WO2022037720A1 - 蒸发器底置式冰箱 - Google Patents

蒸发器底置式冰箱 Download PDF

Info

Publication number
WO2022037720A1
WO2022037720A1 PCT/CN2021/123582 CN2021123582W WO2022037720A1 WO 2022037720 A1 WO2022037720 A1 WO 2022037720A1 CN 2021123582 W CN2021123582 W CN 2021123582W WO 2022037720 A1 WO2022037720 A1 WO 2022037720A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
storage space
rear direction
refrigerator
cooling chamber
Prior art date
Application number
PCT/CN2021/123582
Other languages
English (en)
French (fr)
Inventor
朱小兵
董凌云
野田俊典
刘会
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2022037720A1 publication Critical patent/WO2022037720A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/006General constructional features for mounting refrigerating machinery components

Definitions

  • the invention relates to household appliances, in particular to an evaporator bottom-mounted refrigerator.
  • Some refrigerator users have relatively high requirements for the space occupied by the refrigerator.
  • the refrigerator needs to provide as large a usable volume as possible while occupying as little space as possible.
  • users put forward higher requirements for the space occupied by the refrigerators for example, the refrigerators are required to be flush with the surface of the cabinets.
  • the front-rear dimension of the refrigerator (or referred to as the depth dimension) needs to be smaller than or equal to the depth dimension of the cabinet.
  • the evaporator is arranged on the back of the refrigerator and takes up a lot of depth space, it cannot meet the requirements of the depth dimension of the built-in refrigerator. That is to say, traditional refrigerators cannot meet the requirements of ultra-thin cabinets.
  • the evaporator bottom-mounted refrigerator that is, the evaporator is arranged at the bottom of the box body.
  • the refrigerator avoids the evaporator from occupying a deep space; on the other hand, the height of the storage space at the bottom is raised, and the bending degree of the user when picking and placing items in the storage space is reduced.
  • the depth dimension of this refrigerator still cannot meet the installation requirements of some cabinets.
  • An object of the present invention is to provide an evaporator bottom-mounted refrigerator.
  • a further object of the present invention is to make the evaporator bottom-mounted refrigerator meet the requirements of the size of the occupied space at the same time.
  • a further object of the present invention is to make the refrigerator improve the cooling/cooling efficiency on the basis of ensuring that the box body has a larger effective storage volume and box body volume ratio.
  • the present invention provides an evaporator bottom-mounted refrigerator, and the evaporator bottom-mounted refrigerator includes: including:
  • the box body has a bottom inner tank, the bottom inner tank defines a cooling chamber and a storage space, the cooling chamber is arranged below the storage space, and the depth dimension of the box body along the front-rear direction is set to 480mm to 560mm;
  • a refrigeration system includes an evaporator, which is obliquely arranged in a cooling chamber and configured to provide cooling capacity to a storage space.
  • the evaporator is disposed at the front of the cooling chamber obliquely from front to back; and the evaporator bottom-mounted refrigerator further includes:
  • the air supply assembly which is arranged behind the evaporator, includes:
  • the cooling fan is arranged at the rear of the evaporator from front to back and inclined upward, and is configured to promote the formation of a cooling air flow sent to the storage space through the evaporator;
  • the air supply duct is arranged on the rear wall of the bottom inner tank and communicated with the air outlet of the cooling fan. At least one air supply port is opened on it. Air flow to the storage space.
  • the cooling fan is a centrifugal fan, the air suction port of which faces upward and forward, and the air outlet is located at the rear end of the centrifugal fan and is connected to the lower end of the air supply air duct.
  • the length of the projection of the evaporator in the horizontal direction along the front-rear direction accounts for less than 41% of the depth dimension of the box along the front-rear direction;
  • the minimum horizontal distance from the front end of the centrifugal fan to the evaporator is set to be greater than or equal to 3mm;
  • the length of the projection of the air supply assembly in the horizontal direction along the front-rear direction accounts for less than 49% of the depth dimension of the box along the front-rear direction;
  • the ratio of the thickness of the upwardly extending vertical section of the air supply duct along the front-rear direction to the depth dimension of the box along the front-rear direction is less than 10%.
  • the bottom wall of the bottom inner pot includes: a first support part, which is inclined downward from front to back from the front end of the bottom wall;
  • the lower concave part is arranged on the rear side of the first support part, and is configured to be inclined upward from the horizontal middle part to both sides, so that a water outlet is opened in the horizontal middle part, and the water outlet is used to discharge the water in the cooling chamber;
  • the second support portion is provided inclined upward from the front to the rear from the rear end of the water outlet, and
  • the evaporator is placed on the second support part, and the front end of the evaporator is in conflict with the first support part, so that the water appearing on it gathers in the lower concave part, and the water outlet is located in the front of the evaporator along the front and rear direction of the box. Department.
  • the box body forms a press compartment at the lower rear of the bottom inner liner
  • the refrigerator further includes:
  • Evaporating dish set in the compressor room
  • the drain pipe is inclined downward from the front to the back and extends to the evaporating dish, and the inclination angle of the drain pipe is greater than or equal to 5° and less than or equal to 15°.
  • the bottom wall of the bottom inner container includes: a third support part, which is inclined upward from the rear end of the second support part from front to back, and the cooling fan is fixed on the third support part.
  • the above-mentioned evaporator bottom-mounted refrigerator further includes: an upper cover of the evaporator, which is laterally arranged in the bottom inner tank and used to separate the cooling chamber and the storage space; a return air hood is arranged at the front end of the upper cover of the evaporator, and as the front wall of the cooling chamber.
  • the ratio of the horizontal distance from the front end of the air return hood to the front end of the box to the depth dimension of the box in the front-rear direction is less than 8.2%.
  • the box body further includes: a longitudinal partition, which is arranged in the middle of the storage space and divides the storage space into two horizontally arranged storage cavities, and the front part of the longitudinal partition is provided with an insulating vertical beam.
  • the thickness of the thermal insulation layer of the thermal insulation vertical beam in the front-rear direction accounts for less than 15.7% of the depth dimension of the box along the front-rear direction; and the horizontal distance from the front end of the evaporator to the thermal insulation vertical beam accounts for the box in the front-rear direction.
  • the proportion of the depth dimension is less than 15.7%.
  • the rated cooling power or the maximum cooling power of the refrigeration system is set to be greater than or equal to a set power value.
  • a cooling chamber is arranged at the lower part of the bottom inner tank, the evaporator is inclined in the cooling chamber to facilitate drainage and heat exchange, and the depth dimension of the box body of the refrigerator along the front-rear direction is set to be 480mm to 480mm. 560mm (for example, about 510mm can be set).
  • the depth dimension of the box body along the front and rear directions is set between 480mm and 480mm. Within the range of 560mm, it can meet the requirements of multiple indicators such as refrigeration needs, space requirements, and effective volume.
  • the evaporator is arranged in the cooling chamber.
  • the depth dimension (distance in the front-rear direction) of the box body is reduced, and the depth dimension is used for the storage space as much as possible;
  • the raised bottom of the space also avoids the inconvenience caused by users needing to bend or squat down to pick and place items.
  • the evaporator is disposed obliquely in the cooling chamber, which breaks through the technical shackles of the prior art that the evaporator needs to be placed horizontally to reduce the depth dimension.
  • the slanted placement of the evaporator will increase the length in the front and rear directions, the slanted placement of the evaporator makes the arrangement of other components in the cooling chamber more reasonable, and the actual airflow field analysis confirms that the air circulation efficiency is also higher, and the drainage is more comfortable.
  • the dimensions and relative positions of components such as the bottom liner, the evaporator, the air supply assembly, the air return hood, the longitudinal partition, the drain pipe, and the evaporating dish have been strictly demonstrated and calculated precisely. In the case of extremely strict size requirements, it meets the requirements of various performance indicators.
  • FIG. 1 is a schematic front view of an evaporator bottom-mounted refrigerator according to an embodiment of the present invention
  • FIG. 2 is a schematic front view of a lower part of a box in an evaporator bottom-mounted refrigerator according to an embodiment of the present invention
  • Fig. 3 is a schematic perspective view of the box shown in Fig. 2;
  • FIG. 4 is a schematic block diagram of a refrigerator according to an embodiment of the present invention.
  • Figure 5 is a schematic cross-sectional view taken along section line A-A in Figure 2;
  • Figure 6 is a schematic cross-sectional view taken along section line B-B in Figure 2;
  • FIG. 7 is a schematic structural diagram of a door of a refrigerator after being closed according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional top view of a bottom liner in an evaporator bottom-mounted refrigerator according to one embodiment of the present invention, showing the bottom upper surface of the bottom liner;
  • FIG. 9 is a schematic longitudinal cross-sectional view of a lower part of a box in an evaporator bottom-mounted refrigerator according to an embodiment of the present invention.
  • FIG. 10 is an exploded view of an air supply assembly in an evaporator bottom-mounted refrigerator according to an embodiment of the present invention.
  • FIG. 1 is a schematic front view of an evaporator bottom-mounted refrigerator 10 according to an embodiment of the present invention
  • FIG. 2 is a schematic front view of a lower part of a box in the refrigerator 10 according to an embodiment of the present invention
  • FIG. 3 is a schematic perspective view of the case 100 shown in FIG. 2 . 2 and 3 mainly show the structure of the bottom portion of the case.
  • the evaporator bottom-mounted refrigerator 10 of the present embodiment may generally include a box body 100 .
  • the box body 100 may include an outer shell, an inner liner, a thermal insulation layer, and other accessories.
  • the casing is the outer structure of the refrigerator 10 and protects the entire refrigerator 10 .
  • an insulating layer is added between the outer shell and the inner tank of the box body 100 , and the insulating layer is generally formed by a foaming process.
  • a plurality of inner bladders can be arranged up and down, and the bottom inner bladder 101 is the inner bladder at the lowermost part.
  • the bottom inner container 101 defines a cooling chamber and a storage space 120 .
  • the storage space 120 may be a space for storage at the bottom of the refrigerator 10.
  • the bottom inner tank 101 is a freezing inner tank, and the storage space 120 constitutes a freezing compartment.
  • a temperature-changing chamber defined by the temperature-changing inner container, a refrigerating chamber defined by the refrigerating inner container, and the like may also be configured as required.
  • the number and function of the specific storage compartments can be configured according to the needs of the refrigerator.
  • the front side of the box body 100 is also provided with a door body to open or close the storage compartment. In order to show the internal structure of the box body 100, the door body is hidden in the figure.
  • the evaporator bottom-mounted refrigerator 10 may also have a plurality of inner containers to form a refrigerating chamber, a changing chamber, and the like.
  • the cabinet layout of the evaporator bottom-mounted refrigerator 10 can be various, and is not limited to a French refrigerator, a T-shaped refrigerator, and the like.
  • An evaporator upper cover 130 may be provided in the bottom inner tank 101 .
  • the evaporator upper cover 130 is laterally disposed in the bottom inner tank 101 for separating the cooling chamber and the storage space 120 .
  • the evaporator upper cover 130 simultaneously serves as the bottom wall of the storage space 120 and the top of the cooling chamber, and the storage space 120 above the storage space 120 is used for storing items.
  • longitudinal partitions 140 may also be arranged in the bottom inner bladder 101 .
  • the longitudinal partition 140 is disposed in the middle of the storage space 120, and divides the storage space 120 into two laterally arranged storage chambers. That is, the storage space 120 has two left and right storage cavities, and the two storage cavities can be respectively provided with door bodies to form a structure of two-sided doors. It should be noted that the configuration of the bottom liner 101 as a side-to-side door structure is only an optional embodiment, and those skilled in the art can configure the storage space 120 as a whole or other separation methods according to the specific functions of the refrigerator.
  • FIG. 4 is a schematic block diagram of the refrigerator 10 according to an embodiment of the present invention.
  • the refrigeration system 300 may be a refrigeration cycle system composed of a compressor 310, a condenser 320, a throttling device 330, an evaporator 340, and the like.
  • Evaporator 340 is configured to provide cooling directly or indirectly into storage space 120 .
