WO2022035198A1 - 메탈로폴리머 기반 코팅 용액의 제조 방법 - Google Patents
메탈로폴리머 기반 코팅 용액의 제조 방법 Download PDFInfo
- Publication number
- WO2022035198A1 WO2022035198A1 PCT/KR2021/010607 KR2021010607W WO2022035198A1 WO 2022035198 A1 WO2022035198 A1 WO 2022035198A1 KR 2021010607 W KR2021010607 W KR 2021010607W WO 2022035198 A1 WO2022035198 A1 WO 2022035198A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrophobic
- compound
- coating
- substrate
- solution
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D181/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
- C09D181/02—Polythioethers; Polythioether-ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/04—Polythioethers from mercapto compounds or metallic derivatives thereof
- C08G75/045—Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D167/00—Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
- C09D167/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/18—Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
Definitions
- the present invention relates to a method for preparing a transparent metallopolymer-based coating solution having excellent anti-fog and antibacterial properties and excellent durability.
- the hydrophobic coating is anti-stain, anti-fouling, anti-bacterial, anti-corrosion due to the presence of low surface energy substances present on the substrate, which repels water droplets from the surface. It has been widely used in various industrial applications such as , anti-icing, self-cleaning, oil-water adsorption and separation, and food packaging. Hydrophobic coating is a very important coating because the coated substrate can increase the life of the product.
- a hydrophobic surface can be defined from the behavior of surface wettability determined by measuring the contact angle (CA) of the surface using a contact angle analyzer. In 1805, Thomas Young established the basic principle of contact angle measurement based on the contact of a liquid droplet on a flat surface.
- hydrophobic surface exhibits a contact angle of 90°-150° due to the presence of a non-polar functional group exhibiting a resistive behavior with low affinity on the surface and a lack of an active functional group for hydrogen bonding.
- hydrophobic substances exist in the form of oils, oily substances, fats, and alkanes, and exhibit smooth or rough surface morphology.
- the surface wettability of rough or composite surfaces was proposed by Wenzel and Cassie-Baxter.
- Hydrophobic coatings are mainly driven by two requirements: hierarchical structures of micro-nano size and low surface energy materials.
- the presence of surface morphology of the micro-nano layer of lotus leaves, non-stick properties through coating with low surface energy materials, waterproof properties, and self-cleaning behavior are inspired by nature.
- Hydrophobic coating materials can be synthesized through various methods such as sol-gel, emulsification, hydrothermal, solvothermal methods, surface grafting, and modification. there is.
- Hydrophobic surfaces can be fabricated by two approaches: a bottom-up and a top-down approach.
- hydrophobic surfaces can usually be obtained by sol-gel, self-assembly, electrospinning, chemical vapor deposition, etc. there is.
- hydrophobic surfaces are obtained by surface etching, a template, plasma treatment, lithographic patterning, and the like.
- Factors affecting the hydrophobicity of organic-inorganic hybrid materials include surface energy and surface tension, types of functional groups on the surface, attraction between the surface of the material and water molecules, and microscopic geometry of the surface.
- the hydrophobic properties can be controlled by varying the aerosol content from 10 wt% to about 100 wt% in the solvent.
- the researchers also suggested that the composition of the solvent could range from 0 wt % to 60 wt % to make better coatings.
- Bryan et al. described Capa 3050 Polyester polyol (polyamine) and 3-Isocyanatopropyl silane (isocyanate silane) as perfluoro By using it in conjunction with perfluoropolyether silane, they have developed a new transparent hydrophobic coating and have patented their findings. It was claimed that the synthesized organic-inorganic hybrid material showed excellent hydrophobicity on various types of substrates.
- Choi et al. synthesized a polyimide/silica nano-hybrid material using the sol-gel method, fabricated a substrate through spin coating of the material, and then subjected it to high-temperature heat treatment to obtain a stable hydrophobic coating.
- a transparent glass substrate The fabricated substrate showed excellent transparency and stable hydrophobicity, as well as antifouling properties on the surface due to the presence of polyimide matrix and fluorinated silica nanoparticles of the glass substrate.
- Nagappan et al. also developed a new hydrophobic transparent coating on glass substrates by using a fluorinated methacrylate monomer with hydrophobically modified polymethylhydrosiloxane.
- the fabricated substrate showed excellent antifouling properties and excellent hardness, as well as transparency and hydrophobicity.
- the hydrophobic surface properties, hardness and transparency of the coated substrate can be controlled by varying the solvent ratio of the material with fluorinated polymethylsiloxane.
- Sung et al. developed a novel hybrid material using a polynorbornene dicarboxylic anhydride (PNA)/fluorosilica hybrid through a sol-gel method.
- PNA polynorbornene dicarboxylic anhydride
- the glass substrate coated with this hybrid material showed good hardness and excellent antifouling properties along with excellent transparency, hydrophobicity, and oleophobic properties.
- hydrophobic antifouling coatings are fabricated using fluorinated materials with polymers. Nagappan et al.
- Polizos et al. produced a transparent and hydrophobic superhydrophobic glass substrate by spray-coating fluorinated hydrophobic colloidal silica nanoparticles with a polymer binder. The coated substrate showed excellent self-cleaning ability and good wear resistance.
- fluorinated compounds are used for the fabrication of hydrophobic surfaces due to the presence of low surface energy.
- fluorinated compounds have the disadvantage that they are expensive and not environmentally friendly.
- a method for preparing a metallopolymer-based coating solution for one purpose of the present invention is an ultraviolet radical initiator, trimethylolpropane tris(3-mercaptopropionate)) and TESPMA(3-(trimethoxysilyl)propyl methacrylate) in a solvent containing ethyl acetate or acetone. ) adding; A polymerization reaction by irradiating the solution with ultraviolet rays; and stirring under a nitrogen atmosphere after adding the metal precursor.
- the step of spin coating the coating solution on the substrate may further include.
- the surface hardness of the substrate may be changed by changing the type and concentration of the metal ion.
- the present invention uses low-toxic organic solvents in the preparation of the coating solution, and the prepared coating solution shows very good stability when placed at room temperature.
- a substrate coated with an optical thiol-ene click polymerization (hereinafter, "click polymerization") solution and a metallopolymer-based coating solution to which metal ions such as zinc and aluminum are added shows excellent transparency of 85% or more, It shows a hydrophilic contact angle of 10 to 20, and exhibits both excellent anti-fog properties and antibacterial properties.
- the substrate coated with the coating solution of the present invention exhibits excellent scratch resistance and hardness up to 8H due to the introduction of metal ions into the click-polymerized samples.
- a hard hydrophobic coating material with low toxicity can be developed, and it can be applied to various substrates.
- FIG 1 and 2 are views schematically showing a method for synthesizing an amphiphilic metallopolymer-based coating solution and surface preparation according to an embodiment of the present invention.
- FIG. 3 and 4 show optical images for evaluating the stability of coating solutions according to an embodiment of the present invention.
- FIG. 5 shows FT-IR spectra of coating solutions according to an embodiment of the present invention.
- FIG. 6 shows a 29 Si NMR spectrum of a ZnFM-AE solution according to an embodiment of the present invention.
- FIG. 7 shows XPS spectra of coating solutions according to an embodiment of the present invention.
- FIG. 8 is an FE-SEM image of substrates coated according to an embodiment of the present invention, showing the surface morphology of the substrate according to the addition of a metal complex.
- 9 and 10 compare the transparency of a transparent glass substrate (comparative example) and substrates coated according to an embodiment of the present invention through an ultraviolet-visible spectrophotometer and an optical image.
- 11 and 12 show the surface wettability of the transparent glass substrate (comparative example) and the substrates coated according to an embodiment of the present invention to water and oil, respectively, through surface contact angle measurement.
- FIG. 13 is a transparent glass substrate (comparative example) showing the anti-fogging properties of the coated substrates according to an embodiment of the present invention.
- E. Coli and p. aerugiuosa shows the antimicrobial activity of the substrate against two bacteria.
- FIG 1 and 2 are views schematically showing a method for synthesizing an amphiphilic metallopolymer-based coating solution and surface preparation according to an embodiment of the present invention.
- the method for preparing a metallopolymer-based coating solution for one purpose of the present invention is an ultraviolet radical initiator, TMSH (trimethylolpropane tris(3-mercaptopropionate)) and TESPMA in a solvent containing ethyl acetate or acetone.
