WO2020173355A1 - 送风机位于蒸发器横向侧方下游的冰箱 - Google Patents

送风机位于蒸发器横向侧方下游的冰箱 Download PDF

Info

Publication number
WO2020173355A1
WO2020173355A1 PCT/CN2020/075882 CN2020075882W WO2020173355A1 WO 2020173355 A1 WO2020173355 A1 WO 2020173355A1 CN 2020075882 W CN2020075882 W CN 2020075882W WO 2020173355 A1 WO2020173355 A1 WO 2020173355A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
evaporator
air inlet
cooling chamber
refrigerator
Prior art date
Application number
PCT/CN2020/075882
Other languages
English (en)
French (fr)
Inventor
苗建林
李伟
李春阳
王铭
Original Assignee
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司 filed Critical 海尔智家股份有限公司
Priority to AU2020229911A priority Critical patent/AU2020229911B2/en
Priority to US17/434,342 priority patent/US20220146179A1/en
Priority to EP20763757.0A priority patent/EP3926266B1/en
Publication of WO2020173355A1 publication Critical patent/WO2020173355A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/067Evaporator fan units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/006General constructional features for mounting refrigerating machinery components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/061Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation through special compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/063Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation with air guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0021Details for cooling refrigerating machinery using air guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0023Control of the air flow cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0026Details for cooling refrigerating machinery characterised by the incoming air flow
    • F25D2323/00266Details for cooling refrigerating machinery characterised by the incoming air flow through the bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0027Details for cooling refrigerating machinery characterised by the out-flowing air
    • F25D2323/00276Details for cooling refrigerating machinery characterised by the out-flowing air from the bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/02Geometry problems