  • the refrigerator 10 realizes the circulation of the cooling airflow in the evaporator 340 and the storage compartment through the air duct system. Since the circulation structure and working principle of the refrigeration system itself are well known to those skilled in the art and are easy to implement, in order not to obscure and obscure the improvement points of the present application, the refrigeration system itself will not be described in detail below.
  • the air supply assembly 400 is used to form an air circulation between the cooling chamber and the storage space 120 , and may specifically include a centrifugal fan 410 and an air supply air duct 420 .
  • the rated cooling power or the maximum cooling power of the cooling system is set to be not lower than the set power value. That is, the cooling capacity of the refrigeration system is not lower than the set power.
  • the set power value can be set as the set power value, and the set power value can be set according to the cooling demand of the refrigerator 10, for example, it needs to meet the volume of 200L.
  • FIG. 5 is a schematic cross-sectional view taken along section line A-A in FIG. 2
  • FIG. 6 is a schematic cross-sectional view taken along section line B-B in FIG. 2 .
  • the section lines are omitted in FIGS. 5 and 6 , and only the outlines of the components are retained.
  • the cooling chamber 110 is disposed below the storage space 120 for arranging the evaporator 340 and part of the air supply assembly 400 .
  • the evaporator 340 is arranged in the cooling chamber 110 , on the one hand, the depth dimension (the distance in the front-rear direction) of the box body 100 is reduced. , the depth dimension is used for the storage space 120 as much as possible; on the other hand, because the bottom of the storage space 120 is raised, it also avoids the inconvenience caused by users needing to bend or squat to pick up and place items.
  • the depth dimension of the box body 100 of the evaporator bottom-mounted refrigerator 10 in the front-rear direction is set to be 480 mm to 560 mm, and may be further set to be approximately equal to 510 mm.
  • a cooling system with rated cooling power or a maximum cooling power not lower than the set power value is arranged in the cooling chamber 110 .
  • the evaporator 340 meets the requirements of the normal operation and energy consumption standards of the refrigerator 10 .
  • the evaporator 340 may be generally in the shape of a flat rectangular parallelepiped as a whole. That is, the thickness dimension of the evaporator 340 perpendicular to the support surface is significantly smaller than the length dimension of the evaporator 340 .
  • the evaporator 340 may be a finned evaporator, and the arrangement direction of the fins is parallel to the depth direction of the front and rear, which is convenient for the airflow to pass through from the front to the rear. In other embodiments, the evaporator 340 may be configured as other similar flat profiled structures.
  • the evaporator 340 is disposed in the cooling chamber 110 inclined upward from the front to the back, which breaks through the technical shackles in the prior art that the evaporator 340 needs to be placed horizontally to reduce the depth dimension.
  • the length of the direction increases, but slanting it makes the arrangement of other components in the cooling chamber 110 more reasonable, and the actual airflow field analysis confirms that the air circulation efficiency is also higher, and the drainage is also more comfortable.
  • the oblique arrangement of the evaporator 340 is one of the main technical improvements made in this embodiment.
  • the refrigerator 10 of this embodiment In order to reduce the depth dimension in the front-rear direction, the refrigerator 10 of this embodiment strictly sets the front-rear direction positions and dimensions of each component in the cooling chamber 110 , wherein the projection of the evaporator 340 in the horizontal direction is along the front-rear direction.
  • the ratio of the length to the depth dimension of the box body 100 in the front-rear direction is less than 41%, and further can be set to less than 35%, for example, can be set to 29.8%.
  • the depth dimension of the box body 100 in the front-rear direction refers to the entire horizontal length from the front end to the rear end.
  • the size and arrangement of the above-mentioned evaporator 340 are structural optimizations based on space requirements and refrigeration performance requirements, and have been verified by trial-produced products.
  • the projected size of the evaporator 340 in the horizontal direction is smaller than 196.8 mm to 229.6 mm.
  • the evaporator 340 may generally be disposed at the front of the cooling chamber 110 , and a cooling fan may also be disposed behind the evaporator 340 .
  • the air supply assembly 400 of the refrigerator 10 in this embodiment is disposed behind the evaporator 340 .
  • the air supply assembly 400 may include a cooling fan 410 and an air supply air duct 420 .
  • the cooling fan 410 may be disposed at the rear of the evaporator 340 inclined upward from front to back, and configured to promote the formation of a cooling airflow sent to the storage space 120 via the evaporator 340 .
  • the angle of inclination of the cooling fan 410 may be greater than that of the evaporator 340 , so as to make room for the lower rear part of the bottom inner bladder 101 to form a compressor cabin.
  • the air supply duct 420 is disposed on the rear wall of the bottom inner container 101 and communicated with the air outlet of the cooling fan 410 , and at least one air supply port 421 is opened on it.
  • the air supply port 421 is used for connecting the air supply air duct 420 and the storage space, so as to deliver the cooling airflow to the storage space 120 .
  • the cooling fan 410 can choose to use various fans, such as centrifugal fan, axial fan, cross-flow fan, as required, which needs to meet the functional requirements of discharging the air in the area where the evaporator 340 is located into the air supply air duct 420 .
  • the cooling fan 410 may use a centrifugal fan.
  • the centrifugal fan 410 is disposed obliquely behind the evaporator 340 , and its air suction port faces upward and forward, and is configured to promote the formation of cooling sent to the storage space 120 via the evaporator 340 Airflow; the horizontal distance from the front end of the centrifugal fan 410 to the evaporator 340 is set to be greater than or equal to 3 mm, so as to meet the requirements of airflow.
  • the centrifugal fan 410 is integrally located behind the evaporator 340 , and includes a volute and an impeller disposed in the volute, and is configured to promote the formation of a refrigerating airflow and provide the circulating power of the refrigerating airflow.
  • the volute comprises a lower box body and an upper cover body which are fastened together, which facilitates the disassembly and assembly of the volute.
  • the suction port of the centrifugal fan 410 is generally located in the center of the volute, and its height may be higher than the top of the evaporator 340 .
  • the air outlet of the centrifugal fan 410 is located at the rear end, is configured to supply air obliquely rearward, and is connected to the lower end of the air supply air duct 420 .
  • the air supply duct 420 extends upward along the rear wall of the bottom inner container 101 , and is configured to deliver the cooling airflow to the storage space 120 .
  • the rear wall of the storage space 120 is provided with an air supply port 421 that communicates with the air supply air duct 420 to discharge the cooling air into the storage space 120 .
  • the thickness of the upwardly extending vertical section of the air supply duct 420 in the front-rear direction accounts for less than 10% of the depth dimension of the box 100 in the front-rear direction, and is further set to be less than 5.0%, for example, 4.9%.
  • the projection length of the entire air supply assembly 400 in the horizontal direction along the front and rear direction is less than 48 mm to 56 mm.
  • the evaporator 340 is disposed at the front of the cooling chamber 110 inclined upward from front to back, and the centrifugal fan 410 is disposed at the rear of the cooling chamber 110 inclined upward from front to back.
  • the inclination angle of the evaporator 340 is smaller than the inclination angle of the centrifugal fan 410 .
  • the bottom end of the centrifugal fan 410 is higher than the evaporator 340 .
  • the height of the air suction port of the centrifugal fan 410 is generally higher than that of the evaporator 340 . Therefore, the inclination angle of the part of the bottom inner tank 101 for supporting the evaporator 340 is smaller than the inclination angle of the part of the bottom inner tank 101 for supporting the centrifugal fan 410 .
  • the location and inclination angle of the centrifugal fan 410 also provide space for arranging the compressor compartment behind the cooling chamber 110 .
  • the projected length of the entire air supply assembly 400 in the horizontal direction along the front-rear direction accounts for less than 49% of the depth dimension of the box 100 along the front-rear direction.
  • the setting of the above air duct related dimensions is a structural optimization made according to the space requirements and air supply performance requirements, and has been verified by the effect of trial products.
  • the projection length of the entire air supply assembly 400 in the horizontal direction along the front-rear direction is less than 235.2 mm to 274.4 mm.
  • the foam layer of the box body 100 is arranged on the outside of the cooling chamber 110 and the storage space 120, that is, on the outside of the bottom inner tank 101, and surrounds the bottom inner tank 101, and the thickness of the foam layer on the back of the storage space 120 accounts for
  • the ratio of the depth dimension of the box body 100 in the front-rear direction is less than 12%, and further may be less than 11.5%, for example, it may be set to 11%.
  • the thickness of the above-mentioned foam layer is a structural optimization made according to the space requirements and thermal insulation performance requirements, and the effect verification of the trial product is obtained.
  • the evaporator upper cover 130 is laterally arranged in the bottom inner tank 101 for separating the cooling chamber 110 and the storage space 120 .
  • the front of the evaporator upper cover 130 is located above the evaporator 340 and is generally horizontal.
  • the rear portion of the evaporator upper cover 130 is located above the centrifugal fan 410 and is generally inclined.
  • the centrifugal fan 410 and the upper cover 130 of the evaporator have a gap with a predetermined distance. The airflow sucked by the centrifugal fan 410 enters the air suction port through the gap between the centrifugal fan 410 and the upper cover 130 of the evaporator.
  • the air return hood 131 is arranged at the front end of the upper cover 130 of the evaporator and serves as the front wall of the cooling chamber 110; the horizontal distance from the front end of the air return hood 131 to the front end of the box body 100 accounts for the depth dimension of the box body 100 in the front-rear direction.
  • the ratio is less than 8.2%, and can be further set to less than 5.0%, for example, can be set to 4.7%.
  • the horizontal distance from the front end of the air return hood 131 to the front end of the box body 100 is less than 39.36mm to 45.92mm.
  • the return air hood 131 is formed with a front return air inlet 132 on the front side of the cooling chamber 110, which is communicated with the freezing chamber, so that the return air of the freezing chamber enters the cooling chamber 110 through the front return air inlet 132 to exchange heat with the evaporator 340.
  • the air circulation between the cooling chamber 110 and the storage space 120 is completed.
  • the above-mentioned distance between the air return hood 131 and the front of the box body 100 is a structural optimization made according to the space requirement and the air return performance requirement, and the effect verification of the trial product is obtained.
  • the front side of the air return hood 131 is formed with two front air inlets 132 distributed up and down, which is not only visually pleasing, but also effectively prevents children's fingers or foreign objects from entering the cooling space; in addition, the two upper and lower air return areas allow the return air to enter After cooling the space, it flows through the evaporator 340 more evenly, which can avoid the problem of easy frosting on the front surface of the evaporator 340 to a certain extent, which can not only improve the heat exchange efficiency, but also prolong the defrosting cycle, saving energy and high efficiency.
  • a certain space can also be formed between the front top of the evaporator 340 , the air return hood 131 and the front of the evaporator upper cover 130 .
  • This space area can be used as a frost-receiving space, and the return air area above the return air hood 131 can enter the evaporator 340 from the frost-receiving space, thereby reserving a part of the space for frost and reducing the damage to the inside of the evaporator 340 and the cooling fan 410 influence.
  • the evaporator 340 may be provided with a special defrosting device for the frost holding space.
  • the frost-receiving space also solves the problem that the front end of the evaporator 340 is easily frozen to a certain extent.
  • the longitudinal partitions 140 there may be two air return hoods 131 , which are distributed left and right along the lateral direction and are separated by the longitudinal partitions 140 .
  • the longitudinal partition 140 is disposed in the middle of the storage space 120 to divide the storage space 120 into two laterally arranged storage chambers, and each storage chamber is provided with a return air hood 131 .
  • the front part of the longitudinal partition 140 is provided with insulating vertical beams 141 .
  • the thermal insulation vertical beam 141 is used to cooperate with the door body of the storage cavity to prevent cold energy from leaking from the edge of the door body.
  • the ratio of the thickness of the thermal insulation layer of the thermal insulation vertical beam 141 in the front-rear direction to the depth dimension of the box 100 in the front-rear direction is less than 15.7%, and may be less than or equal to 8.4%; and the front end of the evaporator 340 reaches the thermal insulation vertical beam 141
  • the ratio of the horizontal distance to the depth dimension of the box body 100 in the front-rear direction is less than 15.7%, and can be further set to be less than or equal to 7.7%.