- TMSH trimethylolpropane tris(3-mercaptopropionate)
- TESPMA tris(3-mercaptopropionate)
- adding 3-(trimethoxysilyl)propyl methacrylate
- a polymerization reaction by irradiating the solution with ultraviolet rays; and stirring under a nitrogen atmosphere after adding the metal precursor.
- trimethylolpropane tris(3-mercaptopropionate)(TMSH) and 3-(trimethoxysilyl)propyl methacrylate (3-(trimethoxysilyl Non-fluorinated organic compounds such as )propyl methacrylate (TESPMA) were used, which are easier to handle and more environmentally friendly to produce hydrophobic coatings and are less expensive than using fluorinated compounds. Do.
- low volatility organic solvents such as ethyl acetate or a mixture of acetone and ethyl acetate (acetone/ethyl acetate) were used to prepare the hydrophobic coating solution.
- the present invention may further include; spin coating the coating solution on the substrate.
- the coating solution was coated on the substrate using an easy approach such as curing the glass substrate through a UV curable machine.
- the coating solution showed perfect transparency on a glass substrate, and there is a possibility to develop hydrophobic surface properties in various types of substrates.
- the substrate coated with the coating material had excellent hydrophobicity and maintained the hydrophobicity of the surface by changing various metal ions to induce attraction between metal ions and thiol functional groups.
- the hydrophobicity can be changed to a certain level by changing the solvent to a combination of ethyl acetate or a mixture of acetone and ethyl acetate (acetone/ethyl acetate).
- the coating solution of the present invention By using the coating solution of the present invention, stable hydrophobic surface properties can be obtained. Also, the surface hydrophobicity can be improved by further modifying the surface with various hydrophobic agents.
- a second layer composed of silica nanoparticles (SiNP) and polycaprolactone solution in ethyl acetate was formed on the substrate to improve hydrophilic surface properties for anti-fogging property.
- the hydrophilic-modified surface showed superior antifogging performance compared to the hydrophobic surface and maintained excellent antibacterial activity.
- the hydrophilic coating formulation obtained from the hydrophobic coating surface can maintain intrinsic properties such as anti-fogging as well as antibacterial properties.
- the hydrophilic coating solution of the present invention can be applied to various industrial fields such as optical lenses of medical devices, marine industry, electronic devices, and the like.
- the coating solution of the present invention can be applied to various kinds of substrates in a very wide range of applications.
- Photochemical thiolene click polymerization was performed using ethyl acetate as a solvent, and a mixed solution of acetone and ethyl acetate (1:1 (g/g)), respectively, in the presence of DMP (0.05 mmol) as an ultraviolet radical initiator catalyst.
- TMSH monomer was reacted with TESPMA in the same molar ratio (1.5 mmol each).
- a photochemical thiolene click polymerization reaction is initiated by exposing a UV lamp to an intensity of 254 nm for 10 minutes in a completely sealed state.
- MFM-E ethyl acetate
- MFM-AE acetone/ethyl acetate
- the solutions were spin-coated on a pre-cleaned glass substrate at a speed of 1000 rpm for 60 seconds, and then the coated films were cured for 1 minute at a power of 1.5 kW using a UV curing machine. Next, it was cured at 80 °C for 24 hours to prepare a hydrophobic surface-coated substrate.
- XFM-E ethyl acetate solvent
- XFM-AE acetone/ethyl acetate solvent
- Example 2 the solution was coated on the substrate in the same manner as in Example 1 to prepare a hydrophobic surface-coated substrate.
- the hydrophobic surface prepared according to Example 2 was spin-coated with a suspension containing ethyl acetate, polycaprolactone (PCT) and silica nanoparticles (SiNPs) to modify the surface.
- PCT polycaprolactone
- SiNPs silica nanoparticles
- the suspension was a mixture of 0.1 wt% of silica nanoparticles (SiNPs) and 5 wt% of polycaprolactone in 94.9 wt% of ethyl acetate, and was completed by controlling the content of silica nanoparticles in a total of 0.1 wt%. .
- Example 2 the suspension was coated on the hydrophobic surfaces of the substrates prepared in Example 2 (ZnFM-E, ZnFM-AE and AlFM-E) in the same manner as in Example 1 to prepare a surface-modified hydrophobic coated substrate.
- ZnFM-E-PSi0.1, ZnFM-AE-Psi0.1, and AlFM-E-Psi0.1 in order.
- both MFM-E and MFM-AE solutions maintained stability over 1 month, indicating excellent applicability as coating solutions in various applications.
- the solutions introduced with metal ions form opaque or opaque solutions, but it can be seen that the stability of the solution is maintained for up to 2 days or more.
- the FTIR spectrum of the MFM-E sample (black line) shown in Fig. 5(a) shows strong asymmetric, symmetric CH stretching vibrational peaks of the material at 2954 cm -1 and 2842 cm -1 .
- the SH peak shown at 2568 cm -1 means that the free SH functional group remains even after the reaction proceeds, because TMSH and TESPMA were reacted in the same molar ratio (1.5 mmol) in the present invention. Therefore, unreacted SH functional groups remain in the MFM-E solution.
- the MFM-AE sample of FIG. 5(a) also showed a similar peak intensity, and it can be confirmed that the S-H peak exists in the material.
- the introduction of metal ions into the MFM-E and MFM-AE solutions also showed similar FTIR spectra, and the S-H peak slightly decreased in relation to the reaction between the S-H functional group and the metal ion.
- the SH peak did not completely decrease due to the use of a small amount of metal ion (0.05 mmol) reacted with the MFM-E and MFM-AE solutions, and thus the interaction of the SH functional group with the metal ion was also The conditions of this reaction were limited.
- silica nanoparticles were introduced in the sample (Psi0.1) in which 0.1 wt% of silica nanoparticles (SiNPs) were introduced.
- the functional groups of the click-polymerized solution and the metallopolymer can also be confirmed through the XPS spectrum.
- the surface morphology of the fabricated substrate was analyzed using FESEM, and is shown in FIG. 8 .
- the manufactured MFM-E substrate showed a smooth surface texture due to the polymer materials uniformly covering the surface of the glass substrate.
- the fabricated substrate also exhibited some particulate structure on the surface by ethyl acetate used as a solvent.
- FIGS. 8B and 8E when zinc metal ions were introduced, morphologies of different surfaces were shown. This suggests that the zinc particles diffused well into the polymer layer and generated a uniform particulate structure and porous surface morphology on the coated glass substrate.
- the ultraviolet-visible light transparency of the substrate coated with the solutions according to the embodiment of the present invention and the uncoated pure glass substrate was measured using ultraviolet-visible light spectrophotometry in the wavelength range of 400 - 800 nm.
- the pure glass substrate as a comparative example showed almost 100% transparency at a wavelength of 400 nm.
- the MFM-E solution coated substrate and the MFM-AE solution coated substrate also exhibited high transparency in the range of 96% and 91.4%, respectively.
- the substrates to which the metal ions are introduced also maintain high transparency at a wavelength of 400 nm, but compared to the pure glass substrates and the substrates coated with MFM-E and MFM-AE solutions. showed a slight decrease in transparency. This is because the coloring of the solution to which metal ions are added may partially limit the transparency of the coated glass substrate.
- the substrates modified with the silica nanoparticle suspension were also similar to the metal iontophoresis substrate, compared to the pure glass substrate and the substrates coated with MFM-E and MFM-AE solutions. Although transparency was low, transparency of about 80% was maintained in the visible light region.
- the substrates coated with the solutions according to the embodiment of the present invention may maintain 80% or more of transparency. This can also be confirmed through FIG. 10 showing optical images of the manufactured substrates.
- the average value was calculated after repeatedly moving a pencil set at an angle of 45° C. on the surfaces of the coated substrates placed horizontally three times.
- the measurement of pencil hardness was measured by continuously increasing the size from 1H pencil to 8H hardness.
- Table 2 below shows the surface scratch resistance of the coated substrates.
- the glass substrate samples (MFM-E and MFM-AE) click-polymerized without metal ions exhibited lower hardness than the case where the polymer solution and metal ions reacted on the glass substrate.
- the samples showed some stability up to a hardness of 4H, but the glass substrate samples (ZnFM-E, ZnFM-AE and AlFM-E) containing metal ions such as zinc and aluminum showed very good hardness up to 7H - 8H. stability was shown.
