WO2020173337A1 - 排水口设置有过滤板的冰箱 - Google Patents

排水口设置有过滤板的冰箱 Download PDF

Info

Publication number
WO2020173337A1
WO2020173337A1 PCT/CN2020/075702 CN2020075702W WO2020173337A1 WO 2020173337 A1 WO2020173337 A1 WO 2020173337A1 CN 2020075702 W CN2020075702 W CN 2020075702W WO 2020173337 A1 WO2020173337 A1 WO 2020173337A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
evaporator
compressor
refrigerator
cooling chamber
Prior art date
Application number
PCT/CN2020/075702
Other languages
English (en)
French (fr)
Inventor
曹东强
李伟
刘山山
朱小兵
刘建如
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2020173337A1 publication Critical patent/WO2020173337A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • B01D29/03Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements self-supporting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/006General constructional features for mounting refrigerating machinery components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/065Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return
    • F25D2317/0651Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return through the bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0664Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0021Details for cooling refrigerating machinery using air guides

Definitions

  • the present invention relates to the technical field of home appliances, and in particular to an ice box with a filter plate provided at the drain. Background technique
  • the defrosting heating wire will automatically frost according to a certain program, which solves the shortcomings of manual defrosting of direct cooling refrigerators, but due to insufficient heating wire power, short defrosting time and other factors may cause defrosting Incomplete, large ice cubes fall off from the evaporator and gather in the drain outlet. As the use time increases, the drain outlet will eventually be blocked by ice, the evaporator will be blocked, and the cooling effect will deteriorate.
  • an object of the present invention is to provide a refrigerator that overcomes the above problems or at least partially solves the above problems.
  • a further object of the present invention is to increase the storage volume of the freezer compartment and improve the heat dissipation efficiency of the compressor cabin.
  • the present invention provides a refrigerator, including:
  • the box body defines a cooling chamber inside, the cooling chamber is equipped with an evaporator for cooling the airflow entering the cooling chamber, and the bottom wall of the cooling chamber is formed with a drain port for discharging defrosting water from the evaporator; a filter plate is provided Between the lower surface of the evaporator and the drain port, and spaced from the lower surface of the evaporator and the drain port, the filter plate is formed with a plurality of through holes penetrating the upper surface and the lower surface of the filter plate.
  • the size of the through hole adjacent to the drain port is smaller than the size of the through hole away from the drain port.
  • the upper surface of the bottom wall of the cooling chamber includes a water receiving section directly below the evaporator; the projection of the water receiving section on a vertical plane parallel to the lateral side wall of the cooling chamber includes:
  • the straight section is inclined backward, extending downwardly from back to front;
  • the front inclined straight section extends from the front end of the rear inclined straight section forward and upward;
  • a drainage port is formed at the junction of the rear inclined straight section and the front inclined straight section.
  • the filter plate is located in the space defined between the lower surface of the evaporator and the water receiving section; the filter plate includes:
  • the rear inclined board section is located above the rear inclined straight section and extends downwardly from back to front;
  • the front inclined board segment extends from the front end of the rear inclined board segment forward and upward;
  • Both the rear inclined plate section and the front inclined plate section are formed with a plurality of through holes, and the through holes at the junction of the rear inclined plate section and the front inclined plate section are communicated.
  • the cabinet includes:
  • the freezing liner at the bottom, which defines a freezing chamber and a cooling chamber directly below the freezing chamber;
  • the bottom wall of the freezing liner is configured as the bottom wall of the cooling chamber.
  • the cabinet further includes:
  • the air supply duct of the freezer compartment is arranged on the inner side of the rear wall of the freezer liner and has a plurality of air supply openings for supplying air to the freezer compartment;
  • the blower is arranged behind the evaporator, and is configured to promote at least part of the air cooled by the evaporator to flow into the freezer compartment through the freezer compartment air duct.
  • a compressor cabin is also defined in the box body, and the compressor cabin is located behind the cooling chamber.
  • the compressor compartment is equipped with compressors, radiator fans and condensers distributed along the transverse interval;
  • the bottom wall of the box defines a bottom air inlet adjacent to the condenser and a bottom air outlet adjacent to the compressor that are arranged horizontally;
  • the heat dissipation fan is also configured to suck in ambient air from the bottom air inlet and force the air to pass through the condenser, then the compressor, and then flow from the bottom air outlet to the surrounding environment.
  • the cabinet further includes:
  • the bottom plate includes a bottom horizontal section located on the front side of the bottom and a bending section bent and extended from the rear end of the bottom horizontal section to the rear and upwards.
  • the bending section includes an inclined section located above the bottom air inlet and the bottom air outlet Section
  • the pallet is located behind the bottom horizontal section, and the bending section extends above the pallet.
  • the pallet and the bottom horizontal section form the bottom wall of the box, and are spaced apart from the bottom horizontal section to utilize the bottom level
  • the rear end of the section and the front end of the pallet define a bottom opening;
  • the two side panels extend upwards from the lateral sides of the pallet to the lateral sides of the bending section respectively to form the two lateral side walls of the compressor cabin;
  • the vertically extending back plate extends upward from the rear end of the pallet to the rear end of the bending section to form the rear wall of the press cabin;
  • the compressor, the radiating fan and the condenser are arranged on the pallet at intervals in the transverse direction, and are located in the space defined by the pallet, the two side plates, the back plate and the bending section;
  • the refrigerator also includes a partition, which is arranged at the rear of the bending section, the front of which is connected with the rear end of the bottom horizontal section, and the rear of which is connected with the front of the pallet, and is arranged to divide the bottom opening into a horizontally arranged bottom. Air inlet and bottom air outlet.
  • the cabinet further includes:
  • the front and rear windshield strips are located between the bottom air inlet and the bottom air outlet, extend from the lower surface of the bottom horizontal section to the lower surface of the pallet, and are connected to the lower end of the partition, so that the windshield and the partition
  • the bottom air inlet and the bottom air outlet are completely isolated, so that when the refrigerator is placed on a supporting surface, the space between the bottom wall of the cabinet and the supporting surface is horizontally separated to allow external air to pass through the windshield under the action of the cooling fan
  • the bottom air inlet on the lateral side enters the compressor room, flows through the condenser and the compressor in turn, and finally flows out from the bottom air outlet on the other lateral side of the windshield.
  • a filter plate is arranged between the lower surface of the evaporator and the drain port.
  • the water receiving section has a special structure, so that the drain port is below the evaporator, and the hot air entering the cooling chamber through the drain port will first pass through the evaporator, and then enter the evaporator after being cooled by the evaporator.
  • frost forms on the evaporator (in the subsequent defrosting stage, the frost layer on the evaporator is melted again), so as to avoid the influence on the blower and the freezer compartment.
  • the bottom wall of the refrigerator defines a bottom air inlet and a bottom air outlet that are arranged horizontally, and the heat dissipation airflow circulates at the bottom of the refrigerator, making full use of the space between the refrigerator and the supporting surface There is no need to increase the distance between the rear wall of the refrigerator and the cabinet, which reduces the space occupied by the refrigerator while ensuring good heat dissipation in the compressor cabin.
  • the bottom air inlet and the bottom air outlet are completely isolated by the windshield and the partition to ensure that the outside air entering the condenser and the hot air discharged from the compressor will not flow together. Improve the heat dissipation effect and ensure the normal operation of the refrigerator refrigeration system.
  • FIG. 1 is a schematic diagram of a refrigerator according to an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of a filter plate of a refrigerator according to an embodiment of the present invention
  • Fig. 3 is a partial schematic diagram of a refrigerator according to an embodiment of the present invention.
  • Fig. 4 is a partial exploded schematic view of a refrigerator according to an embodiment of the present invention. detailed description
  • This embodiment provides a refrigerator 100.
  • the refrigerator 100 according to the embodiment of the present invention will be described below with reference to FIGS. 1 to 4.
  • the directions or positional relationships indicated by “front”, “rear”, “upper”, “lower”, “left”, “right”, etc. are based on the direction referenced by the refrigerator 100
  • "front”, “Back” refers to the direction indicated in FIGS. 1, 3, and 4
  • “lateral” refers to the left and right direction, and refers to the direction parallel to the width direction of the refrigerator 100.
  • the refrigerator 100 includes a box.
  • the box generally includes a housing 110 and a storage liner arranged inside the housing 110.
  • the space between the housing 110 and the storage liner is filled with heat preservation Material (forming foam layer).
  • a storage compartment is defined in the storage liner.
  • the cabinet further defines a cooling chamber 135 and a compressor compartment