  • the thickness of the thermal insulation layer of the thermal insulation vertical beam 141 in the front-rear direction accounts for the depth dimension of the box 100 in the front-rear direction and the level from the front end of the evaporator 340 to the thermal insulation vertical beam 141
  • the distance accounting for the depth dimension of the box body 100 in the front-rear direction can be respectively set to be less than 75.36 mm to 87.92 mm.
  • the thickness of the thermal insulation layer of the above-mentioned thermal insulation vertical beam 141 and the position relative to the evaporator 340 are structural optimizations made according to the space requirements and thermal insulation performance requirements, and the effect verification of the trial product is obtained.
  • FIG. 7 is a schematic structural diagram of the door body 200 of the refrigerator 10 after being closed according to an embodiment of the present invention. After the door body 200 is closed and the storage space 120 is closed, the overall depth dimension of the refrigerator 10 (the overall thickness in the front-rear direction) can be less than or equal to 572 mm, so as to meet the size requirement for matching with the cabinet.
  • a specific embodiment of a refrigerator 10 with a depth dimension of the box body 100 of 510 mm will be introduced in conjunction with the dimensions marked in FIGS. 5 , 6 and 7 .
  • the volume of the 550mm box is the same, which is enough to reflect the efficiency of space usage.
  • the overall depth dimension L12 of the box body 100 is 510 mm, and the thickness L11 of the door body 200 is set to 62 mm. Therefore, the overall thickness of the refrigerator 10 is only 572 mm.
  • the depth dimension L9 of the evaporator 340 in the refrigerator 10 is 152 mm
  • the longitudinal dimension L10 is 75 mm
  • the left and right lateral dimension (not marked) is 470 mm
  • the inclination angle ⁇ with respect to the horizontal plane may be 7.5 degrees.
  • the inclination angle of the bottom wall portion of the bottom inner pot 101 supporting the evaporator 340 with respect to the horizontal plane is also correspondingly set to 7.5 degrees. Due to the inclined arrangement of the evaporator 340, the length L3 of the projection in the horizontal direction along the front-rear direction is 162 mm.
  • the inclination of the evaporator 340 makes the arrangement of other components in the cooling chamber 110 more reasonable, and the actual airflow passes through. Flow field analysis confirmed that the air circulation is also more efficient and drainage is more comfortable. At the same time, the inclined arrangement of the evaporator 340 can also prevent the evaporator 340 from being too close to the insulating vertical beam 141 , causing frost to block the air return port.
  • the centrifugal fan 410 is also inclined, and its inclination angle ⁇ relative to the horizontal plane can be 36.7 degrees.
  • the dimensions and relative relationships of the components in the cooling chamber 110 and the storage space 120 are set as follows: the horizontal distance L8 from the front end of the air return hood 131 to the front end of the box 100 is 24 mm.
  • the thickness L1 of the heat insulating layer of the heat insulating vertical beam 141 in the front-rear direction was set to 42 mm.
  • the horizontal distance L4 from the front end of the centrifugal fan 410 to the evaporator 340 is 22 mm, so as to save the depth distance between the evaporator 340 and the fan 410 to the greatest extent under the condition that the blades of the centrifugal fan 410 are not frosted.
  • the thickness L6 of the upwardly extending vertical section of the air supply duct 420 in the front-rear direction is 25 mm. Therefore, it can be ensured that the length L5 of the projection of the wind assembly in the horizontal direction along the front-rear direction is 200 mm.
  • the thickness L7 of the foam layer on the back of the storage space 120 is 56 mm.
  • the distance of the gap between the centrifugal fan 410 and the evaporator upper cover 130 may be set to 30 mm.
  • L8 is 4.7% of L12
  • L6 is 4.9% of L12
  • L1 is 8.2% of L12
  • L2 is 7.5% of L12
  • L3 is 29.8% of L12
  • L4 is 4.3% of L12
  • L5 is 39.2% of L12 and 11% of L12 for L7.
  • the bottom of the box body 100 of the evaporator bottom-mounted refrigerator 10 in this embodiment is sequentially arranged with a return air cover 131 , an evaporator 340 , a cooling fan 410 , an air supply air duct 420 , and a foam layer from front to back.
  • the evaporator 340 and the refrigerating fan 410 are both arranged obliquely, which on the one hand improves the air supply efficiency, and on the other hand makes the drainage more smooth.
  • FIG. 8 is a cross-sectional top view of the bottom tank in the evaporator bottom-mounted refrigerator 10 according to one embodiment of the present invention, showing the bottom upper surface of the bottom tank; and
  • FIG. 9 is an evaporator according to one embodiment of the present invention A schematic longitudinal cross-sectional view of the lower part of the box in the bottom-mounted refrigerator 10 .
  • the bottom wall of the bottom inner container 101 may include: a first support portion 170 , a lower concave portion 171 , a second support portion 172 , and a third support portion 173 .
  • the first support portion 170 is inclined downward from front to rear from the front end of the bottom wall.
  • the lower concave portion 171 is disposed on the rear side of the first support portion, and is configured to be inclined upward from the horizontal middle portion to both sides, so that a drain port 177 is opened in the horizontal middle portion. defrosting water, etc.).
  • the second support portion 172 is disposed inclined upward from front to back from the rear end of the water outlet, and the evaporator 340 is placed on the second support portion 172, and the front end of the evaporator 340 is in conflict with the first support portion 170, so that there is a
  • the water collected in the lower concave portion 171 , and the water outlet 177 is located in the front area of the evaporator 340 along the position of the tank body 100 in the front-rear direction.
  • the location of the drain port 177 is a region generally located in the middle of the lateral direction, and is not strictly required to be located in the region of the center of the lateral direction. In some embodiments, the drain port 177 may be located at a position that is appropriately offset to one side in the lateral middle.
  • the inclination angle of both sides of the lower concave portion 171 may be greater than or equal to 7 degrees, so that the water on both sides converges toward the water outlet 177 .
  • the structure of the lower concave portion 171 can also reduce the distance between the evaporator 340 and the bottom wall of the bottom inner tank 101 as much as possible, so that the heat of the heating wire of the evaporator 340 can be transferred to the lower concave portion, so that the defrosting water can effectively flow into the drain port 177. .
  • the above-mentioned structure of the concave portion 171 utilizes the heat of the heating wire 161 of the evaporator 340 for defrosting, which prevents ice cubes from blocking the water outlet 177 and does not require additional heating wires at the water outlet 177 .
  • a part of the inclined evaporator 340 can be suspended in the air, which is convenient for defrosting and drainage. Due to the inclined arrangement of the evaporator 340 , the distance between the evaporator 340 and the water outlet 177 can also be reduced, which not only improves the space utilization of the refrigerator 10 , but also ensures that the heating wire 161 on the evaporator 340 can cover the area at the water outlet 177 . Heat is applied, thereby reducing the risk of frost formation at the drain 177 .
  • the distance L13 from the evaporator 340 to the bottommost end of the lower concave portion 171 is less than or equal to 50 mm, and more preferably, it can be set to be less than or equal to 25 mm.
  • the inclination angle of the second support portion 172 can also facilitate the collection of water to the drainage port 177, thereby improving the smoothness of drainage.
  • the proportion of the abutting portion of the evaporator 340 and the second support portion 172 to the bottom surface of the evaporator 340 is greater than or equal to 0.6, for example, 2/3, 3/4, etc. can be set, so that the water outlet 177 can be located at the front of the evaporator 340. below. That is to say, the drain port 177 is located at the front of the evaporator 340 along the front-rear direction of the casing 100 .
  • the air does not flow into the evaporator 340 but flows through the space between the bottom surface of the evaporator 340 and the drain port 177 ,
  • the path length of the air flowing through the evaporator 340 is increased, and the heat exchange efficiency of the evaporator 340 is further improved.
  • the box 100 forms a compressor compartment 190 at the rear below the bottom inner pot 101 , and the refrigerator 10 may further include an evaporation dish 191 and a drain pipe 192 .
  • the evaporating dish 191 is arranged in the press room 190 ; the drain pipe 192 extends from the water outlet 177 to the evaporating dish 191 obliquely downward from front to rear.
  • the compressor compartment 190 may be used to arrange the condenser 320 as well as the compressor 310 .
  • the condenser 320 may be disposed above the evaporating dish 191 .
  • a cooling fan (not shown in the figure) may also be arranged in the compressor cabin 190 to form a cooling airflow to dissipate heat to the condenser 320 and the compressor 310 .
  • the drain pipe 192 is inclined downward from the water outlet 177 to extend from the front to the rear to the evaporating dish 191 , so that the pair of evaporating dishes 191 flow out from the drain pipe 192 .
  • the defrost water collected is collected, and then the defrost water in the evaporating dish 191 is evaporated by the heat generated in the condenser 320 .
  • the inclination angle of the drain pipe 192 may be greater than or equal to 5° and less than or equal to 15°, and more preferably may be set at 5° and less than or equal to 10°. For example, it can be set to 7°.
  • the inclination angle of the drain pipe 192 is set to be greater than or equal to 5° and less than or equal to 15°, thereby making the flow of the defrost water in the drain pipe 192 smoother, and at the same time ensuring that the drain pipe 192 will not be at a height Taking up too much space in the direction.
  • the inclination angle of the above-mentioned drainage pipe 192 is structurally optimized according to drainage performance requirements and space requirements, and has been verified by the effect of trial products.
  • a water pump may be added to the drainage part to actively pump the water to the evaporating dish 191 .
  • the inclination angle of the drain pipe 192 may not be limited.
  • the third support portion 173 is inclined upward from the front to the rear from the rear of the second support portion 172 , and its inclination angle is greater than that of the second support portion 172 .
  • the cooling fan 410 is fixed on the third support portion 173 .
  • Such a sloping configuration may also provide room for the placement of the press nacelle 190 .
  • the structure of the cooling chamber 110 and the inclined arrangement of components such as the evaporator 340 not only ensure smooth and sufficient heat exchange of air flow, but also reduce frost to a certain extent, and improve the efficiency of defrosting and drainage.
  • the air supply air duct 420 may be jointly defined by the air duct back plate 422 and the rear wall of the bottom inner container 101 .
  • the air duct back plate 422 is disposed in front of the rear wall of the bottom inner pot 101 , and is substantially parallel to the rear wall of the bottom inner pot 101 .
  • the air supply port 421 is opened on the air duct back plate 422 .
  • the centrifugal fan 410 may include a volute and an impeller 411.
  • the volute is disposed at the rear of the cooling chamber 110 obliquely from front to back and upward.
  • the centrifugal fan 410 can discharge the airflow from the air suction port 412 in the radial direction, and the cooling airflow discharged into the air supply air duct 420 can be discharged into the storage space 120 from the air supply port 421 to exchange with the hot air in the storage space 120 heat, lowering the temperature of the storage space 120 .
  • the air in the storage space 120 can be returned to the cooling chamber 110 through the front return air inlet 132 on the return air hood 131, thereby forming a circulating airflow path.
  • the volute includes a fan bottom casing 424 and a fan upper cover 423 .
  • the fan bottom case 424 is fixed to the rear of the bottom wall of the bottom inner pot 101 , that is, to the third support portion 173 .
  • the upper cover 423 of the fan extends obliquely downward into the cooling chamber 110 from the lower end of the air duct back plate 422 , and is fastened on the bottom case 424 of the fan.
  • the air suction port 412 is opened at the central position of the upper cover 423 of the fan.
  • the fan bottom case 424 After the fan bottom case 424 is connected with the fan upper cover 423 , it can also extend downward into the cooling chamber 110 obliquely, and an air outlet is formed at the position where the rear end of the fan bottom case 424 is connected to the air duct back plate 422 .
  • the fan bottom case 424 and the fan upper cover 423 can be connected together in the form of snap connection.
  • the upper cover 423 of the fan and the back plate 422 of the air duct can also be formed as an integral part. This way is different from the fan structure in the prior art.
  • the fan volute and the air duct plate are generally independent components, and during assembly, the installer generally needs to install them separately. This will result in complicated installation process and increased cost, which is not conducive to mass production.
  • the air duct back plate 422 and the fan upper cover 423 are integrally formed.
  • the fan upper cover 423 is directly installed into the cooling chamber 110 and connected to the fan bottom case 424, which not only simplifies the installation process, but also reduces the cost, and can make the structure of the entire air supply air duct 420 more stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种蒸发器底置式冰箱,包括:箱体,具有底部内胆,底部内胆限定有冷却室和储物空间,冷却室设置于储物空间的下方,并且箱体沿前后方向的进深尺寸设置为480mm至560mm;制冷系统,其包括蒸发器,蒸发器倾斜布置于冷却室内,并配置成向储物空间提供冷量。经过大量的结构优化工作,本发明的冰箱满足了冰箱正常运行以及各项性能指标的要求,在保证箱体超薄且具有较大有效储物容积箱体体积比的基础上,提高了制冷效率。