Definitions

  • the present invention relates to the technical field of household appliances, and in particular to a refrigerator with a blower located downstream of the lateral side of the evaporator. Background technique
  • the fan that promotes the airflow cooled by the evaporator to flow to the storage compartment is generally arranged downstream of the evaporator in the front-to-back direction.
  • the distance from the outer shell of the cabinet becomes smaller, resulting in a reduction in the thickness of the foaming material, and adversely affecting the refrigeration performance and energy consumption of the refrigerator.
  • an object of the present invention is to provide a refrigerator that overcomes the above problems or at least partially solves the above problems.
  • a further object of the present invention is to improve the heat dissipation effect of the compressor cabin.
  • the present invention provides a refrigerator, including:
  • a box which defines a cooling chamber and at least one storage compartment
  • the evaporator is arranged in the cooling chamber and configured to cool the airflow entering the cooling chamber to form a cooling airflow;
  • the blower is located on the lateral side of the evaporator and downstream of the evaporator in the airflow path, and is configured to promote at least part of the cooling airflow to flow into the at least one storage compartment.
  • the cabinet includes:
  • the freezer liner defines a cooling chamber inside and below it, and the storage compartment includes a freezer compartment defined by the freezer liner and located above the cooling chamber;
  • the freezer compartment air supply duct is located inside the lateral first side wall of the freezer liner, and at least one first air supply outlet connected to the freezer compartment is formed.
  • the blower is configured to promote at least part of the cooling air flow to the freezing compartment through the freezer compartment air duct Indoor mobility
  • the blower is arranged in the cooling chamber and is located on the first lateral side of the evaporator, and is configured to promote at least part of the cooling airflow to flow into the freezer compartment through the freezer compartment air duct.
  • the second lateral side wall of the cooling chamber is formed with a freezer compartment return air inlet, so that the return air flow of the freezer compartment is driven by the blower to enter the cooling chamber through the freezer compartment return air inlet and enter the evaporator. Line cooling.
  • the cabinet further includes:
  • the variable temperature liner is located above the freezer liner.
  • the storage compartment includes a variable temperature chamber defined by the variable temperature liner.
  • the area corresponding to the evaporator on the second lateral side wall of the freezer liner is formed with a return air inlet for the variable temperature chamber;
  • the air supply duct is arranged on the outer side of the lateral first side wall of the variable temperature liner, and is controlledly connected with the air supply duct of the freezing compartment through the variable temperature damper, and has at least one second air supply outlet connected to the temperature change chamber
  • the return air duct of the variable greenhouse is arranged on the outside of the lateral second side wall of the variable temperature inner liner, and extends downward to communicate with the return air inlet of the variable greenhouse, so that the return air flow of the variable greenhouse passes through the variable greenhouse under the drive of the blower.
  • the air duct and the return air inlet of the variable greenhouse enter the cooling room to be cooled by the evaporator.
  • the evaporator is placed horizontally in the cooling chamber.
  • a compressor cabin is also defined in the box body, and the compressor cabin is located behind the cooling chamber.
  • the refrigerator further includes:
  • Compressors, radiator fans and condensers arranged horizontally in the compressor cabin;
  • the bottom wall of the box defines a bottom air inlet close to the condenser and a bottom air outlet close to the compressor arranged horizontally;
  • the heat dissipation fan is also configured to suck in ambient air from the bottom air inlet and force the air to pass through the condenser, then the compressor, and then flow from the bottom air outlet to the surrounding environment.
  • the cabinet further includes:
  • the bottom plate includes a bottom horizontal section located on the front side of the bottom and a bending section bent and extended from the rear end of the bottom horizontal section to the rear and upwards.
  • the bending section includes an inclined section located above the bottom air inlet and the bottom air outlet Section
  • the pallet is located behind the bottom horizontal section, and the bending section extends above the pallet.
  • the pallet and the bottom horizontal section form the bottom wall of the box, and are spaced apart from the bottom horizontal section to utilize the bottom level
  • the rear end of the section and the front end of the pallet define a bottom opening;
  • the two side panels extend upwards from the lateral sides of the pallet to the lateral sides of the bending section respectively to form the two lateral side walls of the compressor cabin;
  • the vertically extending back plate extends upward from the rear end of the pallet to the rear end of the bending section to form the rear wall of the press cabin;
  • the compressor, the radiating fan and the condenser are arranged on the pallet at intervals in the transverse direction, and are located in the space defined by the pallet, the two side plates, the back plate and the bending section;
  • the box body also includes a partition, which is arranged at the rear of the bending section, the front of which is connected with the rear end of the bottom horizontal section, and the rear of which is connected with the front end of the pallet, and is arranged to divide the bottom opening into horizontally arranged Bottom air inlet and bottom air outlet.
  • the cabinet further includes:
  • the front and rear windshield strips are located between the bottom air inlet and the bottom air outlet, extend from the lower surface of the bottom horizontal section to the lower surface of the pallet, and are connected to the lower end of the partition, so that the windshield and the partition
  • the bottom air inlet and the bottom air outlet are completely isolated, so that when the refrigerator is placed on a supporting surface, the space between the bottom wall of the cabinet and the supporting surface is horizontally separated to allow external air to pass through the windshield under the action of the cooling fan
  • the bottom air inlet on the lateral side enters the compressor room, flows through the condenser and the compressor in turn, and finally flows out from the bottom air outlet on the other lateral side of the windshield.
  • the plate section of the back plate facing the condenser is a continuous plate surface.
  • the blower is located on the lateral side of the evaporator, and does not occupy the space behind or in the front of the evaporator, reduces the space occupied by the front and rear directions of the cooling chamber, and ensures the space between the rear of the cooling chamber and the outer shell of the cabinet
  • the blower is located downstream of the evaporator in the airflow path, which accelerates the flow of the cooling airflow to the storage compartment and can increase the cooling speed.
  • the lower space in the freezer liner defines a cooling chamber
  • the freezer compartment is located above the cooling chamber
  • the compressor compartment is located behind and below the cooling chamber.
  • the freezer compartment does not need to make way for the compressor compartment.
  • the storage volume of the freezer compartment makes the freezer compartment a rectangular space, which is convenient for placing large and difficult-to-divide items;
  • the blower is arranged on the lateral side of the evaporator, which prevents the blower from occupying the space behind or in front of the evaporator and reduces cooling
  • the space occupied by the front and rear of the chamber increases the space between the lower rear of the cooling chamber and the compressor cabin, and increases the thickness of the foaming material between the lower rear of the cooling chamber and the compressor cabin, thereby ensuring the refrigeration performance of the refrigerator. Reduce energy consumption.
  • the bottom of the box is constructed as a three-dimensional structure with a specially structured bottom plate and a supporting plate, which provides an independent three-dimensional space for the arrangement of the compressor, and the supporting plate is used to carry the compressor to reduce the impact of compressor vibration.
  • the slope structure of the inclined section can guide and rectify the inlet airflow, so that the airflow entering from the bottom air inlet flows to the condenser more concentratedly, which prevents the airflow from being too dispersed to pass through the condenser more.
  • the bottom of the refrigerator has a compact structure and a reasonable layout, which reduces the overall volume of the refrigerator, and at the same time makes full use of the space at the bottom of the refrigerator to ensure Improve the heat dissipation efficiency of the compressor and condenser.
  • Fig. 1 is a schematic structural view of one direction of a refrigerator according to an embodiment of the present invention
  • Fig. 2 is a schematic structural view of another direction of a refrigerator according to an embodiment of the present invention
  • Fig. 3 is a schematic structural view of another direction according to an embodiment of the present invention The first partial schematic diagram of the refrigerator
  • Fig. 4 is a schematic structural diagram of a casing of a refrigerator according to an embodiment of the present invention.
  • Figure 5 is a partial exploded view of a refrigerator according to an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the outer shell of a refrigerator according to an embodiment of the present invention.
  • Fig. 7 is an enlarged view of area A in Fig. 6. detailed description
  • This embodiment first provides a refrigerator 100.
  • the refrigerator 100 according to an embodiment of the present invention will be described below with reference to FIGS. 1 to 7.
  • “front”, “rear”, “upper”, “lower”, etc. are indicated The orientation or positional relationship is based on the orientation of the refrigerator 100 itself as a reference, and “front” and “rear” are the directions indicated in Figures 1, 5, and 7, as shown in Figure 2, “horizontal” refers to the 100 The direction parallel to the width direction.
  • Fig. 1 is a schematic structural view of a refrigerator 100 in one direction according to an embodiment of the present invention
  • Fig. 2 is a schematic structural view of a refrigerator 100 in another direction according to an embodiment of the present invention.
  • the refrigerator 100 may generally include a box body, the box body including a shell and a storage liner arranged inside the shell, and the space between the shell and the storage liner is filled with thermal insulation material (forming a hair Foam layer), the storage liner defines at least one storage compartment.
  • the storage liner may generally include a frozen liner, a refrigerated liner, a temperature-variable liner, etc., and the storage compartment may include a storage compartment defined by a refrigerated liner
  • the front side of the storage liner is also provided with a door to open or close the storage compartment.
  • the front side of the refrigerating liner is provided with a refrigerating compartment door 12, and the front side of the temperature-variable liner is provided with a temperature-changing chamber door. 122.
  • a freezing compartment door 132 is provided on the front side of the freezing liner.
  • a plurality of storage containers 1311 distributed up and down are arranged in the freezing compartment 131. As shown in FIG. 1, three storage containers 1311 are distributed up and down.