- the ZnFM-AE and AlFM-E glass substrate samples showed only very weak scratches under 8H hardness.
- the substrate modified with the silica nanoparticle suspension of 0.1wt% exhibited a high scratch hardness of 7H - 8H like the solution-coated substrate to which metal ions were added, and was coated with Al metal and then coated with a silica nanoparticle suspension.
- the modified substrate (AlFM-E-Psi0.1) exhibited the best scratch hardness of 8H.
- the surface wettability of the coated substrates according to an embodiment of the present invention was evaluated by measuring the contact angle of the substrate surface with respect to water and oil (using hexadecane) using a contact angle meter. Specifically, an average value obtained by measuring static contact angle (SCA) values at at least five different positions on the surface of the substrate was set as the contact angle.
- SCA static contact angle
- FIG. 11 shows a result of measuring a surface contact angle of a substrate according to embodiments of the present invention.
- a pure glass substrate shows a hydrophilic surface contact angle (60° ⁇ 1.0°) because there are many hydrophilic hydroxyl functional groups on the surface.
- a pure glass substrate exhibits hydrophobic properties by coating the substrate with a click-polymerized solution.
- the contact angle showed superhydrophilicity in the range of 17°- 24° compared to the solution-coated substrate to which metal ions were added.
- both the solution-coated substrate to which metal ions are added and the substrate modified with the silica nanoparticle suspension have excellent superlipophilic properties. showed
- Anti-fog properties were evaluated by exposing the glass substrate to hot water steam at 90° C. for 10 sec, 30 sec, and 60 sec, respectively.
- the fogging behavior was confirmed by taking optical images after exposure to condensed water vapor.
- the transparency of the substrates coated with the mixed material was analyzed from optical images before and after exposure to water vapor, not only after a 60 second exposure but also after one additional exposure.
- FIG. 13 shows the fogging behavior characteristics of substrates according to an embodiment of the present invention.
- glass substrates, hydrophobic glass substrates, and glass substrates modified with a hydrophilic agent were kept in a public state in the air for 1 minute.
- the surface modified and coated with the silica nanoparticle suspension showed optical transparency similar to that of the hydrophobized glass (see Fig. 13(d)-(f)).
- the hydrophilic coated substrate remained transparent even after exposure to hot water vapor, indicating that stable surface properties were maintained on the surface.
- Antimicrobial activity was evaluated by culturing representative bacteria E. coli and P. aeruginosa and observing the adhesion of bacteria to the surface. Antibacterial properties were evaluated by quantitative analysis of fluorescence intensity with a fluorescence instrument.
- hydrophilic and hydrophobic surfaces showed excellent antimicrobial activity regardless of surface wettability.
- hydrophilic surface modified with 0.1wt% silica nanoparticle suspension showed more enhanced antimicrobial activity.
- silica nanoparticles SiNPs
- amphiphilic polycaprolactone solution served as a thin barrier against bacterial adhesion to the coating. Therefore, the prepared substrate showed improved antibacterial properties against P. aeruginosa and E. coli bacteria.
- the antibacterial performance of the material introduced with aluminum on the hydrophilic surface modified with 0.1 wt% silica nanoparticle suspension against P. aeruginosa was tested, and the results are shown in FIG. 15 .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Combustion & Propulsion (AREA)
- Paints Or Removers (AREA)
Abstract
본 발명은 흐림 방지 및 항균성이 뛰어나면서도 내구성이 뛰어난 투명 메탈로폴리머 기반 코팅 용액의 제조 방법에 관한 것이다. 본 발명의 코팅 용액 제조 방법은 에틸 아세테이트 또는 아세톤을 포함하는 용매 내에 자외선 라디칼 개시제, TMSH(trimethylolpropane tris(3-mercaptopropionate)) 및 TESPMA(3-(trimethoxysilyl)propyl methacrylate)를 첨가하는 단계, 용액에 자외선을 조사하여 중합 반응시키는 단계, 및 금속 전구체를 첨가한 후 질소 분위기 하에서 교반시키는 단계를 포함한다.
Description
본 발명은 흐림 방지 및 항균성이 뛰어나면서도 내구성이 뛰어난 투명 메탈로폴리머 기반 코팅 용액의 제조 방법에 관한 것이다.
소수성 코팅은 표면에서 물방울을 밀어내는, 기판에 존재하는 낮은 표면 에너지의 물질들의 존재로 인하여 방오(anti-stain), 방담(anti-fouling), 항균 (anti-bacterial), 부식 방지 anti-corrosion), 얼음막이(anti-icing), 자가 세정 (self-cleaning), 오일-물의 흡착과 분리, 음식 포장지 등의 다양한 산업의 응용분야에서 널리 이용되어 왔다. 소수성 코팅은 코팅된 기판이 제품의 수명을 증가시킬 수 있기 때문에 아주 중요한 코팅이다. 소수성 표면은 접촉각 분석기를 이용해 표면의 접촉각(contact angle, CA)을 측정함으로써 결정되는 표면 젖음성 (surface wettability)의 거동으로부터 정의될 수 있다. 1805년에 토마스 영 (Thomas Young)이 평평한 표면에 액체 방울이 접촉할 때를 기준으로 접촉각 측정의 기본 원리를 세웠다.
소수성 표면은, 표면에 낮은 친화성을 가지고 저항하는 거동을 보이는 비극성 기능기가 존재하고 수소결합을 하기 위한 활성 기능기가 부족하기 때문에 90°-150° 의 접촉각을 보인다. 일반적으로, 소수성 물질들은 오일, 기름투성이의 물질, 지방, 알케인(alkanes)의 형태로 존재하며 매끈하거나 거친 표면 몰폴로지 (morphology)를 보인다. 거칠거나 복합재료 표면의 표면 젖음성은 웬젤과 캐시-박스터 (Wenzel and Cassie-Baxter)에 의해 제안되었다.
최근, 수많은 연구진들은 대부분의 상품에서 코팅 제품들의 끊임없는 필요로 인해 소수성 코팅에 관한 연구를 진행해왔다. 소수성 코팅은 주로 마이크로-나노 사이즈의 계층 구조, 낮은 표면 에너지 물질들 같은 두 요구조건에 의해 좌우된다. 연꽃 잎의 마이크로-나노 계층의 표면 몰폴로지(morphology)의 존재, 낮은 표면 에너지 물질로의 코팅을 통한 붙지 않는(non-stick) 성질, 방수 특성, 자가세정 거동 등은 자연으로부터 영감을 받은 것이다. 위와 같이, 자연에서 영감을 받은 물질들의 식별을 위해 소수성의 자연 물질들의 모방과 초소수성 코팅의 방수 물성에 초점을 맞추어 연구되어 왔다. 소수성 코팅 물질들은 솔-젤 (sol-gel), 유화(emulsification), 열수(hydrothermal), 용매 열 경로 (solvothermal) 방법, 표면 접합(grafting), 개질(modification)과 같은 다양한 방법들을 통해 합성될 수 있다. 소수성 표면들은 바텀 업(bottom-up), 탑 다운 (top-down) 접근법과 같은 두 가지 접근법들에 의해 제작될 수 있다. 바텀 업 (bottom-up) 접근법의 경우 소수성 표면들은 대게 솔-젤(sol-gel), 자가 조립 (self-assembly), 전기방사(electrospinning), 화학 증착 기법(chemical vapor deposition) 등에 의해 얻어질 수 있다. 비슷하게, 탑 다운 (top-down) 접근법의 경우 소수성 표면들은 표면 에칭(surface etching), 템플레이트(template), 플라즈마 처리(plasma treatment), 리소그래피 패터닝(lithographic patterning) 등에 의해 얻어진다.
유기-무기 하이브리드 물질들의 소수성에 영향을 미치는 요인들로는 표면 에너지와 표면 장력, 표면의 기능성 기의 종류, 물질의 표면과 물 분자 사이의 인력, 표면의 미세 기하학적인 구조(microscopic geometry) 등이 있다.