  • the refrigerator 100 may also include an evaporator 101, a blower 103, a compressor 104, a condenser 105, and a throttling element (not shown) Wait.
  • the evaporator 101 is installed in the cooling chamber 135, the compressor 104 and the condenser 105 are installed in the compressor cabin, and the evaporator 101 is connected to the compressor 104, the condenser 105, and the throttling element via a refrigerant pipeline to form a refrigeration cycle.
  • the temperature is lowered when the compressor 104 is started to cool the air flowing through it.
  • a drain port 130a is formed on the bottom wall of the cooling chamber 135.
  • the refrigerator 100 further includes a filter plate 136, which is located between the lower surface of the evaporator 101 and the drain port 130a, and is spaced from the lower surface of the evaporator 101 and the drain port 130a, and the filter plate 136 A plurality of through holes 136a penetrating the upper and lower surfaces thereof are formed.
  • the filter plate 136 has a through hole 136a, which allows only very small ice cubes to pass through, reducing the drain 130a.
  • the volume of nearby ice cubes reduces the probability of ice blocking.
  • the heat of the heating wire heating the evaporator 101 will be transferred to the filter plate 136, and the ice cubes falling on the filter plate 136 will undergo secondary melting, which can reduce the volume of the ice cubes.
  • the working load of the heating wire of the ice cube at the melting outlet 130a is greatly reduced.
  • the filter plate may be an aluminum plate, which has good thermal conductivity and is more conducive to melting ice.
  • the size of the through hole 136a adjacent to the drain port 130a is smaller than the size of the through hole 136a away from the drain port 130a, thereby minimizing the volume of ice near the drain port 130a and further reducing the probability of ice blocking of the drain port 130a.
  • the upper surface of the bottom wall of the cooling chamber 135 includes a water-receiving section directly below the evaporator 101.
  • the projection of the water-receiving section on the vertical plane parallel to the lateral side wall of the cooling chamber 135 includes a downwardly inclined extension from back to front.
  • the rear inclined straight section 1302 and the front inclined straight section 1301 extend from the front end of the rear inclined straight section 1302 obliquely upward and forward.
  • the junction of the rear inclined straight section 1302 and the front inclined straight section 1301 is formed with the aforementioned drainage port 130a. As a result, the drain port 130a is located below the evaporator 101.
  • the water receiving section below the evaporator 101 generally has only one inclined slope, and the lowest point of the inclined slope (the position of the drain port) is generally located downstream of the evaporator 101 and enters the cooling chamber through the drain port 130a
  • the hot air at 135 does not pass through the evaporator 101 and is liable to frost or freeze on the blower 103 located downstream of the evaporator 101, or enter the freezing compartment 131 directly, which affects the temperature of the freezing compartment 131.
  • the water receiving section with the aforementioned special structure is designed so that the drain port 130a is located below the evaporator 101, and the hot air entering the cooling chamber 135 through the drain port 130a will first pass through the evaporator 101. After cooling, enter the freezing compartment 131, or frost on the evaporator 101 (in the subsequent defrosting stage, the frost layer on the evaporator 101 will be melted again), so as to avoid the influence on the blower 103 and the freezing compartment 131 .
  • the filter plate 136 may include a filter plate 136 located above the rear inclined straight section 1302 and moving from back to front.
  • a rear inclined plate section 1362 extending obliquely downwards and a front inclined plate section 1361 extending obliquely upward and forward from the front end of the rear inclined plate section 1362 are formed at the junction of the rear inclined plate section 1362 and the front inclined plate section 1361 The lowest part of the filter plate 136.
  • both the rear inclined plate section 1362 and the front inclined plate section 1361 should be formed with a plurality of through holes 136a, and the rear inclined plate section 1362 communicates with the through holes 136a at the junction of the front inclined plate section 1361.
  • a row of through holes 136a at the junction of the rear inclined plate section 1362 communicates with a row of through holes 136a at the junction of the front inclined plate section 1361 to prevent defrosting water from collecting on the rear inclined plate section 1362 and the front inclined plate.
  • Section 1361 is the direct junction.
  • the lowest point of the projection of the filter plate 136 on the vertical plane parallel to the lateral side wall of the cooling chamber 135 and the steam The distance between the lowest point of the generator 101 on the vertical plane projection is the same as the distance from the lowest point of the projection of the water receiving section on the vertical plane parallel to the lateral side wall of the cooling chamber 135, which can also be understood as filtering
  • the plate 136 is located at 1/2 between the evaporator 101 and the water receiving section.
  • the storage liner includes a freezing liner 130 located at the bottom.
  • the freezing liner 130 defines a freezing chamber 131 and the aforementioned cooling chamber 135 directly below the freezing chamber 131.
  • the bottom wall of the freezing liner 130 is The bottom wall of the cooling chamber 135 is formed.
  • the cooling chamber 135 no longer occupies the space behind the freezing chamber 131, and the depth of the freezing chamber 131 is enlarged, and the freezing chamber 131 is increased. Storage capacity. Furthermore, the presence of the cooling compartment 135 raises the height of the freezing compartment 131 above it, reducing the degree of bending of the user when picking and placing items in the freezing compartment 131, and improving the user experience, which is especially convenient for the elderly to use.
  • the cooling chamber 135 can be defined by a cover (not numbered) that is buckled on the bottom wall of the freezer liner 130 and the bottom wall of the freezer liner 130.
  • the evaporator 101 can be placed horizontally in the cooling chamber 135 in a flat cube shape, that is, the long and wide sides of the evaporator 101 are parallel to the horizontal plane, the thickness plane is placed perpendicular to the horizontal plane, and the thickness dimension is significantly smaller than the length dimension of the evaporator 101.
  • the box body also includes a freezer compartment air duct 134 and a blower 103.
  • the freezer compartment air duct 134 is located inside the rear wall of the freezer liner 130 and has at least one freezer compartment air outlet communicating with the freezer compartment 131.
  • the blower 103 is arranged at The rear of the evaporator 101 is configured to encourage at least part of the airflow cooled by the evaporator 101 to flow into the freezing compartment 131 through the freezing compartment air duct 134.
  • the box includes a refrigerating liner 120 and a temperature-changing liner.
  • the temperature-changing liner is located directly above the freezing liner 130, and a temperature-changing chamber 141 is defined therein, and the refrigerating liner 120 is located directly above the temperature-changing liner.
  • a refrigerating compartment 121 is defined therein.
  • a freezer compartment door 132 is provided on the front side of the freezing liner 130, a refrigerating compartment door 122 is provided on the front side of the refrigerating liner 120, and a temperature changing chamber door 142 is provided on the front side of the temperature-variable liner.
  • the refrigerator compartment 121 can be divided into a plurality of storage spaces by a plurality of horizontal partitions 123 distributed vertically.
  • a storage container 143 is arranged in the changing room 141, and a storage drawer 133 is arranged in the freezer compartment 131.
  • the box also includes a variable greenhouse air supply duct 144 and a variable greenhouse return air duct (not shown).
  • the variable greenhouse air supply duct 144 can pass through the variable greenhouse damper 145 and the freezer compartment air duct. 134 can be communicated in a controlled manner, and the return air duct of the variable temperature chamber has an inlet connected with the temperature variable inner liner and an outlet connected with the cooling chamber 135, so as to convey the return air flow of the variable temperature chamber 141 to the cooling chamber 135.
  • the refrigerating compartment 121 may have an independent refrigerating evaporator 125 and a refrigerating blower 126, and the refrigerating evaporator 125 and the refrigerating blower 126 are arranged in the refrigerating chamber air duct 124 located inside the rear wall of the refrigerating liner 120,
  • the refrigerating compartment air duct 124 has a refrigerating compartment air outlet for blowing air to the refrigerating compartment 121.
  • the compressor cabin is located behind and below the cooling chamber 135, so that the freezing chamber 131 above the cooling chamber 135 does not need to make way for the compressor cabin.
  • the freezing chamber 131 can be a regular rectangular space, which is convenient for placing the volume. Large items that are not easily divided can solve the pain point of not being able to place large items in the lowermost freezer 131.
  • a compressor 104 a radiating fan 106, and a condenser 105 are arranged in the compressor cabin, which are sequentially spaced along the transverse direction.
  • the plate section 1162 corresponding to the compressor 104 on the rear wall of the compressor cabin is formed with at least one rear air outlet 1162a.
  • the applicant of the present invention creatively realized that the heat exchange area of the condenser 105 and the ventilation area of the compressor cabin are not as large as possible.
  • the conventional design scheme of increasing the heat exchange area of the condenser 105 and the ventilation area of the compressor cabin it will bring The uneven heat dissipation of the condenser 105 has an adverse effect on the refrigeration system of the refrigerator 100.
  • the applicant of the present invention jumped out of the conventional design ideas and creatively proposed a new solution different from the conventional design.
  • the bottom wall of the refrigerator 100 defines a bottom adjacent to the condenser arranged horizontally.
  • the refrigerator 100 completes the circulation of the heat dissipation airflow at the bottom of the refrigerator 100, which makes full use of the space between the refrigerator 100 and the supporting surface. There is no need to increase the distance between the rear wall of the refrigerator 100 and the cabinet, and while reducing the space occupied by the refrigerator 100, Ensuring good heat dissipation in the compressor cabin fundamentally solves the pain point of the inability to balance the heat dissipation and space occupancy of the compressor cabin of the embedded refrigerator 100, which is of particular significance.