  • the refrigerator 100 of this embodiment may further include an evaporator 150, a blower 102, a compressor 104, a condenser 105, a throttling element (not shown), and the like.
  • the evaporator 150 is located in the cooling chamber 133, and is connected to the compressor 104, the condenser 105, and the throttling element through a refrigerant pipeline to form a refrigeration cycle.
  • the compressor 104 When the compressor 104 is started, the temperature is lowered to cool the air flowing through it. Cooling airflow.
  • the blower 102 may be a centrifugal fan, a cross flow fan or an axial flow fan.
  • the blower 102 is located on the lateral side of the evaporator 150 and downstream of the evaporator 150 in the air flow path, and is configured to promote at least part of the cooling airflow to flow into the at least one storage compartment.
  • the blower 102 is located on the lateral side of the evaporator 150, and does not occupy the space behind or in front of the evaporator 150, reduces the space occupied by the cooling chamber 133 in the front and rear directions, and ensures the cooling chamber 133 The thickness of the foam between the rear and the outer shell of the box.
  • the cooling chamber 133 may be defined by the lowest space in the freezing liner, that is, the aforementioned cooling chamber 133 is defined below the freezing liner, and the freezing liner The defined freezing compartment 131 is located above the cooling compartment 133.
  • the blower 102 is arranged in the cooling chamber 133 and is located on the first lateral side of the evaporator 150, and is configured to promote at least part of the cooling airflow to flow into the freezer compartment 131 through the freezer compartment air duct 160.
  • the cooling compartment 133 is generally located in the rear space of the cabinet, the freezing compartment 131 is generally located at the bottom of the cabinet, and the compressor compartment is located at the rear bottom of the freezing compartment 131.
  • the freezer compartment 131 is inevitably compressed.
  • the special-shaped space that the engine room gives way reduces the storage volume of the freezer compartment 131 and also brings about the following problems.
  • the freezer compartment 131 is located in a low position, and the user needs to bend down or squat down significantly to pick and place items in the freezer compartment 131, which is inconvenient for the user to use, especially for the elderly; The depth of the compartment 131 is reduced.
  • the freezer compartment 131 To ensure the storage volume of the freezer compartment 131, it is necessary to increase the space in the height direction of the freezer compartment 131.
  • the user When storing items in the freezer compartment 131, the user needs to stack the items in the height direction, which is not convenient for the user to find items. , And the items located at the bottom of the freezer compartment 131 are easily concealed, making it difficult for users to find and forget, resulting in deterioration and waste of the items.
  • the freezer compartment 131 is a special shape, it is not a rectangular space, which is large and difficult for some users. The divided items are inconvenient to be placed in the freezer 131.
  • the lower space in the freezing liner defines the cooling chamber 133, so that the cooling chamber
  • the cooling chamber 133 occupies the lower space in the box, that is, the cooling chamber 133 is placed at the bottom, and the freezing chamber 131 is located Above the compartment 133, the freezer compartment 131 is raised, which reduces the degree of bending of the user during the operation of picking and placing items in the freezer compartment 131, and improves the user experience.
  • the box can define a compressor compartment at the rear and lower part of the cooling chamber 133, that is, the compressor compartment is located at the rear and lower part of the cooling chamber 133, and the freezer compartment 131 does not need to make way for the compressor compartment to ensure the storage volume of the freezer compartment 131 ,
  • the thickness of the foaming material between the lower rear of the cooling chamber 133 and the compressor cabin will directly affect the refrigeration performance of the refrigerator
  • the blower 102 is arranged behind the evaporator 150. This design method increases the size of the cooling chamber 133 in the front and rear direction, and the space between the rear of the cooling chamber 133 and the compressor cabin is small. The thickness of the foaming material between the cooling chamber 133 and the compressor cabin is reduced, which has a certain impact on the refrigeration performance and energy consumption of the refrigerator 100.
  • the blower 102 is located on the first lateral side of the evaporator 150.
  • the freezer compartment air duct 160 is located on the inner side of the lateral first side wall of the freezer compartment, and at least one first blower outlet communicating with the freezer compartment 131 is formed. 102 is configured to cause at least part of the cooling airflow to flow to the freezing compartment 131 through the freezing compartment air duct 160.
  • Fig. 3 is a first partial schematic diagram of a refrigerator 100 according to an embodiment of the present invention
  • Fig. 4 is a schematic structural view of a cover 134 of the refrigerator 100 according to an embodiment of the present invention.
  • the refrigerator 100 further includes a cover 134 arranged in the freezer liner 130, the cover 134 is arranged on the evaporator 150, the lateral first side of the cover 134 can be opened, and the blower 102 is located on the lateral first side of the evaporator 150, By connecting the opening of the first lateral side of the cover 134 with the air supply duct 160 of the freezer compartment, the cover 134 and the bottom wall of the freezer liner 130 and the first lateral side wall of the freezer liner 130 define the aforementioned cooling chamber 133.
  • the evaporator 150 as a whole can be horizontally placed in the cooling chamber in a flat cube shape, that is, the long and wide sides of the evaporator 150 are parallel to the horizontal plane, the thickness plane is placed perpendicular to the horizontal plane, and the thickness dimension is significantly smaller than the length dimension of the evaporator 150.
  • the second lateral side wall of the cooling chamber 133 (that is, the second lateral side wall 1341 of the casing 134) is formed with a freezer compartment return air inlet 134a, so that the return air flow of the freezer compartment 131 can pass through the freezer under the drive of the blower 102.
  • the return air path 170 enters the cooling chamber 133 through the return air inlet 134a
  • the hair dryer 150 is cooled.
  • the freezer compartment return air path 170 is defined by the gap between the lateral second side wall of the freezer liner 130 and the storage container 1311.
  • the front side of the cooling chamber 133 (that is, the front wall of the housing 134) is formed with a front return air inlet communicating with the freezing chamber 131, and external debris can easily enter the cooling chamber 133 through the front return air inlet.
  • the defrosting water may flow out from the front return air inlet.
  • the freezer compartment door 132 is opened, a large amount of warm moisture will enter the cooling chamber 133 from the front return air inlet, increasing the condensation. The amount of frost.
  • the blower 102 is arranged on the lateral side of the evaporator 150 (for example, the lateral first side), and a freezer compartment return air inlet communicating with the freezer compartment 131 is formed on the lateral second side wall of the cooling compartment 133 134a, can effectively solve the above-mentioned problem, and make the appearance of the front side of the cooling chamber 133 more concise, and the user has a better visual experience when opening the freezing chamber door 132.
  • the temperature-variable inner liner of the refrigerator 100 is located above the freezing inner liner 130, and the air-supply duct for the temperature-changing chamber is arranged on the outside of the lateral first side wall of the temperature-variable inner liner, and is located in the foaming layer, and has at least one second Air outlet.
  • a temperature-variable damper 103 is provided at the top of the air supply duct 160 of the freezer compartment, and the temperature-variable damper 103 can be opened or closed in a controlled manner so as to connect the air supply duct of the variable greenhouse with the air duct 160 of the freezer compartment.
  • the area corresponding to the horizontal second side wall 1301 of the refrigerating liner 130 and the evaporator 150 is formed with a variable greenhouse return air inlet 130c, and the variable greenhouse return air duct is arranged on the horizontal second side wall of the variable temperature liner It extends downward to communicate with the return air inlet 130c of the variable temperature house.
  • the second lateral side wall of the cooling chamber 133 (that is, the second lateral side wall 1341 of the housing 134) and the second lateral side wall 1301 of the freezing liner 130 are located on the same lateral side, and accordingly, the temperature changing room
  • the air inlet 130c and the return air inlet 134a of the freezer compartment are located on the same side horizontally, and the return air flow entering through the return air inlet 130c of the variable temperature chamber enters the cooling chamber 133 through the return air inlet 134a of the freezer and is cooled by the evaporator 150.
  • the return air flow of the variable room 121 flows through the variable room return air duct to the variable room return air inlet 130c, and enters the cooling room through the variable room return air inlet 130c and the freezer room return air inlet 134a.
  • the inside of the chamber 133 is cooled by the evaporator 150.
  • the freezing chamber 131 and the temperature-changing chamber 121 are all air-cooled, and the refrigerating chamber 11 may adopt a direct cooling method.
  • a refrigerating evaporator (not shown) is arranged in the refrigerating liner, and the refrigerating evaporator directly cools the refrigerating chamber 11.
  • the section of the bottom wall of the freezing liner 130 directly below the evaporator 150 is marked as the water receiving section.
  • the water receiving section is roughly funnel-shaped and used to receive the defrosting water from the evaporator 150, and the lowest water receiving section.
  • the point is formed with the aforementioned drain port 130b, the drain port 130b is connected with a drain pipe 140, and the defrosting water passes through the drain
  • the pipe 140 is transported to an evaporating dish (not labeled) located in the compressor cabin.
  • the evaporating dish is located below the condenser 105, and the defrosting water in the evaporating dish absorbs the heat of the condenser 105 to evaporate.
  • Fig. 5 is a partial exploded view of the refrigerator 100 according to an embodiment of the present invention
  • Fig. 6 is a schematic diagram of the outer shell of the refrigerator 100 according to an embodiment of the present invention
  • Fig. 7 is an enlarged view of area A in Fig. 6.
  • a compressor 104, a condenser 105, and a heat dissipation fan 106 are arranged in a compressor compartment defined in the box.
  • the heat dissipation fan 106 is configured to cause the airflow entering the compressor compartment to pass through the condenser 105 and the compressor in sequence. 104, then flow out of the compressor room.
  • the cooling fan 106 may be an axial fan.
  • the compressor 104, the radiator fan 106 and the condenser 105 are arranged in the compressor cabin at intervals along the transverse direction.
  • the section 1162 of the rear wall of the compressor cabin corresponding to the compressor 104 is formed with at least one rear air outlet 1162a.
  • the applicant of the present invention creatively realized that the heat exchange area of the condenser 105 and the ventilation area of the compressor cabin are not as large as possible.
  • the conventional design scheme of increasing the heat exchange area of the condenser 105 and the ventilation area of the compressor cabin it will bring The uneven heat dissipation of the condenser 105 has an adverse effect on the refrigeration system of the refrigerator 100.
