部3hの温度ti0を測定することができる。
 本実施形態では、ハブ輪3の加締部3hの温度ti0を軸方向におけるインナー側から測定しているが、内輪4のインナー側端面4bの温度を測定することも可能である。ただし、加締部3hはインナー側端面4bよりも軸方向におけるインナー側に位置しているため、加締部3hの温度ti0を測定する方が、インナー側端面4bの温度を測定するよりも容易である。
(加締後回転トルク測定工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(回転トルク補正工程)
 加締後回転トルク測定工程(S49)の後に回転トルク補正工程(S50)を実施する。回転トルク補正工程(S50)においては、加締後回転トルク測定工程(S49)において測定した加締後回転トルクTbを、温度測定工程(S08)において測定した加締部3hの温度ti0に基づいて補正して、補正済加締後回転トルクTcを算出する。
 ハブ輪3の小径段部3aを内輪4に加締める加締加工を実施すると、小径段部3aにおける加締部3hが塑性変形したことによって温度上昇する。また、小径段部3aにおける加締部3hの熱は内輪4に伝達されて、内輪4の温度が上昇する。内輪4は温度上昇することにより膨張するため、加締後回転トルク測定工程(S49)において測定される加締後回転トルクTbは、加締加工による温度上昇がなかった場合に比べて大きい値となる。
 従って、回転トルク補正工程(S50)においては、以下のようにして加締後回転トルクTbの補正を行い、内輪4に加締加工による温度上昇がなかった場合の加締後回転トルクの値である補正済加締後回転トルクTcを算出している。なお、加締加工による温度上昇がなかった場合の内輪4の温度は、車輪用軸受装置1の周囲の雰囲気温度と同等の温度である。
 まず、回転トルク補正工程(S50)においては、温度測定工程(S48)にて測定した加締部3hの温度ti0から、図18に示す加締部3hの温度と内輪4の内側軌道面4aの温度との関係を用いて、加締加工完了後における内側軌道面4aの温度ti1を算出する。ここで、図18に示した加締部3hの温度と内輪4の内側軌道面4aの温度との関係は、予め実験等により求めておくことができる。また、加締部3hの温度と内輪4の内側軌道面4aの温度との関係は、車輪用軸受装置1の仕様毎に求めることができる。
 回転トルク補正工程(S50)においては、さらに加締後回転トルクTbが測定される加締工程後の内側軌道面4aの温度ti1と、加締加工前の内側軌道面4aの温度と同等の温度である車輪用軸受装置1の周囲の雰囲気温度t0との差分温度Δt(Δt=ti1-t0)に基づいて、内輪4の温度変化による回転トルク変化量ΔT1を求める。この場合、回転トルク変化量ΔT1は、図19に示すように、差分温度Δtと回転トルク変化量ΔT1との関係を、予め実験等により求めておき、この関係に差分温度Δtを当て嵌めることにより算出する。なお、この差分温度Δtと回転トルク変化量ΔT1との関係は、車輪用軸受装置1の仕様毎に求めることができる。
 ここで、実際には加締加工後から加締後回転トルク測定までに経過時間sが存在し、温度変化がある為、加締後回転トルクTbの精度を向上させるために以下の手法を取り入れても良い。図20に示すように加工後加締部3hの温度ti0を測定したとき(加締部温度の測定タイミング)から加締後回転トルクTbを測定したとき(加締後回転トルク測定タイミング)までの経過時間s、および加締加工完了後における内側軌道面4aの温度ti1から、内輪4の内側軌道面4aの温度と時間との関係を用いて、加締後回転トルクTbを測定するときの内側軌道面4aの温度ti2を算出する。ここで、図20に示した内側軌道面4aの温度と時間との関係は、予め実験等により求めておくことができる。また、内側軌道面4aの温度と時間との関係は、車輪用軸受装置1の仕様毎に求めることができる。
 図20に示した内側軌道面4aの温度と時間との関係においては、加締部3hの温度ti0を測定したときの内側軌道面4aの温度はti1であり、その後内側軌道面4aの温度が上昇している。これは、加締部3hの温度ti0を測定した後に、温度上昇した加締部3hの熱が内輪4の内側軌道面4aに伝達されるためである。図20においては、内側軌道面4aの温度がti1から上昇した後に若干下がってti2となったタイミングで加締後回転トルクTbの測定が行われている。
 このように、温度ti2を求めた場合には、温度ti2と雰囲気温度t0との差分温度Δt(Δt=ti2-t0)に基づいて、回転トルク変化量ΔT1を求める。
 回転トルク変化量ΔT1を求めた後、加締後回転トルクTbから回転トルク変化量ΔT1を減じることで補正済加締後回転トルクTc(Tc=Tb-ΔT1)を算出する。
(第2の軸受予圧値算出工程)
 回転トルク補正工程(S50)の後に第2の軸受予圧値算出工程(S51)を実施する。第2の軸受予圧値算出工程(S51)においては、圧入後回転トルクTaと補正済加締後回転トルクTcとの差分トルクΔT2(ΔT2=Tc-Ta)を算出する。また、差分トルクΔT2に基づいて圧入工程後と加締加工後との間の予圧変化量ΔPを求める。さらに、第1の軸受予圧値算出工程(S44)にて算出した第1の軸受予圧値P1に予圧変化量ΔPを加えることにより、第2の軸受予圧値P2を算出する。
 この場合、差分トルクΔT2は、加締工程(S47)において行った加締加工により増加した回転トルクである。また、予圧変化量ΔPは、加締工程(S47)において行った加締加工により増加した予圧である。差分トルクΔT2および予圧変化量ΔPは、共に加締加工による内輪4の温度上昇の影響が除去された値である。
 予圧変化量ΔPは、図21に示すように、車輪用軸受装置1の軸受予圧と軸受の回転トルクとの関係を予め実験等により求めておき、この関係に差分トルクΔT2を当て嵌めることにより算出する。なお、この軸受予圧と軸受の回転トルクとの関係は、車輪用軸受装置1の仕様毎に求めることができる。
 第2の軸受予圧値算出工程(S51)においては、軸方向負隙間G1に基づいて算出した第1の軸受予圧値P1と、圧入後回転トルクTaおよび補正済加締後回転トルクTcに基づいて算出した予圧変化量ΔPとを用いて第2の軸受予圧値P2を算出しているため、第2の軸受予圧値P2を高精度に求めることが可能となっている。
(判定工程)
 第1実施形態と同様の工程を実施する。
 第2の軸受予圧値算出工程(S51)においては、加締加工完了後に測定した加締部3hの温度ti0に基づいて、加締加工による内輪4の温度上昇の影響が除去された補正済加締後回転トルクTcを求め、この補正済加締後回転トルクTcを用いて第2の軸受予圧値P2を算出しているため、第2の軸受予圧値P2を高精度で算出することが可能となっている。これにより、判定工程(S52)においては、加締加工による内輪4の温度上昇の影響を考慮して、車輪用軸受装置1に付与されている予圧の良否をより高精度に判定することができる。
 特に、回転トルク補正工程(S50)においては、温度測定工程(S48)にて測定した加締部3hの温度ti0から、加締加工完了後における内側軌道面4aの温度ti1を算出し、加締部3hの温度ti0を測定したときから加締後回転トルクTbを測定したときまでの経過時間s、および温度ti1から、加締後回転トルクTbを測定するときの内側軌道面4aの温度ti2を算出し、温度ti2と雰囲気温度t0との差分温度Δtに基づいて、内輪4の温度変化による回転トルク変化量ΔT1を求め、加締後回転トルクTbから回転トルク変化量ΔT1を減じることで補正済加締後回転トルクTcを算出しているため、補正済加締後回転トルクTcを容易かつ高精度に算出することが可能となっている。
 また、回転トルク補正工程(S50)において、加締部3hの温度ti0および経過時間sに基づき補正済加締後回転トルクTcを算出することで、加締工程(S47)後に、加締後回転トルクTbの測定を内輪4の温度が加締加工前の温度に戻るまで待つ必要がなくなる。これにより、量産ラインにおいて生産効率を低下させることなく、車輪用軸受装置1に付与されている予圧の良否を判定することが可能となる。