  • the heat dissipation fan 106 is configured to suck in ambient air from the surrounding environment of the bottom air inlet 110a and force the air to pass through the condenser 105 first, then pass through the compressor 104, and then flow from the bottom air outlet 110b to the surrounding environment, thereby compressing the condenser and 105
  • the machine 104 performs heat dissipation.
  • the surface temperature of the condenser 105 is generally lower than the surface temperature of the compressor 104. Therefore, in the above process, the outside air is used to cool the condenser 105 and then the compressor 104.
  • the plate section 1161 of the back plate 116 facing the condenser 105 is a continuous plate surface, that is, the plate of the back plate 116 facing the condenser 105 There are no heat dissipation holes on section 1161.
  • the applicant of the present invention creatively realized that even without increasing the heat exchange area of the condenser 105, reducing the ventilation area of the compressor cabin in an abnormal state can form a better heat dissipation airflow path, and still achieve better heat dissipation. effect.
  • the applicant broke through the conventional design ideas and designed the back wall (back plate 116) of the compressor cabin (the back plate 116) and the plate section 1161 corresponding to the condenser 105 as a continuous plate surface to seal the heat dissipation airflow entering the compressor cabin in the condensation
  • the ambient air entering from the bottom air inlet 110a is more concentrated at the condenser 105, which ensures the uniformity of the heat exchange of each condenser section of the condenser 105, and facilitates the formation of a better heat dissipation airflow path. It can achieve better heat dissipation effect.
  • the plate section 1161 of the back plate 116 facing the condenser 105 is a continuous plate surface and does not have air inlet holes, it avoids that the air outlet and inlet air in the conventional design are concentrated at the rear of the compressor room and cause blowout from the compressor room.
  • the hot air enters the compressor cabin again without being cooled by the ambient air in time, which adversely affects the heat exchange of the condenser 105, thereby ensuring the heat exchange efficiency of the condenser 105.
  • the condenser 105 includes a first straight section 1051 extending transversely The second straight section 1052 and the transitional curved section (not numbered) connecting the first straight section 1051 and the second straight section 1052, thereby forming an L-shaped condenser 105 with an appropriate heat exchange area.
  • the plate section 1161 of the aforementioned rear wall (back plate 116) of the compressor cabin corresponding to the condenser 105 is also the plate section 1161 of the back plate 116 facing the first straight section 1051.
  • the ambient air entering from the side vent 119a directly exchanges heat with the second straight section 1052, and the ambient air entering from the bottom air inlet 110a directly exchanges heat with the first straight section 1051, thereby further entering the environment in the compressor cabin
  • the air is more concentrated at the condenser 105 to ensure the uniformity of the overall heat dissipation of the condenser 105.
  • the refrigerator 100 includes a bottom plate, a supporting plate 112, two side plates 119 and a vertically extending back plate 116.
  • the supporting plate 112 constitutes the bottom wall of the compressor cabin for carrying compression
  • the bottom plate includes a bottom horizontal section 113 located on the front side of the bottom and a bending section bent and extending backward and upward from the rear end of the bottom horizontal section 113, and the bending section extends above the pallet 112,
  • the compressor 104, the heat dissipation fan 106, and the condenser 105 are arranged on the support plate 112 at intervals along the transverse direction, and are located in the space defined by the support plate 112, the two side plates, the back plate 116 and the bending section.
  • the supporting plate 112 and the bottom horizontal section 113 together constitute the bottom wall of the refrigerator 100, and the supporting plate 112 and the bottom horizontal section 113 are spaced apart, so that the rear end of the bottom horizontal section 113 and the front end of the supporting plate 112 define the bottom opening ,
  • the bent section has an inclined section 114 located above the bottom air inlet 110a and the bottom air outlet 110b.
  • the two side plates extend upward from the lateral sides of the pallet 112 to the lateral sides of the bending section respectively to close the lateral sides of the compressor cabin; the back plate 116 extends upward from the rear end of the pallet 112 To the rear end of the bending section.
  • the bending section may include a vertical section 1131, the aforementioned inclined section 114, and a top horizontal section 115.
  • the vertical section 1131 extends upward from the rear end of the bottom horizontal section 113, and the inclined section 114 is formed by The upper end of the vertical section 1131 extends backward and upward to above the pallet 112, and the top horizontal section
  • the front surface of the inclined section 114 may be formed with a protrusion 114a protruding upward, and the protrusion 114a is formed with a through hole 114a1.
  • the refrigerator 100 further includes a drain pipe (not shown), one end of the drain pipe is connected to the drain port 130a, and the other end extends through the through hole 114a to an evaporating dish (not numbered) arranged in the compressor cabin to connect
  • the defrosting water is discharged into the evaporating dish, which is generally located in the condenser 105 Below, the heat emitted by the condenser 105 and the compressor 104 evaporates the defrosting water in the evaporating dish.
  • the refrigerator 100 further includes a partition 117.
  • the partition 117 is arranged at the rear of the bending section.
  • the front part of the partition 117 is connected with the rear end of the bottom horizontal section 113, and the rear part is connected with the front end of the pallet 112, so as to open the bottom It is divided into a bottom air inlet 110a and a bottom air outlet 110b arranged horizontally.
  • the bottom air inlet 110a and the bottom air outlet 110b of this embodiment are defined by the partition 117, the supporting plate 112, and the bottom horizontal section 113, thereby forming a groove-shaped bottom air inlet with a larger opening size 110a and the bottom air outlet 110b increase the air inlet and outlet areas, reduce the air inlet resistance, and make the air flow smoother, and the manufacturing process is simpler, so that the overall stability of the compressor cabin is stronger.
  • the slope structure of the inclined section 114 can guide and rectify the airflow of the inlet air, so that the airflow entering from the bottom air inlet 110a flows to the condenser 105 more concentratedly, avoiding the excessive dispersion of the airflow The condenser 105 cannot pass more, thereby further ensuring the heat dissipation effect of the condenser 105; at the same time, the slope of the inclined section 114 guides the airflow from the bottom air outlet 110b to the front side of the ground air outlet, so that the air outlet The air flow flows out of the compressor cabin more smoothly, thereby further improving the smoothness of air flow.
  • the angle between the inclined section 114 and the horizontal plane is less than 45°.
  • the inclined section 114 has a better guiding and rectifying effect on the airflow.
  • the inventor of the present application creatively realized that the slope of the inclined section 114 has a better suppression effect on airflow noise.
  • the compressor cabin with the aforementioned specially designed inclined section 114 The noise can be reduced by more than 0.65 decibels.
  • the bottom of the refrigerator 100 generally has a carrier plate with a substantially flat structure, and the compressor 104 is arranged inside the carrier plate.
  • the vibration generated during the operation of the compressor 104 has a greater impact on the bottom of the cabinet 100.
  • the bottom of the refrigerator 100 is constructed as a three-dimensional structure with a special structure of the bottom plate and the support plate 112, which provides an independent three-dimensional space for the arrangement of the compressor 104, and the support plate 112 is used to carry the compressor 104. The impact of the vibration of the compressor 104 on other components at the bottom of the box 100 is reduced.
  • the bottom of the refrigerator 100 has a compact structure and a reasonable layout, which reduces the overall volume of the refrigerator 100, and at the same time makes full use of the space at the bottom of the refrigerator 100 to ensure the compressor 104 and The heat dissipation efficiency of the condenser 105.
  • a windshield 1056 is provided at the upper end of the condenser 105, and the windshield 1056 may be a windshield sponge, which fills the space between the upper end of the condenser 105 and the bending section, that is, the windshield
  • the wind element 1056 covers the upper end of the first straight section 1051, the second straight section 1052 and the transition section, and the upper end of the windshield 1056 should abut the bending section to seal the upper end of the condenser 105 so as not to enter the compressor room Part of the air passes through the space between the upper end of the condenser 105 and the bending section without passing through the condenser 105, so that as much air entering the compressor cabin passes through the condenser 105 for heat exchange as possible, and further enhances the condenser 105 The heat dissipation effect.
  • the refrigerator 100 further includes a windshield 107 extending back and forth.
  • the windshield 107 is located between the bottom air inlet 110a and the bottom air outlet 110b, and extends from the lower surface of the bottom horizontal section 113 to the lower surface of the support plate 112 , And connected to the lower end of the partition 117 to use the windshield 107 and the partition 117 to completely isolate the bottom air inlet 110a and the bottom air outlet 110b, so that when the refrigerator 100 is placed on a supporting surface, the bottom wall of the refrigerator 100 is horizontally separated
  • the space between the support surface and the support surface allows the outside air to enter the compressor cabin through the bottom air inlet 110a located on the lateral side of the windshield 107 under the action of the heat dissipation fan 106, and then flow through the condenser 105 and the compressor 104 in sequence.