  • the applicant of the present invention jumped out of the conventional design thinking and creatively proposed a new solution different from the conventional design.
  • the bottom wall of the box defines a bottom air inlet 110a adjacent to the condenser 105 and adjacent to the compressor arranged horizontally.
  • the bottom air outlet 110b of 104 completes the circulation of the heat dissipation airflow at the bottom of the refrigerator 100, and makes full use of the space between the refrigerator 100 and the supporting surface. There is no need to increase the distance between the rear wall of the refrigerator 100 and the cabinet, which reduces the refrigerator. While 100 occupies space, it ensures good heat dissipation in the compressor cabin, which fundamentally solves the pain point of the inability to balance the heat dissipation and space occupation of the compressor cabin of the embedded refrigerator 100, which is of particular significance.
  • the heat dissipation fan 106 is configured to cause the ambient air around the bottom air inlet 110a to enter the compressor cabin from the bottom air inlet 110a, and pass through the condenser 105 and the compressor 104 in turn, and then flow from the bottom air outlet 110b to the outside environment to prevent the compressor 104 and condenser 105 dissipate heat.
  • the surface temperature of the condenser 105 is generally lower than the surface temperature of the compressor 104. Therefore, in the above process, the outside air is used to cool the condenser 105 and then the compressor 104.
  • the plate section 1161 of the back plate 116 facing the condenser 105 is a continuous plate surface, that is, the plate of the back plate 116 facing the condenser 105 There are no heat dissipation holes on section 1161.
  • the applicant of the present invention creatively realized that even without increasing the heat exchange area of the condenser 105, reducing the ventilation area of the compressor cabin in an abnormal state can form a better heat dissipation airflow path, and still achieve better heat dissipation. effect.
  • the applicant broke through the conventional design ideas and designed the back wall (back plate 116) of the compressor cabin (the back plate 116) and the plate section 1161 corresponding to the condenser 105 as a continuous plate surface to seal the heat dissipation airflow entering the compressor cabin in the condensation
  • the ambient air entering from the bottom air inlet 110a is more concentrated at the condenser 105, which ensures the uniformity of the heat exchange of each condenser section of the condenser 105, and facilitates the formation of a better heat dissipation airflow path. It can achieve better heat dissipation effect.
  • the plate section 1161 of the back plate 116 facing the condenser 105 is a continuous plate surface and does not have air inlet holes, it avoids that the air outlet and inlet air in the conventional design are concentrated at the rear of the compressor room and cause blowout from the compressor room.
  • the hot air enters the compressor cabin again without being cooled by the ambient air in time, which adversely affects the heat exchange of the condenser 105, thereby ensuring the heat exchange efficiency of the condenser 105.
  • both lateral side walls of the compressor compartment are formed with a side vent hole 119a
  • the side vent hole 119a may be covered with a vent cover 108
  • the vent cover 108 is formed with grille-type ventilation holes; refrigerator 100
  • the housing includes two lateral side panels 111, the two box side panels 111 extend vertically to form two side walls of the refrigerator 100, and the two box side panels 111 respectively form a corresponding side vent hole 119a communicates with the side opening 111a, so that the heat dissipation airflow flows to the outside of the refrigerator 100. Therefore, the heat dissipation path is further increased to ensure the heat dissipation effect of the compressor cabin.
  • the condenser 105 includes a horizontally extending first straight section 1051, a second straight section 1052 extending back and forth, and a transitional curved section (not numbered) connecting the first straight section 1051 and the second straight section 1052, thereby An L-shaped condenser 105 with an appropriate heat exchange area is formed.
  • the plate section 1161 of the back wall (back plate 116) of the aforementioned compressor cabin corresponding to the condenser 105 is also the plate section 1161 of the back plate 116 facing the first straight section 1051.
  • the ambient air entering from the side vent 119a directly exchanges heat with the second straight section 1052, and the ambient air entering from the bottom air inlet 110a directly exchanges heat with the first straight section 1051, thereby further entering the environment in the compressor cabin More air is concentrated at the condenser 105 to ensure that the entire condenser 105 Uniformity of heat dissipation.
  • the outer shell of the box body further includes a bottom plate, a supporting plate 112, two side plates 119 and a back plate 116 extending vertically.
  • the pallet 112 constitutes the bottom wall of the compressor cabin and is used to carry the compressor 104, the heat dissipation fan 106 and the condenser 105.
  • the two side plates 119 respectively constitute the two lateral side walls of the compressor cabin, and the vertically extending back plate 116 constitutes the compressor cabin.
  • the rear wall of the cabin is a bottom plate, a supporting plate 112, two side plates 119 and a back plate 116 extending vertically.
  • the bottom plate includes a bottom horizontal section 113 located on the front side of the bottom and a bending section bent and extending backward and upward from the rear end of the bottom horizontal section 113.
  • the bending section extends above the pallet 112
  • the compressor 104, the radiating fan 106 and the condenser 105 are arranged on the supporting plate 112 in a lateral direction at intervals, and are located in the space defined by the supporting plate 112, the two side plates 119, the back plate and the bending section.
  • the pallet 112 and the bottom horizontal section 113 together form the bottom wall of the box.
  • the pallet 112 and the bottom horizontal section 113 are spaced apart, so as to utilize the space between the front end of the pallet 112 and the rear end of the bottom horizontal section 113 to form a connection with the outside.
  • the bent section has an inclined section 114 located above the bottom air inlet 110a and the bottom air outlet 110b.
  • the bending section may include a vertical section 1131, an inclined section 114, and a top horizontal section 115.
  • the vertical section 1131 extends upward from the rear end of the bottom horizontal section 113, and the inclined section 114 is formed from the vertical
  • the upper end of the section 1131 extends backward and upward to above the pallet 112.
  • the top horizontal section 115 extends from the rear end of the inclined section 114 to the back plate to cover the compressor 104, the cooling fan 106 and the condenser 105.
  • the top horizontal section 115 extends from the rear end of the inclined section 114 to the back plate to cover the compressor 104, the cooling fan 106 and the condenser 105.
  • the refrigerator 100 further includes a partition 117.
  • the partition 117 is arranged at the rear of the bending section, the front of which is connected to the rear end of the bottom horizontal section 113, and the rear of which is connected to the front end of the pallet 112. In order to divide the bottom opening into a bottom air inlet 110a and a bottom air outlet 110b arranged horizontally.
  • the bottom air inlet 110a and the bottom air outlet 110b of this embodiment are defined by the partition 117, the supporting plate 112, and the bottom horizontal section 113, thereby forming a groove-shaped bottom air inlet with a larger opening size 110a and the bottom air outlet 110b increase the air inlet and outlet areas, reduce the air inlet resistance, and make the air flow smoother, and the manufacturing process is simpler, so that the overall stability of the compressor cabin is stronger.
  • the slope structure of the inclined section 114 can guide and rectify the airflow of the inlet air, so that the airflow entering from the bottom air inlet 110a flows to the condenser 105 more concentratedly, avoiding the excessive dispersion of the airflow
  • the condenser 105 cannot pass more, thereby further ensuring the heat dissipation effect of the condenser 105;
  • the slope of the inclined section 114 guides the airflow from the bottom air outlet 110b to the front side of the ground air outlet, so that the air outlet The wind flows out more smoothly Compress the outside of the cabin, which further improves the smoothness of air flow.
  • the angle between the inclined section 114 and the horizontal plane is less than 45°.
  • the inclined section 114 has a better guiding and rectifying effect on the airflow.
  • the inventor of the present application creatively realized that the slope of the inclined section 114 has a better suppression effect on airflow noise.
  • the compressor cabin with the aforementioned specially designed inclined section 114 The noise can be reduced by more than 0.65 decibels.
  • the bottom of the cabinet generally has a supporting plate with a generally flat structure, and the compressor 104 is arranged inside the supporting plate.
  • the vibration generated during the operation of the compressor 104 has a greater impact on the bottom of the cabinet.
  • the bottom of the box is constructed as a three-dimensional structure with a special structure of the bottom plate and the support plate 112, which provides an independent three-dimensional space for the arrangement of the compressor 104, and the support plate 112 is used to carry the compressor 104. The impact of the vibration of the compressor 104 on other components at the bottom of the box is reduced.
  • the bottom of the refrigerator 100 has a compact structure and a reasonable layout, which reduces the overall volume of the refrigerator 100, and at the same time makes full use of the space at the bottom of the refrigerator 100 to ensure the compressor 104 and The heat dissipation efficiency of the condenser 105.
  • the upper end of the condenser 105 is provided with a windshield 1056, and the windshield 1056 may be a windshield sponge, filling the space between the upper end of the condenser 105 and the bending section, that is, the windshield 1056 covers the upper end of the first straight section 1051, the second straight section 1052 and the transition section, and the upper end of the windshield 1056 should abut the bending section to seal the upper end of the condenser 105 so as not to enter the part of the compressor cabin
  • the air passes through the space between the upper end of the condenser 105 and the bending section without passing through the condenser 105, so that the air entering the compressor cabin passes through the condenser 105 for heat exchange as much as possible, and further improves the heat dissipation of the condenser 105 effect.
  • the refrigerator 100 further includes a windshield 107 extending forward and backward.
  • the windshield 107 is located between the bottom air inlet 110a and the bottom air outlet 110b, and extends from the lower surface of the bottom horizontal section 113 to the lower surface of the pallet 112, and
  • the lower end of the partition 117 is connected to completely isolate the bottom air inlet 110a and the bottom air outlet 110b by the windshield 107 and the partition 117, so that when the refrigerator 100 is placed on a supporting surface, the bottom wall of the box is horizontally separated from the support
  • the space between the surfaces allows external air to enter the compressor cabin through the bottom air inlet 110a on the lateral side of the windshield 107 under the action of the heat dissipation fan, and then flow through the condenser 105, the compressor 104, and finally from the block
  • the bottom air outlet 110b on the other side of the wind bar 107 flows out, thereby completely isolating the bottom air inlet 110a and the bottom air outlet 110b, ensuring that the outside air entering the condens