 また、加締加工前後の回転トルクを用いて予圧を算出する場合、例えば加締加工時に内輪軌道面の形状崩れ等の異常が生じたときには、加締加工前後の回転トルクの増加量が大きくなるため、算出された第2の軸受予圧値P2が所定の基準値の範囲内から外れることとなる。従って、算出された第2の軸受予圧値P2を判定工程(S52)において判定することで、加締加工後の車輪用軸受装置1に異常が生じたことを検出することが可能となり、車輪用軸受装置1に付与された予圧の測定値の信頼度を高めることができる。これにより、車輪用軸受装置1に付与されている予圧をより高い信頼度で検査することが可能となる。
(インナー側シール部材装着工程)
 判定工程(S52)の後にインナー側シール部材装着工程(S13)を実施する。インナー側シール部材装着工程(S53)を実施することで、車輪用軸受装置1の組立工程が完了する。なお、インナー側シール部材装着工程(S53)は、加締後回転トルク測定工程(S49)の後であれば、判定工程(S52)の前、第2の軸受予圧値算出工程(S51)の前、または回転トルク補正工程(S50)の前に実施することも可能である。図9に示すように、インナー側シール部材装着工程(S53)においては、外輪2のインナー側開口部2aにインナー側シール部材9を嵌合することにより、外輪2のインナー側端部と内輪4のインナー側端部との間にインナー側シール部材9を装着する。
 インナー側シール部材9を加締工程(S47)の前に装着すると、加締工程(S47)におけるハブ輪3の加締め度合等によってインナー側シール部材9の外輪2および内輪4との間の摺動抵抗が変化する。また、加締工程(S47)の後であっても加締後回転トルク測定工程(S49)の前にインナー側シール部材9を装着すると、インナー側シール部材9の装着状態によってインナー側シール部材9の外輪2および内輪4との間の摺動抵抗が変化する。
 従って、インナー側シール部材9を加締工程(S47)または加締後回転トルク測定工程(S49)の前に装着すると、加締後回転トルク測定工程(S49)において測定される加締後回転トルクTbのばらつきに影響を及ぼすおそれがある。同様に、圧入後回転トルク測定工程(S46)の前にインナー側シール部材9を装着した場合は、インナー側シール部材9の装着状態によって、圧入後回転トルク測定工程(S46)において測定される圧入後回転トルクTaのばらつきに影響を及ぼすおそれがある。
 しかし、本実施形態においては、加締後回転トルク測定工程(S49)の後にインナー側シール部材装着工程(S53)を実施するようにしているので、圧入後回転トルク測定工程(S46)および加締後回転トルク測定工程(S49)おいて車輪用軸受装置1の圧入後回転トルクTaおよび加締後回転トルクTbを測定する際に、インナー側シール部材9の影響による回転トルクのばらつきが生じることがなく、車輪用軸受装置1の回転トルクを高精度に測定することが可能となっている。
 本実施形態においては、加締後回転トルク測定工程(S49)の後にインナー側シール部材装着工程(S53)を実施しているが、加締後回転トルク測定工程(S49)の後にキャップ部材装着工程を実施する構成とすることもできる。この場合、キャップ部材装着工程においては、インナー側シール部材9に代えてキャップ部材が外輪2のインナー側開口部2aに嵌合され、キャップ部材によりインナー側開口部2aが閉塞される。
〈第5実施形態〉
 図22に示すように、本実施形態における予圧検査方法は、仮圧入工程(S61)、圧入工程(S62)、第1の軸受予圧値算出工程(S63)、なじみ工程(S64)、圧入後回転トルク測定工程(S65)、加締工程(S66)、加締加工度測定工程(S67)、加締後回転トルク測定工程(S68)、第2の軸受予圧値算出工程(S69)、第1の判定工程(S70)、第2の判定工程(S71)、およびインナー側シール部材装着工程(S72)を備えている。予圧検査方法の各工程について、以下に説明する。
(仮圧入工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(圧入工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(第1の軸受予圧値算出工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(なじみ工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(圧入後回転トルク測定工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(加締工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(加締加工度測定工程)
 加締工程(S06)の後に、加締加工度測定工程(S67)を実施する。加締加工度測定工程(S67)においては、加締加工によって形成された加締部3hの加締加工度を測定する。
 ここで、加締加工度とは、加締加工によって塑性変形された加締部3hの変形度合であり、加締部3hの形状によって表すことができる。また、測定対象となる加締部3hの形状としては、加締部3hの軸方向における高さ寸法h、および加締部3hの軸方向と直交する方向における外径寸法r等がある。つまり、加締加工度は、加締部3hの軸方向における高さ寸法h、および加締部3hの軸方向と直交する方向における外径寸法rを含んでいる。
 本実施形態においては、高さ寸法hと外径寸法rとを測定することにより、加締部3hの加締加工度の測定を行っている。但し、加締部3hの加締加工度の測定は、高さ寸法hおよび外径寸法rの何れか一方のみを測定することにより行うことも可能である。
 図23に示すように、加締部3hの加締加工度である高さ寸法hおよび外径寸法rの測定は、例えば測定器150を用いて行うことができる。測定器150は、加締部3hに接触子を接触させて測定を行う接触型の測定器であり、本体部151、第1接触子152、および第2接触子153を有している。
 本体部151は、軸方向と直交する方向に沿って延出する長尺部材であり、第1接触子152を軸方向と直交する方向に沿って移動可能に支持している。
 第1接触子152は、軸方向に沿って延出する長尺部材であり、本体部151に一対設けられている。第1接触子152は、高さ寸法hおよび外径寸法rを測定する際に、内輪4のインナー側端面4b、および加締部3hの軸方向と直交する方向の外径縁部に接触する。
 第2接触子153は、軸方向と直交する方向に沿って延出する長尺部材であり、第1接触子152に軸方向に沿って移動可能に支持されている。第2接触子153は、高さ寸法hおよび外径寸法rを測定する際に、加締部3hの軸方向におけるインナー側端面に当接する。
 このように構成される測定器150を用いて加締部3hの高さ寸法hを測定する際には、第2接触子153を第1接触子152に対して軸方向に沿って移動させて、第1接触子152の先端を内輪4のインナー側端面4bに当接させるとともに、第2接触子153を加締部3hのインナー側端面に接触させる。その後、第1接触子152の先端から第2接触子153までの軸方向の長さを測定することで、加締部3hの高さ寸法hとなるインナー側端面4bから加締部3hのインナー側端面までの軸方向の寸法を測定する
 また、測定器150を用いて加締部3hの外径寸法rを測定する際には、第1接触子152を本体部151に対して軸方向と直交する方向に移動させて、第1接触子152を加締部3hの外径縁部に接触させる。その後、軸方向と直交する方向における第1接触子152と第1接触子152との間の長さを測定することで、加締部3hの外径寸法rを測定する。
 なお、本実施形態においては、本体部151、第1接触子152、および第2接触子153を有する測定器150を用いて加締部3hの加締加工度を測定しているが、これに限るものではなく、他の構成の接触型の測定器によって加締部3hの加締加工度を測定することもできる。このように、接触型の測定器を用いて加締加工度の測定を行った場合、測定器を簡単な構成とすることが容易である。
 また、加締部3hの加締加工度の測定は、加締部3hに接触することなく測定を行う非接触型の測定器を用いて行うことが可能である。非接触型の測定器としては、例えば図24に示すように、加締部3hにレーザーを照射することにより加締部3hの高さ寸法h等を測定するレーザー変位計を用いることができる。また、加締部3hを撮像し、撮像した加締部3hの画像を処理することによって、加締部3hの高さ寸法hおよび外径寸法r等を測定することも可能である。このように、非接触型の測定器を用いて加締加工度の測定を行った場合、加締部3hに接触することなく測定を行うことができるため、車輪用軸受装置1の組立を行う製造ラインにおいて加締加工度の測定を行うことが容易となる。
