WO2022037719A1 - 将冷凝器布置于压机舱内的冰箱 - Google Patents

将冷凝器布置于压机舱内的冰箱 Download PDF

Info

Publication number
WO2022037719A1
WO2022037719A1 PCT/CN2021/123581 CN2021123581W WO2022037719A1 WO 2022037719 A1 WO2022037719 A1 WO 2022037719A1 CN 2021123581 W CN2021123581 W CN 2021123581W WO 2022037719 A1 WO2022037719 A1 WO 2022037719A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
compressor
refrigerator
air
airflow
Prior art date
Application number
PCT/CN2021/123581
Other languages
English (en)
French (fr)
Inventor
刘山山
陈建全
野田俊典
刘会
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2022037719A1 publication Critical patent/WO2022037719A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/006General constructional features for mounting refrigerating machinery components

Definitions

  • the invention relates to the field of household appliances, in particular to a refrigerator with a condenser arranged in a compressor cabin.
  • the heat dissipation structure of the compressor compartment in the refrigerator is mostly provided with air vents on both sides of the box or the rear cover, and the wind enters and exits from the sides or the back to dissipate heat.
  • built-in refrigerators have become the main force leading the trend of home fashion.
  • the two sides of the compressor compartment or the rear cover of the refrigerator are easily blocked by the household during heat dissipation, which leads to the increase of energy consumption of the refrigerator and the deterioration of its performance, which does not meet the policy of energy saving and emission reduction and affects users. user experience.
  • An object of the present invention is to provide a refrigerator which can solve any of the above problems by arranging the condenser in the compressor compartment.
  • a further object of the present invention is to optimize the heat dissipation performance of the refrigerator.
  • Another further object of the present invention is to increase the contact area between the cooling airflow and the condenser, so that the cooling is more sufficient.
  • the present invention provides a refrigerator with a condenser arranged in a compressor compartment, including: a refrigeration system including a compressor and a condenser connected with the compressor; a box body having a compressor compartment behind the bottom of the box, the compressor and the condensers are arranged in the compressor cabin at intervals along the lateral direction of the casing, and the condensers are installed so that their radiating fins extend along the depth direction of the casing, and the compressor cabin is opened in front of the condenser with an air flow that communicates with the outside of the casing.
  • a suction port so that the air entered from the airflow suction port flows along the channel between the cooling fins.
  • the refrigerator further includes an air guide hood disposed on the outer periphery of the condenser and configured to guide the air entering from the air intake port to pass through the condenser and enter the air flow passage, so as to prevent the air flow from escaping from the periphery of the condenser.
  • the condenser as a whole is in the shape of a rectangular parallelepiped
  • the air guide cover includes: a top cover plate, which is arranged on the top of the condenser and extends from the front of the condenser to the upper part of the airflow channel.
  • the air guide hood further includes: a first side baffle plate, which is arranged on the side of the condenser facing the compressor, which includes: a front end plate section, which extends from the front end of the condenser to the airflow suction port; a top plate section, which extends from the top The end of the cover plate towards the compressor extends upwards to isolate the top area of the condenser.
  • a first side baffle plate which is arranged on the side of the condenser facing the compressor, which includes: a front end plate section, which extends from the front end of the condenser to the airflow suction port; a top plate section, which extends from the top The end of the cover plate towards the compressor extends upwards to isolate the top area of the condenser.
  • the air guide hood also includes: a second side baffle, which is arranged on the side of the condenser away from the compressor, and extends from the rear end of the condenser to the rear wall of the compressor cabin to close one end of the airflow channel away from the compressor. .
  • a sealing strip is also provided between the air guide hood and the bulkhead of the compressor room, for sealing the gap between the air guide hood and the bulkhead of the compressor room.
  • the refrigerator also includes an evaporating dish, which is arranged on the side where the condenser is located in the compressor cabin, and is configured to receive defrost water from the refrigerator; a plurality of supporting columns extending upward are arranged in the evaporating dish, and the condenser is fixedly connected on the support column.
  • the condenser also includes: supporting side plates, which are arranged at both ends of the condenser, are arranged in parallel with the radiating fins, and are used to support the condenser pipes that pass through between the radiating fins, and the lower end of the supporting side plates has a direction to both sides.
  • the bent flange is used to be fixedly connected to the support column by means of the flange.
  • the bottom of the box body has a bottom plate
  • the bottom plate includes: a first plate portion, which is used as a bottom wall of the compressor cabin, on which an evaporating dish and a compressor support seat are installed, and the compressor is installed on the compressor support seat;
  • the second plate portion extends forward from the front end of the first plate portion, the second plate portion is provided with an airflow suction port at the front portion of the evaporating dish, and the second plate portion is provided with an airflow outlet port at the front portion of the press support seat;
  • the partition is arranged on the bottom surface of the bottom, and is configured to isolate the air flow suction port and the air flow discharge port
  • the refrigerator further includes: a cooling fan, arranged between the condenser and the compressor, and configured to promote the formation of air entering from the air flow suction port The radiating airflow discharged to the airflow outlet after passing through the condenser and the compressor in sequence.
  • the condenser is arranged in the compressor compartment, the radiating fins of the condenser extend along the depth direction of the box, and the front of the condenser is provided with an airflow suction port that communicates with the outside of the box, so the sucked air can be directly Through the condenser along the gap between the radiating fins of the condenser, the heat exchange with the radiating fins is sufficient and uniform, and the heat dissipation performance of the refrigerator is improved.
  • the outer periphery of the condenser is provided with an air guide hood, which can restrict the airflow entering the condenser, so that the air can flow out of the condenser only after the air is fully contacted with the radiating fins for heat exchange, which further improves the performance of the refrigerator.
  • the heat dissipation performance of the refrigerator further optimizes the heat dissipation structure of the refrigerator.
  • FIG. 1 is a schematic front view of a refrigerator according to an embodiment of the present invention.
  • Fig. 2 is a schematic side sectional view of the refrigerator shown in Fig. 1;
  • Fig. 3 is a schematic perspective view of the refrigerator medium pressure cabin shown in Fig. 2;
  • Figure 4 is a schematic rear view of the press room shown in Figure 3;
  • Figure 5 is a schematic side view of the compressor nacelle shown in Figure 3;
  • FIG. 6 is a schematic bottom view of the compressor nacelle shown in FIG. 3 .
  • Figure 7 is a schematic exploded view of the compressor compartment shown in Figure 3;
  • FIG. 8 is a schematic diagram of a connection structure between a condenser and an evaporating dish of a refrigerator according to an embodiment of the present invention
  • Fig. 9 is the connection structure schematic diagram of the air guide hood and the evaporation dish in the connection structure shown in Fig. 8;
  • Fig. 10 is the structural representation of the wind deflector described in Fig. 9;
  • FIG. 11 is a schematic structural diagram of the evaporating dish shown in FIG. 9 .
  • orientation or positional relationship indicated by “depth” is based on the orientation of the refrigerator in normal use as a reference, and can be determined with reference to the orientation or positional relationship shown in the accompanying drawings.
  • the "front” of the indicated orientation means that the refrigerator faces the user One side
  • “horizontal” refers to the direction parallel to the width direction of the refrigerator.