Abstract

送风机(102)位于蒸发器(150)横向侧方下游的冰箱(100),包括限定有冷却室(133)和至少一个储物间室的箱体,设置于冷却室(133)内的蒸发器(150),和设置于蒸发器(150)的横向侧方并在气流路径上位于蒸发器(150)下游的送风机(102),送风机(102)不会占用蒸发器(150)的后方或前方的空间,减小了冷却室(133)前后方向所占的空间,保证了冷却室(133)的后方与箱体的外壳之间的发泡料的厚度。

Description

送风机位于蒸发器横向侧方下游的冰箱
技术领域
本发明涉及家电技术领域,特别是涉及一种送风机位于蒸发器横向侧方 下游的冰箱。 背景技术
现有的冰箱中, 促使由蒸发器冷却后的气流向储物间室流动的风机一般 在前后方向上设置于蒸发器的下游, 风机占用了冰箱前后方向上的空间, 使 得蒸发器室的后方与箱体的外壳之间的距离变小, 带来发泡料厚度的降低, 对冰箱的制冷性能、 能耗都产生不利的影响。 发明内容
鉴于上述问题, 本发明的一个目的是要提供一种克服上述问题或者至少 部分地解决上述问题的冰箱。
本发明一个进一步的目的是提升压机舱的散热效果。
本发明提供了一种冰箱, 包括:
箱体, 其内限定有冷却室和至少一个储物间室;
蒸发器, 设置于冷却室内, 配置为冷却进入冷却室内的气流, 以形成冷 却气流;
送风机, 位于蒸发器的横向侧方, 并在气流路径上位于蒸发器的下游, 配置为促使至少部分冷却气流向至少一个储物间室内流动。
可选地, 箱体包括:
冷冻内胆, 其内下方限定有冷却室, 储物间室包括由冷冻内胆限定且位 于冷却室上方的冷冻室;
冷冻室送风风道, 位于冷冻内胆的横向第一侧壁内侧, 形成有连通冷冻 室的至少一个第一送风出口,送风机配置为促使至少部分冷却气流经冷冻室 送风风道向冷冻室内流动;
送风机设置于冷却室内, 并位于蒸发器的横向第一侧, 配置为促使至少 部分冷却气流经冷冻室送风风道向冷冻室内流动。
可选地, 冷却室的横向第二侧壁形成有冷冻室回风入口, 以在送风机的 驱动下使冷冻室的回风气流通过冷冻室回风入口进入冷却室内由蒸发器进 行冷却。
可选地, 箱体还包括:
变温内胆, 位于冷冻内胆的上方, 储物间室包括由变温内胆限定的变温 室, 冷冻内胆的横向第二侧壁与蒸发器对应的区域形成有变温室回风入口; 变温室送风风道, 设置于变温内胆的横向第一侧壁外侧, 通过变温风门 受控地与冷冻室送风风道连通, 具有与变温室连通的至少一个第二送风出
P;
变温室回风风道, 设置于变温内胆的横向第二侧壁外侧, 并向下延伸至 与变温室回风入口连通, 以在送风机的驱动下使变温室的回风气流通过变温 室回风风道和变温室回风入口进入冷却室内由蒸发器进行冷却。
可选地, 蒸发器横置于冷却室内。
可选地, 箱体内还限定有压机舱, 压机舱位于冷却室的后下方。
可选地, 冰箱还包括:
横向依次布置于压机舱内的压缩机、 散热风机和冷凝器;
箱体的底壁限定有横向排布的临近冷凝器的底进风口和临近压缩机的 底出风口;
散热风机还配置为从底进风口吸入环境空气并促使空气先经过冷凝器, 再经过压缩机, 之后从底出风口流动至周围环境中。
可选地, 箱体还包括:
底板, 其包括位于底部前侧的底部水平区段和从底部水平区段的后端向 后上方弯折延伸的弯折区段, 弯折区段包括位于底进风口和底出风口上方的 倾斜区段;
托板, 位于底部水平区段的后方, 且弯折区段延伸至托板的上方, 托板 与底部水平区段构成箱体的底壁, 且与底部水平区段间隔分布, 以利用底部 水平区段的后端与托板的前端限定出底开口;
两个侧板, 由托板的横向两侧分别向上延伸至弯折区段的横向两侧, 构 成压机舱的横向两个侧壁;
竖向延伸的背板, 由托板的后端向上延伸至弯折区段的后端, 构成压机 舱的后壁;
压缩机、散热风机及冷凝器沿横向依次间隔布置于托板上,并位于托板、 两个侧板、 背板及弯折区段限定的空间中; 箱体还包括分隔件, 设置于弯折区段的后方, 其前部与底部水平区段的 后端连接, 其后部与托板的前端连接, 设置为将底开口分隔为横向排布的底 进风口和底出风口。
可选地, 箱体还包括:
前后延伸的挡风条, 位于底进风口和底出风口之间, 由底部水平区段的 下表面延伸至托板的下表面, 并连接分隔件的下端, 以利用挡风条和分隔件 将底进风口和底出风口完全隔离, 从而在冰箱置于一支撑面时, 横向分隔箱 体的底壁与支撑面之间的空间, 以允许外部空气在散热风机的作用下经位于 挡风条横向一侧的底进风口进入压机舱, 并依次流经冷凝器、 压缩机, 最后 从位于挡风条横向另一侧的底出风口流出。
可选地, 背板面向冷凝器的板段为连续板面。
本发明的冰箱, 送风机位于蒸发器的横向侧方, 不会占用蒸发器的后方 或前方的空间, 减小了冷却室前后方向所占的空间, 保证冷却室的后方与箱 体的外壳之间的发泡料的厚度; 另外, 送风机在气流路径上位于蒸发器的下 游, 加快了冷却气流向储物间室的流动, 可提升制冷速度。
进一步地, 本发明的冰箱中, 冷冻内胆内的下方空间限定出冷却室, 冷 冻室位于冷却室的上方, 压机舱位于冷却室的后下方, 冷冻室无需再为压机 舱让位, 增大冷冻室的存储容积, 使得冷冻室为一个矩形空间, 便于放置体 积较大不易分割的物品; 另外, 送风机设置于蒸发器的横向侧方, 避免了送 风机占用蒸发器的后方或前方空间, 减少冷却室前后方向所占的空间, 增大 冷却室的后下方与压机舱之间的间隔空间, 增大冷却室的后下方与压机舱之 间的发泡料厚度, 从而可保证冰箱的制冷性能, 降低能耗。
更进一步地, 本发明的冰箱中, 箱体底部由特殊结构的底板和托板构造 为一个立体结构,为压缩机布置提供独立的立体空间,利用托板承载压缩机, 减小压缩机振动对箱体底部其他部件的影响。 另外, 倾斜区段的斜坡结构能 够对进风气流进行引导、 整流, 使得由底进风口进入的气流更加集中地流向 冷凝器, 避免了气流过于分散而无法更多地通过冷凝器, 由此进一步保证了 冷凝器的散热效果; 再者通过将箱体设计为如上巧妙的特殊结构, 使得冰箱 底部的结构紧凑、 布局合理, 减小了冰箱的整体体积, 同时充分利用了冰箱 底部的空间, 保证了压缩机和冷凝器的散热效率。
根据下文结合附图对本发明具体实施例的详细描述, 本领域技术人员将 会更加明了本发明的上述以及其他目的、 优点和特征。 附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具 体实施例。 附图中相同的附图标记标示了相同或类似的部件或部分。 本领域 技术人员应该理解, 这些附图未必是按比例绘制的。 附图中:
图 1是根据本发明一个实施例的冰箱的一个方向的示意性结构图; 图 2是根据本发明一个实施例的冰箱的另一方向的示意性结构图; 图 3是根据本发明一个实施例的冰箱的第一局部示意图;
图 4是根据本发明一个实施例的冰箱的罩壳的示意性结构图;
图 5是根据本发明一个实施例的冰箱的局部分解图;
图 6是根据本发明一个实施例的冰箱的外壳的示意图; 以及
图 7是图 6中区域 A的放大图。 具体实施方式
本实施例首先提供了一种冰箱 100, 下面参照图 1至图 7来描述本发明 实施例的冰箱 100, 在下文描述中, “前” 、 “后” 、 “上” 、 “下”等指 示的方位或位置关系为基于冰箱 100本身为参考的方位, “前” 、 “后”为 如图 1、 图 5和图 7所指示的方向, 如图 2所示, “横向”是指与冰箱 100 宽度方向平行的方向。
图 1是根据本发明一个实施例的冰箱 100的一个方向的示意性结构图, 图 2是根据本发明一个实施例的冰箱 100的另一方向的示意性结构图。
如图 1所示, 冰箱 100—般性地可包括箱体, 箱体包括外壳和设置在外 壳内侧的储物内胆, 外壳与储物内胆之间的空间中填充有保温材料(形成发 泡层) , 储物内胆中限定有至少一个储物间室, 储物内胆一般可包括冷冻内 胆、 冷藏内胆、 变温内胆等, 储物间室可包括由冷藏内胆限定的冷藏室 11、 由变温内胆限定的变温室 121和由冷冻内胆限定的冷冻室 131。 储物内胆的 前侧还设置有门体, 以打开或关闭储物间室, 例如, 冷藏内胆的前侧设置有 冷藏室门体 12, 变温内胆的前侧设置有变温室门体 122, 冷冻内胆的前侧设 置有冷冻室门体 132。
冷冻室 131中布置有上下分布的多个储物容器 1311, 如图 1所示,三个 储物容器 1311上下分布。 如本领域技术人员可意识到的, 本实施例的冰箱 100还可包括蒸发器 150、 送风机 102、 压缩机 104、 冷凝器 105以及节流元件 (未示出) 等。 蒸 发器 150位于冷却室 133中, 经由制冷剂管路与压缩机 104、 冷凝器 105、 节流元件连接, 构成制冷循环回路, 在压缩机 104启动时降温, 以对流经其 的空气进行冷却形成冷却气流。 其中, 送风机 102可为离心风机、 贯流风机 或轴流风机。
特别地, 本实施例中, 送风机 102位于蒸发器 150的横向侧方, 并在气 流路径上位于蒸发器 150的下游, 配置为促使至少部分冷却气流向至少一个 储物间室内流动。
本实施例的冰箱 100中, 送风机 102位于蒸发器 150的横向侧方, 不会 占用蒸发器 150的后方或前方的空间,减小了冷却室 133前后方向所占的空 间, 保证冷却室 133的后方与箱体的外壳之间的发泡料的厚度。
在一些实施例中, 如图 1所示, 冷却室 133可由冷冻内胆内最下方的空 间进行限定, 也即是说, 冷冻内胆内的下方限定有前述的冷却室 133 , 而冷 冻内胆所限定的冷冻室 131则位于冷却室 133的上方。
送风机 102设置于冷却室 133中, 并位于蒸发器 150的横向第一侧, 配 置为促使至少部分冷却气流经冷冻室送风风道 160向冷冻室 131内流动。
传统冰箱 100中, 冷却室 133—般处于箱体的后部空间中, 冷冻室 131 一般处于箱体的最下方, 压机舱处于冷冻室 131的后下方, 冷冻室 131不可 避免的要做成为压机舱让位的异形空间, 减小了冷冻室 131的存储容积, 并 且还带来了以下多个方面的问题。 一方面, 冷冻室 131所处位置较低, 用户 需要大幅度弯腰或蹲下才能对冷冻室 131进行取放物品的操作, 不便于用户 使用, 尤其不方便老人使用; 另一方面, 由于冷冻室 131进深深度减小, 为 保证冷冻室 131的存储容积, 需要增加冷冻室 131高度方向的空间, 用户在 向冷冻室 131存放物品时需要将物品在高度方向上层叠堆放, 不方便用户查 找物品, 而且位于冷冻室 131底部的物品容易被遮挡, 使得用户不容易发现 而造成遗忘, 导致物品变质、 浪费; 再者, 由于冷冻室 131为异形, 不是一 个矩形空间, 对于一些体积较大且不易分割的物品, 不便放置于冷冻室 131 中。
而本实施例中, 冷冻内胆内的下方空间限定出冷却室 133, 使得冷却室
133占用箱体内的下部空间, 也即是冷却室 133底置, 冷冻室 131位于冷却 室 133的上方, 抬高了冷冻室 131, 降低用户对冷冻室 131进行取放物品操 作时的弯腰程度, 提升用户的使用体验。 同时, 箱体在冷却室 133的后下方 可限定出压机舱, 也即是说, 压机舱位于冷却室 133的后下方, 冷冻室 131 无需再为压机舱让位, 保证冷冻室 131的存储容积, 使得冷冻室 131为一个 矩形空间, 从而可将物品由叠式存放变为平铺展开式存放, 便于用户查找物 品, 节省用户时间和精力; 同时, 也便于放置体积较大不易分割的物品, 解 决无法在冷冻室 131放置较大物品的痛点。
针对冷却室 133位于箱体内的下部空间中,压机舱位于冷却室 133的后 下方的实施例中, 冷却室 133的后下方与压机舱之间发泡料的厚度会直接影 响到冰箱的制冷性能, 申请人在之前申请的专利中, 将送风机 102设置在蒸 发器 150的后方, 该种设计方式增加了冷却室 133前后方向的尺寸, 冷却室 133后方与压机舱之间的间隔空间较小, 降低了冷却室 133与压机舱之间的 发泡料的厚度, 对冰箱 100的制冷性能、 能耗等都产生一定的影响。
送风机 102位于蒸发器 150的横向第一侧,相应地,冷冻室送风风道 160 位于冷冻内胆的横向第一侧壁内侧, 形成有连通冷冻室 131的至少一个第一 送风出口, 送风机 102配置为促使至少部分冷却气流经冷冻室送风风道 160 向冷冻室 131流动。
图 3是根据本发明一个实施例的冰箱 100的第一局部示意图, 图 4是根 据本发明一个实施例的冰箱 100的罩壳 134的示意性结构图。
冰箱 100还包括设置于冷冻内胆 130中的罩壳 134, 罩壳 134罩设在蒸 发器 150上, 罩壳 134的横向第一侧可敞开, 送风机 102位于蒸发器 150的 横向第一侧, 通过罩壳 134横向第一侧的敞开处与冷冻室送风风道 160的连 接, 罩壳 134与冷冻内胆 130的底壁和冷冻内胆 130的横向第一侧壁限定出 前述的冷却室 133。
蒸发器 150整体可呈扁平立方体状横置于冷却室中, 也即蒸发器 150的 长、 宽面平行于水平面, 厚度面垂直于水平面放置, 而且厚度尺寸明显小于 蒸发器 150的长度尺寸。 通过将蒸发器 150横置于冷却室 133中, 避免蒸发 器 150占用更多的空间, 保证冷却室 133上部的冷冻室 131的存储容积。