(加締後回転トルク測定工程)
 第1実施形態と同様の工程を実施する。
 なお、本実施形態においては、加締加工度測定工程(S67)の後に加締後回転トルク測定工程(S68)を実施しているが、加締後回転トルク測定工程(S68)の後に加締加工度測定工程(S67)を実施することも可能である。
(第2の軸受予圧値算出工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(第1の判定工程)
 第1の判定工程(S70)は、第1実施形態の判定工程(S09)と同様であるため、説明を省略する。
(第2の判定工程)
 第1の判定工程(S70)の後に、第2の判定工程(S71)を実施する。第2の判定工程(S71)においては、加締部3hの加締加工度と差分トルクΔTの値とを照合し、加締部3hの加締加工度に対する差分トルクΔTの値がトルク基準値の範囲内に入っているか否かによって、加締異常の有無を判定する。
 具体的には、図25Aに示すように、加締部3hの高さ寸法hと差分トルクΔTとの関係を表す第1関係線X1を予め実験等により求めるとともに、高さ寸法hに対する差分トルクΔTの値の上限値X1Uと下限値X1Lとの間の範囲を、加締異常の有無を判定する際の第1トルク基準値の範囲R1として予め設定しておく。また、図25Bに示すように、加締部3hの外径寸法rと差分トルクΔTとの関係を表す第2関係線X2を予め実験等により求めるとともに、外径寸法rに対する差分トルクΔTの値の上限値X2Uと下限値X2Lとの間の範囲を、加締異常の有無を判定する際の第2トルク基準値の範囲R2として予め設定しておく。
 そして、加締部3hの高さ寸法hおよび外径寸法rと差分トルクΔTの値とを照合し、高さ寸法hに対する差分トルクΔTの値が第1トルク基準値の範囲R1内に入っているか否か、および外径寸法rに対する差分トルクΔTの値が第2トルク基準値の範囲R2内に入っているか否かによって、加締異常の有無を判定する。
 この場合、例えば高さ寸法hおよび外径寸法rと差分トルクΔTの値とを照合した際に、高さ寸法hに対する差分トルクΔTの値が第1トルク基準値の範囲R1内に入っており、かつ外径寸法rに対する差分トルクΔTの値が第2トルク基準値の範囲R2内に入っている場合には、加締異常が生じていないと判定する。また、高さ寸法hおよび外径寸法rと差分トルクΔTの値とを照合した際に、少なくとも高さ寸法hに対する差分トルクΔTの値が第1トルク基準値の範囲R1内に入っていないか、または外径寸法rに対する差分トルクΔTの値が第2トルク基準値の範囲R2内に入っていない場合には、加締異常が生じていると判定する。
 このように、加締部3hの高さ寸法hおよび外径寸法rといった加締形状により表される加締加工度に基づいて加締異常の有無の判定を行うことで、例えば加締部3hの形状の偏りからくる内輪4の内側軌道面4aの変形を検出することが可能となる。この場合、加締異常の有無の判定は、加締部3hの加締加工度と差分トルクΔTの値とを照合することにより行うため、予圧の適否の判定により検出可能な程度の大きい内側軌道面4aの変形のみならず、程度の小さい内側軌道面4aの変形をも検出することが可能となっている。
 また、本予圧検査方法においては、測定する加締加工度として高さ寸法hおよび外径寸法rを用いているが、高さ寸法hおよび外径寸法rは測定することが比較的容易であるため、量産ラインにおいて生産効率を低下させることなく、加締加工度の測定を行うことが可能となっている。
 また、第2の判定工程(S71)においては、第1の判定工程(S70)での予圧の適否の判定結果、および第2の判定工程(S71)での加締異常の有無の判定結果に基づいて、加締加工後の車輪用軸受装置1が良品であるか否かの判断を行う。
 例えば、第1の判定工程(S70)において車輪用軸受装置1の予圧が適正であると判定し、かつ第2の判定工程(S71)において加締異常が生じていないと判定した場合に、加締加工後の車輪用軸受装置1が良品であると判断する。また、少なくとも第1の判定工程(S70)において車輪用軸受装置1の予圧が適正でないと判定されるか、または第2の判定工程(S71)において加締異常が生じていると判定された場合には、加締加工後の車輪用軸受装置1が良品ではないと判断する。
 このように、第1の判定工程(S70)に加えて第2の判定工程(S71)を実施することで、第1の判定工程(S70)における予圧の適否の判定を、第2の判定工程(S71)における加締異常の有無の判定によって補完することができる。これにより、車輪用軸受装置1に付与されている予圧の適否を判定した際の信頼度をさらに高めて、より高品質な車輪用軸受装置1を製造することが可能となっている。
 また、予圧検査方法において高さ寸法hおよび外径寸法r等の加締加工度の測定を行うことで、加締部3hの形状を把握することができ、把握した加締部3hの形状に基づいて加締条件を設定し、加締部3hを適切な形状に調整することができる。これにより、複数の製造拠点および製造ロット毎等において、加締部3hの形状を平準化することができ、均一な品質の車輪用軸受装置1を製造することが可能となる。
 なお、本実施形態においては、加締加工度の測定として、高さ寸法hおよび外径寸法rの両方の測定を行っているが、高さ寸法hおよび外径寸法rの一方のみを加締加工度として測定することも可能である。このように、高さ寸法hおよび外径寸法rの一方を測定した場合においても、車輪用軸受装置1に付与されている予圧の適否を判定した際の信頼度をさらに高めて、より高品質な車輪用軸受装置1を製造することが可能である。
 但し、高さ寸法hおよび外径寸法rの一方を測定した場合よりも、高さ寸法hおよび外径寸法rの両方を測定した場合の方が、加締異常の有無の判定を精度良く行うことができ、予圧の適否を判定した際の信頼度をより高めることが可能である。
 また、本実施形態においては、第1の判定工程(S70)において予圧の適否の判定を行った後に、第2の判定工程(S71)において加締異常の有無の判定を行っているが、第1の判定工程(S70)において加締異常の有無の判定を行った後に、第2の判定工程(S71)において予圧の適否の判定を行うことも可能である。
(インナー側シール部材装着工程)
 第2の判定工程(S71)の後にインナー側シール部材装着工程(S72)を実施する。インナー側シール部材装着工程(S72)を実施することで、車輪用軸受装置1の組立工程が完了する。なお、インナー側シール部材装着工程(S72)は、加締後回転トルク測定工程(S68)の後であれば、第2の判定工程(S71)の前、第1の判定工程(S70)の前、または第2の軸受予圧値算出工程(S69)の前に実施することも可能である。図9に示すように、インナー側シール部材装着工程(S72)においては、外輪2のインナー側開口部2aにインナー側シール部材9を嵌合することにより、外輪2のインナー側端部と内輪4のインナー側端部との間にインナー側シール部材9を装着する。
 インナー側シール部材9を加締工程(S66)の前に装着すると、加締工程(S66)におけるハブ輪3の加締め度合等によってインナー側シール部材9の外輪2および内輪4との間の摺動抵抗が変化する。また、加締工程(S66)の後であっても加締後回転トルク測定工程(S68)の前にインナー側シール部材9を装着すると、インナー側シール部材9の装着状態によってインナー側シール部材9の外輪2および内輪4との間の摺動抵抗が変化する。
 従って、インナー側シール部材9を加締工程(S66)または加締後回転トルク測定工程(S68)の前に装着すると、加締後回転トルク測定工程(S68)において測定される加締後回転トルクTbのばらつきに影響を及ぼすおそれがある。同様に、圧入後回転トルク測定工程(S65)の前にインナー側シール部材9を装着した場合は、インナー側シール部材9の装着状態によって、圧入後回転トルク測定工程(S65)において測定される圧入後回転トルクTaのばらつきに影響を及ぼすおそれがある。