Abstract

一种排水口(130a)设置有过滤板(136)的冰箱,包括箱体,其内限定有冷却室(135),冷却室(135)中配置有蒸发器(101),冷却室(135)的底壁形成有用于排出蒸发器(101)的化霜水的排水口(130a),蒸发器(101)与排水口(130a)之间设置有过滤板(136),过滤板(136)形成有贯穿其上表面和下表面的多个通孔(136a),当蒸发器(101)化霜不完全时,凝结在蒸发器(101)上的冰块掉落在过滤板(136)上,过滤板(136)只允许非常小尺寸的冰块通过,减小了排水口(130a)附近的冰块体积,降低了冰堵概率。

Description

排水口设置有过滤板的冰箱 技术领域
本发明涉及家电技术领域, 特别是涉及一种排水口设置有过滤板的冰 箱。 背景技术
对常见的风冷冰箱来说, 化霜加热丝会根据一定的程序进行自动化霜, 解决了直冷冰箱手动除霜的弊端, 但由于加热丝功率不足, 化霜时间短等因 素可能导致化霜不全, 大冰块从蒸发器脱落后聚集在排水口, 随着使用时间 增长最终导致排水口冰堵, 蒸发器冰堵, 制冷效果变差。 发明内容
鉴于上述问题, 本发明的一个目的是要提供一种克服上述问题或者至少 部分地解决上述问题的冰箱。
本发明一个进一步的目的是增加冷冻室的存储容积和提升压机舱的散 热效率。
本发明提供了一种冰箱, 包括:
箱体, 其内限定有冷却室, 冷却室内配置有用于对进入冷却室的气流进 行冷却的蒸发器, 冷却室的底壁形成有用于排出蒸发器的化霜水的排水口; 过滤板, 设置于蒸发器的下表面与排水口之间, 并与蒸发器的下表面和 排水口均间隔, 过滤板形成有贯穿其上表面和下表面的多个通孔。
可选地, 临近排水口的通孔的尺寸小于远离排水口的通孔的尺寸。 可选地, 冷却室的底壁上表面包括位于蒸发器正下方的接水区段; 接水区段在平行于冷却室横向侧壁的竖直面的投影包括:
后倾斜直段, 由后向前呈向下倾斜延伸;
前倾斜直段, 由后倾斜直段的前端向前上方倾斜延伸;
后倾斜直段与前倾斜直段的交接处形成有排水口。
可选地, 过滤板位于蒸发器的下表面与接水区段之间限定的空间内; 过滤板包括:
后倾斜板段, 位于后倾斜直段的上方, 由后向前呈向下倾斜延伸; 前倾斜板段, 由后倾斜板段的前端向前上方倾斜延伸;
后倾斜板段和前倾斜板段均形成有多个通孔, 且后倾斜板段与前倾斜板 段的交接处的通孔连通。
可选地, 箱体包括:
位于最下方的冷冻内胆, 其内限定有冷冻室和位于冷冻室正下方的冷却 室;
冷冻内胆的底壁构造为冷却室的底壁。
可选地, 箱体还包括:
冷冻室送风风道, 设置于冷冻内胆的后壁内侧, 具有向冷冻室送风的多 个送风口;
送风机, 设置于蒸发器的后方, 配置为促使蒸发器冷却后的至少部分气 流经冷冻室送风风道流动至冷冻室内。
可选地, 箱体内还限定有压机舱, 压机舱位于冷却室的后下方。
可选地,压机舱内配置有沿横向间隔分布的压缩机、散热风机和冷凝器; 箱体的底壁限定有横向排布的临近冷凝器的底进风口和临近压缩机的 底出风口;
散热风机还配置为从底进风口吸入环境空气并促使空气先经过冷凝器, 再经过压缩机, 之后从底出风口流动至周围环境中。
可选地, 箱体还包括:
底板, 其包括位于底部前侧的底部水平区段和从底部水平区段的后端向 后上方弯折延伸的弯折区段, 弯折区段包括位于底进风口和底出风口上方的 倾斜区段;
托板, 位于底部水平区段的后方, 且弯折区段延伸至托板的上方, 托板 与底部水平区段构成箱体的底壁, 且与底部水平区段间隔分布, 以利用底部 水平区段的后端与托板的前端限定出底开口;
两个侧板, 由托板的横向两侧分别向上延伸至弯折区段的横向两侧, 构 成压机舱的横向两个侧壁;
竖向延伸的背板, 由托板的后端向上延伸至弯折区段的后端, 构成压机 舱的后壁;
压缩机、散热风机及冷凝器沿横向依次间隔布置于托板上,并位于托板、 两个侧板、 背板及弯折区段限定的空间中; 冰箱还包括分隔件, 设置于弯折区段的后方, 其前部与底部水平区段的 后端连接, 其后部与托板的前端连接, 设置为将底开口分隔为横向排布的底 进风口和底出风口。
可选地, 箱体还包括:
前后延伸的挡风条, 位于底进风口和底出风口之间, 由底部水平区段的 下表面延伸至托板的下表面, 并连接分隔件的下端, 以利用挡风条和分隔件 将底进风口和底出风口完全隔离, 从而在冰箱置于一支撑面时, 横向分隔箱 体的底壁与支撑面之间的空间, 以允许外部空气在散热风机的作用下经位于 挡风条横向一侧的底进风口进入压机舱, 并依次流经冷凝器、 压缩机, 最后 从位于挡风条横向另一侧的底出风口流出。
本发明的冰箱, 蒸发器的下表面与排水口之间设置有过滤板, 当蒸发器 化霜不完全时, 凝结在蒸发器上的冰块掉落在过滤板上, 过滤板只允许非常 小尺寸的冰块通过, 减小了排水口附近的冰块体积, 降低了冰堵概率。
进一步地, 本发明的冰箱中, 接水区段具有特别的构造, 使得排水口处 于蒸发器的下方, 通过排水口进入冷却室的热空气会先经过蒸发器, 由蒸发 器冷却后再进入到冷冻室中, 或者, 在蒸发器上结霜 (在后续的化霜阶段, 蒸发器上的霜层再被融化) , 从而避免对送风机和冷冻室的影响。
更进一步地, 本发明的冰箱中, 冰箱的底壁限定有横向排布的底进风口 和底出风口, 散热气流在冰箱的底部完成循环, 充分利用了冰箱与支撑面之 间的这一空间, 无需加大冰箱的后壁与橱柜的距离, 减小冰箱所占空间的同 时, 保证压机舱良好的散热。
更进一步地, 本发明的冰箱中, 利用挡风条和分隔件将底进风口和底出 风口完全隔离,保证进入冷凝器处的外部空气与从压缩机处排出的热空气不 会串流, 提升散热效果, 保证冰箱制冷系统的正常运行。
根据下文结合附图对本发明具体实施例的详细描述, 本领域技术人员将 会更加明了本发明的上述以及其他目的、 优点和特征。 附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具 体实施例。 附图中相同的附图标记标示了相同或类似的部件或部分。 本领域 技术人员应该理解, 这些附图未必是按比例绘制的。 附图中: 图 1是根据本发明一个实施例的冰箱的示意图;
图 2是根据本发明一个实施例的冰箱的过滤板的示意图;
图 3是根据本发明一个实施例的冰箱的局部示意图; 以及
图 4是根据本发明一个实施例的冰箱的局部分解示意图。 具体实施方式