Description

蒸发器底置式冰箱 技术领域
本发明涉及家用电器,特别是涉及一种蒸发器底置式冰箱。
背景技术
部分冰箱用户对于冰箱的占用空间存在比较高的要求。冰箱需要在占用空间尽量少情况下,提供尽量大的使用容积。特别对于与整体式橱柜配合的嵌入式冰箱,用户对于冰箱的空间占用提出了更高的要求,例如要求冰箱与橱柜的表面平齐。
对于上述空间要求,冰箱的前后方向的尺寸(或称为进深尺寸)需要小于或等于橱柜的进深尺寸。传统的冰箱,由于蒸发器设置于冰箱的背部占用了大量的进深空间,无法满足嵌入式冰箱进深尺寸的要求。也就是说传统冰箱无法满足超薄箱体的要求。
针对上述问题,现有技术出现了蒸发器底置式冰箱,也即将蒸发器设置于箱体的底部。这种冰箱一方面避免了蒸发器占用进深空间;另一方面抬高了位于底部储物空间的高度,降低用户对储物空间进行取放物品操作时的弯腰程度。然而这种冰箱的进深尺寸仍然无法满足某些橱柜的安装要求。
发明内容
本发明的一个目的是要提供一种蒸发器底置式冰箱。
本发明一个进一步的目的是使得蒸发器底置式冰箱同时满足占用空间大小的要求。
本发明一个进一步的目的是使得冰箱在保证箱体具有较大有效储物容积箱体体积比的基础上,提高制冷/传冷效率。
特别地,本发明提供了一种蒸发器底置式冰箱,该蒸发器底置式冰箱包括:包括:
箱体,具有底部内胆,底部内胆限定有冷却室和储物空间,冷却室设置于储物空间的下方,并且箱体沿前后方向的进深尺寸设置为480mm至560mm;
制冷系统,其包括蒸发器,蒸发器倾斜布置于冷却室内,并配置成向储物空间提供冷量。
可选地,蒸发器从前至后向上倾斜设置于冷却室的前部;并且蒸发器底置式冰箱还包括:
送风组件,设置于蒸发器的后方,其包括:
制冷风机,从前至后向上倾斜地设置于蒸发器的后方,并配置成促使形成经由蒸发器送向储物空间的制冷气流;
送风风道,设置于底部内胆的后壁,并与制冷风机的排风口连通,其上 开设有至少一个送风口,送风口用于连通送风风道以及储物空间,以将制冷气流输送至储物空间。
可选地,制冷风机为离心风机,其吸风口朝向前上方,其排风口位于离心风机的后端,并与送风风道的下端相接。
可选地,蒸发器在水平方向上的投影沿前后方向的长度占箱体沿前后方向的进深尺寸的比例小于41%;
离心风机的前端至蒸发器的水平最小距离设置为大于或等于3mm;
送风组件在水平方向上的投影沿前后方向的长度占箱体沿前后方向的进深尺寸的比例小于49%;
送风风道向上延伸的竖直区段沿前后方向的厚度占箱体沿前后方向的进深尺寸的比例小于10%。
可选地,底部内胆的底壁包括:第一支撑部,从底壁的前端从前至后向下倾斜设置;
下凹部,设置于第一支撑部的后侧,并配置成从横向中部向两侧向上倾斜,从而在横向中部开设排水口,排水口用于排出冷却室内的水;
第二支撑部,从排水口的后端从前至后向上倾斜设置,并且
蒸发器放置于第二支撑部上,并且蒸发器的前端与第一支撑部抵触,从而使得其上出现的水汇聚于下凹部,并且排水口沿箱体沿前后方向的位置位于蒸发器的前部。
可选地,箱体在底部内胆的下方的后部形成压机舱,并且冰箱还包括:
蒸发皿,设置于压机舱内;
排水管,从排水口从前向后向下倾斜延伸至蒸发皿处,排水管的倾斜角度大于等于5°且小于等于15°。
可选地,底部内胆的底壁包括:第三支撑部,从第二支撑部的后端从前至后向上倾斜设置,制冷风机固定于第三支撑部上。
可选地,上述蒸发器底置式冰箱还包括:蒸发器上盖,横向设置于底部内胆内,用于分隔冷却室和储物空间;回风罩,设置于蒸发器上盖的前端,并作为冷却室的前壁。
可选地,回风罩的前端至箱体的前端的水平距离占箱体沿前后方向的进深尺寸的比例小于8.2%。
可选地,箱体还包括:纵向隔板,设置于储物空间的中部,将储物空间分隔为两个横向排列的储物腔,纵向隔板的前部设置有隔热竖梁。
可选地,隔热竖梁的隔热层沿前后方向的厚度占箱体沿前后方向的进深尺寸的比例小于15.7%;并且蒸发器前端至隔热竖梁的水平距离占箱体沿前后方向的进深尺寸的比例小于15.7%。
可选地,制冷系统的额定制冷功率或最大制冷功率设置为大于或等于设定功率值。
本发明的蒸发器底置式冰箱,在底部内胆的下部设置冷却室,将蒸发器倾斜设置于冷却室内,便于进行排水和换热,并且冰箱的箱体沿前后方向的进深尺寸设置为480mm至560mm(例如可设置约为510mm)。经过大量的结构优化工作,本发明的冰箱满足了冰箱正常运行以及各项性能指标的要求,实现了超薄大容积的效果。
进一步地,本发明的蒸发器底置式冰箱,在将制冷系统的额定制冷功率或者最大制冷功率设置为不低于设定功率值的情况下,将箱体沿前后方向的进深尺寸设置在480mm至560mm范围内,同时满足制冷需要、空间要求、有效容积多个指标要求。
进一步地,本发明的冰箱,蒸发器布置于冷却室内,一方面减小了箱体进深尺寸(前后方向的距离),尽可能地将进深尺寸用于储物空间;另一方面,由于储物空间底部提高,也避免了用户需要大幅度弯腰或蹲下才能进行取放物品操作造成的使用不便。
进一步地,本发明的冰箱,蒸发器倾斜设置于冷却室内,突破了现有技术减少进深尺寸需要使蒸发器水平放置的技术桎梏。虽然蒸发器倾斜放置会导致前后方向的长度增加,但是将其斜置使得冷却室内其他部件的布置更加合理,而且经过实际气流流场分析证实风循环效率也更加高,排水也更加舒畅。
进一步地,本实施例的冰箱,对底部内胆、蒸发器、送风组件、回风罩、纵向隔板、排水管、蒸发皿等部件的尺寸和相对位置均进行了严格论证和精密计算,在尺寸要求极为严苛的情况下,满足了各项性能指标的要求。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的蒸发器底置式冰箱的示意性主视图;
图2是根据本发明一个实施例的蒸发器底置式冰箱中箱体下部的示意性主视图;
图3是图2所示的箱体的示意性立体图;
图4是根据本发明一个实施例的冰箱的示意框图;
图5是沿图2中的剖切线A-A截取的示意性剖视图;
图6是沿图2中的剖切线B-B截取的示意性剖视图;以及
图7是根据本发明一个实施例的冰箱的门体关闭后的示意结构图;
图8是根据本发明一个实施例的蒸发器底置式冰箱中底部内胆的横剖面 俯视图,其示出了底部内胆的底部上表面;
图9是根据本发明一个实施例的蒸发器底置式冰箱中箱体下部的纵剖面示意图;
图10是根据本发明一个实施例的蒸发器底置式冰箱中送风组件的分解图。
具体实施方式
在本实施例的描述中,需要理解的是,术语“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“进深”等指示的方位或位置关系为基于冰箱正常使用状态下的方位作为参考,并参考附图所示的方位或位置关系可以确定,例如指示方位的“前”指的是冰箱朝向用户的一侧。这仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
图1是根据本发明一个实施例的蒸发器底置式冰箱10的示意性主视图,图2是根据本发明一个实施例的冰箱10中箱体下部的示意性主视图。图3是图2所示的箱体100的示意性立体图。图2和图3主要示出了箱体的底部部分的结构。
本实施例的蒸发器底置式冰箱10一般性地可包括箱体100。箱体100可以包括外壳、内胆、隔热层及其他附件等构成。外壳是冰箱10的外层结构,保护着整个冰箱10。为了隔绝与外界的热传导,在箱体100的外壳和内胆之间加有隔热层,隔热层一般通过发泡工艺构成。内胆可以为一个或多个,例如根据功能可以划分为冷藏内胆、变温内胆、冷冻内胆等。
多个内胆可以上下排列布置,底部内胆101为处于最下部的内胆。在本实施例中底部内胆101限定有冷却室和储物空间120。其中储物空间120可以为冰箱10最底部的用于储物的空间,一般地底部内胆101为冷冻内胆,储物空间120构成冷冻间室。在冷冻间室上方根据需要还可以配置有由变温内胆内限定的变温室、由冷藏内胆内限定的冷藏室等等。具体的储物间室的数量和功能可以根据冰箱的需求进行配置,由于底部内胆101中的部件最为复杂,对尺寸的要求最高,其他内胆的整体尺寸可以根据底部内胆101的尺寸相应配置。箱体100前侧还设置有门体,以打开或关闭储物间室,为了示出箱体100内部结构,图中隐去了门体。
在底部内胆101的上方,蒸发器底置式冰箱10还可以具有多个内胆,以形成冷藏室、变温室等。蒸发器底置式冰箱10的箱体布局可以有多种,不局限于法式冰箱、T形冰箱等。
底部内胆101内可以设置有蒸发器上盖130。蒸发器上盖130横向设置于底部内胆101内,用于分隔冷却室和储物空间120。蒸发器上盖130同时 作为储物空间120的底壁以及冷却室的顶部,其上方的储物空间120用于储藏物品。
在一些可选实施例中,底部内胆101内还可以设置纵向隔板140。纵向隔板140,设置于储物空间120的中部,将储物空间120分隔为两个横向排列的储物腔。也即储物空间120具有左右两个储物腔,两个储物腔可以分别设置门体从而形成对开门的结构。需要说明的将底部内胆101配置为对开门结构仅为一种可选实施例,本领域技术人员可以根据冰箱的具体功能,将储物空间120配置为一个整体或者其他分隔方式。
图4是根据本发明一个实施例的冰箱10的示意框图。制冷系统300可为由压缩机310、冷凝器320、节流装置330和蒸发器340等构成的制冷循环系统。蒸发器340配置成直接或间接地向储物空间120内提供冷量。冰箱10通过风路系统实现制冷气流在蒸发器340与储物间室内的循环。由于制冷系统本身的循环构造以及工作原理,为本领域技术人员习知且易于实现的,为了不掩盖和模糊本申请的改进点,后文对制冷系统本身不做赘述。
送风组件400用于形成在冷却室以及储物空间120之间的气流循环,其具体可以包括离心风机410以及送风风道420。