 しかし、本実施形態においては、加締後回転トルク測定工程(S68)の後にインナー側シール部材装着工程(S72)を実施するようにしているので、圧入後回転トルク測定工程(S65)および加締後回転トルク測定工程(S68)において車輪用軸受装置1の圧入後回転トルクTaおよび加締後回転トルクTbを測定する際に、インナー側シール部材9の影響による回転トルクのばらつきが生じることがなく、車輪用軸受装置1の回転トルクを高精度に測定することが可能となっている。
 本実施形態においては、加締後回転トルク測定工程(S68)の後にインナー側シール部材装着工程(S72)を実施しているが、加締後回転トルク測定工程(S68)の後にキャップ部材装着工程を実施する構成とすることもできる。この場合、キャップ部材装着工程においては、インナー側シール部材9に代えてキャップ部材が外輪2のインナー側開口部2aに嵌合され、キャップ部材によりインナー側開口部2aが閉塞される。
〈第6実施形態〉
 図26に示すように、本実施形態における予圧検査方法は、仮圧入工程(S81)、圧入工程(S82)、第1の内輪高さ測定工程(S83)、第1の軸受予圧値算出工程(S84)、なじみ工程(S85)、圧入後回転トルク測定工程(S86)、加締工程(S87)、加締後温度測定工程(S88)、第2の内輪高さ測定工程(S89)、押込み変化量推定工程(S90)、内輪押込み量推定工程(S91)、最終隙間算出工程(S92)、第2の軸受予圧値算出工程(S93)、加締後回転トルク測定工程(S94)、トルク増加量推定工程(S95)、加締後回転トルク補正工程(S96)、予圧変化量推定工程(S97)、第3の軸受予圧値算出工程(S98)、判定工程(S99)、およびインナー側シール部材装着工程(S100)を備えている。予圧検査方法の各工程について、以下に説明する。
(仮圧入工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(圧入工程)
 仮圧入工程(S81)の後に圧入工程(S82)を実施する。図4に示すように、圧入工程(S82)においては、内輪4のアウター側端面4cがハブ輪3の肩部3eに当接する位置まで、内輪4を小径段部3aに圧入する。
(第1の内輪高さ測定工程)
 圧入工程(S82)の後に第1の内輪高さ測定工程(S83)を実施する。図4に示すように、内輪4の小径段部3aへの圧入が完了した後に、内輪4の圧入後におけるハブ輪3のアウター側端面3gと内輪4のインナー側端面4bとの間の軸方向寸法である第1の内輪高さH1を測定する。また、軸方向寸法H0から第1の内輪高さH1を引いた値を、仮圧入工程(S81)において測定した軌道面と転動体間の軸方向正隙間G0から引くことで、内輪4の圧入後における軌道面と転動体間の軸方向負隙間G1を求める(G1=G0-(H0-H1))。
(第1の軸受予圧値算出工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(なじみ工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(圧入後回転トルク測定工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(加締工程)
 第1実施形態の工程と同様であるため、説明を省略する。
(加締後温度測定工程)
 加締工程(S87)の後に加締後温度測定工程(S88)を実施する。加締後温度測定工程(S88)においては、図27に示すように、ハブ輪3における小径段部3aのインナー側端部を内輪4のインナー側端面4bに加締めた加締部3h・4dの温度t1を測定する。温度t1の測定は、温度測定器141によって行う。
 加締後温度測定工程(S88)における加締部3h・4dの温度測定は、例えば、揺動加締め加工を行うための加締装置に対して、組み立て途中の車輪用軸受装置1を移載する移載装置の一部に加締部3h・4dの温度測定を行う温度測定器14を設けておくことが好ましい。このような構成とすれば、組み立て途中の車輪用軸受装置1を加締加工後に加締装置から次工程に向けて移載する工程の途中で効率よく温度を測定することができる。温度測定器141としては、接触式および非接触式のものを用いることができる。なお、加締後温度測定工程(S88)において温度測定を行う部位は、加締加工による温度上昇の影響を適切に捉えることができる部位であればよく、内輪4のインナー側端面4bとしてもよい。
 そして、加締後温度測定工程(S88)の後に、第2の内輪高さ測定工程(S89)および加締後回転トルク測定工程(S94)を実施する。なお、第2の内輪高さ測定工程(S89)と加締後回転トルク測定工程(S94)の実施タイミングの先後は問わない。
 ここではまず、第2の内輪高さ測定工程(S89)に続く一連の工程(S89)~(S93)を説明する。各工程(S89)~(S93)は、所謂すきま法による予圧検査方法に係る工程である。
(第2の内輪高さ測定工程)
 加締後温度測定工程(S88)の後に第2の内輪高さ測定工程(S89)を実施する。第2の内輪高さ測定工程(S89)においては、図27に示すように、加締加工後におけるハブ輪3のアウター側端面3gと内輪4のインナー側端面4bとの間の軸方向寸法である第2の内輪高さH2を測定する。そして、第1の内輪高さH1から第2の内輪高さH2を引いた値である内輪4の押込み量Dを算出する。(D=H1-H2)。内輪4の押込み量Dは、内輪4の圧入完了後から小径段部3aの加締加工完了後までの内輪4の軸方向の移動量を示すものである。
(押込み変化量推定工程)
 第2の内輪高さ測定工程(S89)の後に押込み変化量推定工程(S90)を実施する。押込み変化量推定工程(S90)においては、加締部3h・4dの温度t1に基づいて、加締加工時の温度上昇に起因する内輪4の押込み量Dの変化量である押込み量減少量ΔDを推定する。加締加工後の車輪用軸受装置1においては、温度上昇によりハブ輪3および内輪4が膨張するため、内輪4の押込み量Dは、温度上昇がない場合に比べて小さくなっている。この小さくなっている分の押込み量Dが、押込み量減少量ΔDである。押込み量減少量ΔDは、例えば加締部3h・4dの温度t1と、押込み量減少量ΔDとの関係を予め実験等により求めておき、この関係に測定した温度t1を当て嵌めることにより推定することができる。なお、この加締部3h・4dの温度t1と、押込み量減少量ΔDとの関係は、車輪用軸受装置1の仕様毎に求めることができる。
(内輪押込み量推定工程)
 押込み変化量推定工程(S90)の後に内輪押込み量推定工程(S91)を実施する。内輪押込み量推定工程(S91)においては、押込み量減少量ΔDに基づいて内輪4の押込み量Dを補正し、補正後の押込み量Dである補正後押込み量Dhを推定する。(Dh=D+ΔD)
(最終隙間算出工程)
 内輪押込み量推定工程(S91)の後に最終隙間算出工程(S92)を実施する。最終隙間算出工程(S92)においては、加締加工前の軸方向負隙間G1から内輪4の補正後の押込み量Dhより算出される隙間減少量ΔGを減じて最終隙間G2を算出する。(G2=G1-ΔG)隙間減少量ΔGは、押込み量Dと隙間減少量ΔGとの関係を予め実験等により求めておき、この関係に測定した補正後の押込み量Dhを当て嵌めることにより推定することができる。なお、この押込み量Dと隙間減少量ΔGとの関係は、車輪用軸受装置1の仕様毎に求めることができる。
(第2の軸受予圧値算出工程)
 最終隙間算出工程(S92)の後に第2の軸受予圧値算出工程(S93)を実施する。第2の軸受予圧値算出工程(S93)においては、最終隙間G2に基づいて、加締加工後の軸受に付与されている軸受予圧値P2をすきま法により算出する。軸受予圧値P2は、車輪用軸受装置1における最終隙間と軸受予圧値との関係を、予め実験等により求めておき、この関係に最終隙間G2を当て嵌めることにより算出する。なお、この最終隙間と軸受予圧値との関係は、車輪用軸受装置1の仕様毎に求めることができる。
 次に、加締後回転トルク測定工程(S94)に続く一連の工程(S94)~(S98)を説明する。各工程(S94)~(S98)は、所謂トルク法による予圧検査方法に係る工程である。なお、前述したすきま法による予圧検査方法に係る一連の工程(S89)~(S93)に含まれる各工程と、以下で説明するトルク法による予圧検査方法に係る一連の工程(S94)~(S98)に含まれる各工程の間では、実施タイミングの先後は関係なく、各一連の工程は平行して行うことができる。
(加締後回転トルク測定工程)