최근에는, 투명하고 튼튼한 소수성 코팅의 개발이 큰 주목을 받고 있으며, 이는 탁월한 투명성과 안정한 표면 물성이 다양한 코팅 제품들에 요구되는 굉장히 바람직한 물성이기 때문이다. Van Benthem 등은 평평한 표면에 첫번째, 두번째 층으로써 소수성 입자 층이 증착하면, 표면 입자 층의 접착 성질에 기초하여 표면 젖음성을 소수성에서 초소수성으로 증대시키게 된다는 중요한 사실을 발견했다. 두번째 층의 입자들은 화학적 공유결합에 의해 첫번째 층의 입자들의 표면에 접착된다. Kanagasabapathy 등은 실리카 에어로졸(silica aerosol)을 이용한 마찰 저항 감소를 위한 새로운 소수성 코팅 조성의 개발로 특허를 출원했다. 소수성 물성은 에어로졸의 함량을 용매 내에서 10 wt% 에서 약 100 wt% 까지 변화시킴으로써 조절될 수 있다. 연구진들은 또한 더 좋은 코팅을 만들기 위해서 용매의 조성 범위는 0 wt% 에서 60 wt% 범위까지 될 수 있다고 제안했다. Bryan 등은 카파 3050 폴리에스터 폴리올 (폴리아민) (Capa 3050 Polyester polyol (polyamine))과 3-아이소시아네이토프로필 실레인(3-Isocyanatopropyl silane) (아이소시아네이트 실레인)(isocyanate silane)을 퍼플루오로폴리에터 실레인 (perfluoropolyether silane)과 함께 사용함으로써 새로운 투명한 소수성 코팅을 개발했으며 그들의 발견을 특허로 출원했다. 합성된 유기-무기 하이브리드 물질은 다양한 종류의 기판에서 탁월한 소수성을 보인다고 주장했다.
Choi 등은 솔-젤 (sol-gel) 방법을 이용해 폴리이미드/실리카 (polyimide/silica) 나노 하이브리드 물질을 합성하고 물질의 스핀 코팅을 통해 기판을 제작한 후 안정한 소수성 코팅을 얻기 위해 고온 열처리를 하여 투명한 유리 기판을 개발했다. 제작된 기판은 우수한 투명성, 안정한 소수성은 물론, 유리 기판의 폴리이미드 매트릭스(polyimide matrix)와 플루오린화된 실리카 나노 입자들(fluorinated silica nanoparticles)의 존재로 인해 표면의 방오 물성을 보였다. Nagappan 등은 또한 플루오린화된 메타아크릴레이트 모노머 (fluorinated methacrylate monomer)와 소수성으로 개질된 폴리메틸하이드로실로세인(polymethylhydrosiloxane)을 함께 사용함으로써 유리기판에서 소수성의 투명한 코팅을 새롭게 개발했다. 제작된 기판은 탁월한 방오 물성과 우수한 경도는 물론, 투명성과 소수성을 보였다. 코팅된 기판의 소수성 표면 물성과 경도, 투명성은 플루오린화된 폴리메틸실로세인(fluorinated polymethylsiloxane)으로 물질의 용매 비를 변화시킴으로써 조절 가능하다. 비슷하게, Sung 등은 솔-젤(sol-gel) 방법을 통해 폴리노보넨 다이카르복실 안하이드라이드(polynorbornene dicarboxylic anhydride(PNA))/플루오로실리카(fluorosilica) 하이브리드를 이용한 신규 하이브리드 물질을 개발했다. 본 하이브리드 물질로 코팅된 유리 기판은 우수한 투명성, 소수성, 올레오포빅(oleophobic) 물성과 함께 좋은 경도, 탁월한 방오 물성을 보였다. 일반적으로 소수성의 방오 코팅들은 고분자와 함께 플루오린화된 물질들을 이용하여 제작된다. Nagappan 등은 또한 바이닐 기능성의 실레인 (vinyl functional silane)으로 변형된 메조포러스 실리카 나노입자 (mesoporous silica nanoparticles)를 합성한 후 온도 감응성의 N-아이소프로필 아크릴아마이드 (N-isopropyl acrylamide)(NIPAM)으로 표면을 중합함으로써 매우 투명하고 소수성인 유리 기판을 개발했다. Prasad 등은 폴리아마이드(polyamide)를 소수성으로 개질된 실리카 나노입자(hydrophobically modified silica nanoparticles)(HMSNPs)로 개질시키고, 유리 기판에 스프레이 코팅한 후 연이어 상온에서 건조 시킴으로써 투명하고 소수성인 초소수성 유리 기판을 제작했다.
폴리아마이드(polyamide)/(HMSNPs)의 소수성과 초소수성 표면 물성은 HMSNPs이 첨가되는 양에 의해 조절되었다. Polizos 등은 플루오린화된 소수성의 콜로이드질의 실리카 나노 입자(fluorinated hydrophobic colloidal silica nanoparticles)를 고분자 바인더(polymer binder)와 함께 스프레이 코팅함으로써 투명하고 소수성인 초소수성 유리 기판을 제작했다. 코팅된 기판은 탁월한 자가 세정 능력과 좋은 마모 저항성을 보였다.
비슷하게, 투명한 소수성 코팅들은 여러 다른 종류의 소수성 구조 유도제 (structure directing agents)들을 이용하여 다양한 접근법들에 의해 개발된다. 일반적으로는 플루오린화된 화합물들이 낮은 표면 에너지의 존재로 인해 소수성 표면의 제작에 사용된다. 하지만 이와 동시에, 플루오린화된 화합물들은 비싸고 또한 친환경적이지 못하다는 단점이 있다.
대부분의 경우에, 소수성 코팅 물질의 개발에 독성의 유기 용매들이 이용되며 이는 주위 공기를 오염시킬 수 있고 환경과 인체에 유해하다. 최근 들어, 저독성의 유기 용매와 플루오린이 없는 유기 화합물들의 사용이 많은 주목을 받고 있는데, 이는 이것들이 코팅 물질의 가격을 최소화할 수 있을 뿐 아니라 환경에 덜 유해하기 때문이다.
본 발명의 일 목적은 높은 경도와 투명도를 보이며, 흐림 방지 및 항균성이 뛰어난 메탈로폴리머 기반 코팅 용액의 제조 방법을 제공하는 것이다.
본 발명의 일 목적을 위한 메탈로폴리머 기반 코팅 용액의 제조 방법은 에틸 아세테이트 또는 아세톤을 포함하는 용매 내에 자외선 라디칼 개시제, TMSH(trimethylolpropane tris(3-mercaptopropionate)) 및 TESPMA(3-(trimethoxysilyl)propyl methacrylate)를 첨가하는 단계; 용액에 자외선을 조사하여 중합 반응시키는 단계; 및 금속 전구체를 첨가한 후 질소 분위기 하에서 교반시키는 단계;를 포함한다.
일 실시예에서, 상기 코팅 용액을 기판 상에 스핀 코팅하는 단계;를 더 포함할 수 있다.
일 실시예에서, 상기 금속 이온의 종류와 농도를 변화시킴으로써 기판의 표면 경도를 바꿀 수 있다.
한편, 상기 코팅 용액이 코팅된 기판의 표면 위에 다시 에틸 아세테이트에 실리카 나노입자(SiNP) 및 폴리카프로락톤 용액으로 구성된 두번째 층을 생성하게 되면, 친수성 표면특성이 향상되어 경도나 투명도 등의 물성을 유지하면서도 항균성과 김서림 방지 성능(anti-fogging property)이 크게 개선된다.
금속 이온이 도입된 용액 기판이나 나노입자(SiNP) 및 폴리카프로락톤 용액으로 구성된 두 번째 층을 생성하게 된 경우 모두 기름에 대해서는 초친유성(super-oleophilic) 표면 특성을 동시에 가질 수 있다.
본 발명은 코팅 용액의 제조 시에 저독성의 유기 용매들을 사용하며, 제조된 코팅 용액은 상온에서 두었을 때에 매우 우수한 안정성을 보인다.
또한, 본 발명에 따라 제조된 코팅 용액은 메타크릴레이트 고분자(methacrylate polymer)에 다양한 종류의 금속 이온이 도입되기에 금속 이온의 종류에 따라 표면 물성, 투명성, 경도가 변화될 수 있다.
한편, 광학적 싸이올-엔 클릭 중합된(이하, "클릭 중합된") 용액과 아연, 알루미늄 등의 금속 이온이 첨가된 메탈로폴리머 기반 코팅 용액으로 코팅된 기판은 85% 이상의 우수한 투명성을 보이며, 10 ~ 20 근방의 친수성의 접촉각을 보이고, 우수한 흐림 방지 물성과 항균성을 함께 나타낸다.