本实施例的制冷系统为了满足冰箱10的制冷需求,其额定制冷功率或者最大制冷功率设置为不低于设定功率值。也即,制冷系统的制冷能力不低于设定功率,例如设定功率值可以设置为设定功率值,该设定功率值可以根据冰箱10容积的制冷需求进行设置,例如需满足容积在200L以上的中大型冰箱的制冷要求。从而保证本实施例的蒸发器底置式冰箱10具有足够的制冷能力,并在此基础上可以做到箱体有效使用容积占比增大,并且可以满足制冷效率以及能耗等级的要求。
图5是沿图2中的剖切线A-A截取的示意性剖视图,以及图6是沿图2中的剖切线B-B截取的示意性剖视图。为了便于示出具体部件,图5及图6中略去了剖面线,仅仅保留的部件的轮廓。
冷却室110设置于储物空间120的下方,用于布置蒸发器340以及部分送风组件400。相比于将蒸发器340设置于箱体后部的传统冰箱,本实施例的冰箱10,蒸发器340布置于冷却室110内,一方面减小了箱体100进深尺寸(前后方向的距离),尽可能地将进深尺寸用于储物空间120;另一方面,由于储物空间120底部提高,也避免了用户需要大幅度弯腰或蹲下才能进行取放物品操作造成的使用不便。
本实施例的蒸发器底置式冰箱10的箱体100沿前后方向的进深尺寸设置为480mm至560mm,并可以进一步设置为约等于510mm。经过大量的结构优化工作,本实施例的冰箱10在进深尺寸设置为480mm至560mm的情况下,在冷却室110内布置了额定制冷功率或者最大制冷功率不低于设定功率值的制冷系统的蒸发器340,满足了冰箱10正常运行以及能耗标准的要 求。
蒸发器340整体可以大体呈扁平长方体状。也即蒸发器340垂直于支撑面的厚度尺寸明显小于蒸发器340的长度尺寸。蒸发器340可以为翅片蒸发器,翅片的布置方向平行于前后的进深方向,便于气流从前至后穿过。在另一些实施例中,蒸发器340可以设置为其他类似的扁平异形结构。
本实施例的冰箱10,蒸发器340从前至后向上倾斜设置于冷却室110内,突破了现有技术减少进深尺寸需要使蒸发器340水平放置的技术桎梏,虽然蒸发器340倾斜放置会导致前后方向的长度增加,但是将其斜置使得冷却室110内其他部件的布置更加合理,而且经过实际气流流场分析证实风循环效率也更加高,排水也更加舒畅。蒸发器340倾斜设置的布局方式是本实施例做出的主要技术改进之一。
为了减小前后方向的进深尺寸,本实施例的冰箱10对于冷却室110内各个部件的前后方向的位置以及尺寸均进行了严格设定,其中蒸发器340在水平方向上的投影沿前后方向的长度占箱体100沿前后方向的进深尺寸的比例小于41%,进一步地可以设置为小于35%,例如可设置为29.8%。箱体100沿前后方向的进深尺寸指从前端至后端整体的水平长度。上述蒸发器340的尺寸以及布置方式是根据空间要求以及制冷性能要求作出的结构优化,并且得到试制产品的效果验证。
在箱体进深尺寸为480mm至560mm的情况下,蒸发器340在水平方向上的投影的尺寸小于196.8mm至229.6mm。
蒸发器340一般可以设置于冷却室110的前部,在蒸发器340的后方还可以设置制冷风机。
本实施例的冰箱10的送风组件400,设置于蒸发器340的后方。送风组件400可以包括制冷风机410以及送风风道420。其中制冷风机410可以从前至后向上倾斜地设置于蒸发器340的后方,并配置成促使形成经由蒸发器340送向储物空间120的制冷气流。制冷风机410的倾斜角度可大于蒸发器340,从而可以为底部内胆101的下方的后部形成压机舱进行让位。
送风风道420设置于底部内胆101的后壁,并与制冷风机410的排风口连通,其上开设有至少一个送风口421。送风口421用于连通送风风道420以及储物空间,以将制冷气流输送至储物空间120。
制冷风机410可以根据需要选择使用各种风机,例如离心风机、轴流风机、贯流风机风机,其需要满足将蒸发器340所在区域的空气排入送风风道420的功能要求。
在一些优选实施例中,制冷风机410可以使用离心风机。在使用离心风机作为制冷风机410的实施例中,离心风机410倾斜地设置于蒸发器340的后方,其吸风口朝向前上方,并配置成促使形成经由蒸发器340送向储物空间120的制冷气流;离心风机410的前端至蒸发器340的水平距离设置为大 于或等于3mm,从而满足气流流动的要求。
离心风机410整体位于蒸发器340的后方,包括蜗壳和设置于蜗壳内的叶轮,配置为促使形成制冷气流,并提供制冷气流的循环动力。蜗壳包括下盒体与上盖体扣合而成,方便蜗壳的拆卸和装配。离心风机410的吸风口一般位于蜗壳的中心,其高度可以高于蒸发器340的顶端。
离心风机410的排风口位于后端,并配置成向斜后方送风并与送风风道420的下端相接。送风风道420沿底部内胆101的后壁向上延伸,配置成将制冷气流输送至储物空间120。在储物空间120的后壁开有与送风风道420连通的送风口421,将制冷气流排入储物空间120。送风风道420向上延伸的竖直区段沿前后方向的厚度占箱体100沿前后方向的进深尺寸的比例小于10%,进一步地设置为小于5.0%,例如可以为4.9%。
在箱体进深尺寸为480mm至560mm的情况下,送风组件400整体在水平方向上的投影沿前后方向的长度小于48mm至56mm。
蒸发器340从前至后向上倾斜设置于冷却室110的前部,离心风机410从前至后向上倾斜设置于冷却室110的后部。其中蒸发器340的倾斜角度小于离心风机410的倾斜角度。离心风机410的底端高于蒸发器340。离心风机410吸风口的高度整体高于蒸发器340。从而底部内胆101用于支撑蒸发器340的部分的倾斜角度小于底部内胆101用于支撑离心风机410的部分的倾斜角度。
离心风机410的位置和倾斜角度也为冷却室110的后下方布置压缩机舱提供了空间。
在使用其他种类的风机时,具体的排风口以及朝向可以根据送风要求进行相应配置,再此不做赘述。
送风组件400整体在水平方向上的投影沿前后方向的长度占箱体100沿前后方向的进深尺寸的比例小于49%,进一步优选地可以设置为小于40%,例如设置为39.2%。上述风道相关尺寸的设置是根据空间要求以及送风性能要求作出的结构优化,并且得到试制产品的效果验证。
在箱体进深尺寸为480mm至560mm的情况下,送风组件400整体在水平方向上的投影沿前后方向的长度小于235.2mm至274.4mm。
箱体100的发泡层设置于冷却室110和储物空间120的外侧,也即位于底部内胆101的外侧,包围住底部内胆101,并且储物空间120背部的发泡层的厚度占箱体100沿前后方向的进深尺寸的比例小于12%,进一步地可以小于11.5%,例如可以设置为11%。发泡层的厚度与隔热性能存在矛盾。上述发泡层的厚度是根据空间要求以及隔热性能要求作出的结构优化,并且得到试制产品的效果验证。
蒸发器上盖130,横向设置于底部内胆101内,用于分隔冷却室110和储物空间120。蒸发器上盖130的前部位于蒸发器340的上方,大体水平。 而蒸发器上盖130的后部位于离心风机410的上方,大体呈倾斜状。离心风机410与蒸发器上盖130具有设定间距的间隙。离心风机410吸入的气流经由离心风机410与蒸发器上盖130之间的间隙进入吸风口。
回风罩131,设置于蒸发器上盖130的前端,并作为冷却室110的前壁;回风罩131的前端至箱体100的前端的水平距离占箱体100沿前后方向的进深尺寸的比例小于8.2%,进一步可以设置为小于5.0%,例如可以设置为4.7%。在箱体进深尺寸为480mm至560mm的情况下,回风罩131的前端至箱体100的前端的水平距离小于39.36mm至45.92mm。
回风罩131在冷却室110的前侧形成有与冷冻室连通的前回风入口132,以使得冷冻室的回风气流通过前回风入口132进入冷却室110,以与蒸发器340进行换热,完成冷却室110和储物空间120之间形成气流循环。上述回风罩131与箱体100前度的距离是根据空间要求以及回风性能要求作出的结构优化,并且得到试制产品的效果验证。
回风罩131的前侧形成上下分布的两个前回风入口132,不但视觉美观,还可有效防止儿童手指或异物进入冷却空间中;并且,上下分布的两个回风区域可使回风进入冷却空间后更均匀流过蒸发器340,可在一定程度上避免蒸发器340前端面易结霜的问题,不但可提高换热效率,还可延长化霜周期,节能高效。
由于蒸发器340的倾斜设置,还可以使得蒸发器340的前部顶端与回风罩131、蒸发器上盖130的前部,形成一定的空间。该空间区域可以作为容霜空间,回风罩131上方的回风区域可以从该容霜空间进入蒸发器340,从而为霜冻预留了一部分空间,减少了对蒸发器340内部以及制冷风机410的影响。进一步地,蒸发器340可以为该容霜空间设置专门的化霜装置。而且该容霜空间在一定程度上也解决了蒸发器340前端容易被冻结的问题。
在设置纵向隔板140的实施例中,回风罩131可以为两个,沿横向方向左右分布,被纵向隔板140隔开。纵向隔板140设置于储物空间120的中部,将储物空间120分隔为两个横向排列的储物腔,每个储物腔设置有一个回风罩131。纵向隔板140的前部设置有隔热竖梁141。隔热竖梁141用于与储物腔的门体配合,避免冷量从门体边缘泄露。
隔热竖梁141的隔热层沿前后方向的厚度占箱体100沿前后方向的进深尺寸的比例小于15.7%,进一步可以为小于或等于8.4%;并且蒸发器340前端至隔热竖梁141的水平距离占箱体100沿前后方向的进深尺寸的比例小于15.7%,进一步可以设置为小于或等于7.7%。
在箱体进深尺寸为480mm至560mm的情况下,隔热竖梁141的隔热层沿前后方向的厚度占箱体100沿前后方向的进深尺寸以及蒸发器340前端至隔热竖梁141的水平距离占箱体100沿前后方向的进深尺寸可以分别设置为小于75.36mm至87.92mm。
上述隔热竖梁141的隔热层厚度以及相对蒸发器340的位置是根据空间要求以及隔热性能要求作出的结构优化,并且得到试制产品的效果验证。