 加締後温度測定工程(S88)の後には、加締後回転トルク測定工程(S94)を実施する。加締後回転トルク測定工程(S94)においては、圧入後回転トルク測定工程(S86)と同様に、内方部材3、4と外方部材2との間に動摩擦力が発生している状態で回転トルクを測定している。加締後回転トルク測定工程(S94)においては、小径段部3aが内輪4に加締められたハブ輪と外輪とを相対的に回転させたときの第2の回転トルクTbを、トルク測定器13により測定する。但し、圧入後回転トルク測定工程(S86)の場合と同様に、ハブ輪3を回転させた方が、ハブ輪3の回転速度が変化したときに測定される回転トルク値のばらつきが小さくなるため好ましい。
 加締後温度測定工程(S88)は、加締後回転トルク測定工程(S94)の直前に実施することが好ましく、加締後温度測定工程(S88)から加締後回転トルク測定工程(S94)を行うまでの時間をできる限り短くすることが好ましい。加締後温度測定工程(S88)から加締後回転トルク測定工程(S94)を行うまでの時間を短くすることで、温度降下を少なくすることができ、これにより、後述する第3の軸受予圧値P3の算出精度を高めることができる。
(トルク増加量推定工程)
 加締後回転トルク測定工程(S94)の後にトルク増加量推定工程(S95)を実施する。トルク増加量推定工程(S95)においては、加締後温度測定工程(S88)で測定した加締部3h・4dの温度に基づいて、加締加工時の温度上昇に起因する第2の回転トルクTbの増加量ΔTbを推定する。
 この場合、増加量ΔTbは、図28に示すように、加締部3h・4dの温度と第2の回転トルクTbの増加量との関係を予め実験等により求めておき、この関係に加締部3h・4dの温度t1を当て嵌めることにより推定する。なお、この加締部3h・4dの温度と第2の回転トルクTbの増加量との関係は、車輪用軸受装置1の仕様毎に求めることができる。
(加締後回転トルク補正工程)
 トルク増加量推定工程(S95)の後に加締後回転トルク補正工程(S96)を実施する。加締後回転トルク補正工程(S96)においては、トルク増加量推定工程(S95)で推定した第2の回転トルクTbの増加量ΔTbに基づいて、第2の回転トルクTbを補正する。具体的には、第2の回転トルクTbの値から増加量ΔTbを減じて、補正後の第2の回転トルクTbである第3の回転トルクTc(Tc=Tb-ΔTb)を算出する。
(予圧変化量推定工程)
 加締後回転トルク補正工程(S96)の後に予圧変化量推定工程(S97)を実施する。予圧変化量推定工程(S97)においては、図15に示すような、軸受予圧と回転トルクとの関係(線R)を予め実験等により求めておき、この関係に第1の回転トルクTaと第3の回転トルクTcを当て嵌めて差分トルクΔTを算出する。そして、予圧変化量推定工程(S97)においては、算出した差分トルクΔTに基づいて、図15に示す関係より加締加工に起因する予圧変化量ΔPを推定する。
 この場合、予圧変化量ΔPは、図15に示すように、車輪用軸受装置1の軸受予圧と軸受
の回転トルクとの関係を予め実験等により求めておき、この関係に差分トルクΔTを当て嵌めることにより算出する。なお、この軸受予圧と軸受の回転トルクとの関係は、車輪用軸受装置1の仕様毎に求めることができる。
(第3の軸受予圧値算出工程)
 予圧変化量推定工程(S97)の後には、第3の軸受予圧値算出工程(S98)を実施する。第3の軸受予圧値算出工程(S98)においては、第1の軸受予圧値P1に予圧変化量ΔPを加算して、第3の軸受予圧値P3を算出する。
(判定工程)
 第2の軸受予圧値算出工程(S93)と、第3の軸受予圧値算出工程(S98)が完了した後に判定工程(S99)を実施する。判定工程(S99)においては、1)第2の軸受予圧値P2が所定の閾値内であるか否か、2)第3の軸受予圧値P3が所定の閾値内であるか否か、3)第2の軸受予圧値P2と第3の軸受予圧値P3の相対差が所定の閾値内であるか否か、の3つの条件に基づいて、車輪用軸受装置1に付与された予圧の適否を判定する。
 本実施形態に係る予圧検査方法においては、第2の軸受予圧値P2を算出する際に、加締加工時の温度上昇を考慮して最終隙間G3を補正している。このため、すきま法に基づいて精度よく第2の軸受予圧値P2を算出することが可能になっており、判定工程(S99)においては、第2の軸受予圧値P2に基づく判定精度が高められている。
 また、本実施形態に係る予圧検査方法においては、圧入後回転トルクと加締後回転トルクに基づいて第3の軸受予圧値P3を算出する際に、加締加工時の温度上昇を考慮して予圧変化量ΔPを補正している。このため、トルク法に基づいて精度よく第3の軸受予圧値P3を算出することが可能になっており、判定工程(S99)においては、第3の軸受予圧値P3に基づく判定精度が高められている。
 さらに、本実施形態に係る予圧検査方法においては、所謂すきま法により算出された第2の軸受予圧値P2と、所謂トルク法により算出された第3の軸受予圧値P3とを照合して、両者が予め設定した相対差の範囲内に収まることを確認することで、車輪用軸受装置1の軸受に付与されている予圧値をさらに高精度に検証することが可能となっている。その結果、判定工程(S99)において、車輪用軸受装置1の予圧範囲が適正か否かを従来よりも高精度に検証することができるため、軸受寿命が確保された車輪用軸受装置1を安定的に供給することができる。
(インナー側シール部材装着工程)
 判定工程(S99)の後にインナー側シール部材装着工程(S100)を実施することで、車輪用軸受装置1の組立工程が完了する。すなわち、インナー側シール部材装着工程(S100)は、車輪用軸受装置1の組立方法の一部である。図9に示すように、インナー側シール部材装着工程(S100)においては、外輪2のインナー側開口部2aにインナー側シール部材9を嵌合することにより、外輪2のインナー側端部と内輪4のインナー側端部との間にインナー側シール部材9を装着する。
 インナー側シール部材9を加締工程(S87)の前に装着すると、加締工程(S87)におけるハブ輪3の加締め度合等によってインナー側シール部材9の外輪2および内輪4との間の摺動抵抗が変化する。また、加締工程(S87)の後であっても加締後回転トルク測定工程(S94)の前にインナー側シール部材9を装着すると、インナー側シール部材9の装着状態によってインナー側シール部材9の外輪2および内輪4との間の摺動抵抗が変化する。
 従って、インナー側シール部材9を加締工程(S87)または加締後回転トルク測定工程(S94)の前に装着すると、加締後回転トルク測定工程(S94)において測定される第2の回転トルクTbのばらつきに影響を及ぼすおそれがある。同様に、圧入後回転トルク測定工程(S86)の前にインナー側シール部材9を装着した場合は、インナー側シール部材9の装着状態によって、圧入後回転トルク測定工程(S86)において測定される第1の回転トルクTaのばらつきに影響を及ぼすおそれがある。
 しかし、本実施形態においては、加締後回転トルク測定工程(S94)の後にインナー側シール部材装着工程(S100)を実施するようにしているので、圧入後回転トルク測定工程(S86)および加締後回転トルク測定工程(S94)おいて車輪用軸受装置1の第1の回転トルクTaおよび第2の回転トルクTbを測定する際に、インナー側シール部材9の影響による回転トルクのばらつきが生じることがなく、車輪用軸受装置1の回転トルクを高精度に測定することが可能となっている。
(加締前温度測定工程)
 車輪用軸受装置1の予圧検査方法においては、図29に示すように、加締工程(S87)の前に加締前温度測定工程(S101)を実施すると好ましい。加締前温度測定工程(S101)においては、図30に示すように、ハブ輪3における小径段部3aのインナー側端部を内輪4のインナー側端面4bに加締める前の加締部3h・4dに対応する部位の温度t0を測定する。
 図2に示した車輪用軸受装置1の予圧検査方法においては、加締めた後の加締部3h・4dの温度t1のみを測定している。この場合、車輪用軸受装置1の加締める前の加締部3h・4dに対応する部位の温度は、車輪用軸受装置1の周囲温度(常温)に等しいものとして、加締め後における加締部3h・4dの温度上昇を算出している。しかしながら、車輪用軸受装置1の周囲温度は、検査装置の設置環境(国・地域・季節・時刻等)の差異により変化する。