冷却室 133的横向第二侧壁(也即是罩壳 134的横向第二侧壁 1341)形 成有冷冻室回风入口 134a,以在送风机 102的驱动下使冷冻室 131的回风气 流通过冷冻室回风风路 170经冷冻室回风入口 134a进入冷却室 133内由蒸 发器 150进行冷却。冷冻室回风风路 170由冷冻内胆 130的横向第二侧壁与 储物容器 1311之间的间隙限定而成。
申请人之前申请的专利中,冷却室 133的前侧(也即是罩壳 134的前壁) 形成有与冷冻室 131连通的前回风入口, 外部杂物易通过前回风入口进入到 冷却室 133中,而且蒸发器 150化霜过程中,化霜水可能从前回风入口流出, 另外, 冷冻室门体 132打开时, 会有大量温暖湿气从前回风入口进入冷却室 133中, 增大了结霜量。 而本实施例中, 通过在蒸发器 150的横向侧方 (例 如, 横向第一侧) 布置送风机 102, 并在冷却室 133的横向第二侧壁形成与 冷冻室 131连通的冷冻室回风入口 134a, 可有效解决上述问题, 并且使得冷 却室 133前侧的外观更加简洁,用户打开冷冻室门体 132时的视觉感受更好。
冰箱 100的变温内胆位于冷冻内胆 130的上方,变温室送风风道设置于 变温内胆的横向第一侧壁外侧, 位于发泡层中, 具有与变温室 121连通的至 少一个第二送风出口。 冷冻室送风风道 160的顶端设置有变温风门 103, 变 温风门 103可受控打开或关闭, 以将变温室送风风道与冷冻室送风风道 160 连通。
如图 3所示, 冷冻内胆 130的横向第二侧壁 1301与蒸发器 150对应的 区域形成有变温室回风入口 130c,变温室回风风道设置于变温内胆的横向第 二侧壁外侧, 并向下延伸至与变温室回风入口 130c连通。
显然地, 冷却室 133的横向第二侧壁(也即是罩壳 134的横向第二侧壁 1341) 与冷冻内胆 130的横向第二侧壁 1301位于横向同一侧, 相应地, 变 温室回风入口 130c与冷冻室回风入口 134a位于横向同一侧, 通过变温室回 风入口 130c进入的回风气流,再经过冷冻室回风入口 134a进入到冷却室 133 中由蒸发器 150冷却。 具体地, 在送风机 102的驱动下, 变温室 121的回风 气流通过变温室回风风道流动至变温室回风入口 130c,并通过变温室回风入 口 130c和冷冻室回风入口 134a进入冷却室 133内由蒸发器 150进行冷却。
上述冷冻室 131和变温室 121均采用风冷的方式, 而冷藏室 11可采用 直冷方式, 冷藏内胆中配置有冷藏蒸发器(未示出) , 冷藏蒸发器直接冷却 冷藏室 11。
冷冻内胆 130的底壁位于蒸发器 150正下方的区段记为接水区段,接水 区段大致呈漏斗状, 用于承接蒸发器 150的化霜水, 且接水区段的最低点形 成有前述的排水口 130b, 排水口 130b连接有排水管 140, 化霜水通过排水 管 140被输送到位于压机舱内的蒸发皿(未标号) 中, 一般地, 蒸发皿位于 冷凝器 105的下方, 蒸发皿中的化霜水吸收冷凝器 105的热量蒸发。
图 5是根据本发明一个实施例的冰箱 100的局部分解图, 图 6是根据本 发明一个实施例的冰箱 100的外壳的示意图,图 7是图 6中区域 A的放大图。
一般地, 如图 5所示, 箱体内限定的压机舱中配置有压缩机 104、 冷凝 器 105和散热风机 106, 散热风机 106配置为促使进入压机舱内的气流依次 经过冷凝器 105、 压缩机 104, 之后再流出压机舱。 其中, 散热风机 106可 为轴流风机。 本实施例中, 压缩机 104、 散热风机 106和冷凝器 105沿横向 依次间隔布置于压机舱内。
在一些实施例中, 压机舱的后壁与压缩机 104对应的区段 1162形成有 至少一个后出风孔 1162a。
实际上, 在本发明之前, 本领域技术人员通常的设计思路都是在压机舱 的后壁开设面向冷凝器 105 的后进风孔和开设面向压缩机 104 的后出风孔 1162a, 在压机舱的后部完成散热气流的循环; 或者在压机舱的前壁、 后壁 分别形成通风孔, 形成前后方向的散热循环风路。 在面对提升压机舱散热效 果的问题时, 本领域技术人员通常是增加压机舱后壁的后进风孔、 后出风孔 1162a的数量扩大通风面积, 或者增加冷凝器 105的换热面积, 例如采用换 热面积更大的 U型冷凝器。
而本发明申请人创造性地认识到冷凝器 105的换热面积和压机舱的通风 面积并不是越大越好,在增加冷凝器 105换热面积和压机舱通风面积的常规 设计方案中, 会带来冷凝器 105散热不均匀的问题, 对冰箱 100的制冷系统 产生不利的影响。 为此, 本发明申请人跳出常规设计思路, 创造性地提出一 种不同于常规设计的新方案, 在箱体的底壁限定有横向排布的临近冷凝器 105的底进风口 110a和临近压缩机 104的底出风口 110b, 在冰箱 100的底 部完成散热气流的循环, 充分利用了冰箱 100与支撑面之间的这一空间, 无 需加大冰箱 100的后壁与橱柜的距离, 减小了冰箱 100所占空间的同时, 保 证压机舱良好的散热, 从根本上解决了嵌入式冰箱 100的压机舱散热和空间 占用之间无法得到平衡的痛点, 具有尤其重要的意义。
散热风机 106 配置为促使底进风口 110a周围的环境空气从底进风口 110a进入压机舱,并依次经过冷凝器 105、压缩机 104,之后从底出风口 110b 流动至外部环境中, 以对压缩机 104和冷凝器 105进行散热。 在蒸气压缩制冷循环中, 冷凝器 105的表面温度一般低于压缩机 104的 表面温度,故上述过程中,使外部空气先冷却冷凝器 105再冷却压缩机 104。
进一步特别地, 在本发明的优选实施例中, (压机舱的后壁) 背板 116 面向冷凝器 105的板段 1161为连续的板面, 也即是说背板 116面向冷凝器 105的板段 1161上没有散热孔。
本发明申请人创造性地认识到即使在不增加冷凝器 105换热面积的前提 下, 反常态的减小压机舱的通风面积, 能够形成更加良好的散热气流路径, 而且仍然可达到较好的散热效果。
本发明优选方案中, 申请人突破常规设计思路, 将压机舱的后壁(背板 116)与冷凝器 105对应的板段 1161设计为连续板面, 将进入压机舱内的散 热气流封闭在冷凝器 105处, 使得由底进风口 110a进入的环境空气更多地 集中在冷凝器 105处, 保证了冷凝器 105各个冷凝段的换热均匀性, 并且有 利于形成更加良好的散热气流路径, 同样可达到较好的散热效果。
并且, 由于背板 116面向冷凝器 105的板段 1161为连续板面, 不具有 进风孔,避免了常规设计中出风和进风都集中在压机舱的后部而导致从压机 舱吹出的热风未及时经环境空气冷却而再次进入到压机舱中, 对冷凝器 105 的换热产生不利影响, 由此保证了冷凝器 105的换热效率。
在一些实施例中, 压机舱的横向两个侧壁均形成有一个侧通风孔 119a, 侧通风孔 119a可覆盖有通风盖板 108,通风盖板 108形成有格栅式通风小孔; 冰箱 100的外壳包括横向上的两个箱体侧板 111, 两个箱体侧板 111竖向延 伸, 构成冰箱 100的两个侧壁, 两个箱体侧板 111分别形成一个与对应的侧 通风孔 119a连通的侧开口 111a, 以使得散热气流流动至冰箱 100的外部。 由此进一步增加散热路径, 保证压机舱的散热效果。
进一步特别地,冷凝器 105包括横向延伸的第一直段 1051、前后延伸的 第二直段 1052以及将第一直段 1051和第二直段 1052连接的过渡曲段 (未 标号) , 由此形成换热面积适当的 L型冷凝器 105。 前述压机舱的后壁 (背 板 116) 与冷凝器 105对应的板段 1161也即是背板 116面向第一直段 1051 的板段 1161。
由侧通风孔 119a进入的环境气流直接与第二直段 1052进行换热, 由底 进风口 110a进入的环境空气直接与第一直段 1051进行换热, 由此进一步将 进入压机舱内的环境空气更多地集中在冷凝器 105处,保证冷凝器 105整体 散热的均匀性。
进一步特别地, 箱体的外壳还包括底板、 托板 112、 两个侧板 119和一 个竖向延伸的背板 116。 托板 112构成压机舱的底壁, 用于承载压缩机 104、 散热风机 106和冷凝器 105 ,两个侧板 119分别构成压机舱的横向两个侧壁, 竖向延伸的背板 116构成压机舱的后壁。
进一步特别地,底板包括位于底部前侧的底部水平区段 113及从底部水 平区段 113的后端向后上方弯折延伸的弯折区段, 弯折区段延伸至托板 112 的上方, 压缩机 104、 散热风机 106及冷凝器 105沿横向依次间隔布置于托 板 112上, 并位于托板 112、 两个侧板 119、 背板及弯折区段限定的空间中。
托板 112与底部水平区段 113共同构成箱体的底壁, 托板 112与底部水 平区段 113间隔设置, 以利用托板 112的前端和底部水平区段 113的后端的 间隔空间形成与外部空间连通的底开口。 其中, 弯折区段具有位于底进风口 110a和底出风口 110b上方的倾斜区段 114。
具体地,弯折区段可包括竖直区段 1131、倾斜区段 114和顶部水平区段 115 , 竖直区段 1131由底部水平区段 113的后端向上延伸, 倾斜区段 114由 竖直区段 1131 的上端向后上方延伸至托板 112的上方, 顶部水平区段 115 由倾斜区段 114的后端向后方延伸至背板,以遮蔽压缩机 104、散热风机 106 及冷凝器 105的上方。
进一步特别地, 冰箱 100还包括分隔件 117, 分隔件 117设置于弯折区 段的后方, 其前部与底部水平区段 113的后端连接, 其后部与托板 112的前 端连接,设置为将底开口分隔为横向排布的底进风口 110a和底出风口 110b。
由前述可知,本实施例的底进风口 110a和底出风口 110b由分隔件 117、 托板 112、 底部水平区段 113限定而成, 由此形成了开口尺寸较大的槽形的 底进风口 110a和底出风口 110b, 增大了进风、 出风面积, 减小了进风阻力, 使得气流流通更加顺畅, 而且制造工艺更加简单, 使得压机舱的整体稳定性 更强。
特别地, 本发明申请人创造性认识到, 倾斜区段 114的斜坡结构能够对 进风气流进行引导、 整流, 使得由底进风口 110a进入的气流更加集中地流 向冷凝器 105 , 避免了气流过于分散而无法更多地通过冷凝器 105, 由此进 一步保证了冷凝器 105的散热效果; 同时, 倾斜区段 114的斜坡将底出风口 110b的出风气流向地出风口的前侧进行引导,使得出风气流更加顺畅地流出 压机舱外部, 由此进一步提升了气流流通的顺畅性。
进一步特别地, 在优选的实施例中, 倾斜区段 114与水平面的夹角小于 45 ° , 在该实施例中, 倾斜区段 114对气流的导向、 整流效果更好。
并且, 令人意想不到的是, 本申请发明人创造性地认识到倾斜区段 114 的斜坡对气流噪音起到了较好的抑制效果, 在样机试验中, 具有前述特别设 计的倾斜区段 114的压机舱的噪音可减小 0.65分贝以上。
另外,传统冰箱 100中,箱体的底部一般具有大致平板型结构的承载板, 压缩机 104设置于承载板内侧,压缩机 104运行中产生的振动对箱体底部影 响较大。而本实施例中,如前所述,箱体的底部由特殊结构的底板和托板 112 构造为一个立体结构,为压缩机 104布置提供独立的立体空间,利用托板 112 承载压缩机 104,减小压缩机 104振动对箱体底部的其他部件的影响。另外, 通过将箱体设计为如上巧妙的特殊结构, 使得冰箱 100底部的结构紧凑、 布 局合理,减小了冰箱 100的整体体积,同时充分利用了冰箱 100底部的空间, 保证了压缩机 104和冷凝器 105的散热效率。
进一步特别地, 冷凝器 105的上端设置有挡风件 1056, 挡风件 1056可 为挡风海绵, 填充冷凝器 105的上端与弯折区段之间的空间, 也即是说, 挡 风件 1056覆盖第一直段 1051、第二直段 1052及过渡曲段的上端,且挡风件 1056的上端应与弯折区段抵接, 以密封冷凝器 105的上端, 以免进入压机舱 的部分空气从冷凝器 105的上端与弯折区段之间的空间通过而不经过冷凝器 105 , 从而使得进入压机舱的空气尽可能多的通过冷凝器 105进行换热, 进 一步提升冷凝器 105的散热效果。
进一步特别地, 冰箱 100还包括前后延伸的挡风条 107, 挡风条 107位 于底进风口 110a和底出风口 110b之间, 由底部水平区段 113下表面延伸至 托板 112下表面,并连接分隔件 117的下端,以利用挡风条 107和分隔件 117 将底进风口 110a和底出风口 110b完全隔离, 从而在冰箱 100置于一支撑面 时, 横向分隔箱体的底壁与支撑面之间的空间, 以允许外部空气在散热风机 的作用下经位于挡风条 107横向一侧的底进风口 110a进入压机舱, 并依次 流经冷凝器 105 , 压缩机 104, 最后从位于挡风条 107横向另一侧的底出风 口 110b流出, 从而将底进风口 110a和底出风口 110b完全隔离, 保证进入 冷凝器 105处的外部空气与从压缩机 104处排出的散热空气不会串流,进一 步保证了散热效率。 至此, 本领域技术人员应认识到, 虽然本文已详尽示出和描述了本发明 的多个示例性实施例, 但是, 在不脱离本发明精神和范围的情况下, 仍可根 据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或 修改。 因此, 本发明的范围应被理解和认定为覆盖了所有这些其他变型或修 改。