  • FIG. 1 is a schematic front view of a refrigerator according to an embodiment of the present invention.
  • FIG. 2 is a schematic side sectional view of the refrigerator shown in FIG. 1 .
  • the refrigerator may generally include a box body 10, and the box body 10 includes an outer shell, an inner container and other accessories.
  • the outer shell is the outer structure of the refrigerator and protects the entire refrigerator.
  • a heat insulating layer is added between the outer shell and the inner tank of the box body 10 , and the heat insulating layer is generally formed by a foaming process.
  • the inner tank can be divided into one or more, and the inner tank can be divided into refrigerating inner tank, temperature-changing inner tank, freezing inner tank, etc. according to the function.
  • the specific number of inner tank and function can be configured according to the use requirements of the refrigerator.
  • the inner container at least includes a bottom inner container 110, and the bottom inner container 110 can generally be a frozen inner container.
  • the bottom liner 110 is disposed above the press chamber 400, which defines a storage space.
  • the bottom inner container 110 can generally be a freezing inner container, and the bottom inner container 110 defines a storage space and a cooling chamber 100 located below the storage space.
  • the evaporator 60 is arranged at the center front of the cooling chamber 100 .
  • the bottom of the box body 10 defines a press chamber 400 , and the press chamber 400 is located behind the cooling chamber 100 , that is, the press chamber 400 is located behind the lower part of the bottom inner bladder 110 .
  • the projection of the compressor cabin 400 on the horizontal plane is located behind the projection of the evaporator 60 on the horizontal plane, that is, the compressor cabin 400 and the evaporator 60 are staggered in the horizontal direction, reducing the installation height of the evaporator 60 and increasing the volume of the storage space.
  • the bottom wall of the bottom inner container 110 has an inner container inclined portion 111 inclined upward from front to back at the rear of the cooling chamber 100, and the inclination angle range is set to 30° to 40°, for example, it can be set to 33°, 35°, 38°, preferably 36.7°.
  • the top plate 230 of the compressor cabin 400 includes a top plate inclined portion 231 arranged in parallel with the inner tank inclined portion 111, and the inclination angle of the top plate inclined portion 231 and the inner tank inclined portion 111 is consistent, and the inclination angle range is set to 30° to 40°, for example It can be set to 33°, 35°, 38°, preferably 36.7°, so as to provide sufficient space for the press room 400 .
  • the cooling fan 30 in the refrigerator is arranged on the inclined portion 111 of the inner container in the cooling chamber 100, and is configured to draw the return air into the cooling chamber 100, cool it by the evaporator 60, and promote the cooled Air flows towards the storage space.
  • the refrigerator of this embodiment further includes an air supply duct for providing cooling airflow to the storage space, and the air supply duct communicates with the air outlet end of the cooling fan 30 and is configured to deliver part of the airflow cooled by the evaporator 60 to the storage space in space.
  • the air supply air duct is arranged on the inner side of the rear wall of the bottom inner pot 110, and has a plurality of air supply outlets that communicate with the storage space.
  • the front side of the cooling chamber 100 is formed with at least one front return air inlet that communicates with the storage space, so that the return air flow of the storage space enters the cooling chamber 100 through the at least one front return air inlet and is cooled by the evaporator 60, so as to be cooled during cooling.
  • Air circulation is formed between the chamber 100 and the storage space.
  • the refrigerator of this embodiment further includes a refrigeration system.
  • the refrigeration system includes a throttling element (not shown in the figure), an evaporator 60 , a cooling fan 30 , a compressor 20 and a condenser 40 connected to the compressor 20 .
  • the evaporator 60 is disposed in the cooling chamber 100 and is configured to directly or indirectly provide cooling capacity into the storage space.
  • the refrigerator realizes the circulation of cooling air in the cooling chamber 100 and the storage space through the air duct system. Since the circulation structure and working principle of the refrigeration system itself are well known to those skilled in the art and are easy to implement, in order not to obscure and obscure the invention point of the present application, the refrigeration system itself will not be described in detail below.
  • a compressor 20 , a cooling fan 50 , a condenser 40 and an air guide hood 220 are arranged inside the compressor cabin 400 .
  • the press compartment 400 also includes a top plate 230, a bottom plate 210, a rear wall 240, and side plates 250 on both sides.
  • the compressor 20 and the condenser 40 are arranged in the compressor room 400 at intervals along the lateral direction of the casing 10 .
  • the compressor chamber 400 is provided with an airflow suction port 2121 in front of the condenser 40 and communicated with the outside of the casing 10 .
  • the cooling fan 50 When the cooling fan 50 is activated, the outside air of the box 10 enters the compressor chamber 400 from the airflow suction port 2121 and passes through the condenser 40 to dissipate heat from the condenser 40 .
  • the condenser 40 is horizontally spaced from the compressor 20 in the lateral direction of the casing 10 .
  • the fins 216 of the condenser 40 extend in the depth direction of the case 10 .
  • the compressor chamber 400 is provided with an air intake 2121 in front of the condenser 40 and communicated with the outside of the casing 10 , so that the air sucked from the air intake flows along the gaps between the cooling fins 216 .
  • the cooling fins 216 of the condenser 40 extend along the depth direction of the box 10, so that the air flowing in from the airflow suction port 2121 directly enters the channel between the cooling fins 216 of the condenser 40, reducing the flow distance of the airflow and increasing the condensation The contact area between the radiator 40 and the cooling airflow.
  • the airflow direction in the compressor chamber 400 is as follows: the air at the bottom of the box 10 enters the compressor chamber 400 from the airflow suction port 2121, passes through the condenser 40, enters the space between the rear of the condenser 40 and the rear wall 240, and flows to the compressor 20. Finally, the casing 10 is discharged from the airflow discharge port 2122 at the front of the compressor 20.
  • the above-mentioned cooling airflow can take away the heat of the condenser 40 and the compressor 20 to ensure the normal operation of the refrigeration system of the refrigerator.
  • the air guide hood 220 is disposed on the outer periphery of the condenser 40 , and is configured to guide the air sucked in from the air inlet 2121 to pass through the condenser 40 into the air passage, so as to prevent the air from escaping from the outer periphery of the condenser 40 .
  • the air guide cover 220 will cover all directions of the cooling fins 216 except for the airflow channel formed with the compressor 20.
  • the air guide hood 220 is a special-shaped structure, and the shape is not limited, and can be determined according to the shapes of the condenser 40 and the compressor 20 .
  • the entire condenser 40 may be in the shape of a rectangular parallelepiped.
  • the air guide hood 220 includes a top cover plate 221 , a first side baffle 222 and a second side baffle 223 .
  • the top cover plate 221 is disposed on the top of the condenser 40 and extends from the front of the condenser 40 to above the airflow channel.
  • the front end of the top cover plate 221 can maintain a certain distance from the front end of the condenser 40, that is to say, a part of the upper end of the condenser 40 can be exposed. In the process, the heat exchange with the condenser 40 is completed, and the heat exchange effect of the condenser 40 is improved.
  • the first side baffle 222 is disposed on the side of the condenser 40 facing the compressor 20 , and includes a front end plate section 2221 and a top end plate section 2222 .
  • the front end plate section 2221 extends from the front end of the condenser 40 to the airflow suction port 2121 .
  • a top plate section 2222 extends upwardly from the end of the top cover plate 221 toward the compressor 20 to isolate the top area of the condenser 40 .
  • the front end of the front plate section 2221 is set flush with the front end of the airflow suction port 2121, which can sufficiently guide the inflowing air to the condenser 40 and prevent it from being dispersed to the surrounding space.