게다가, 본 발명의 코팅 용액으로 코팅된 기판은 클릭 중합된 샘플들에 금속 이온들이 도입되어 8H 까지도 뛰어난 스크래치 저항성과 경도를 보인다.
따라서, 본 발명에 따르면, 저독성의 단단한 소수성 코팅 물질을 개발할 수 있고, 이를 다양한 기판에 적용할 수 있다.
도 1 및 2는 본 발명의 실시예에 따른 양친성의 메탈로폴리머 기반 코팅 용액의 합성 및 표면 제작 방법을 개략적으로 나타낸 도면이다.
도 3 및 4는 본 발명의 실시예에 따른 코팅 용액들의 안정성을 평가하기 위한 광학적 이미지를 도시한다. (도 3의 (A) MFM-E, (B) MFM-AE, 도 4의 (A) ZnFM-E, (B) ZnFM-E, (C) AlFM-E)
도 5는 본 발명의 실시예에 따른 코팅 용액들의 FT-IR 스펙트럼을 도시한다.
도 6은 본 발명의 실시예에 따른 ZnFM-AE 용액의 29Si NMR 스펙트럼을 도시한다.
도 7은 본 발명의 실시예에 따른 코팅 용액들의 XPS 스펙트럼을 도시한다.
도 8은 본 발명의 실시예에 따라 코팅된 기판들의 FE-SEM 이미지로, 금속 착물의 첨가에 따른 기판의 표면 몰폴로지를 나타낸다. ((a) MFM-E, (b) ZnFM-E, (c) ZnFM-E-PSi 0.1, (d) MFM-AE, (e) ZnFM-AE, (f) ZnFM-AE-PSi 0.1, (g) AlFM-E (h) AlFM-E-PSi 0.1)
도 9 및 10은 투명 유리 기판(비교예) 및 본 발명의 실시예에 따라 코팅된 기판들의 투명성을 자외선-가시광선 분광 광도계 및 광학적 이미지를 통해 비교한 것이다.
도 11 및 12는 투명 유리 기판(비교예) 및 본 발명의 실시예에 따라 코팅된 기판들의 각각 물 및 기름에 대한 표면 젖음성을 표면 접촉각 측정을 통해 나타낸 것이다.
도 13은 투명 유리 기판(비교예) 본 발명의 실시예에 따라 코팅된 기판들의 김서림 방지 특성을 나타낸 것이다.
도 14 및 15는 E. Coli와 p. aerugiuosa 두 박테리아에 대한 기판의 항균성을 나타낸 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1 및 2는 본 발명의 실시예에 따른 양친성의 메탈로폴리머 기반 코팅 용액의 합성 및 표면 제작 방법을 개략적으로 나타낸 도면이다.
도 1 및 2를 참조하면, 본 발명의 일 목적을 위한 메탈로폴리머 기반 코팅 용액의 제조 방법은 에틸 아세테이트 또는 아세톤을 포함하는 용매 내에 자외선 라디칼 개시제, TMSH(trimethylolpropane tris(3-mercaptopropionate)) 및 TESPMA(3-(trimethoxysilyl)propyl methacrylate)를 첨가하는 단계; 용액에 자외선을 조사하여 중합 반응시키는 단계; 및 금속 전구체를 첨가한 후 질소 분위기 하에서 교반시키는 단계;를 포함한다.
상기 소수성 코팅 용액의 제조에 트라이메티롤프로페인 트리스(3-멀캡토프로피오네이트)(trimethylolpropane tris(3-mercaptopropionate)(TMSH)와 3-(트라이메톡실릴)프로필 메타아크릴레이트 (3-(trimethoxysilyl)propyl methacrylate)(TESPMA) 같은 비플루오르화 유기 화합물(non-fluorinated organic compounds)들을 사용하였다. 이러한 유기 화합물들은 소수성 코팅을 제작하는데 다루기 손쉽고 친환경적일 뿐 아니라 플루오린화된 화합물을 사용하는 것보다 더 저렴하다.
본 발명에서는 소수성 코팅 용액의 제조에 에틸 아세테이트(ethyl acetate) 또는 아세톤 및 에틸 아세테이트의 혼합물(acetone/ethyl acetate)과 같은 저휘발성의 유기 용매들을 사용했다.
본 발명에서는 소수성 코팅 용액의 제조에 자외선(UV light) 하에서의 클릭 중합(click polymerization) 과 같은 손쉬운 접근법을 이용했다.
일 실시예에서, 본 발명은 상기 코팅 용액을 기판 상에 스핀 코팅하는 단계;를 더 포함할 수 있다.
본 발명에서는 클릭 중합 후, 자외선 경화 기기(UV curable machine)를 통한 유리 기판의 경화와 같은 손쉬운 접근법을 이용하여 기판 상에 코팅 용액을 코팅하였다.
일 실시예에서, 상기 코팅 용액은 유리 기판에서 완벽한 투명성을 보였으며, 다양한 종류의 기판에서 소수성 표면 물성을 발전시킬 수 있는 가능성이 있다.
상기 코팅 물질이 코팅된 기판은 우수한 소수성을 지녔으며, 금속 이온과 싸이올 기능기(thiol functional groups)의 인력을 유도하기 위해 다양한 금속 이온을 바꿈으로써 표면의 소수성을 유지했다.
또한 에틸 아세테이트(ethyl acetate) 혹은 아세톤 및 에틸 아세테이트의 혼합물(acetone/ethyl acetate)의 조합으로 용매를 바꿈으로써 소수성을 일정 단계까지 변화시킬 수 있다.
본 발명의 코팅 용액을 이용하여 안정한 소수성의 표면 물성이 얻어질 수 있다. 또한 표면 소수성은 다양한 소수성 물질(hydrophobic agent)로 표면을 더 개질시킴으로써 향상될 수 있다.
일 실시예에서, 단순히 금속 이온과 용매를 변화시키면서 4H 부터 8H 이상까지의 연필 경도(pencil hardness) 범위에서 굉장히 안정하고 단단한 코팅 용액을 제공할 수 있다.
한편, 기판 상에 에틸 아세테이트에 실리카 나노입자(SiNP) 및 폴리카프로락톤 용액으로 구성된 두 번째 층을 생성하여 김서림 방지 성능(anti-fogging property)을 위한 친수성 표면 특성을 향상시켰다.
친수성으로 개질된 표면은 소수성 표면과 비교하여 우수한 김서림 방지 성능을 보여주었고 뛰어난 항균성 활성을 유지하였다.
즉 소수성 코팅 표면으로부터 얻은 친수성 코팅 제형은 항균성 뿐만 아니라 김서림 방지 기능과 같은 고유 특성을 유지할 수 있다.
금속 이온이 도입된 용액 기판이나 나노입자(SiNP) 및 폴리카프로락톤 용액으로 구성된 두번째 층을 생성하게 된 경우 모두 기름에 대해서는 초친유성(super-oleophilic) 표면 특성을 동시에 가진다.
본 발명의 친수성 코팅 용액은 의료 기기의 광학 렌즈, 해양 산업, 전자 기기 등과 같은 다양한 산업 분야에 응용될 수 있다.
또한, 본 발명의 코팅 용액은 다양한 종류의 기판에서, 매우 폭넓은 응용 분야에서 적용될 수 있다.
이하 본 발명의 다양한 실시예들 및 실험예들에 대해 상술한다. 다만, 하기의 실시예들은 본 발명의 일부 실시예에 불과한 것으로서, 본 발명이 하기 실시예들에 한정되는 것으로 해석되어서는 아니된다.
[실시예 1] TMSH(trimethylolpropane tris(3-mercaptopropionate)) 및 TESPMA(3-(trimethoxysilyl)propyl methacrylate)의 광화학 티올렌 클릭 중합(Photochemical thiol-ene click polymerization)과 소수성 표면의 제작
광화학 티올렌 클릭 중합은 용매로 에틸 아세테이트(ethyl acetate), 및 아세톤 및 에틸 아세테이트의 혼합액(1:1(g/g))을 각각 사용하여, 자외선 라디칼 개시제 촉매인 DMP(0.05 mmol)의 존재 하에서 TMSH 단량체를 TESPMA 와 동일한 몰비(각각 1.5 mmol)로 반응시켜 수행하였다.