 一方、図29に示した車輪用軸受装置1の予圧検査方法のように、加締加工前の加締部3h・4dに対応する部位の温度を正確に把握する構成として、加締加工後における加締部3h・4dの温度上昇値を算出すれば、車輪用軸受装置1の予圧検査の精度をさらに高めることが可能になる。
 また、図31に示すように、加締前温度測定工程(S101)は、第1の内輪高さ測定工程(S83)と同時に行うとより好ましい。このような構成は、第1の内輪高さ測定工程(S83)において第1の内輪高さH1を測定するための測定装置の一部に温度測定器141を設ける構成とすることによって容易に実現することができる。このような構成とすれば、組み立て途中の車輪用軸受装置1について、第1の内輪高さH1を測定すると同時に、加締部3h・4dに対応する部位の温度を測定することが可能になり、検査精度の向上を図りながら、一連の予圧検査の工程を短縮させることができる。なお、温度測定器としては、接触式および非接触式のものを用いることができる。
 さらに、図31に示すように、加締前温度測定工程(S101)を、なじみ工程(S85)および圧入後回転トルク測定工程(S86)よりも前に行うことで、なじみ工程(S85)や圧入後回転トルク測定工程(S86)の実施により生じる車輪用軸受装置1の温度変化の影響も排除することができる。これにより、加締前温度測定工程(S101)を、なじみ工程(S85)および圧入後回転トルク測定工程(S86)の後に行った場合(図29参照)に比べて、軸受予圧値の推定精度をよりよくすることができる。
 さらに、図31に示すように、加締後温度測定工程(S88)は、第2の内輪高さ測定工程(S89)と同時に行うとより好ましい。上述したように、第1の内輪高さ測定工程(S83)において第1の内輪高さH1を測定するための測定装置の一部に温度測定器141を設ける構成とすれば、組み立て途中の車輪用軸受装置1について、第2の内輪高さH2を測定すると同時に、加締部3h・4dの温度を測定することも可能になる。これにより、一連の予圧検査の工程をさらに短縮させることができる。
 なお、各実施形態においては従動輪用の車輪用軸受装置1について説明したが、各実施形態の予圧検査方法は、ハブ輪を加締加工する仕様の駆動輪用の車輪用軸受装置にも適用することができる。
 以上、本発明の実施の形態について説明を行ったが、本発明はこうした実施の形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
 本発明は、車輪用軸受装置の予圧検査方法に利用可能である。
  1  車輪用軸受装置
  2  外輪
  2c (インナー側の)外側軌道面
  2d (アウター側の)外側軌道面
  3  ハブ輪
  3a 小径段部
  3c 内側軌道面
  4  内輪
  4a 内側軌道面
  5  インナー側ボール列
  6  アウター側ボール列
  7  ボール
  9  インナー側シール部材
  P1 第1の軸受予圧値
  P2 第2の軸受予圧値
 S02 圧入工程
 S03 第1の軸受予圧値算出工程
 S04 なじみ工程
 S05 圧入後回転トルク測定工程
 S06 加締工程
 S07 加締後回転トルク測定工程
 S08 第2の軸受予圧値算出工程
 S09 判定工程
  Ta 圧入後回転トルク
  Tb 加締後回転トルク
  ΔT 差分トルク
  ΔP 予圧変化量

Claims (25)

  1.  内周に複列の外側軌道面を有する外方部材と、
     外周に軸方向に延びる小径段部を有したハブ輪、および前記ハブ輪の小径段部に圧入された内輪からなり、前記複列の外側軌道面に対向する複列の内側軌道面を有する内方部材と、
     前記外方部材と前記内方部材との両軌道面間に転動自在に収容された複列の転動体と、
     を備えた車輪用軸受装置の予圧検査方法であって、
     前記ハブ輪の前記小径段部に対して、前記内輪を、軸方向において前記内輪が前記ハブ輪に当接する位置まで圧入する圧入工程と、
     前記圧入工程後における前記両軌道面と前記転動体との軸方向負隙間に基づいて前記車輪用軸受装置の第1の軸受予圧値を算出する第1の軸受予圧値算出工程と、
     前記圧入工程後に前記内方部材と前記外方部材とを相対的に回転させたときの前記車輪用軸受装置の圧入後回転トルクを測定する圧入後回転トルク測定工程と、
     前記圧入後回転トルク測定工程後に、前記小径段部のインナー側端部を前記内輪に加締める加締工程と、
     前記加締工程後に前記内方部材と前記外方部材とを相対的に回転させたときの前記車輪用軸受装置の加締後回転トルクを測定する加締後回転トルク測定工程と、
     前記圧入後回転トルクと前記加締後回転トルクとの差分トルクに基づいて求められた前記圧入工程後と前記加締工程後との間の予圧変化量を、前記第1の軸受予圧値に加えることにより第2の軸受予圧値を算出する第2の軸受予圧値算出工程と、
     前記第2の軸受予圧値が基準値の範囲内に入っているか否かによって、前記車輪用軸受装置に付与された予圧の適否を判定する判定工程と、を備えることを特徴とする車輪用軸受装置の予圧検査方法。
  2.  前記基準値は、前記小径段部を前記内輪に加締めることにより生じる回転トルクのばらつきを考慮して設定される請求項1に記載の車輪用軸受装置の予圧検査方法。
  3.  前記第2の軸受予圧値算出工程においては、雰囲気温度に応じた回転トルクと予圧との関係を用いて前記差分トルクから前記予圧変化量を求める請求項1に記載の車輪用軸受装置の予圧検査方法。
  4.  前記第2の軸受予圧値算出工程においては、前記車輪用軸受装置の表面温度に応じた回転トルクと予圧との関係を用いて前記差分トルクから前記予圧変化量を求める請求項1に記載の車輪用軸受装置の予圧検査方法。
  5.  前記車輪用軸受装置の前記表面温度は、接触型温度センサ又は非接触型温度センサにより測定する請求項4に記載の車輪用軸受装置の予圧検査方法。
  6.  前記加締後回転トルク測定工程と前記第2の軸受予圧値算出工程との間に、前記加締後回転トルクを、前記加締加工を行ったことによる前記内輪の温度上昇量に基づいて補正して、補正済加締後回転トルクを算出する回転トルク補正工程を備え、
     前記第2の軸受予圧値算出工程においては、前記圧入後回転トルクと前記補正済加締後回転トルクとの差分に基づいて前記圧入工程後と前記加締工程後との間の予圧変化量を求め、前記予圧変化量を前記第1の軸受予圧値に加えることにより第2の軸受予圧値を算出する請求項1に記載の車輪用軸受装置の予圧検査方法。
  7.  前記加締工程においては、前記加締加工に要する時間である加締加工時間を測定し、
     前記回転トルク補正工程においては、
     前記加締加工を行ったことによる前記内輪の温度上昇に起因した前記加締後回転トルクの増加量を、前記加締加工時間に基づいて求め、
     前記加締後回転トルクの増加量を前記加締後回転トルクから減じることで、前記補正済加締後回転トルクを算出する請求項6に記載の車輪用軸受装置の予圧検査方法。
  8.  前記回転トルク補正工程においては、
     複数の雰囲気温度について求められた前記加締加工時間と前記加締後回転トルクの増加量との関係のうち、加締加工時の雰囲気温度に対応した前記加締め加工時間と前記加締後回転トルクの増加量との関係を用いて、前記加締後回転トルクの増加量を求める請求項7に記載の車輪用軸受装置の予圧検査方法。
  9.  前記加締加工の完了後に、前記加締加工時間が所定の上限値を超えているか否かの判定を行い、前記加締加工時間が所定の上限値を超えていると判定した場合には車輪用軸受装置を排出する加工時間判定工程を、さらに備える請求項7または請求項8に記載の車輪用軸受装置の予圧検査方法。
  10.  前記圧入後回転トルク測定工程および前記加締後回転トルク測定工程においては、前記内方部材と前記外方部材とを60回転/min以下の回転数で相対回転させて前記回転トルクを測定する請求項1、請求項2、請求項6~請求項9の何れか一項に記載の車輪用軸受装置の回転トルク検査方法。
  11.  前記ハブ輪と前記外方部材との間にはグリースが充填されており、
     少なくとも前記圧入工程と前記圧入後回転トルク測定工程との間において実施され、前記内方部材と前記外方部材とを相対的に回転させることにより、前記グリースを前記転動体になじませるなじみ工程を、さらに備える請求項1、請求項2、請求項6~請求項10の何れか一項に記載の車輪用軸受装置の予圧検査方法。