  • the second side baffle 223 is disposed on the side of the condenser 40 away from the compressor 20 and extends from the rear end of the condenser 40 to the rear wall 240 of the compressor compartment 400 to close the end of the airflow passage away from the compressor 20 .
  • the top cover plate 221 and the second side baffle 223 restrict the airflow channel between the rear wall 240 of the compressor compartment 400, the top cover plate 221 and the condenser 40, and the airflow can fully exchange heat with the condenser 40, and then flow to the compressor 20 , take away the heat generated by the operation of the compressor 20 , and then flow out from the airflow discharge port 2122 .
  • a sealing strip (not shown in the figure) is further provided between the air guide hood 220 and the bulkhead of the compressor room 400 for sealing the gap between the air guide cover 220 and the compressor room 400 .
  • the gap between the air guide hood 220 and the compressor room 400 is sealed with a sealing strip, which can fully restrict the air flow in the condenser 40 and the air flow channel, so as to avoid insufficient contact between the air and the condenser 40 or the direct contact between the air and the condenser 40. flow to the compressor 20, thereby enhancing the heat exchange performance.
  • the evaporating dish 214 is disposed on the side of the compressor compartment 400 where the condenser 40 is located, and is configured to receive the defrosting water from the refrigerator.
  • the evaporating dish 214 is disposed below the condenser 40 , and a plurality of supporting columns 215 extending upward are disposed in the evaporating dish 214 , and the condenser 40 is fixedly connected to the supporting columns 215 .
  • the heat generated in the condenser 40 can evaporate the defrosting water in the evaporating dish 214 , and the defrosting water can also play a role in cooling the condenser 40 and dissipating heat.
  • the support column 215 separates the condenser 40 from the defrost water, so that the two keep a certain distance, so as to avoid corrosion on the surface of the condenser 40 in contact with the defrost water for a long time.
  • the evaporating dish 214 of the refrigerator is a substantially rectangular parallelepiped structure with an opening at the top, and has a bottom wall and four side walls extending upward from the bottom wall.
  • the supporting side plates 217 are arranged at both ends of the condenser 40 and are arranged in parallel with the radiating fins 216 to support the condensing pipes passing through between the radiating fins 216. Flanging, so as to be fixedly connected to the support column 215 by using the flanging.
  • the supporting side plate 217 can be a part of the condenser 40, which is fixed in parallel with the radiating fins 216.
  • the condenser 40 and the evaporating dish 214 can be stably installed together through the flanging of the supporting side plate 217.
  • the structure is simple and the installation process is easy. More concise and convenient.
  • the box 10 has a bottom plate 210 , and the bottom plate 210 includes a first plate portion 211 and a second plate portion 212 .
  • the first plate portion 211 serves as the bottom wall of the press room 400 .
  • the second plate portion 212 extends forward from the front end of the first plate portion 211 ; the first plate portion 211 is provided with an evaporating dish 214 for receiving the defrosted water from the cooling chamber 100 and a press support seat.
  • the condenser 40 is disposed above the evaporating dish 214, and the compressor 20 is installed on the compressor support base.
  • the second plate portion 212 is provided with an airflow intake port 2121 at the front portion of the evaporating dish 214, and the second plate portion 212 is provided with an airflow outlet port 2122 at the front portion of the press support base.
  • the airflow suction port 2121 and the airflow exhaust port 2122 can both be set in the shape of a grille, that is, communicate with the outside of the box 10 through the ventilation holes between the grilles, so as to prevent foreign objects (such as small animals, etc.) from passing through the airflow suction port 2121 or the airflow exhaustion.
  • the outlet 2122 enters the inside of the box 10 .
  • the cooling fan 50 is disposed between the condenser 40 and the compressor 20 , and is configured to promote the formation of a cooling airflow that flows from the airflow suction port 2121 through the condenser 40 and the compressor 20 in sequence and then is discharged to the airflow outlet 2122 .
  • the cooling fan 50 can be an axial flow fan, whose axial direction is along the left and right lateral directions of the compressor chamber 400 , so that the airflow from the condenser 40 side flows to the compressor 20 side, forming an airflow channel from the condenser 40 to the compressor 20 .
  • the refrigerator further includes a fan holder (not shown in the figures).
  • the fan fixing frame is fixed in the compressor compartment 400 along the front and rear directions, and is located between the compressor 20 and the condenser 40 for fixing the cooling fan 50 .
  • a partition 213 is provided on the bottom surface of the bottom plate 210 , and is arranged to isolate the airflow suction port 2121 and the airflow discharge port 2122 .
  • the airflow outlet 2122 on the side flows out to prevent the exhausted gas from directly entering the airflow suction port 2121, causing the gas to circulate in a small area near the box 10 and reducing the heat dissipation efficiency.
  • the partitions 213 may be elongated, and the width may be the distance between the bottom surface of the bottom plate 210 and the ground. There are intervals between the rear end of the condenser 40 and the rear wall 240 of the compressor compartment 400, and between the side of the condenser 40 close to the compressor 20 and the cooling fan 50, which can reduce the wind resistance of the cooling airflow.
  • the section of the rear wall 240 facing the condenser 40 is a continuous plate surface, that is, the plate section of the rear wall 240 facing the condenser 40 has no heat dissipation holes.
  • the applicant breaks through the conventional design idea, designs the plate section corresponding to the rear wall 240 and the condenser 40 as a continuous plate surface, and seals the cooling airflow entering the compressor chamber 400 at the condenser 40, so that the The ambient air entering from the airflow suction port 2121 is more concentrated at the condenser 40, which ensures the heat exchange uniformity of each condensing section of the condenser 40, and is conducive to the formation of a better heat dissipation airflow path, which can also achieve better heat dissipation. heat radiation.
  • the plate section of the rear wall 240 facing the condenser 40 is a continuous plate surface without air inlet holes, it is avoided that both the outlet air and the inlet air are concentrated at the rear of the compressor chamber 400 in the conventional design and blow out from the compressor chamber 400 The generated hot air is not cooled by the ambient air in time and enters the compressor chamber 400 again, which adversely affects the heat exchange of the condenser 40 , thereby ensuring the heat exchange efficiency of the condenser 40 .
  • the refrigerator compressor compartment 400 in this embodiment is disposed behind the bottom of the box body 10 .
  • the compressor room 400 is provided with a compressor 20 , a cooling fan 50 , a condenser 40 and an air guide hood 220 .
  • the compressor 20 , the cooling fan 50 and the condenser 40 are arranged at intervals along the lateral direction of the casing 10 , and the cooling fan 50 is located between the compressor 20 and the condenser 40 .
  • An airflow intake port 2121 is arranged in front of the condenser 40
  • an airflow discharge port 2122 is arranged in front of the compressor 20 .
  • the air guide hood 220 is disposed on the outer periphery of the condenser 40 , the uppermost end can reach the top plate 230 of the compressor chamber 400 , the rearmost end can reach the rear wall 240 of the compressor chamber 400 , and the most front end can reach the airflow suction port 2121 .
  • the cooling fan 50 When the cooling fan 50 is started, the air enters the compressor chamber 400 through the airflow suction port 2121. At this time, the air is guided through the air guide hood 220 and enters the gap between the cooling fins 216 of the condenser 40 and fully exchanges heat with the cooling fins 216.
  • the hood 220 serves to prevent the air flow from escaping from the outer periphery of the condenser 40 .
  • the air flows to the compressor 20 through the airflow channel formed by the air guide hood 220 and the rear wall 240 of the compressor cabin 400 .
  • the air flows through the compressor 20 , the heat generated during the operation of the compressor 20 will be taken away, and then discharged to the outside of the casing 10 through the air discharge port 2122 .