구체적으로, 상기 물질들을 포함하는 용액들을 질소 분위기 하에서 마그네틱 바를 이용하여 교반시킨 후, 완전히 밀폐된 상태에서 10분 동안 자외선 램프(UV lamp)를 254 nm 세기로 노광시켜 광화학 티올렌 클릭 중합 반응을 개시하였다(이하, 용매의 종류에 따라 MFM-E(에틸 아세테이트), MFM-AE(아세톤/에틸 아세테이트)로 명명함).
이후, 상기 용액들을 미리 세정된 유리 기판 상에 60초 동안 1000 rpm 의 속도로 스핀 코팅한 후, 코팅된 필름들을 자외선 경화 기기(UV curing machine)를 사용하여 1.5kW 의 파워로 1분간 경화시켰다. 다음으로, 80 ℃ 에서 24시간 동안 경화시켜 소수성 표면 코팅 기판을 제조하였다.
[실시예 2] 금속 이온을 포함하는 기능성 유기-무기 혼합 물질의 합성 및 이를 이용한 소수성 표면의 제작
실시예 1에 따른 MFM-E 및 MFM-AE 용액에 다양한 금속 질산염 수화물을 첨가한 후 질소 분위기 하에서 교반시켜 용액을 제조하였다. 이때, 금속 이온으로는 아연 이온, 알루미늄 이온, 철 이온, 구리 이온(0.05mmol)을 사용하였다(이하, XFM-E(에틸 아세테이트 용매), XFM-AE(아세톤/에틸 아세테이트 용매)로 명명함(여기서, X = Zn, Al, Fe, Cu)).
다음으로, 실시예 1과 동일한 방법으로 용액을 기판 상에 코팅시켜, 소수성 표면 코팅 기판을 제조하였다.
[실시예 3] 금속 이온을 포함하는 기능성 유기-무기 혼합 물질의 표면 개질
실시예 2에 따라 제조된 소수성 표면을 에틸 아세테이트, 폴리카프로락톤(PCT) 및 실리카 나노입자(SiNPs)를 포함하는 현탁액으로 스핀 코팅 처리하여 표면을 개질하였다.
구체적으로, 상기 현탁액은 94.9wt% 의 에틸 아세테이트 중 0.1wt% 의 실리카 나노입자와(SiNPs) 5wt% 의 폴리카프로락톤을 혼합한 것으로, 총 0.1wt% 의 실리카 나노입자의 함량을 조절하여 완성하였다.
이후, 실시예 2에서 제조된 기판들(ZnFM-E, ZnFM-AE 및 AlFM-E)의 소수성 표면 상에 상기 현탁액을 실시예 1과 동일한 방법으로 코팅시켜, 표면 개질된 소수성 코팅 기판을 제조하였다(이하, 순서대로 ZnFM-E-PSi0.1, ZnFM-AE-Psi0.1 및 AlFM-E-Psi0.1로 명명함).
실시예에 따라 제조된 샘플들의 구체적인 물질 함량은 다음 표 1과 같다.
샘플 | TMSH(g) | TESPMA(g) | DMP(g) | 용매(g) | 금속질산염수화물(g) |
MFM-E | 0.604 | 0.385 | 0.003 | 10.0 (E) | - |
MFM-AE | 0.605 | 0.375 | 0.003 | 5.0 (A) | - |
5.0 (E) | |||||
ZnFM-E | 0.606 | 0.392 | 0.003 | 10.0 (E) | 0.015 |
ZnFM-AE | 0.596 | 0.378 | 0.003 | 5.0 (A) | 0.017 |
5.0 (E) | |||||
AlFM-E | 0.597 | 0.372 | 0.003 | 10.0 (E) | 0.019 |
AlFM-AE | 0.608 | 0.384 | 0.003 | 5.0 (A) | 0.019 |
5.0 (E) |
코팅 용액의 특성 평가
1) 본 발명의 실시예에 따른 코팅 용액의 안정성 평가
실시예 2에서 제조된 MFM-E 및 MFM-AE 용액을 평가하기 위해, 용액을 상온 하에 1일부터 4주까지 유지시키면서 변화를 육안으로 관찰하고, 그 결과를 도 3A 및 3B 에 도시하였다.
도 3A 및 3B 에 나타나듯이, MFM-E 및 MFM-AE 용액 모두 1달 넘게 안정성을 유지하였으며, 이는 다양한 응용 분야에서 코팅 용액으로의 탁월한 적용 가능성을 나타낸다.
또한, 금속 이온이 도입된 ZnFM-E, ZNFM-AE 및 AlFM-E 용액 또한 동일한 방법으로 안정성을 평가하고, 그 결과를 도 4A - 4C 에 도시하였다.
도 4A - 4C 를 참조하면, 금속 이온이 도입된 용액들은 불투명하거나 불투명한 용액을 형성하나, 2일 또는 그 이상까지 용액의 안정성을 유지하는 것을 확인할 수 있다.
이러한 결과로 보아, 본 발명의 실시예에 따른 코팅 용액은 매우 안정하며, 소수성을 향상시키기 위해 다양한 종류의 소수성 개질제를 이용하여 쉽게 개질될 수 있음을 나타낸다.
2) 본 발명의 실시예에 따른 코팅 용액의 작용기 분석
TMSH 및 TESPMA의 화학적 반응을 확인하였다.
도 5(a)에서 보여지는 MFM-E 샘플(검은색 선)의 FTIR 스펙트럼은 2954 cm-1 및 2842 cm-1 에서 물질의 강한 비대칭, 대칭 C-H 신축 진동 피크를 나타낸다. 2568 cm-1 에서 보여지는 S-H 피크는 반응이 진행되어도 자유 S-H 작용기가 남아있다는 것을 의미하며, 이는 본 발명에서 TMSH 와 TESPMA 를 동일한 몰비(1.5 mmol)로 반응시켰기 때문이다. 따라서, MFM-E 용액에는 미반응 S-H 작용기가 남아있게 된다.
도 5(a)의 MFM-AE 샘플 또한 비슷한 피크 강도를 보였고 물질에 S-H 피크가 존재함을 확인할 수 있다.
도 5(b)를 참조하면, MFM-E 와 MFM-AE 용액으로의 금속 이온의 도입 또한 비슷한 FTIR 스펙트럼을 보였고, S-H 작용기와 금속 이온의 반응에 관련하여 S-H 피크가 약간 감소함을 보여주었다.
이에 반해서, MFM-E 및 MFM-AE 용액과 반응한 금속 이온(0.05 mmol)의 적은 양의 사용으로 인해 S-H 피크가 감소가 완벽하게 일어나지는 않았으며, 따라서 S-H 작용기와 금속 이온의 상호작용은 또한 본 반응의 조건에서 제한되었다.
한편, 도 6에 도시된 29SiNMR 분광 분석을 보면, 0.1wt%의 실리카 나노입자(SiNPs)를 도입한 샘플(Psi0.1)이 실리카 나노 입자가 도입된 것을 확인할 수 있었다.
또한, 도 7에 나타나듯이, 클릭중합된 용액 및 메탈로폴리머의 작용기는 XPS 스펙트럼을 통해서도 확인할 수 있다.
기판의 특성 평가
1) 표면 몰폴로지(Surface Morphology)
제작된 기판의 표면 몰폴로지를 FESEM 을 이용하여 분석되었고, 도 8에 나타냈다.
도 8(a)를 참조하면, 제작된 MFM-E 기판은 유리 기판의 표면을 균일하게 덮은 고분자 물질들 때문에 매끈한 표면 질감을 보였다.
이와 동시에, 제작된 기판은 또한 용매로 쓰인 에틸 아세테이트에 의해 표면에 일부 미립자의 구조(particulate structure)를 나타냈다.
반면에, 도 8d에 도시된 바와 같이, 용매로 아세톤 및 에틸 아세테이트의 조합을 사용한 경우에는 매우 매끈한 질감의 표면에 관찰되었다.
한편, 도 8b 및 8e를 보면, 아연 금속 이온을 도입한 경우 다른 표면의 몰폴로지를 나타냈다. 이는 아연 입자들이 고분자 층에 잘 확산되었으며, 코팅된 유리 기판에 균일한 미립자의 구조(particulate structure)와 다공성의 표면 몰폴로지를 발생시킴을 시사한다.