本实施例提供了一种冰箱 100, 下面参照图 1至图 4来描述本发明实施 例的冰箱 100。 在下文描述中, “前” 、 “后”、 “上”、 “下” 、 “左” 、 “右”、等指示的方位或位置关系为基于冰箱 100本身为参考的方位,“前”、 “后”为如图 1、 图 3、 图 4所指示的方向, “横向”也即是指左右方向, 是指与冰箱 100宽度方向平行的方向。
如图 1、 图 2所示, 冰箱 100包括箱体, 箱体一般性地包括外壳 110和 设置在外壳 110内侧的储物内胆, 外壳 110与储物内胆之间的空间中填充有 保温材料 (形成发泡层) 。 储物内胆中限定有储物间室。
如本领域技术人员可意识到的, 箱体还限定有冷却室 135和压机舱, 冰 箱 100还可包括蒸发器 101、送风机 103、压缩机 104、冷凝器 105以及节流 元件(未示出)等。 蒸发器 101设置于冷却室 135中, 压缩机 104和冷凝器 105设置于压机舱中,蒸发器 101经由制冷剂管路与压缩机 104、冷凝器 105、 节流元件连接, 构成制冷循环回路, 在压缩机 104启动时降温, 以对流经其 的空气进行冷却。
为排出蒸发器 101的化霜水, 一般地, 冷却室 135的底壁形成有排水口 130a。特别地, 本实施例中, 冰箱 100还包括过滤板 136, 其位于蒸发器 101 的下表面与排水口 130a之间, 并与蒸发器 101的下表面和排水口 130a均间 隔, 且过滤板 136形成有贯穿其上表面和下表面的多个通孔 136a。
若蒸发器 101化霜不完全,凝结在蒸发器 101上的冰块掉落在过滤板 136 上, 过滤板 136具有通孔 136a, 只允许非常小尺寸的冰块通过, 减小了排水 口 130a附近的冰块体积, 降低了冰堵概率。 另外, 蒸发器 101化霜过程中, 加热蒸发器 101的加热丝的热量会传递至过滤板 136上, 掉落在过滤板 136 上的冰块经过二次融化, 可减小冰块体积, 极大的降低了融化排水口 130a 处冰块的加热丝工作负荷。
其中, 过滤板可为铝板, 其热传导性能良好, 更加有利于冰块的融化。 临近排水口 130a的通孔 136a的尺寸小于远离排水口 130a的通孔 136a 的尺寸, 由此可尽量减小排水口 130a附近的冰块体积, 进一步降低排水口 130a冰堵概率。
冷却室 135的底壁上表面包括位于蒸发器 101正下方的接水区段,接水 区段在平行于冷却室 135横向侧壁的竖直面的投影包括由后向前呈向下倾斜 延伸的后倾斜直段 1302和由后倾斜直段 1302的前端向前上方倾斜延伸前倾 斜直段 1301,后倾斜直段 1302与前倾斜直段 1301的交接处形成有前述的排 水口 130a。 由此使得排水口 130a处于蒸发器 101的下方。
现有冰箱 100中,蒸发器 101的下方的接水区段一般只具有一个倾斜斜 面, 该倾斜斜面的最低点 (排水口的位置) 一般位于蒸发器 101的下游, 通 过排水口 130a进入冷却室 135的热空气未经过蒸发器 101,易在位于蒸发器 101下游的送风机 103上结霜或结冰, 或者直接进入到冷冻室 131中, 影响 冷冻室 131的温度。
本实施例中, 通过设计具有前述特别构造的接水区段,使得排水口 130a 处于蒸发器 101的下方, 通过排水口 130a进入冷却室 135的热空气会先经 过蒸发器 101, 由蒸发器 101冷却后再进入到冷冻室 131中, 或者, 在蒸发 器 101上结霜 (在后续的化霜阶段, 蒸发器 101上的霜层再被融化) , 从而 避免对送风机 103和冷冻室 131的影响。
如图 1和图 2所示, 过滤板 136则与蒸发器 101的下表面与接水区段之 间限定的空间内, 过滤板 136可包括位于后倾斜直段 1302的上方并由后向 前呈向下倾斜延伸的后倾斜板段 1362和由后倾斜板段 1362的前端向前上方 倾斜延伸的前倾斜板段 1361, 由此在后倾斜板段 1362与前倾斜板段 1361 的交接处构成过滤板 136的最低处。
如图 2所示, 后倾斜板段 1362和前倾斜板段 1361均应形成有多个通孔 136a, 且后倾斜板段 1362与前倾斜板段 1361的交接处的通孔 136a相连通, 也即是说, 后倾斜板段 1362在交接处的一排通孔 136a与前倾斜板段 1361 在交接处的一排通孔 136a连通, 防止化霜水聚集在后倾斜板段 1362和前倾 斜板段 1361直接的交接处。
过滤板 136在平行于冷却室 135横向侧壁的竖直面的投影的最低点位于 接水区段在平行于冷却室 135横向侧壁的竖直面的投影的最低点的正上方。
过滤板 136在平行于冷却室 135横向侧壁的竖直面的投影的最低点与蒸 发器 101在该竖直面投影的最低点之间的距离和与接水区段在平行于冷却室 135横向侧壁的竖直面的投影的最低点的距离相同,也可理解为,过滤板 136 位于蒸发器 101与接水区段之间的 1/2处。
进一步特别地,储物内胆包括位于最下方的冷冻内胆 130,冷冻内胆 130 内限定有冷冻室 131和位于冷冻室 131正下方的前述的冷却室 135, 冷冻内 胆 130的底壁则构成冷却室 135的底壁。
相对于冷却室 135位于冷冻室 131后方的传统冰箱 100, 本实施例的冰 箱 100, 冷却室 135不再占用冷冻室 131后方的空间, 加大了冷冻室 131的 进深尺寸, 增加了冷冻室 131的存储容积。 再者, 冷却室 135的存在抬高了 其上方的冷冻室 131的高度, 降低用户对该冷冻室 131进行取放物品操作时 的弯腰程度, 提升用户的使用体验, 尤其方便老人使用。
冷却室 135可由罩扣在冷冻内胆 130的底壁上的罩壳(未标号)与冷冻 内胆 130的底壁限定而成。
蒸发器 101整体可呈扁平立方体状横置于冷却室 135中,也即蒸发器 101 的长、 宽面平行于水平面, 厚度面垂直于水平面放置, 而且厚度尺寸明显小 于蒸发器 101的长度尺寸。 通过将蒸发器 101横置于冷却室 135中, 避免蒸 发器 101占用更多的空间, 保证冷却室 135上部的冷冻室 131的存储容积。
箱体还包括冷冻室送风风道 134和送风机 103, 冷冻室送风风道 134位 于冷冻内胆 130的后壁内侧, 具有与冷冻室 131连通的至少一个冷冻室送风 口, 送风机 103设置于蒸发器 101的后方, 配置为促使由蒸发器 101冷却后 的至少部分气流经冷冻室送风风道 134流动至冷冻室 131中。