  12.  前記加締加工完了後における前記ハブ輪と前記内輪との加締部の温度を測定する温度測定工程と、
     前記加締後回転トルクを、前記温度測定工程にて測定した前記加締部の温度に基づいて補正して、補正済加締後回転トルクを算出する回転トルク補正工程と、を備え、
     前記第2の軸受予圧値算出工程においては、前記圧入後回転トルクと前記補正済加締後回転トルクとの差分に基づいて前記圧入工程後と前記加締工程後との間の予圧変化量を求め、前記予圧変化量を前記第1の軸受予圧値に加えることにより第2の軸受予圧値を算出する請求項1に記載の車輪用軸受装置の予圧検査方法。
  13.  前記回転トルク補正工程においては、
     前記温度測定工程にて測定した前記加締部の温度から、前記加締部の温度と前記内輪の前記内側軌道面の温度との関係を用いて、前記加締加工完了後における前記内輪の前記内側軌道面の温度を算出し、
     前記加締部の温度を測定したときから前記加締後回転トルクを測定したときまでの経過時間、および前記加締加工完了後における前記内輪の前記内側軌道面の温度から、前記内輪の前記内側軌道面の温度と時間との関係を用いて、前記加締後回転トルクを測定するときの内輪の前記内側軌道面の温度を算出し、
     前記加締後回転トルクを測定するときの前記内輪の前記内側軌道面の温度と、雰囲気温度との差分温度に基づいて、温度変化による回転トルク変化量を求め、
     前記加締後回転トルクから前記回転トルク変化量を減じることで前記補正済加締後回転トルクを算出する請求項12に記載の車輪用軸受装置の予圧検査方法。
  14.  前記温度測定工程においては、
     前記加締部の温度が、前記加締加工を行う加締加工機に取り付けられた温度センサによって測定される請求項12または請求項13に記載の車輪用軸受装置の予圧検査方法。
  15.  前記温度センサは、接触型の温度センサ、または非接触型の温度センサである請求項14に記載の車輪用軸受装置の予圧検査方法。
  16.  前記加締工程において前記小径段部に形成された加締部の加締加工度を測定する加締加工度測定工程を備え、
     前記判定工程は、
     前記第2の軸受予圧値が基準値の範囲内に入っているか否かによって、前記車輪用軸受装置に付与された予圧の適否を判定する第1の判定工程と、
     前記加締加工度と前記差分トルクの値とを照合し、前記加締加工度に対する前記差分トルクの値がトルク基準値の範囲内に入っているか否かによって、加締異常の有無を判定する第2の判定工程と、を備える請求項1に記載の車輪用軸受装置の予圧検査方法。
  17.  前記加締加工度は、前記加締部の軸方向における高さ寸法、および前記加締部の軸方向と直交する方向における外径寸法の少なくとも一つを含む請求項16に記載の車輪用軸受装置の予圧検査方法。
  18.  前記加締加工度測定工程においては、
     前記加締加工度が、前記加締部に接触子を接触させて測定を行う接触型の測定器によって測定される請求項16または請求項17に記載の車輪用軸受装置の予圧検査方法。
  19.  前記加締加工度測定工程においては、
     前記加締加工度が、前記加締部に接触することなく測定を行う非接触型の測定器によって測定される請求項16または請求項17に記載の車輪用軸受装置の予圧検査方法。
  20.  内周に複列の外側軌道面を有する外方部材と、
     外周に軸方向に延びる小径段部を有したハブ輪、および前記ハブ輪の小径段部に圧入された内輪からなり、前記複列の外側軌道面に対向する複列の内側軌道面を有する内方部材と、
     前記外方部材と前記内方部材との両軌道面間に転動自在に収容された複列の転動体と、
     を備えた車輪用軸受装置の予圧検査方法であって、
     前記ハブ輪の前記小径段部に対して、前記内輪を、軸方向において前記内輪が前記ハブ輪に当接する位置まで圧入する圧入工程と、
     前記圧入工程後における前記ハブ輪のアウター側端部から前記内輪のインナー側端部までの第1の内輪高さを測定する第1の内輪高さ測定工程と、
     前記圧入工程後における前記両軌道面と前記転動体との軸方向負隙間を測定し、前記軸方向負隙間に基づいて前記車輪用軸受装置の軸受予圧値を算出する第1の軸受予圧値算出工程と、
     前記圧入工程後に前記内方部材と前記外方部材とを相対的に回転させたときの前記車輪用軸受装置の圧入後回転トルクを測定する圧入後回転トルク測定工程と、
     前記第1の内輪高さ測定工程と前記圧入後回転トルク測定工程の後で、前記小径段部のインナー側端部を前記内輪に加締める加締工程と、
     前記加締工程後における前記小径段部と前記内輪との加締部の温度を測定する加締後温度測定工程と、
     前記加締工程後における前記ハブ輪のアウター側端部から前記内輪のインナー側端部までの第2の内輪高さを測定する第2の内輪高さ測定工程と、
     前記第1の内輪高さと前記第2の内輪高さの差分より前記内輪の押込み量を算出するとともに、前記加締部の温度に基づいて前記内輪の押込み量を補正し、前記ハブ輪に対する補正後の前記内輪の押込み量を推定する内輪押込み量推定工程と、
     推定した補正後の前記内輪の押込み量に基づいて前記両軌道面と前記転動体の隙間減少量を算出するとともに、前記隙間減少量と前記軸方向負隙間に基づいて前記内輪と前記ハブ輪の最終隙間を算出する最終隙間算出工程と、
     算出した前記最終隙間に基づいて前記車輪用軸受装置の第2の軸受予圧値を算出する第2の軸受予圧値算出工程と、
     前記加締工程後に前記内方部材と前記外方部材とを相対的に回転させたときの前記車輪用軸受装置の加締後回転トルクを測定する加締後回転トルク測定工程と、
     前記加締工程後の前記加締部の温度に基づいて前記加締後回転トルクにおける温度変化に起因するトルク増加量を推定するとともに、前記加締後回転トルクから前記トルク増加量を減じて前記加締後回転トルクを補正する加締後回転トルク補正工程と、
     前記圧入後回転トルクと補正後の前記加締後回転トルクとの差分トルクを算出するとともに、前記差分トルクに基づいて加締加工に起因する予圧変化量を推定する予圧変化量推定工程と、
     前記第1の軸受予圧値に前記予圧変化量を加えて第3の軸受予圧値を算出する第3の軸受予圧値算出工程と、
     前記第2の軸受予圧値と前記第3の軸受予圧値がそれぞれ所定の閾値内であるか否かと、前記第2の軸受予圧値と前記第3の軸受予圧値の相対差が所定の閾値内であるか否かと、に基づいて前記車輪用軸受装置に付与された予圧の適否を判定する判定工程と、を備えることを特徴とする車輪用軸受装置の予圧検査方法。
  21.  前記加締部の温度を、
     該加締部を構成する前記内輪の温度とした請求項20に記載の車輪用軸受装置の予圧検査方法。
  22.  前記加締工程の前に前記加締部の温度を測定する加締前温度測定工程をさらに備え、
     前記加締工程前の前記加締部に対応する部位の温度と前記加締工程後の前記加締部の温度との温度変化量を算出し、
     前記内輪押込み量推定工程および前記トルク増加量推定工程における前記加締部の温度として前記温度変化量を用いる請求項20または請求項21に記載の車輪用軸受装置の予圧検査方法。
  23.  前記加締前温度測定工程を、前記第1の内輪高さ測定工程において同時に行う請求項22に記載の車輪用軸受装置の予圧検査方法。
  24.  前記加締後温度測定工程を、前記第2の内輪高さ測定工程において同時に行う請求項20~請求項23の何れか一項に記載の車輪用軸受装置の予圧検査方法。
  25.  前記加締後温度測定工程を、前記加締後回転トルク測定工程の直前に行う請求項20~請求項24の何れか一項に記載の車輪用軸受装置の予圧検査方法。
PCT/JP2021/030253 2020-08-19 2021-08-18 車輪用軸受装置の予圧検査方法 WO2022039203A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180057091.0A CN116057288A (zh) 2020-08-19 2021-08-18 车轮用轴承装置的预压检查方法