Abstract

一种将冷凝器布置于压机舱内的冰箱。该冰箱包括:制冷系统,其包括压缩机以及与压缩机连接的冷凝器;箱体,其底部后方具有压机舱,压缩机以及冷凝器沿箱体的横向方向间隔布置于压机舱内,并且冷凝器被安装为使其散热片沿箱体的进深方向延伸,压机舱在冷凝器的前方开设有与箱体外部连通的气流吸入口,以使得从气流吸入口进入的空气沿散热片之间的通道流动。本发明的方案中,被吸入的空气可直接沿冷凝器散热片之间的缝隙通过冷凝器,与散热片充分均匀的换热,提高冰箱的散热性能。

Description

将冷凝器布置于压机舱内的冰箱 技术领域
本发明涉及家电领域,特别是涉及一种将冷凝器布置于压机舱内的冰箱。
背景技术
目前冰箱中压缩机舱室的散热结构多为在箱体两侧或后盖板设置风口,风从两侧或后背进出散热。而随着家居一体化的需求,嵌入式冰箱成为了引领家居时尚流的主力军。但现有的传统冰箱嵌入橱柜时,冰箱的压缩机舱两侧或后盖板在散热时容易受到家居的阻挡,导致冰箱的能耗上升,性能恶化,不符合节能减排的政策且影响了用户的使用体验。
发明内容
本发明的一个目的是要提供一种能够解决上述任一方面问题的将冷凝器布置于压机舱内的冰箱。
本发明一个进一步的目的是要优化冰箱的散热性能。
本发明另一个进一步的目的是要增加散热气流与冷凝器的接触面积,使得散热更加充分。
特别地,本发明提供了一种将冷凝器布置于压机舱内的冰箱,包括:制冷系统,其包括压缩机以及与压缩机连接的冷凝器;箱体,其底部后方具有压机舱,压缩机以及冷凝器沿箱体的横向方向间隔布置于压机舱内,并且冷凝器被安装为使其散热片沿箱体的进深方向延伸,压机舱在冷凝器的前方开设有与箱体外部连通的气流吸入口,以使得从气流吸入口进入的空气沿散热片之间的通道流动。
进一步地,冷凝器与压机舱的后壁之间具有间隔,以利用间隔形成从冷凝器的后部至压缩机的气流通道。
进一步地,该冰箱还包括导风罩,设置于冷凝器的外周,配置成导引从气流吸入口进入的空气穿过冷凝器进入气流通道,以避免气流从冷凝器外周散出。
进一步地,冷凝器整体呈长方体状,并且导风罩包括:顶盖板,设置于冷凝器的顶部,从冷凝器的前部延伸至气流通道的上方。
进一步地,导风罩还包括:第一侧挡板,设置于冷凝器朝向压缩机的一侧,其包括:前端板段,从冷凝器的前端延伸至气流吸入口;顶端板段,从顶盖板朝向压缩机的一端向上延伸,以隔离冷凝器顶部区域。
进一步地,导风罩还包括:第二侧挡板,设置于冷凝器远离压缩机的一侧,并从冷凝器的后端延伸至压机舱的后壁,以封闭气流通道远离压缩机的一端。
进一步地,导风罩与压机舱的舱壁之间还设置有密封条,用于密封导风罩与压机舱的舱壁之间的缝隙。
进一步地,该冰箱还包括蒸发皿,设置于压机舱中冷凝器所在的一侧,并配置成承接来自于冰箱的化霜水;蒸发皿内设置有向上延伸多个支撑柱,冷凝器固定连接于支撑柱上。
进一步地,冷凝器还包括:支撑边板,设置于冷凝器的两端,与散热片平行设置,并用于支撑穿设于散热片之间的冷凝管,并且支撑边板的下端具有向两侧弯折的翻边,以利用翻边固定连接于支撑柱上。
进一步地,箱体的底部具有底板,底板包括:第一板部,作为压机舱的底壁,第一板部上安装有蒸发皿以及压机支撑座,压缩机安装于压机支撑座上;第二板部,从第一板部的前端向前延伸,第二板部在蒸发皿的前部开设有气流吸入口,第二板部在压机支撑座的前部开设有气流排出口;分隔件,设置于底部的底面上,并配置成隔离气流吸入口以及气流排出口,并且冰箱还包括:散热风机,设置于冷凝器与压缩机之间,并配置成促使形成从气流吸入口进入后依次流经冷凝器以及压缩机后向气流排出口排出的散热气流。
本发明的冰箱中,冷凝器布置于压机舱内,冷凝器的散热片沿箱体的进深方向延伸,冷凝器的前方设置有与箱体外部连通的气流吸入口,因此被吸入的空气可直接沿冷凝器散热片之间的缝隙通过冷凝器,与散热片充分均匀的换热,提高冰箱的散热性能。
进一步地,本发明的冰箱中,冷凝器的外周设置有导风罩,该导风罩能够限制进入冷凝器的气流,使空气与散热片充分接触换热后才可流出冷凝器,进一步提高了冰箱的散热性能,进一步优化了冰箱的散热结构。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意性前视图;
图2是图1所示的冰箱的示意性侧剖图;
图3是图2中所示的冰箱中压机舱的示意性立体图;
图4是图3所示的压机舱的示意性后视图;
图5是图3所示的压机舱的示意性侧视图;
图6是图3所示的压机舱的示意性仰视图。
图7是图3所示的压机舱的示意性爆炸图;
图8是根据本发明一个实施例的冰箱的冷凝器与蒸发皿连接结构的示意图;
图9是图8中所示连接结构中导风罩与蒸发皿的连接结构示意图;
图10是图9中所述的导风罩的结构示意图;
图11是图9中所示的蒸发皿的结构示意图。
具体实施方式
在本实施例的描述中,需要理解的是,术语“横向”、“宽度”、“上”、“下”、“前”、“后”、“水平”、“顶”、“底”、“进深”等指示的方位或位置关系为基于冰箱正常使用状态下的方位作为参考,并参考附图所示的方位或位置关系可以确定,例如指示方位的“前”指的是冰箱朝向用户的一侧、“横向”是指与冰箱宽度方向平行的方向。这仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