罩壳的后端形成有与冷冻室送风风道 134的进风口连通的出风口, 以便 于冷却室中经蒸发器 101冷却的气流进入冷冻室送风风道 134中, 罩壳的前 壁形成有前回风入口 135a, 冷冻室 131的回风气流通过前回风入口 135a进 入冷却室中由蒸发器 101进行冷却。
如图 1所示, 箱体包括冷藏内胆 120和变温内胆, 变温内胆位于冷冻内 胆 130的正上方, 其内限定有变温室 141, 而冷藏内胆 120位于变温内胆的 正上方,其内限定有冷藏室 121。冷冻内胆 130的前侧设置有冷冻室门体 132, 冷藏内胆 120的前侧设置有冷藏室门体 122, 变温内胆的前侧设置有变温室 门体 142。
冷藏室 121 可由竖向上间隔分布的多个横隔板 123 分隔为多个储物空 间, 以便于物品的分类存放,变温室 141中配置有储物容器 143 ,冷冻室 131 中配置有储物抽屉 133。
箱体还包括变温室送风风道 144和变温室回风风道 (未示出) , 如图 1 所示,变温室送风风道 144可通过变温室风门 145与冷冻室送风风道 134可 受控地连通,变温室回风风道具有与变温内胆连通的进口和与冷却室 135连 通的出口, 以将变温室 141的回风气流输送至冷却室 135中。
如图 1所示, 冷藏室 121可具有独立的冷藏蒸发器 125和冷藏送风机 126, 冷藏蒸发器 125和冷藏送风机 126设置于位于冷藏内胆 120后壁内侧 的冷藏室送风风道 124中, 冷藏室送风风道 124具有向冷藏室 121送风的冷 藏室送风口。
进一步特别地, 再次参见图 1, 压机舱位于冷却室 135的后下方, 使得 冷却室 135上方的冷冻室 131无需再为压机舱让位, 冷冻室 131可为一个规 整的矩形空间, 便于放置体积较大不易分割的物品, 解决无法在最下方冷冻 室 131放置较大物品的痛点。
进一步特别地, 如图 3和图 4所示, 压机舱内配置有沿横向依次间隔分 布的压缩机 104、 散热风机 106及冷凝器 105。
在一些实施例中, 如图 4所示, 压机舱的后壁与压缩机 104对应的板段 1162形成有至少一个后出风孔 1162a。
实际上, 在本发明之前, 本领域技术人员通常的设计思路都是在压机舱 的后壁开设面向冷凝器 105 的后进风孔和开设面向压缩机 104 的后出风孔 1162a, 在压机舱的后部完成散热气流的循环; 或者在压机舱的前壁、 后壁 分别形成通风孔, 形成前后方向的散热循环风路。 在面对提升压机舱散热效 果的问题时, 本领域技术人员通常是增加压机舱后壁的后进风孔、 后出风孔 1162a的数量扩大通风面积, 或者增加冷凝器 105的换热面积, 例如采用换 热面积更大的 U型冷凝器。
而本发明申请人创造性地认识到冷凝器 105的换热面积和压机舱的通风 面积并不是越大越好,在增加冷凝器 105换热面积和压机舱通风面积的常规 设计方案中, 会带来冷凝器 105散热不均匀的问题, 对冰箱 100的制冷系统 产生不利的影响。 为此, 本发明申请人跳出常规设计思路, 创造性地提出一 种不同于常规设计的新方案, 如图 3和图 4所示, 冰箱 100的底壁限定有横 向排布的临近冷凝器的底进风口 110a和临近压缩机 104的底出风口 110b, 冰箱 100在其底部完成散热气流的循环, 充分利用了冰箱 100与支撑面之间 的这一空间, 无需加大冰箱 100的后壁与橱柜的距离, 减小了冰箱 100所占 空间的同时, 保证压机舱良好的散热, 从根本上解决了嵌入式冰箱 100的压 机舱散热和空间占用之间无法得到平衡的痛点, 具有尤其重要的意义。
散热风机 106配置为从底进风口 110a的周围环境吸入环境空气并促使 空气先经过冷凝器 105 , 再经过压缩机 104, 之后从底出风口 110b流动至周 围环境中, 从而对冷凝器和 105压缩机 104进行散热。
在蒸气压缩制冷循环中, 冷凝器 105的表面温度一般低于压缩机 104的 表面温度,故上述过程中,使外部空气先冷却冷凝器 105再冷却压缩机 104。
进一步特别地, 在本发明的优选实施例中, (压机舱的后壁) 背板 116 面向冷凝器 105的板段 1161为连续的板面, 也即是说背板 116面向冷凝器 105的板段 1161上没有散热孔。
本发明申请人创造性地认识到即使在不增加冷凝器 105换热面积的前提 下, 反常态的减小压机舱的通风面积, 能够形成更加良好的散热气流路径, 而且仍然可达到较好的散热效果。
本发明优选方案中, 申请人突破常规设计思路, 将压机舱的后壁(背板 116)与冷凝器 105对应的板段 1161设计为连续板面, 将进入压机舱内的散 热气流封闭在冷凝器 105处, 使得由底进风口 110a进入的环境空气更多地 集中在冷凝器 105处, 保证了冷凝器 105各个冷凝段的换热均匀性, 并且有 利于形成更加良好的散热气流路径, 同样可达到较好的散热效果。
并且, 由于背板 116面向冷凝器 105的板段 1161为连续板面, 不具有 进风孔,避免了常规设计中出风和进风都集中在压机舱的后部而导致从压机 舱吹出的热风未及时经环境空气冷却而再次进入到压机舱中, 对冷凝器 105 的换热产生不利影响, 由此保证了冷凝器 105的换热效率。
在一些实施例中, 如图 4所示, 压机舱的横向两个侧壁均形成有一个侧 通风孔 119a, 侧通风孔 119a可覆盖有通风盖板 108, 通风盖板 108形成有 格栅式通风小孔; 冰箱 100的外壳包括横向上的两个箱体侧板 111, 两个箱 体侧板 111竖向延伸, 构成冰箱 100的两个侧壁, 两个箱体侧板 111分别形 成一个与对应的侧通风孔 119a连通的侧开口 111a, 以使得散热气流流动至 冰箱 100的外部。 由此进一步增加散热路径, 保证压机舱的散热效果。
进一步特别地,冷凝器 105包括横向延伸的第一直段 1051、前后延伸的 第二直段 1052以及将第一直段 1051和第二直段 1052连接的过渡曲段 (未 标号) , 由此形成换热面积适当的 L型冷凝器 105。 前述压机舱的后壁 (背 板 116) 与冷凝器 105对应的板段 1161也即是背板 116面向第一直段 1051 的板段 1161。
由侧通风孔 119a进入的环境气流直接与第二直段 1052进行换热, 由底 进风口 110a进入的环境空气直接与第一直段 1051进行换热, 由此进一步将 进入压机舱内的环境空气更多地集中在冷凝器 105处,保证冷凝器 105整体 散热的均匀性。