Claims

权 利 要 求
1. 一种冰箱, 包括:
箱体, 其内限定有冷却室和至少一个储物间室;
蒸发器, 设置于所述冷却室内, 配置为冷却进入所述冷却室内的气流, 以形成冷却气流;
送风机, 位于所述蒸发器的横向侧方, 并在气流路径上位于所述蒸发器 的下游, 配置为促使至少部分所述冷却气流向至少一个所述储物间室内流 动。
2. 根据权利要求 1所述的冰箱, 所述箱体包括:
冷冻内胆, 其内下方限定有所述冷却室, 所述储物间室包括由所述冷冻 内胆限定且位于所述冷却室上方的冷冻室;
冷冻室送风风道, 位于所述冷冻内胆的横向第一侧壁内侧, 形成有连通 所述冷冻室的至少一个第一送风出口,所述送风机配置为促使至少部分所述 冷却气流经所述冷冻室送风风道向所述冷冻室内流动;
所述送风机设置于所述冷却室内, 并位于所述蒸发器的横向第一侧, 配 置为促使至少部分所述冷却气流经所述冷冻室送风风道向所述冷冻室内流 动。
3. 根据权利要求 2所述的冰箱, 其中
所述冷却室的横向第二侧壁形成有冷冻室回风入口, 以在所述送风机的 驱动下使所述冷冻室的回风气流通过所述冷冻室回风入口进入所述冷却室 内由所述蒸发器进行冷却。
4. 根据权利要求 2所述的冰箱, 所述箱体还包括:
变温内胆, 位于所述冷冻内胆的上方, 所述储物间室包括由所述变温内 胆限定的变温室, 所述冷冻内胆的横向第二侧壁与所述蒸发器对应的区域形 成有变温室回风入口;
变温室送风风道, 设置于所述变温内胆的横向第一侧壁外侧, 通过变温 风门受控地与所述冷冻室送风风道连通, 具有与所述变温室连通的至少一个 第二送风出口; 变温室回风风道, 设置于所述变温内胆的横向第二侧壁外侧, 并向下延 伸至与所述变温室回风入口连通, 以在所述送风机的驱动下使所述变温室的 回风气流通过所述变温室回风风道和所述变温室回风入口进入所述冷却室 内由所述蒸发器进行冷却。
5. 根据权利要求 1所述的冰箱, 其中
所述蒸发器横置于所述冷却室内。
6. 根据权利要求 1所述的冰箱, 其中
所述箱体内还限定有压机舱, 所述压机舱位于所述冷却室的后下方。
7. 根据权利要求 6所述的冰箱, 还包括:
横向依次布置于所述压机舱内的压缩机、 散热风机和冷凝器;
所述箱体的底壁限定有横向排布的临近所述冷凝器的底进风口和临近 所述压缩机的底出风口;
所述散热风机还配置为从所述底进风口吸入环境空气并促使空气先经 过所述冷凝器,再经过所述压缩机,之后从所述底出风口流动至周围环境中。
8. 根据权利要求 7所述的冰箱, 其中, 所述箱体还包括:
底板, 其包括位于底部前侧的底部水平区段和从所述底部水平区段的后 端向后上方弯折延伸的弯折区段, 所述弯折区段包括位于所述底进风口和所 述底出风口上方的倾斜区段;
托板, 位于所述底部水平区段的后方, 且所述弯折区段延伸至所述托板 的上方, 所述托板与所述底部水平区段构成所述箱体的底壁, 且与所述底部 水平区段间隔分布, 以利用所述底部水平区段的后端与所述托板的前端限定 出底开口;
两个侧板, 由所述托板的横向两侧分别向上延伸至所述弯折区段的横向 两侧, 构成所述压机舱的横向两个侧壁;
竖向延伸的背板, 由所述托板的后端向上延伸至所述弯折区段的后端, 构成所述压机舱的后壁;
所述压缩机、所述散热风机及所述冷凝器沿横向依次间隔布置于所述托 板上, 并位于所述托板、 两个所述侧板、 所述背板及所述弯折区段限定的空 间中;
所述箱体还包括分隔件, 设置于所述弯折区段的后方, 其前部与所述底 部水平区段的后端连接, 其后部与所述托板的前端连接, 设置为将所述底开 口分隔为横向排布的所述底进风口和所述底出风口。
9. 根据权利要求 8所述的冰箱, 其中, 所述箱体还包括:
前后延伸的挡风条, 位于所述底进风口和所述底出风口之间, 由所述底 部水平区段的下表面延伸至所述托板的下表面, 并连接所述分隔件的下端, 以利用所述挡风条和所述分隔件将所述底进风口和所述底出风口完全隔离, 从而在所述冰箱置于一支撑面时,横向分隔所述箱体的底壁与所述支撑面之 间的空间, 以允许外部空气在所述散热风机的作用下经位于所述挡风条横向 一侧的所述底进风口进入所述压机舱,并依次流经所述冷凝器、所述压缩机, 最后从位于所述挡风条横向另一侧的所述底出风口流出。
10. 根据权利要求 8所述的冰箱, 其中
所述背板面向所述冷凝器的板段为连续板面。
PCT/CN2020/075882 2019-02-26 2020-02-19 送风机位于蒸发器横向侧方下游的冰箱 WO2020173355A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2020229911A AU2020229911B2 (en) 2019-02-26 2020-02-19 Refrigerator having air blower located downstream of transverse side of evaporator
US17/434,342 US20220146179A1 (en) 2019-02-26 2020-02-19 Refrigerator having air blower located downstream of transverse side of evaporator
EP20763757.0A EP3926266B1 (en) 2019-02-26 2020-02-19 Refrigerator having blower transversely disposed besides and downstream of evaporator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910142755.8 2019-02-26
CN201910142755.8A CN111609610A (zh) 2019-02-26 2019-02-26 送风机位于蒸发器横向侧方下游的冰箱