图1是根据本发明一个实施例的冰箱的示意性前视图。图2是图1所示的冰箱的示意性侧剖图。冰箱一般性地可包括箱体10,箱体10包括外壳、内胆以及其他附件构成。外壳是冰箱的外层结构,保护着整个冰箱。为了隔绝与外界的热传导,在箱体10的外壳和内胆之间加有隔热层,隔热层一般通过发泡工艺构成。内胆可以分为一个或多个,内胆根据功能可以被划分为冷藏内胆、变温内胆、冷冻内胆等,具体的内胆个数以及功能可以根据冰箱 的使用需求进行配置。本实施例中内胆至少包括底部内胆110,底部内胆110一般可为冷冻内胆。
底部内胆110设置于压机舱400上方,其限定有储物空间。底部内胆110一般可为冷冻内胆,底部内胆110限定出储物空间以及位于储物空间下方的冷却室100。蒸发器60布置于冷却室100的中前部。箱体10底部限定有压机舱400,且压机舱400位于冷却室100的后方,也就是说压机舱400位于底部内胆110的下部后方。压机舱400在水平面上的投影位于蒸发器60在水平面上投影的后方,即压机舱400与蒸发器60在水平方向上交错放置,降低蒸发器60的设置高度,增大储物空间的容积。底部内胆110的底壁在冷却室100的后部具有从前到后向上倾斜设置的内胆倾斜部111,该倾斜角度范围设置为30°至40°,例如可以设置为33°、35°、38°,优选为36.7°。压机舱400的顶板230包括与内胆倾斜部111平行间隔设置的顶板倾斜部231,顶板倾斜部231与内胆倾斜部111的倾斜角度一致,该倾斜角度范围设置为30°至40°,例如可以设置为33°、35°、38°,优选为36.7°,从而用于为压机舱400提供足够的空间。
在一些实施例中,冰箱中的制冷风机30设置于冷却室100中的内胆倾斜部111上,配置为将回风气流吸入冷却室100中,由蒸发器60进行冷却,并促使冷却后的气流向储物空间流动。本实施例的冰箱还包括向储物空间提供制冷气流的送风风道,送风风道与制冷风机30的出风端连通,配置为将经蒸发器60冷却后的部分气流输送至储物空间中。送风风道设置于底部内胆110的后壁内侧,具有连通储物空间的多个送风出口。冷却室100的前侧形成有与储物空间连通的至少一个前回风入口,以使得储物空间的回风气流通过至少一个前回风入口进入冷却室100中由蒸发器60进行冷却,从而在冷却室100和储物空间之间形成气流循环。
如本领域技术人员可意识到的,本实施例的冰箱还包括制冷系统。制冷系统包括节流元件(图中未示出)、蒸发器60、制冷风机30、压缩机20以及与压缩机20连接的冷凝器40。蒸发器60设置于冷却室100中,配置成直接或间接地向储物空间内提供冷量。冰箱通过风路系统实现制冷气流在冷却室100与储物空间内的循环。由于制冷系统本身的循环构造以及工作原理,为本领域技术人员习知且易于实现的,为了不掩盖和模糊本申请的发明点,后文对制冷系统本身不做赘述。
如图3-图11所示。压机舱400内部设置有压缩机20、散热风机50、冷凝器40以及导风罩220。压机舱400还包括顶板230、底板210、后壁240以及两侧的侧板250。压缩机20以及冷凝器40沿箱体10横向方向间隔布置于压机舱400内。压机舱400在冷凝器40的前方开设有与箱体10外部连通的气流吸入口2121。当散热风机50启动时,箱体10的外部空气从气流吸入口2121进入压机舱400,经过冷凝器40,对冷凝器40进行散热。
冷凝器40沿箱体10的横向方向与压缩机20水平间隔设置。冷凝器40的散热片216沿箱体10的进深方向延伸。压机舱400在冷凝器40的前方开设有与箱体10外部连通的气流吸入口2121,以使得从气流入口吸入的空气沿散热片216之间的间隙流动。冷凝器40的散热片216沿箱体10的进深方向延伸,以使得从气流吸入口2121流入的空气直接进入冷凝器40的散热片216之间的通道中,减少气流的流通距离而增大冷凝器40与散热气流的接触面积。冷凝器40与压机舱400的后壁240之间具有间隔,以利用该间隔形成从冷凝器40的后部至压缩机20的气流通道,使得气流经过与冷凝器40的充分换热后流向压缩机20。
压机舱400内的气流流动方向为:箱体10底部的空气从气流吸入口2121进入压机舱400,经由冷凝器40后,进入冷凝器40后部与后壁240之间的间隔,流向压缩机20,最终从压缩机20前部的气流排出口2122排出箱体10。上述散热气流可以带走冷凝器40以及压缩机20的热量,保证冰箱制冷系统正常运行。
导风罩220设置于冷凝器40的外周,配置成导引从气流吸入口2121吸入的空气穿过冷凝器40进入气流通道,避免气流从冷凝器40外周散出。当气流从气流吸入口2121进入压机舱400后,流向冷凝器40散热片216之间的间隔中,此时导风罩220将覆盖散热片216除与压缩机20形成的气流通道外的所有方向,将散热气流仅导向气流通道,使散热气流与冷凝器40充分接触,增强散热性能。导风罩220为异形结构,形状不限定,可根据冷凝器40及压缩机20的形状确定。