进一步特别地, 如图 3和图 4所示, 冰箱 100包括底板、 托板 112、 两 个侧板 119和竖向延伸的背板 116, 托板 112构成压机舱的底壁, 用于承载 压缩机 104、 散热风机 106和冷凝器 105 , 两个侧板 119分别构成压机舱的 横向两个侧壁, 竖向延伸的背板 116构成压机舱的后壁。
进一步特别地,底板包括位于底部前侧的底部水平区段 113和从底部水 平区段 113的后端向后上方弯折延伸的弯折区段, 弯折区段延伸至托板 112 的上方, 压缩机 104、 散热风机 106及冷凝器 105沿横向依次间隔布置于托 板 112上, 并位于托板 112、两个侧板、背板 116及弯折区段限定的空间中。
托板 112与底部水平区段 113共同构成冰箱 100的底壁,且托板 112与 底部水平区段 113间隔分布, 以利用底部水平区段 113的后端与托板 112的 前端限定出底开口,其中,弯折区段具有位于底进风口 110a和底出风口 110b 上方的倾斜区段 114。 两个侧板由托板 112的横向上的两侧分别向上延伸至 弯折区段的横向上的两侧, 以封闭压机舱的横向两侧; 背板 116由托板 112 的后端向上延伸至弯折区段的后端。
具体地,弯折区段可包括竖直区段 1131、前述的倾斜区段 114和顶部水 平区段 115 ,竖直区段 1131由底部水平区段 113的后端向上延伸,倾斜区段 114由竖直区段 1131的上端向后上方延伸至托板 112的上方,顶部水平区段
115由倾斜区段 114的后端向后方延伸至背板, 以遮蔽压缩机 104、 散热风 机 106及冷凝器 105的上方。
倾斜区段 114的前表面可形成有向上凸出的凸起 114a, 凸起 114a形成 有穿过孔 114al。 冰箱 100还包括排水管 (未示出) , 排水管的一端连接在 排水口 130a处, 另一端穿过该穿过孔 114al延伸至设置在压机舱中的蒸发 皿(未标号) 中, 以将化霜水排到蒸发皿中, 蒸发皿一般位于冷凝器 105的 下方, 冷凝器 105和压缩机 104散发的热量将蒸发皿中的化霜水蒸发。
冰箱 100还包括分隔件 117, 分隔件 117设置于弯折区段的后方, 其前 部与底部水平区段 113的后端连接, 其后部与托板 112的前端连接, 设置为 将底开口分隔为横向排布的底进风口 110a和底出风口 110b。
由前述可知,本实施例的底进风口 110a和底出风口 110b由分隔件 117、 托板 112、 底部水平区段 113限定而成, 由此形成了开口尺寸较大的槽形的 底进风口 110a和底出风口 110b, 增大了进风、 出风面积, 减小了进风阻力, 使得气流流通更加顺畅, 而且制造工艺更加简单, 使得压机舱的整体稳定性 更强。
特别地, 本发明申请人创造性认识到, 倾斜区段 114的斜坡结构能够对 进风气流进行引导、 整流, 使得由底进风口 110a进入的气流更加集中地流 向冷凝器 105 , 避免了气流过于分散而无法更多地通过冷凝器 105, 由此进 一步保证了冷凝器 105的散热效果; 同时, 倾斜区段 114的斜坡将底出风口 110b的出风气流向地出风口的前侧进行引导,使得出风气流更加顺畅地流出 压机舱外部, 由此进一步提升了气流流通的顺畅性。
进一步特别地, 在优选的实施例中, 倾斜区段 114与水平面的夹角小于 45 ° , 在该实施例中, 倾斜区段 114对气流的导向、 整流效果更好。
并且, 令人意想不到的是, 本申请发明人创造性地认识到倾斜区段 114 的斜坡对气流噪音起到了较好的抑制效果, 在样机试验中, 具有前述特别设 计的倾斜区段 114的压机舱的噪音可减小 0.65分贝以上。
另外, 传统冰箱 100中, 冰箱 100的底部一般具有大致平板型结构的承 载板, 压缩机 104设置于承载板内侧, 压缩机 104运行中产生的振动对箱体 100底部影响较大。 而本实施例中, 如前所述, 冰箱 100的底部由特殊结构 的底板和托板 112构造为一个立体结构, 为压缩机 104布置提供独立的立体 空间, 利用托板 112承载压缩机 104, 减小压缩机 104振动对箱体 100底部 的其他部件的影响。 另外, 通过将冰箱 100设计为如上巧妙的特殊结构, 使 得冰箱 100底部的结构紧凑、 布局合理, 减小了冰箱 100的整体体积, 同时 充分利用了冰箱 100底部的空间, 保证了压缩机 104和冷凝器 105的散热效 率。
进一步特别地, 冷凝器 105的上端设置有挡风件 1056, 挡风件 1056可 为挡风海绵, 填充冷凝器 105的上端与弯折区段之间的空间, 也即是说, 挡 风件 1056覆盖第一直段 1051、第二直段 1052及过渡曲段的上端,且挡风件 1056的上端应与弯折区段抵接, 以密封冷凝器 105的上端, 以免进入压机舱 的部分空气从冷凝器 105的上端与弯折区段之间的空间通过而不经过冷凝器 105 , 从而使得进入压机舱的空气尽可能多的通过冷凝器 105进行换热, 进 一步提升冷凝器 105的散热效果。
在一些实施例中, 冰箱 100还包括前后延伸的挡风条 107, 挡风条 107 位于底进风口 110a和底出风口 110b之间, 由底部水平区段 113下表面延伸 至托板 112下表面, 并连接分隔件 117的下端, 以利用挡风条 107和分隔件 117将底进风口 110a和底出风口 110b完全隔离, 从而在冰箱 100置于一支 撑面时, 横向分隔冰箱 100的底壁与支撑面之间的空间, 以允许外部空气在 散热风机 106的作用下经位于挡风条 107横向一侧的底进风口 110a进入压 机舱内, 并依次流经冷凝器 105、 压缩机 104, 最后从位于挡风条 107横向 另一侧的底出风口 110b流出, 从而将底进风口 110a和底出风口 110b完全 隔离, 保证进入冷凝器 105处的外部空气与从压缩机 104处排出的散热空气 不会串流, 进一步保证了散热效率。
至此, 本领域技术人员应认识到, 虽然本文已详尽示出和描述了本发明 的多个示例性实施例, 但是, 在不脱离本发明精神和范围的情况下, 仍可根 据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或 修改。 因此, 本发明的范围应被理解和认定为覆盖了所有这些其他变型或修 改。