此外,为使冰箱10整体的进深尺寸满足要求,门体的后端可以设置为小于或等于62mm。图7是根据本发明一个实施例的冰箱10的门体200关闭后的示意结构图。门体200关闭,封闭储物空间120后,冰箱10整体的进深尺寸(前后方向的整体厚度)可以小于或等于572mm,从而满足了与橱柜配合的尺寸要求。
以下结合附图5、6、7中标注的尺寸,对箱体100的进深尺寸为510mm的一种冰箱10的具体实施例进行介绍,该实施例的冰箱10的箱体容积可以做到与常规550mm的箱体的容积相同,足以体现空间的使用效率。
箱体100整体进深尺寸L12为510mm,门体200的厚度L11设置为62mm。从而使得冰箱10整体厚度仅为572mm。
冰箱10中蒸发器340的纵深尺寸L9为152mm,纵向尺寸L10为75mm,左右横向尺寸(未标注)为470mm,相对于水平面的倾斜角α可以为7.5度。支撑蒸发器340的底部内胆101的底壁部分相对于水平面的倾斜角也相应设置为7.5度。蒸发器340由于倾斜设置使得在水平方向上的投影沿前后方向的长度L3为162mm,虽然前后方向的长度增加,但是将其斜置使得冷却室110内其他部件的布置更加合理,而且经过实际气流流场分析证实风循环效率也更加高,排水也更加舒畅。同时蒸发器340倾斜设置还可以防止蒸发器340距离隔热竖梁141的距离过近,导致霜冻堵住回风口。
离心风机410也同样倾斜设置,其相对于水平面的倾斜角β可以为36.7度,支撑离心风机410的底部内胆101的底壁部分相对于水平面的倾斜角也相应设置为36.7度。
从前至后,冷却室110以及储物空间120内各部件的尺寸以及相对关系设置于如下:回风罩131的前端至箱体100的前端的水平距离L8为24mm。隔热竖梁141的隔热层沿前后方向的厚度L1设置为42mm。离心风机410的前端至蒸发器340的水平距离L4为22mm,以在放置在保证离心风机410的叶片不结霜的情况下,最大限度地节省了蒸发器340与风机410之间的进深距离。送风风道420向上延伸的竖直区段沿前后方向的厚度L6为25mm。从而可以保证风组件在水平方向上的投影沿前后方向的长度L5为200mm。储物空间120背部的发泡层的厚度L7为56mm。离心风机410与蒸发器上盖130之间间隙的距离可以设置为30mm。
相应地,可以得出L8为L12的4.7%,L6为L12的4.9%,L1为L12的8.2%,L2为L12的7.5%,L3为L12的29.8%,L4为L12的4.3%,L5为L12的39.2%,L7为L12的11%。上述尺寸、相对位置、比例关系均在严格论证和精密计算基础上完成,在尺寸要求极为严苛的情况下,满足了各项性能指标的要求。上述尺寸和相对位置互相配合,共同实现了相应功能。 任一上述尺寸和相对位置的变化均可能导致冰箱10某一方面性能无法满足要求甚至导致功能无法实现。本领域技术人员应该了解,上述具体数值均可存在一定的装配以及加工误差。
本实施例的蒸发器底置式冰箱10的箱体100的底部从前之后依次布置回风罩131、蒸发器340、制冷风机410、送风风道420、发泡层。其中蒸发器340以及制冷风机410均为倾斜设置,一方面提高了送风效率,另一方面也使得排水更加顺畅。
图8是根据本发明一个实施例的蒸发器底置式冰箱10中底部内胆的横剖面俯视图,其示出了底部内胆的底部上表面;以及图9是根据本发明一个实施例的蒸发器底置式冰箱10中箱体下部的纵剖面示意图。
底部内胆101的底壁可以包括:第一支撑部170、下凹部171、第二支撑部172、第三支撑部173。其中第一支撑部170从底壁的前端从前至后向下倾斜设置。下凹部171设置于第一支撑部的后侧,并配置成从横向中部向两侧向上倾斜,从而在横向中部开设排水口177,排水口177用于排出冷却室110内的水(冷凝水、化霜水等)。第二支撑部172从排水口的后端从前至后向上倾斜设置,并且蒸发器340放置于第二支撑部172上,并且蒸发器340的前端与第一支撑部170抵触,从而使得其上出现的水汇聚于下凹部171,并且排水口177沿箱体100沿前后方向的位置位于蒸发器340的前部区域。
排水口177的位置为大体位于横向中部的区域,并非严格要求位于横向中心的区域。在一些实施例中,排水口177可以位于横向中部适当偏向一侧的位置。
下凹部171两侧的倾斜角度可以大于等于7度,使得两侧的水向排水口177汇聚。下凹部171的构造还可以使蒸发器340尽量减少与底部内胆101的底壁的间距,从而可以利用蒸发器340的加热丝热量传递到下凹部,使化霜水有效流进排水口177处。上述下凹部171的构造利用蒸发器340的加热丝161热量进行除霜,避免了冰块封堵排水口177,也无需在排水口177处额外增加加热丝。
利用下凹部171的结构,可以使得倾斜的蒸发器340的部分区域悬空,便于化霜和排水。由于蒸发器340倾斜设置,也可以降低蒸发器340与排水口177之间的距离,不仅提高了冰箱10的空间利用率,而且保障蒸发器340上的加热丝161能够对排水口177处的区域进行加热,从而降低了排水口177处的结霜风险。
蒸发器340至下凹部171的最底端的距离L13小于或等于50mm,更优选地,可以为设置小于等于25mm。
第二支撑部172的倾斜角度也可以便于水向排水口177汇集,提高了排水的顺畅性。蒸发器340与第二支撑部172的贴合部分占蒸发器340底面的 比例大于或等于0.6,例如可以设置2/3、3/4等,从而可以使得排水口177位于蒸发器340前部的下方。也就是说排水口177沿箱体100沿前后方向的位置位于蒸发器340的前部,例如排水口177可以位于蒸发器340整体进深尺寸三分之一(或四分之一)位置的下方。
本实施例的冰箱10通过保障蒸发器340底面与第二支撑部172的贴合长度,进而避免了空气不流进蒸发器340而从蒸发器340底面与排水口177之间的空间流过,提高了空气流经蒸发器340的路径长度,进一步地提高了蒸发器340的换热效率。
箱体100在底部内胆101的下方的后部形成压机舱190,并且冰箱10还可以包括蒸发皿191和排水管192。蒸发皿191设置于压机舱190内;排水管192从排水口177从前向后向下倾斜延伸至蒸发皿191处。
压机舱190可以用于布置冷凝器320以及压缩机310。在一些实施例中冷凝器320可以设置于蒸发皿191的上方。在压机舱190内还可以布置散热风机(图中未示出),形成散热气流对冷凝器320以及压缩机310进行散热。
本实施例的方案中,通过在压机舱190的底部设置蒸发皿191,排水管192从排水口177从前向后向下倾斜延伸至蒸发皿191处,使得蒸发皿191对从排水管192处流出的化霜水进行收集,而后利用冷凝器320中产生的热量将蒸发皿191中的化霜水蒸发。
排水管192的倾斜角度可以大于等于5°且小于等于15°,更优选地可以设置为5°且小于等于10°。例如,可以设置为7°。本实施例的方案通过将排水管192的倾斜角度设置为大于等于5°且小于等于15°,从而使得排水管192中的化霜水的流动的更加顺畅,同时保证排水管192不会在高度方向上占用过多的空间。上述排水管192的倾斜角度是根据排水性能要求和空间要求而进行的结构性优化,并且得到试制产品的效果验证。
在另一些实施例中,排水部分可以增设水泵,主动将水泵送至蒸发皿191。在这些实施例中,排水管192的倾斜角度可不做限制。
第三支撑部173从第二支撑部172的后部从前至后向上倾斜设置,其倾斜角度大于第二支撑部172的倾斜角度。制冷风机410固定于第三支撑部173上。这样的倾斜结构还可以为压机舱190的设置提供了让位空间。
上述冷却室110的构造以及蒸发器340等部件的倾斜设置,既保证了气流的顺畅充分换热,还在一定程度上减少了霜冻,而且提高了化霜和排水效率。
图10是根据本发明一个实施例的蒸发器底置式冰箱10中送风组件400的分解图。送风风道420可以由风道背板422和底部内胆101的后壁共同限定而成。风道背板422设置于底部内胆101的后壁的前方,大致平行于底部内胆101的后壁。送风口421开设在风道背板422上。
离心风机410可以包括蜗壳和叶轮411,蜗壳从前向后向上倾斜地布置 于冷却室110的后部,叶轮411设置于蜗壳内,其轴线与吸风口412相对。
离心风机410可以将来自吸风口412的气流沿径向方向排出,排入送风风道420的制冷气流能够从送风口421排入储物空间120,以与储物空间120的热空气进行换热,降低储物空间120的温度。储物空间120内的空气可以由回风罩131上的前回风入口132回流至冷却室110,从而形成循环的气流路径。
在一些实施例中,蜗壳包括风机底壳424和风机上盖423。风机底壳424固定于底部内胆101底壁的后部,也即固定于第三支撑部173上。风机上盖423从风道背板422的下端倾斜向下伸入冷却室110内,并罩扣在风机底壳424上。吸风口412开设于风机上盖423的中央位置。风机底壳424与风机上盖423连接后同样可以倾斜地向下伸入冷却室110内,并且风机底壳424的后端与风道背板422相接的位置处形成排风口。风机底壳424和风机上盖423可以采用卡接的形式连接在一起。
风机上盖423与风道背板422还可以设置为一体成型件。这种方式区别于现有技术中的风机结构。在现有技术中风机蜗壳以及风道板一般为独立设置的部件,在组装时,安装人员一般需要分别进行安装。这会造成安装工艺复杂且增大成本,不利于批量生产。在本实施例中,风道背板422与风机上盖423为一体成型件,在安装时,直接将风机上盖423安装入冷却室110与风机底壳424连接,不仅可以简化安装流程,降低成本,又可以使得整个送风风道420结构更加稳固。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (11)