Publications (1)

Publication Number Publication Date
WO2020173355A1 true WO2020173355A1 (zh) 2020-09-03

Family

ID=72193822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075882 WO2020173355A1 (zh) 2019-02-26 2020-02-19 送风机位于蒸发器横向侧方下游的冰箱

Country Status (5)

Country Link
US (1) US20220146179A1 (zh)
EP (1) EP3926266B1 (zh)
CN (1) CN111609610A (zh)
AU (1) AU2020229911B2 (zh)
WO (1) WO2020173355A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210099265A (ko) * 2020-02-04 2021-08-12 삼성전자주식회사 냉장고

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2068435A (en) * 1933-02-06 1937-01-19 Zero Plate Corp Refrigerator
FR2262913A1 (en) * 1974-03-04 1975-10-03 Tripier Jean Claude Controlled temp. proving cupboard for bakers dough - has adjustably spacable shelves with horizontal air passages
JPH08285439A (ja) * 1995-04-17 1996-11-01 Matsushita Refrig Co Ltd 冷蔵庫
JPH10246554A (ja) * 1997-03-04 1998-09-14 Sharp Corp 冷凍冷蔵庫
JP2000314580A (ja) * 1999-04-28 2000-11-14 Sanyo Electric Co Ltd 冷凍冷蔵庫
JP2003130531A (ja) * 2001-10-24 2003-05-08 Hitachi Ltd 冷蔵庫
JP2015001344A (ja) * 2013-06-17 2015-01-05 ハイアールアジアインターナショナル株式会社 冷蔵庫
CN210197826U (zh) * 2019-02-26 2020-03-27 青岛海尔股份有限公司 送风机位于蒸发器横向侧方下游的冰箱

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2669850A (en) * 1951-11-14 1954-02-23 Robert H Bishop Refrigerated open top compartment
US2767558A (en) * 1955-03-30 1956-10-23 Whirlpool Seeger Corp Air blast refrigerated cabinet
US3050956A (en) * 1960-07-08 1962-08-28 Gen Motors Corp Refrigerating apparatus with frost free compartment
US3287930A (en) * 1964-02-10 1966-11-29 Gen Motors Corp Refrigerating apparatus
US3299664A (en) * 1965-09-23 1967-01-24 John S Booth Forced draft refrigerator
US5715703A (en) * 1996-07-02 1998-02-10 Kopf; Bruce A. Multiple fan air distribution system for appliances
KR100286036B1 (ko) * 1997-12-29 2001-05-02 윤종용 냉장고
US6629429B1 (en) * 1999-03-12 2003-10-07 Matsushita Refrigeration Company Refrigerator
DE19933603A1 (de) * 1999-07-17 2001-01-18 Aeg Hausgeraete Gmbh Kühl- und/oder Gefriergerät für den Einbau in einen Möbelumbau mit einem Kompressor, einem Verflüssiger und einem Lüfter
CN2550700Y (zh) * 2002-06-20 2003-05-14 广东三洋科龙冷柜有限公司 冰箱、冷柜的风道结构
CA2445622C (en) * 2002-10-18 2011-06-28 Habco Beverage Systems Inc. Modular refrigeration unit and refrigerator
KR20060078134A (ko) * 2004-12-30 2006-07-05 삼성전자주식회사 냉장고
KR20070093634A (ko) * 2006-03-14 2007-09-19 엘지전자 주식회사 음료수용 냉장고의 열교환 장치
JP2009030864A (ja) * 2007-07-26 2009-02-12 Hitachi Appliances Inc 冷蔵庫
CN201706812U (zh) * 2010-06-25 2011-01-12 合肥美的荣事达电冰箱有限公司 一种冷凝器组合装置和具有它的冰箱
JP5588785B2 (ja) * 2010-08-20 2014-09-10 株式会社Afrex 食品保存庫

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2068435A (en) * 1933-02-06 1937-01-19 Zero Plate Corp Refrigerator
FR2262913A1 (en) * 1974-03-04 1975-10-03 Tripier Jean Claude Controlled temp. proving cupboard for bakers dough - has adjustably spacable shelves with horizontal air passages
JPH08285439A (ja) * 1995-04-17 1996-11-01 Matsushita Refrig Co Ltd 冷蔵庫
JPH10246554A (ja) * 1997-03-04 1998-09-14 Sharp Corp 冷凍冷蔵庫
JP2000314580A (ja) * 1999-04-28 2000-11-14 Sanyo Electric Co Ltd 冷凍冷蔵庫
JP2003130531A (ja) * 2001-10-24 2003-05-08 Hitachi Ltd 冷蔵庫
JP2015001344A (ja) * 2013-06-17 2015-01-05 ハイアールアジアインターナショナル株式会社 冷蔵庫
CN210197826U (zh) * 2019-02-26 2020-03-27 青岛海尔股份有限公司 送风机位于蒸发器横向侧方下游的冰箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3926266A4 *

Also Published As

Publication number Publication date
CN111609610A (zh) 2020-09-01
AU2020229911A1 (en) 2021-09-23
EP3926266A4 (en) 2022-04-20
US20220146179A1 (en) 2022-05-12
EP3926266A1 (en) 2021-12-22
AU2020229911B2 (en) 2022-12-01
EP3926266B1 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
WO2020173354A1 (zh) 具有带蜗壳离心风机的冰箱
WO2020173353A1 (zh) 大容积冰箱
WO2020173359A1 (zh) 具有分隔件的冰箱
AU2020228790B2 (en) Refrigerator with return air inlets formed in two sidewalls of cabinet
WO2019001557A1 (zh) 冷藏冷冻装置
WO2020173362A1 (zh) 一种具有双送风风机的冰箱及其送风控制方法
WO2020173363A1 (zh) 六门冰箱
WO2020173339A1 (zh) 冰箱
WO2020173355A1 (zh) 送风机位于蒸发器横向侧方下游的冰箱
CN209893744U (zh) 大容积冰箱
WO2022037720A1 (zh) 蒸发器底置式冰箱
WO2022037721A1 (zh) 一种增大底部储物空间容积的冰箱
WO2021082751A1 (zh) 蒸发器倾斜设置的冰箱
WO2020173356A1 (zh) 送风机位于蒸发器横向侧方上游的冰箱
CN210625065U (zh) 回风口形成于箱体侧壁的冰箱
CN209893740U (zh) 冰箱
CN209893743U (zh) 压机舱的后壁具有连续板面的冰箱
WO2020173357A1 (zh) 具有两段式蒸发器的冰箱
WO2020173337A1 (zh) 排水口设置有过滤板的冰箱
CN111947368B (zh) 冰箱
CN111947374A (zh) 冰箱
CN111609625A (zh) 冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020229911

Country of ref document: AU

Date of ref document: 20200219

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020763757

Country of ref document: EP

Effective date: 20210916