在一些实施例中,冷凝器40整体可为长方体状。导风罩220包括顶盖板221、第一侧挡板222与第二侧挡板223。顶盖板221设置于冷凝器40的顶部,从冷凝器40的前部延伸至气流通道的上方。顶盖板221前端可与冷凝器40的前端保持一定距离,也就是说冷凝器40上端可有部分裸露在外, 当气流进入压机舱400后也可从冷凝器40上端的裸露部分进入冷凝器40中,与冷凝器40完成换热,提升冷凝器40的换热效果。
第一侧挡板222设置于冷凝器40朝向压缩机20的一侧,其包括前端板段2221以及顶端板段2222。前端板段2221从冷凝器40的前端延伸至气流吸入口2121。顶端板段2222从顶盖板221朝向压缩机20的一端向上延伸,以隔离冷凝器40的顶部区域。前端板段2221将最前端设置与气流吸入口2121的前端平齐,可充分地将流入的空气导向冷凝器40,避免其向周围空间分散。第二侧挡板223设置于冷凝器40远离压缩机20的一侧,并从冷凝器40的后端延伸至压机舱400的后壁240,以封闭气流通道远离压缩机20的一端。顶盖板221与第二侧挡板223将气流通道限制在压机舱400的后壁240、顶盖板221与冷凝器40之间,气流可与冷凝器40充分换热,而后流向压缩机20,带走压缩机20运行所产生的热量,而后从气流排出口2122流出。导风罩220在与压机舱400的舱壁之间还设置有密封条(图中未示出),用于密封导风罩220与压机舱400之间的缝隙。导风罩220与压机舱400之间的缝隙利用密封条密封,可将气流充分限制在冷凝器40和气流通道中,避免空气与冷凝器40接触不充分或空气未与冷凝器40接触而直接流向压缩机20,从而增强换热性能。
蒸发皿214设置于压机舱400中冷凝器40所在的一侧,并配置成承接来自于冰箱的化霜水。蒸发皿214设置于冷凝器40下方,蒸发皿214内设置有向上延伸多个支撑柱215,冷凝器40固定连接于支撑柱215上。冷凝器40中所产生的热量可将蒸发皿214中的化霜水蒸发,且化霜水也可起到对冷凝器40降温散热的作用。支撑柱215将冷凝器40与化霜水分隔开,使两者保持一定距离,避免了长时间接触化霜水冷凝器40表面产生腐蚀。在一些实施例中,冰箱的蒸发皿214是顶部具有开口的大致为长方体的结构,具有底壁和自底壁向上延伸的四个侧壁。
支撑边板217,设置于冷凝器40的两端,与散热片216平行设置,用于支撑穿设于散热片216之间的冷凝管,并且支撑边板217的下端具有向两侧弯折的翻边,以利用翻边固定连接于支撑柱215上。支撑边板217可为冷凝器40的一部分,与散热片216平行间隔固定,可通过支撑边板217的翻边可将冷凝器40与蒸发皿214稳固的安装在一起,结构简单,安装过程也更加的简洁方便。
箱体10具有底板210,底板210包括第一板部211以及第二板部212。第一板部211作为压机舱400的底壁。第二板部212从第一板部211的前端向前延伸;第一板部211上设置有用于承接来自于冷却室100化霜水的蒸发皿214以及压机支撑座。冷凝器40设置于蒸发皿214的上方,压缩机20安装于压机支撑座上。第二板部212在蒸发皿214的前部开设有气流吸入口2121,第二板部212在压机支撑座的前部开设有气流排出口2122。气流吸入口2121以及气流排出口2122可以均设置为格栅状,也即通过格栅之间的通风孔与箱体10外部连通,避免异物(例如小动物等)通过气流吸入口2121或气流排出口2122进入箱体10内部。
散热风机50设置于冷凝器40与压缩机20之间,并配置成促使形成从气流吸入口2121依次流经冷凝器40以及压缩机20后向气流排出口2122排出的散热气流。散热风机50可使用轴流风机,其轴向沿压机舱400的左右横向方向,使冷凝器40侧的气流流向压缩机20侧,形成由冷凝器40流向压缩机20的气流通道。在一些实施例中,冰箱还包括风机固定架(图中未示出)。风机固定架沿前后方向固定在压机舱400内,位于压缩机20与冷凝器40之间,用于固定散热风机50。
在底板210的底面上设置有分隔件213,并配置成隔离气流吸入口2121以及气流排出口2122。以允许外部空气在散热风机50的作用下经位于分隔件213一侧的气流吸入口2121进入压机舱400内,并一侧流经冷凝器40、压缩机20,最后从位于分隔件213另一侧的气流排出口2122流出,以防止排出后的气体直接进入气流吸入口2121,导致气体在箱体10附近小范围内循环,降低散热效率。具体地,分隔件213可以为长条状,宽度可以为底板210的底面与地面的距离。冷凝器40的后端与压机舱400的后壁240之间、冷凝器40靠近压缩机20的一侧与散热风机50之间分别具有间隔,该间隔可以减小散热气流的风阻。
在一个优选实施例中,后壁240面向冷凝器40的区段为连续的板面,也即是说后壁240面向冷凝器40的板段上没有散热孔。申请人创造性地认识到即使在不增加冷凝器40换热面积的前提下,反常态地减小压机舱400的通风面积,能够形成更加良好的散热气流路径,而且仍然可达到较好的散热效果。在本发明的优选方案中,申请人突破常规设计思路,将后壁240与冷凝器40对应的板段设计为连续板面,将进入压机舱400内的散热气流封 闭在冷凝器40处,使得由气流吸入口2121进入的环境空气更多地集中在冷凝器40处,保证了冷凝器40各个冷凝段的换热均匀性,并且有利于形成更加良好的散热气流路径,同样可达到较好的散热效果。并且,由于后壁240面向冷凝器40的板段为连续板面,不具有进风孔,避免了常规设计中出风和进风都集中在压机舱400的后部而导致从压机舱400吹出的热风未及时经环境空气冷却而再次进入到压机舱400中,对冷凝器40的换热产生不利影响,由此保证了冷凝器40的换热效率。