EP21858347.4A EP4202243A4 (en) 2020-08-19 2021-08-18 PRELOAD INSPECTION METHOD FOR WHEEL BEARING DEVICE
US18/012,758 US20230251152A1 (en) 2020-08-19 2021-08-18 Preload inspection method for bearing device for vehicle wheel

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2020-138868 2020-08-19
JP2020-138870 2020-08-19
JP2020-138869 2020-08-19
JP2020138866A JP7406473B2 (ja) 2020-08-19 2020-08-19 車輪用軸受装置の予圧検査方法
JP2020138869A JP7483555B2 (ja) 2020-08-19 車輪用軸受装置の予圧検査方法
JP2020-138867 2020-08-19
JP2020138868A JP7483554B2 (ja) 2020-08-19 車輪用軸受装置の予圧検査方法
JP2020138867A JP7483553B2 (ja) 2020-08-19 車輪用軸受装置の予圧検査方法
JP2020-138866 2020-08-19
JP2020138870A JP7483556B2 (ja) 2020-08-19 車輪用軸受装置の予圧検査方法
JP2020-144535 2020-08-28
JP2020144535A JP7421451B2 (ja) 2020-08-28 2020-08-28 車輪用軸受装置の予圧検査方法

Publications (1)

Publication Number Publication Date
WO2022039203A1 true WO2022039203A1 (ja) 2022-02-24

Family

ID=80323462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030253 WO2022039203A1 (ja) 2020-08-19 2021-08-18 車輪用軸受装置の予圧検査方法

Country Status (4)

Country Link
US (1) US20230251152A1 (ja)
EP (1) EP4202243A4 (ja)
CN (1) CN116057288A (ja)
WO (1) WO2022039203A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185717A (ja) 1996-11-05 1998-07-14 Koyo Seiko Co Ltd 複列転がり軸受の予圧測定方法
JP2000009562A (ja) * 1998-06-29 2000-01-14 Koyo Seiko Co Ltd 複列転がり軸受の予圧測定方法
JP2013198949A (ja) * 2012-03-23 2013-10-03 Seiko Instruments Inc 転がり軸受装置の製造装置および転がり軸受装置の製造方法
JP2016057311A (ja) * 2015-11-19 2016-04-21 株式会社ジェイテクト 車輪用ハブユニットの検査方法
JP2020098163A (ja) * 2018-12-19 2020-06-25 日本精工株式会社 軸受装置の起動トルク測定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4353870B2 (ja) * 2004-08-12 2009-10-28 Ntn株式会社 車輪用軸受装置のすきま測定方法
EP1970586B1 (en) * 2005-12-22 2011-11-30 NTN Corporation Joint assembly and vehicle-use bearing unit, and axle module provided with them
JP6806827B2 (ja) * 2019-03-04 2021-01-06 Ntn株式会社 車輪用軸受装置の予圧検査方法及び組立方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185717A (ja) 1996-11-05 1998-07-14 Koyo Seiko Co Ltd 複列転がり軸受の予圧測定方法
JP2000009562A (ja) * 1998-06-29 2000-01-14 Koyo Seiko Co Ltd 複列転がり軸受の予圧測定方法
JP2013198949A (ja) * 2012-03-23 2013-10-03 Seiko Instruments Inc 転がり軸受装置の製造装置および転がり軸受装置の製造方法
JP2016057311A (ja) * 2015-11-19 2016-04-21 株式会社ジェイテクト 車輪用ハブユニットの検査方法
JP2020098163A (ja) * 2018-12-19 2020-06-25 日本精工株式会社 軸受装置の起動トルク測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4202243A4

Also Published As

Publication number Publication date
EP4202243A1 (en) 2023-06-28
US20230251152A1 (en) 2023-08-10
CN116057288A (zh) 2023-05-02
EP4202243A4 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
EP2008057B1 (en) Method of measuring a clearance of a hub bearing for vehicles
US5597965A (en) Method and apparatus for measuring the preload gap of a double row rolling bearing
WO2020179670A1 (ja) 車輪用軸受装置の予圧検査方法及び組立方法
WO2020203982A1 (ja) 複列転がり軸受のアキシアル隙間測定方法及び複列転がり軸受の製造方法
JPH07217648A (ja) 複列転がり軸受の予圧隙間を測定する方法と装置
JP7413311B2 (ja) 車輪用軸受装置の軸方向隙間測定方法
WO2022039203A1 (ja) 車輪用軸受装置の予圧検査方法
JP2022034922A (ja) 車輪用軸受装置の予圧検査方法
JP4067751B2 (ja) 車輪軸受装置の加締方法
JP2022039482A (ja) 車輪用軸受装置の予圧検査方法
JP2022034923A (ja) 車輪用軸受装置の予圧検査方法
JP7483553B2 (ja) 車輪用軸受装置の予圧検査方法
JP2022034926A (ja) 車輪用軸受装置の予圧検査方法
JP7483556B2 (ja) 車輪用軸受装置の予圧検査方法
JP4506028B2 (ja) 複列転がり軸受の予圧測定方法および予圧測定装置
JP2022034924A (ja) 車輪用軸受装置の予圧検査方法
CN114364893A (zh) 车轮用轴承装置的预压检查方法
JP2005325902A (ja) 車輪軸受装置の製造方法
JP2022034925A (ja) 車輪用軸受装置の予圧検査方法
WO2022039204A1 (ja) 車輪用軸受装置の回転トルク検査方法、および車輪用軸受装置の回転トルク検査装置
JP2021177133A (ja) 軸受装置の予圧計測方法及び軸受装置の製造方法
JP7483554B2 (ja) 車輪用軸受装置の予圧検査方法
JP7483555B2 (ja) 車輪用軸受装置の予圧検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021858347

Country of ref document: EP

Effective date: 20230320