  1. 一种蒸发器底置式冰箱,包括:
    箱体,具有底部内胆,所述底部内胆限定有冷却室和储物空间,所述冷却室设置于所述储物空间的下方,并且所述箱体沿前后方向的进深尺寸设置为480mm至560mm;
    制冷系统,其包括蒸发器,所述蒸发器倾斜布置于所述冷却室内,并配置成向所述储物空间提供冷量。
  2. 根据权利要求1所述的蒸发器底置式冰箱,其中
    所述蒸发器从前至后向上倾斜设置于所述冷却室的前部;并且所述蒸发器底置式冰箱还包括:
    送风组件,设置于所述蒸发器的后方,其包括:
    制冷风机,从前至后向上倾斜地设置于所述蒸发器的后方,并配置成促使形成经由所述蒸发器送向所述储物空间的制冷气流;
    送风风道,设置于所述底部内胆的后壁,并与所述制冷风机的排风口连通,其上开设有至少一个送风口,所述送风口用于连通所述送风风道以及所述储物空间,以将所述制冷气流输送至所述储物空间。
  3. 根据权利要求2所述的蒸发器底置式冰箱,其中
    所述制冷风机为离心风机,其吸风口朝向前上方,其排风口位于所述离心风机的后端,并与所述送风风道的下端相接。
  4. 根据权利要求3所述的蒸发器底置式冰箱,其中
    所述蒸发器在水平方向上的投影沿前后方向的长度占所述箱体沿前后方向的进深尺寸的比例小于41%;
    所述离心风机的前端至所述蒸发器的水平最小距离设置为大于或等于3mm;
    所述送风组件在水平方向上的投影沿前后方向的长度占所述箱体沿前后方向的进深尺寸的比例小于49%;
    所述送风风道向上延伸的竖直区段沿前后方向的厚度占所述箱体沿前后方向的进深尺寸的比例小于10%。
  5. 根据权利要求2所述的蒸发器底置式冰箱,其中所述底部内胆的底壁包括:
    第一支撑部,从所述底壁的前端从前至后向下倾斜设置;
    下凹部,设置于所述第一支撑部的后侧,并配置成从横向中部向两侧向上倾斜,从而在横向中部开设排水口,所述排水口用于排出所述冷却室内的 水;
    第二支撑部,从所述排水口的后端从前至后向上倾斜设置,并且
    所述蒸发器放置于所述第二支撑部上,并且所述蒸发器的前端与所述第一支撑部抵触,从而使得其上出现的水汇聚于所述下凹部,并且所述排水口沿所述箱体沿前后方向的位置位于所述蒸发器的前部。
  6. 根据权利要求5所述的蒸发器底置式冰箱,其中
    所述箱体在所述底部内胆的下方的后部形成压机舱,并且所述冰箱还包括:
    蒸发皿,设置于所述压机舱内;
    排水管,从所述排水口从前向后向下倾斜延伸至所述蒸发皿处,所述排水管的倾斜角度大于等于5°且小于等于15°。
  7. 根据权利要求5所述的蒸发器底置式冰箱,其中所述底部内胆的底壁包括:
    第三支撑部,从所述第二支撑部的后端从前至后向上倾斜设置,所述制冷风机固定于所述第三支撑部上。
  8. 根据权利要求1所述的蒸发器底置式冰箱,还包括:
    蒸发器上盖,横向设置于所述底部内胆内,用于分隔所述冷却室和所述储物空间;
    回风罩,设置于所述蒸发器上盖的前端,并作为所述冷却室的前壁。
  9. 根据权利要求8所述的蒸发器底置式冰箱,其中
    所述回风罩的前端至所述箱体的前端的水平距离占所述箱体沿前后方向的进深尺寸的比例小于8.2%。
  10. 根据权利要求1所述的蒸发器底置式冰箱,其中所述箱体还包括:
    纵向隔板,设置于所述储物空间的中部,将所述储物空间分隔为两个横向排列的储物腔,所述纵向隔板的前部设置有隔热竖梁。
  11. 根据权利要求10所述的蒸发器底置式冰箱,其中
    所述隔热竖梁的隔热层沿前后方向的厚度占所述箱体沿前后方向的进深尺寸的比例小于15.7%;并且
    所述蒸发器前端至所述隔热竖梁的水平距离占所述箱体沿前后方向的进深尺寸的比例小于15.7%。
PCT/CN2021/123582 2020-08-18 2021-10-13 蒸发器底置式冰箱 WO2022037720A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010834006.4 2020-08-18
CN202010834006.4A CN114076470A (zh) 2020-08-18 2020-08-18 蒸发器底置式冰箱