하지만, 알루미늄 금속 이온을 MFM-E 샘플에 도입한 경우(도 8g 참조), 고분자와 입자들의 확산이 균일하게 일어났으며 표면에 균일한 나노 입자들이 형성된 모습을 관찰할 수 있다.
이러한 결과들을 보면, 용매의 특성에 기초하여 표면 몰폴로지가 코팅된 유리 기판 표면에 균일한 금속 나노 입자들이 증착될 수 있고, 금속 이온들이 균일한 확산으로 변할 수 있음을 제시한다.
또한, 도 8c, 8f, 8h 를 참조하면, 0.1wt% 의 실리카 나노입자(SiNPs)가 도입되는 경우에도, 도입된 금속의 종류에 관계없이 균일한 표면을 나타냈다.
2) 자외선-가시광선 투명성(UV-visible transparency)
본 발명의 실시예에 따른 용액들이 코팅된 기판 및 코팅되지 않은 순수 유리 기판(비교예)의 자외선-가시광선 투명성을 400 - 800 nm 의 파장 범위에서 자외선-가시광선 분광 광도법을 사용하여 측정하였다.
도 9의 (a)는 MFM-E 용액 코팅 기판, MFM-AE 용액 코팅 기판 및 비교예, (b)는 ZnFM-E 용액 코팅 기판, ZnFM-AE 용액 기판, AlFM-E 용액 코팅 기판 및 비교예, (c)는 ZnFM-E-Psi0.1 용액 코팅 기판, ZnFM-AE-Psi0.1 용액 코팅 기판, AlFM-E-Psi0.1 용액 코팅 기판 및 비교예의 UV-Vis 스펙트럼을 각각 나타낸 것이다.
도 9의 (a)를 참조하면, 비교예인 순수 유리 기판은 400 nm 의 파장에서 거의 100% 의 투명성을 보였다. 또한, MFM-E 용액 코팅 기판 및 MFM-AE 용액 코팅 기판 또한 각각 96% 및 91.4% 의 범위의 높은 투명성을 나타냈다.
코팅된 샘플들이 좋은 투명성을 유지하는 것은 MFM-E 및 MFM-AE 용액이 매우 우수한 투명성을 보이기 때문이다.
한편, 도 9의 (b)를 참조하면, 금속 이온이 도입된 기판들 역시 400 nm 의 파장에서 높은 투명성을 유지하나, 순수 유리 기판과 MFM-E 및 MFM-AE 용액이 코팅된 기판들에 비해서는 투명성이 약간 저하된 결과를 보였다. 이는 금속 이온이 첨가된 용액의 착색이 코팅된 유리 기판의 투명성을 일부 제한시킬 수 있기 때문이다.
또한, 도 9의 (c)에 나타나듯이, 실리카 나노입자 현탁액으로 개질된 기판들 또한 금속 이온 도입 기판과 유사하게, 순수 유리 기판과 MFM-E 및 MFM-AE 용액이 코팅된 기판들에 비해서는 투명성이 낮았지만, 가시광선 영역에서 80% 정도의 투명성을 유지하였다.
따라서, 본 발명의 실시예에 따른 용액들이 코팅된 기판들은 80% 이상의 투명성을 유지할 수 있다. 이는 제작된 기판들의 광학적 이미지를 나타낸 도 10을 통해서도 확인할 수 있다. (도 10의 (a) MFM-E, (b) MFM-AE, (c) FeFM-E, (d) FeFM-AE, (e) ZnFM-E, (f) ZnFM-AE, (g) AlFM-E, (h) AlFM-E)
3) 스크래치 경도 테스트(Scratch Hardness Test)
본 발명의 실시예에 따른 코팅 기판들의 스크래치 경도를 평가하기 위해, 요시미쯔 연필 경도 테스터기 D-221(Yoshimitsu pencil hardness tester D-221)를 이용하여 ASTM 방법(ASTM D 3363-74)에 따라 시험을 수행하였다.
구체적으로, 시험은 수평으로 놓여진 코팅 기판들의 표면에 45℃ 의 각도로 세운 연필을 3번에 걸쳐 반복적으로 움직인 후, 그 평균값을 산출하였다. 연필 경도의 측정은 1H 연필부터 시작하여 8H 경도까지 크기를 연속적으로 올려가며 측정하였다.
하기 표 2는 코팅 기판들의 표면 스크래치 저항성을 나타낸 것이다.
샘플 | Pencil경도 | 샘플 | Pencil경도 | 샘플 | Pencil경도 |
MFM-E | 4H | ZnFM-E | 7H | ZnFM-E-PSi 0.1 | 7H |
MFM-AE | 4H | ZnFM-AE | 8H | ZnFM-AE-PSi 0.1 | 8H |
AlFM-E | 8H | AlFM-E-PSi 0.1 | 8H |
표 2를 참조하면, 금속 이온 없이 클릭 중합된 유리 기판 샘플들(MFM-E 및 MFM-AE)은 유리 기판에 고분자 용액과 금속 이온들이 반응한 경우보다 낮은 경도를 나타냈다.
상기 샘플들은 4H 의 경도까지는 어느 정도 안정성을 보였으나, 아연, 알루미늄 같은 금속 이온들이 포함된 유리 기판 샘플들(ZnFM-E, ZnFM-AE 및 AlFM-E)은 7H - 8H 까지의 경도까지도 매우 좋은 안정성을 보였다.
특히, ZnFM-AE 및 AlFM-E 유리 기판 샘플들은 8H 경도 하에서 아주 약한 스크래치만을 보였다.
이는 금속 이온과 클릭 중합된 용액 사이의 인력이 코팅된 기판들의 접착성을 향상시켰다는 것을 시사한다.
또한, 0.1wt% 의 실리카 나노입자 현탁액으로 개질된 기판의 경우에도, 금속 이온이 첨가된 용액 코팅 기판과 마찬가지로 7H - 8H 의 높은 스크래치 경도를 나타냈고, Al 금속으로 코팅된 뒤 실리카 나노입자 현탁액으로 개질된 기판(AlFM-E-Psi0.1)이 8H 로 가장 우수한 스크래치 경도를 나타냈다.
4) 표면 젖음성(Surface wettability)
본 발명의 실시예에 따른 코팅 기판들의 표면 젖음성은 접촉각 측정기를 이용하여 물과 기름(헥사데칸 사용)에 대한 기판 표면의 접촉각을 측정하여 평가하였다. 구체적으로, 기판 표면의 적어도 다섯 군데 다른 위치의 정적 접촉각(static contact angle; SCA) 값을 측정한 평균값을 접촉각으로 설정하였다.
도 11은 본 발명의 실시예들에 따른 기판의 표면 접촉각을 측정한 결과를 도시한다.
순수 유리 기판의 경우, 표면에 친수성의 수산화 작용기들이 많이 존재하기 때문에 친수성의 표면 접촉각(60°±1.0°)를 보인다. 순수 유리 기판은 클릭 중합된 용액으로 기판을 코팅함으로써 소수성의 물성을 보이게 된다.
용매로 에틸 아세테이트와 아세톤/에틸 아세테이트의 조합을 사용하는 경우 둘 다 각각 103.5°±3.0°, 105°±1.0°으로 거의 유사한 소수성 표면 접촉각을 보였다.
도 11과 같이, 클릭 중합된 용액과 금속 이온의 반응이 코팅된 샘플의 소수성 거동에 일부 변화들을 일으킴을 확인할 수 있으며, 이는 일부 수분 친화성이 있는 클릭 중합된 샘플들과 유리 기판에 친수성의 금속 이온들이 존재하고 분배되기 때문이다.
또한, 코팅 물질을 형성하는데 용매를 바꿈으로써 소수성 표면 물성에 일부 변화가 일어날 수 있음을 알 수 있다.
특히, 0.1wt% 의 실리카 나노입자 현탁액으로 개질된 기판의 경우, 금속 이온이 첨가된 용액 코팅 기판에 비해 접촉각이 17°- 24° 범위로 초친수성을 나타내는 결과를 보였다.
한편, 본 발명의 실시예들에 따른 기판의 기름에 대한 표면 접촉각을 측정한 결과를 도시한 도 12를 보면, 금속 이온이 첨가된 용액 코팅 기판과 실리카 나노입자 현탁액으로 개질된 기판 모두 우수한 초친유성을 보였다.