本实施例中的冰箱压机舱400设置于箱体10的底部后方。压机舱400中设置有压缩机20、散热风机50、冷凝器40以及导风罩220。压缩机20、散热风机50以及冷凝器40沿箱体10的横向方向间隔布置,散热风机50位于压缩机20与冷凝器40之间。冷凝器40的前方配置有气流吸入口2121,压缩机20的前方配置有气流排出口2122。导风罩220设置于冷凝器40的外周,最上端可至压机舱400顶板230,最后端可至压机舱400的后壁240,最前端可至气流吸入口2121处。当散热风机50启动,空气通过气流吸入口2121进入压机舱400内,此时经导风罩220导流,进入冷凝器40散热片216的缝隙内,与散热片216充分换热,此时导风罩220起到防止气流从冷凝器40外周散出的作用。当空气与散热片216换热结束,再经导风罩220与压机舱400后壁240形成的气流通道流向压缩机20。空气流经压缩机20时会带走压缩机20运行时产生的热量,然后经气流排出口2122排出至箱体10外。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种将冷凝器布置于压机舱内的冰箱,包括:
    制冷系统,其包括压缩机以及与所述压缩机连接的冷凝器;
    箱体,其底部后方具有压机舱,所述压缩机以及所述冷凝器沿所述箱体的横向方向间隔布置于所述压机舱内,并且
    所述冷凝器被安装为使其散热片沿所述箱体的进深方向延伸,所述压机舱在所述冷凝器的前方开设有与箱体外部连通的气流吸入口,以使得从所述气流吸入口进入的空气沿所述散热片之间的通道流动。
  2. 根据权利要求1所述的冰箱,其中
    所述冷凝器与所述压机舱的后壁之间具有间隔,以利用所述间隔形成从所述冷凝器的后部至所述压缩机的气流通道。
  3. 根据权利要求2所述的冰箱,还包括:
    导风罩,设置于所述冷凝器的外周,配置成导引从所述气流吸入口进入的空气穿过所述冷凝器进入所述气流通道,以避免气流从冷凝器外周散出。
  4. 根据权利要求3所述的冰箱,其中
    所述冷凝器整体呈长方体状,并且所述导风罩包括:
    顶盖板,设置于所述冷凝器的顶部,从所述冷凝器的前部延伸至所述气流通道的上方。
  5. 根据权利要求4所述的冰箱,其中所述导风罩还包括:
    第一侧挡板,设置于所述冷凝器朝向所述压缩机的一侧,其包括:
    前端板段,从所述冷凝器的前端延伸至所述气流吸入口;
    顶端板段,从所述顶盖板朝向所述压缩机的一端向上延伸,以隔离所述冷凝器顶部区域。
  6. 根据权利要求4所述的冰箱,其中所述导风罩还包括:
    第二侧挡板,设置于所述冷凝器远离所述压缩机的一侧,并从所述冷凝器的后端延伸至所述压机舱的后壁,以封闭所述气流通道远离所述压缩机的 一端。
  7. 根据权利要求4所述的冰箱,其中
    所述导风罩与所述压机舱的舱壁之间还设置有密封条,用于密封所述导风罩与所述压机舱的舱壁之间的缝隙。
  8. 根据权利要求1所述的冰箱,还包括:
    蒸发皿,设置于所述压机舱中所述冷凝器所在的一侧,并配置成承接来自于所述冰箱的化霜水;
    所述蒸发皿内设置有向上延伸多个支撑柱,所述冷凝器固定连接于所述支撑柱上。
  9. 根据权利要求8的所述的冰箱,其中所述冷凝器还包括:
    支撑边板,设置于所述冷凝器的两端,与所述散热片平行设置,并用于支撑穿设于所述散热片之间的冷凝管,并且
    所述支撑边板的下端具有向两侧弯折的翻边,以利用所述翻边固定连接于所述支撑柱上。
  10. 根据权利要求8所述的冰箱,其中
    所述箱体的底部具有底板,所述底板包括:
    第一板部,作为所述压机舱的底壁,所述第一板部上安装有所述蒸发皿以及压机支撑座,所述压缩机安装于所述压机支撑座上;
    第二板部,从所述第一板部的前端向前延伸,所述第二板部在所述蒸发皿的前部开设有所述气流吸入口,所述第二板部在所述压机支撑座的前部开设有气流排出口;
    分隔件,设置于所述底部的底面上,并配置成隔离所述气流吸入口以及所述气流排出口,并且所述冰箱还包括:
    散热风机,设置于所述冷凝器与所述压缩机之间,并配置成促使形成从所述气流吸入口进入后依次流经所述冷凝器以及所述压缩机后向所述气流排出口排出的散热气流。
PCT/CN2021/123581 2020-08-18 2021-10-13 将冷凝器布置于压机舱内的冰箱 WO2022037719A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010833082.3 2020-08-18
CN202010833082.3A CN114076457A (zh) 2020-08-18 2020-08-18 将冷凝器布置于压机舱内的冰箱