Publications (1)

Publication Number Publication Date
WO2022037720A1 true WO2022037720A1 (zh) 2022-02-24

Family

ID=80281374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123582 WO2022037720A1 (zh) 2020-08-18 2021-10-13 蒸发器底置式冰箱

Country Status (2)

Country Link
CN (1) CN114076470A (zh)
WO (1) WO2022037720A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217900286U (zh) * 2022-05-16 2022-11-25 青岛海尔特种电冰柜有限公司 酒柜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1396436A (fr) * 1964-03-10 1965-04-23 Rubanox Soc Perfectionnements aux armoires frigorifiques
JPH07280414A (ja) * 1994-04-11 1995-10-27 Sanyo Electric Co Ltd 冷却装置
CN110285629A (zh) * 2018-04-13 2019-09-27 青岛海尔股份有限公司 冷却室位于冷冻内胆内侧下部的冰箱
CN111351289A (zh) * 2018-12-24 2020-06-30 青岛海尔特种电冰柜有限公司 卧式冷柜
CN213040840U (zh) * 2020-08-18 2021-04-23 青岛海尔电冰箱有限公司 蒸发器底置式冰箱

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4335094A1 (de) * 1993-10-14 1995-04-20 Bosch Siemens Hausgeraete Kühlgerät
CN211147012U (zh) * 2019-08-23 2020-07-31 青岛海尔特种电冰柜有限公司 风冷卧式冷柜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1396436A (fr) * 1964-03-10 1965-04-23 Rubanox Soc Perfectionnements aux armoires frigorifiques
JPH07280414A (ja) * 1994-04-11 1995-10-27 Sanyo Electric Co Ltd 冷却装置
CN110285629A (zh) * 2018-04-13 2019-09-27 青岛海尔股份有限公司 冷却室位于冷冻内胆内侧下部的冰箱
CN111351289A (zh) * 2018-12-24 2020-06-30 青岛海尔特种电冰柜有限公司 卧式冷柜
CN213040840U (zh) * 2020-08-18 2021-04-23 青岛海尔电冰箱有限公司 蒸发器底置式冰箱

Also Published As

Publication number Publication date
CN114076470A (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
CN210220345U (zh) 蒸发器与其所在储物内胆的底壁具有特定距离的冰箱
CN110285629B (zh) 冷却室位于冷冻内胆内侧下部的冰箱
CN213040840U (zh) 蒸发器底置式冰箱
CN213040841U (zh) 一种增大底部储物空间容积的冰箱
CN208817799U (zh) 冷却室位于冷冻内胆内侧下部的冰箱
CN114076452B (zh) 一种改进冷却室前端回风结构的冰箱
WO2022037411A1 (zh) 蒸发器设置于箱体底部的冰箱
WO2020173338A1 (zh) 回风口形成于箱体两侧壁的冰箱
WO2022037720A1 (zh) 蒸发器底置式冰箱
WO2020173363A1 (zh) 六门冰箱
CN208817805U (zh) 冷却室位于冷冻内胆内侧下部的冰箱
WO2022037721A1 (zh) 一种增大底部储物空间容积的冰箱
CN110375473A (zh) 冷却室位于冷冻内胆内侧下部的冰箱
CN110375477A (zh) 制冷室位于冷冻间室底部的冰箱
CN208817800U (zh) 冷却室位于冷冻内胆内侧下部的冰箱
WO2020173361A1 (zh) 一种具有双送风风机的冰箱
CN215638234U (zh) 冷藏冷冻装置
CN110375476A (zh) 冷却室位于冷冻内胆内侧下部的冰箱
CN110375475A (zh) 优化蒸发器安装结构的冰箱
WO2021082751A1 (zh) 蒸发器倾斜设置的冰箱
WO2020173355A1 (zh) 送风机位于蒸发器横向侧方下游的冰箱
CN208817801U (zh) 制冷室位于冷冻间室底部的冰箱
CN114076467A (zh) 制冷风机安装于箱体下部的风冷冰箱
WO2022037381A1 (zh) 风冷冰箱
CN110375474A (zh) 冷却室位于冷冻内胆内侧下部的冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857807

Country of ref document: EP

Kind code of ref document: A1