Claims

权 利 要 求
1. 一种冰箱, 包括:
箱体, 其内限定有冷却室, 所述冷却室内配置有用于对进入所述冷却室 的气流进行冷却的蒸发器, 所述冷却室的底壁形成有用于排出所述蒸发器的 化霜水的排水口;
过滤板, 设置于所述蒸发器的下表面与所述排水口之间, 并与所述蒸发 器的下表面和所述排水口均间隔, 所述过滤板形成有贯穿其上表面和下表面 的多个通孔。
2. 根据权利要求 1所述的冰箱, 其中
临近所述排水口的所述通孔的尺寸小于远离所述排水口的所述通孔的 尺寸。
3. 根据权利要求 1所述的冰箱, 其中
所述冷却室的底壁上表面包括位于所述蒸发器正下方的接水区段; 所述接水区段在平行于所述冷却室横向侧壁的竖直面的投影包括: 后倾斜直段, 由后向前呈向下倾斜延伸;
前倾斜直段, 由所述后倾斜直段的前端向前上方倾斜延伸;
所述后倾斜直段与所述前倾斜直段的交接处形成有所述排水口。
4. 根据权利要求 3所述的冰箱, 其中
所述过滤板位于所述蒸发器的下表面与所述接水区段之间限定的空间 内;
所述过滤板包括:
后倾斜板段, 位于所述后倾斜直段的上方, 由后向前呈向下倾斜延伸; 前倾斜板段, 由所述后倾斜板段的前端向前上方倾斜延伸;
所述后倾斜板段和所述前倾斜板段均形成有多个所述通孔, 且所述后倾 斜板段与所述前倾斜板段的交接处的所述通孔连通。
5. 根据权利要求 1所述的冰箱, 其中, 所述箱体包括:
位于最下方的冷冻内胆, 其内限定有冷冻室和位于所述冷冻室正下方的 所述冷却室;
所述冷冻内胆的底壁构造为所述冷却室的底壁。
6. 根据权利要求 5所述的冰箱, 其中, 所述箱体还包括:
冷冻室送风风道, 设置于所述冷冻内胆的后壁内侧, 具有向所述冷冻室 送风的多个送风口;
送风机, 设置于所述蒸发器的后方, 配置为促使所述蒸发器冷却后的至 少部分气流经所述冷冻室送风风道流动至所述冷冻室内。
7. 根据权利要求 1所述的冰箱, 其中
所述箱体内还限定有压机舱, 所述压机舱位于所述冷却室的后下方。
8. 根据权利要求 7所述的冰箱, 其中
所述压机舱内配置有沿横向间隔分布的压缩机、 散热风机和冷凝器; 所述箱体的底壁限定有横向排布的临近所述冷凝器的底进风口和临近 所述压缩机的底出风口;
所述散热风机还配置为从所述底进风口吸入环境空气并促使空气先经 过所述冷凝器,再经过所述压缩机,之后从所述底出风口流动至周围环境中。
9. 根据权利要求 8所述的冰箱, 其中, 所述箱体还包括:
底板, 其包括位于底部前侧的底部水平区段和从所述底部水平区段的后 端向后上方弯折延伸的弯折区段, 所述弯折区段包括位于所述底进风口和所 述底出风口上方的倾斜区段;
托板, 位于所述底部水平区段的后方, 且所述弯折区段延伸至所述托板 的上方, 所述托板与所述底部水平区段构成所述箱体的底壁, 且与所述底部 水平区段间隔分布, 以利用所述底部水平区段的后端与所述托板的前端限定 出底开口;
两个侧板, 由所述托板的横向两侧分别向上延伸至所述弯折区段的横向 两侧, 构成所述压机舱的横向两个侧壁;
竖向延伸的背板, 由所述托板的后端向上延伸至所述弯折区段的后端, 构成所述压机舱的后壁;
所述压缩机、所述散热风机及所述冷凝器沿横向依次间隔布置于所述托 板上, 并位于所述托板、 两个所述侧板、 所述背板及所述弯折区段限定的空 间中;
所述冰箱还包括分隔件, 设置于所述弯折区段的后方, 其前部与所述底 部水平区段的后端连接, 其后部与所述托板的前端连接, 设置为将所述底开 口分隔为横向排布的所述底进风口和所述底出风口。
10. 根据权利要求 9所述的冰箱, 其中, 所述箱体还包括:
前后延伸的挡风条, 位于所述底进风口和所述底出风口之间, 由所述底 部水平区段的下表面延伸至所述托板的下表面, 并连接所述分隔件的下端, 以利用所述挡风条和所述分隔件将所述底进风口和所述底出风口完全隔离, 从而在所述冰箱置于一支撑面时,横向分隔所述箱体的底壁与所述支撑面之 间的空间, 以允许外部空气在所述散热风机的作用下经位于所述挡风条横向 一侧的所述底进风口进入所述压机舱,并依次流经所述冷凝器、所述压缩机, 最后从位于所述挡风条横向另一侧的所述底出风口流出。
PCT/CN2020/075702 2019-02-26 2020-02-18 排水口设置有过滤板的冰箱 WO2020173337A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910143327.7 2019-02-26
CN201910143327.7A CN111609628A (zh) 2019-02-26 2019-02-26 排水口设置有过滤板的冰箱

Publications (1)

Publication Number Publication Date
WO2020173337A1 true WO2020173337A1 (zh) 2020-09-03

Family

ID=72201313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075702 WO2020173337A1 (zh) 2019-02-26 2020-02-18 排水口设置有过滤板的冰箱

Country Status (2)

Country Link
CN (1) CN111609628A (zh)
WO (1) WO2020173337A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333248A (ja) * 2006-06-12 2007-12-27 Sanden Corp ドレン水蒸発装置
CN105466117A (zh) * 2015-11-19 2016-04-06 青岛海尔股份有限公司 一种冷冻冷藏装置
CN108444168A (zh) * 2018-01-22 2018-08-24 青岛海尔股份有限公司 嵌入式冰箱
CN109140745A (zh) * 2018-08-27 2019-01-04 安徽宏远机械制造有限公司 一种防滴溅接水盘
CN208688070U (zh) * 2018-04-13 2019-04-02 青岛海尔股份有限公司 冰箱
CN110375479A (zh) * 2018-04-13 2019-10-25 青岛海尔股份有限公司 具有导流板的冰箱
CN209893735U (zh) * 2019-02-26 2020-01-03 青岛海尔电冰箱有限公司 排水口设置有过滤板的冰箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333248A (ja) * 2006-06-12 2007-12-27 Sanden Corp ドレン水蒸発装置
CN105466117A (zh) * 2015-11-19 2016-04-06 青岛海尔股份有限公司 一种冷冻冷藏装置
CN108444168A (zh) * 2018-01-22 2018-08-24 青岛海尔股份有限公司 嵌入式冰箱
CN208688070U (zh) * 2018-04-13 2019-04-02 青岛海尔股份有限公司 冰箱
CN110375479A (zh) * 2018-04-13 2019-10-25 青岛海尔股份有限公司 具有导流板的冰箱
CN109140745A (zh) * 2018-08-27 2019-01-04 安徽宏远机械制造有限公司 一种防滴溅接水盘
CN209893735U (zh) * 2019-02-26 2020-01-03 青岛海尔电冰箱有限公司 排水口设置有过滤板的冰箱

Also Published As

Publication number Publication date
CN111609628A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2020173353A1 (zh) 大容积冰箱
WO2020173359A1 (zh) 具有分隔件的冰箱
US11435128B2 (en) Refrigerator with return air inlets formed in two sidewalls of cabinet
WO2022037719A1 (zh) 将冷凝器布置于压机舱内的冰箱
CN110375477B (zh) 制冷室位于冷冻间室底部的冰箱
CN209893735U (zh) 排水口设置有过滤板的冰箱
WO2020173339A1 (zh) 冰箱
CN209893744U (zh) 大容积冰箱
WO2021082751A1 (zh) 蒸发器倾斜设置的冰箱
WO2022037720A1 (zh) 蒸发器底置式冰箱
WO2020173355A1 (zh) 送风机位于蒸发器横向侧方下游的冰箱
WO2020173337A1 (zh) 排水口设置有过滤板的冰箱
CN211372884U (zh) 相对侧壁设置回风口和送风风道的冰箱
WO2020173357A1 (zh) 具有两段式蒸发器的冰箱
CN111609623B (zh) 具有l型冷凝器的冰箱
CN210035945U (zh) 蒸发器具有弯折结构的冰箱
CN210625065U (zh) 回风口形成于箱体侧壁的冰箱
WO2020173356A1 (zh) 送风机位于蒸发器横向侧方上游的冰箱
CN111947368B (zh) 冰箱
CN210625070U (zh) 蒸发器固定结构优化的冰箱
CN219390180U (zh) 半导体制冷的制冷设备
WO2022037718A1 (zh) 将冷凝器布置于压机舱内的冰箱
CN219063862U (zh) 制冷设备
CN212778124U (zh) 相对侧壁设置回风口和送风风道的冰箱
CN117553482A (zh) 制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763167

Country of ref document: EP

Kind code of ref document: A1