Publications (1)

Publication Number Publication Date
WO2022037719A1 true WO2022037719A1 (zh) 2022-02-24

Family

ID=80281323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123581 WO2022037719A1 (zh) 2020-08-18 2021-10-13 将冷凝器布置于压机舱内的冰箱

Country Status (2)

Country Link
CN (1) CN114076457A (zh)
WO (1) WO2022037719A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114992964A (zh) * 2022-06-28 2022-09-02 Tcl家用电器(合肥)有限公司 散热结构和冰箱

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117469887A (zh) * 2022-07-22 2024-01-30 重庆海尔制冷电器有限公司 一种冰箱

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189750A (ja) * 1995-01-13 1996-07-23 Matsushita Refrig Co Ltd 冷蔵庫
CN1704706A (zh) * 2004-05-27 2005-12-07 乐金电子(天津)电器有限公司 冰箱机械室的冷却结构
CN202158706U (zh) * 2010-04-26 2012-03-07 株式会社东芝 冰箱
CN210036003U (zh) * 2019-04-26 2020-02-07 青岛海尔特种电冰箱有限公司 蒸发器与接水盘相匹配的冰箱
CN210220344U (zh) * 2019-02-26 2020-03-31 青岛海尔电冰箱有限公司 送风机呈竖向布置于蒸发器后方的冰箱
CN214039109U (zh) * 2020-08-18 2021-08-24 青岛海尔电冰箱有限公司 嵌入式冰箱
CN214039084U (zh) * 2020-08-18 2021-08-24 青岛海尔特种电冰箱有限公司 在压机舱内布置散热风机的冰箱

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013257114A (ja) * 2012-06-14 2013-12-26 Sharp Corp 冷蔵庫
CN209893741U (zh) * 2019-02-26 2020-01-03 青岛海尔电冰箱有限公司 利用贯流风机进行散热的冰箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189750A (ja) * 1995-01-13 1996-07-23 Matsushita Refrig Co Ltd 冷蔵庫
CN1704706A (zh) * 2004-05-27 2005-12-07 乐金电子(天津)电器有限公司 冰箱机械室的冷却结构
CN202158706U (zh) * 2010-04-26 2012-03-07 株式会社东芝 冰箱
CN210220344U (zh) * 2019-02-26 2020-03-31 青岛海尔电冰箱有限公司 送风机呈竖向布置于蒸发器后方的冰箱
CN210036003U (zh) * 2019-04-26 2020-02-07 青岛海尔特种电冰箱有限公司 蒸发器与接水盘相匹配的冰箱
CN214039109U (zh) * 2020-08-18 2021-08-24 青岛海尔电冰箱有限公司 嵌入式冰箱
CN214039084U (zh) * 2020-08-18 2021-08-24 青岛海尔特种电冰箱有限公司 在压机舱内布置散热风机的冰箱

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114992964A (zh) * 2022-06-28 2022-09-02 Tcl家用电器(合肥)有限公司 散热结构和冰箱
CN114992964B (zh) * 2022-06-28 2024-04-02 Tcl家用电器(合肥)有限公司 散热结构和冰箱

Also Published As

Publication number Publication date
CN114076457A (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
CN209893738U (zh) 具有带蜗壳离心风机的冰箱
WO2022037719A1 (zh) 将冷凝器布置于压机舱内的冰箱
CN214039084U (zh) 在压机舱内布置散热风机的冰箱
WO2022037717A1 (zh) 压机舱内形成散热气流通道的冰箱
WO2020173353A1 (zh) 大容积冰箱
WO2020173359A1 (zh) 具有分隔件的冰箱
WO2020173338A1 (zh) 回风口形成于箱体两侧壁的冰箱
CN114076455A (zh) 一种嵌入式冰箱
CN111947373B (zh) 冰箱
WO2024002087A1 (zh) 冰箱
CN214039109U (zh) 嵌入式冰箱
CN111609627A (zh) 具有u型冷凝器的冰箱
WO2022037382A1 (zh) 嵌入式冰箱
WO2020173339A1 (zh) 冰箱
WO2022037718A1 (zh) 将冷凝器布置于压机舱内的冰箱
CN111609623B (zh) 具有l型冷凝器的冰箱
WO2021082751A1 (zh) 蒸发器倾斜设置的冰箱
WO2020173355A1 (zh) 送风机位于蒸发器横向侧方下游的冰箱
WO2024027675A1 (zh) 冰箱
CN219390180U (zh) 半导体制冷的制冷设备
WO2020173337A1 (zh) 排水口设置有过滤板的冰箱
CN219037237U (zh) 制冷模块的壳体、制冷模块和冰箱
CN219063862U (zh) 制冷设备
CN110017647B (zh) 送风系统及具有其的冰箱
CN219222966U (zh) 嵌入式的制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857806

Country of ref document: EP

Kind code of ref document: A1