5) 김서림 방지 성능(Anti-fog Performances)
김서림 방지 특성은 90℃에서 온수 증기 위에 유리 기판을 각각 10초, 30초 및 60초 동안 노출시켜 평가하였다. 김서림 거동은 응축된 수증기에 노출 후 광학 이미지를 촬영하여 확인하였다. 혼합 재료로 코팅된 기판의 투명도는 60초 노출 후 뿐만 아니라 1회 추가로 노출한 후, 수증기 노출 전후의 광학 이미지로부터 분석되었다.
도 13은 본 발명의 실시예에 따른 기판들의 김서림 거동 특성을 도시한다. ((a) ZnFM-E, (b) ZnFM-EA, (c) AlFM-E, (d) ZnFM-E-PSi0.1, (e) ZnFM-AE-PSi0.1, (f) AlFM-E-PSi0.1)
도 13의 (d), (e), (f)에 나타나듯이, 실리카 나노 입자 현탁액으로 친수개질된 기판들은 친수성 표면에 수분이 스며들자 바로 분산됨에 따라 안개 생성 현상이 관찰되지 않았으며 표면의 광학 투명도는 높았다.
반면, 도 13의 (a), (b), (c)를 참조하면, 금속 이온이 도입된 소수성 표면에서는 기판 위에서 안개 생성이 관찰되었다.
김서림 방지 성능을 더욱 정확히 평가하기 위해서, 유리 기판, 소수성 유리 기판, 친수제로 개질시킨 유리 기판들을 1분 동안 공기 중에서 공적 상태로 유지시켰다.
도 13의 (a)-(c)의 경우, 1분이 지난 후에도 응축된 물방울은 소수성 표면에 유지되었고, 이는 친소수성 및 낮은 소수성 설질을 나타낸다.
반면, 실리카 나노입자 현탁액으로 개질 및 코팅된 표면은 소수성화된 유리와 유사한 광학 투명성을 보여주었다(도 13의 (d)-(f) 참조).
이러한 결과는 소수성 표면을 초친수성 물질로 개질한 가공 표면이 높은 김서림 방지 거동 기능을 가진다는 것을 시사한다.
친수성 코팅된 기판은 온수 증기에 노출된 후에도 투명성을 유지하였고, 이는 표면에서 안정된 표면 성질이 유지됨을 알려준다.
6) 항균성 활성(Anti-microbial Activity)
항균성 활성은 대표적인 박테리아인 E. coli 및 P. aeruginosa 를 배양하고 표면에 박테리아의 부착을 관찰하여 평가하였다. 형광 장비로 형광 강도를 정량 분석하여 항균 성질을 평가하였다.
도 14 및 15는 본 발명의 실시예에 따른 기판들의 항균성 활성 시험 결과를 나타낸 것이다.
도 14 를 참조하면, MFM-AE 로 개질된 샘플의 표면에서 많은 양의 박테리아 콜로니가 관찰된다. 이와 비교하여 Zn 금속 이온이 개질된 소수성 표면에서는 아주 적은 양의 박테리아 접착이 관찰되었고, 이는 Zn 금속 이온의 강한 항균성 활성을 나타낸다.
실리카 나노입자 현탁액을 사용하여 표면을 친수성으로 변형시켜도 모든 박테리아의 증가가 크게 감소한 것을 확인할 수 있다. 이러한 결과는 제조된 표면의 매우 친수성인 표면 특성 및 코팅 물질에서의 항균성 금속 이온의 존재 때문이다.
친수성 및 소수성 표면에서 모두 표면 젖음성과 상관없이 뛰어난 항균성 활성을 보여주었다. 하지만, 0.1wt%의 실리카 나노입자 현탁액으로 개질된 친수성 표면에서 더욱 향상된 항균성 활성을 보여준다.
실리카 나노입자(SiNPs) 및 양친매성 폴리카프로락톤 용액의 조합은 코팅에 박테리아 부착에 대항하여 얇은 방어막 역할을 하였다. 따라서, 제조된 기판은 P. aeruginosa 및 E. coli 박테리아에서 향상된 항균 성질을 보여주었다.
또한, 아세톤/에틸 아세테이트 용매를 이용해 향상된 항균 성질은 코팅 표면 상의 아연 입자의 고른 분산 때문일 것으로 예측된다.
아울러 본 발명에서는 P. aeruginosa에 대하여 0.1wt%의 실리카 나노입자 현탁액으로 개질된 친수성 표면에 알루미늄을 도입한 물질의 항균 성능을 시험하고, 그 결과를 도 15 에 도시하였다.
도 15에 나타나듯이, 형광 강도 그래프에서, 0.1 wt% 의 실리카 나노입자 현탁액으로 개질된 친수성 표면 및 MFM-E 용액에서 아연 및 알루미늄 금속의 도입으로 항균 성질이 향상되었음을 알 수 있다.
이와 같은 결과들은 다양한 용매 및 금속 이온 및 실리카 나노입자의 도입에 의해 항균 성능이 우수하도록 제어가 가능함을 시사한다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
Claims (13)
- 말단에 3개 이상의 티올기(-SH)를 갖는 제1 화합물과 메타아크릴레이트 작용기를 갖는 제2 화합물이 티올-엔(thiol-ene) 클릭 중합된 소수성 코팅용 화합물.
- 제1항에 있어서,상기 제1 화합물은 트리메틸올프로판 트리스(3-머캅토프로피오네이트)(trimethylolpropane tris(3-mercaptopropionate))(TMSH)인 것을 특징으로 하는,소수성 코팅용 화합물.
- 제1항에 있어서,상기 제2 화합물은 3-(트리메톡시실릴)프로필 메타아크릴레이트(3-(trimethoxysilyl)propyl methacrylate)(TESPMA)인 것을 특징으로 하는,소수성 코팅용 화합물.
- 제4항에 있어서,상기 소수성 코팅용 화합물은 사슬 중간의 티올기(-SH)에 금속 이온이 결합되는 것을 특징으로 하는,소수성 코팅용 화합물.
- 제5항에 있어서,상기 금속 이온은 아연 이온, 알루미늄 이온, 철 이온 및 구리 이온 중에서 선택되는 어느 하나 이상을 포함하는 것을 특징으로 하는,소수성 코팅용 화합물.
- 제1항 내지 제6항 중 어느 한 항에 따른 소수성 코팅용 화합물이 유리 기판 상에 코팅되어 소수성 표면층이 형성된, 소수성 기판.
- 제7항에 따른 소수성 기판의 소수성 표면층 상부에 친수성 코팅층이 형성된 친수성으로 표면 개질된 기판으로서,상기 친수성 코팅층은 에틸 아세테이트, 폴리카프로락톤 트리올 및 실리카 나노입자를 포함하는 현탁액을 상기 소수성 표면층 상부에 코팅한 후 경화시켜 형성된 것을 특징으로 하는,친수성으로 표면 개질된 기판.
- 제8항에 있어서,상기 현탁액 총 중량 대비 실리카 나노입자는 0.1wt%로 함유된 것을 특징으로 하는,친수성으로 표면 개질된 기판.
- 에틸 아세테이트 또는 아세톤을 포함하는 용매 내에, 자외선 라디칼 개시제, 말단에 3개 이상의 티올기(-SH)를 갖는 제1 화합물 및 메타아크릴레이트 작용기를 갖는 제2 화합물을 첨가하는 단계; 및혼합 용액에 자외선을 조사하여 티올-엔(thiol-ene) 클릭 중합 반응시키는 단계;를 포함하는,소수성 코팅용 화합물 기반 코팅 용액의 제조 방법.
- 제10항에 있어서,상기 제1 화합물은 트리메틸올프로판 트리스(3-머캅토프로피오네이트)(trimethylolpropane tris(3-mercaptopropionate))(TMSH)이고,상기 제2 화합물은 3-(트리메톡시실릴)프로필 메타아크릴레이트(3-(trimethoxysilyl)propyl methacrylate)(TESPMA)인 것을 특징으로 하는,소수성 코팅용 화합물 기반 코팅 용액의 제조 방법.
- 제10항에 있어서,상기 혼합 용액에 금속 전구체를 첨가한 후 질소 분위기 하에서 교반시키는 단계;를 추가로 포함하는 것을 특징으로 하는,소수성 코팅용 화합물 기반 코팅 용액의 제조 방법.
- 제12항에 있어서,상기 금속 전구체는 아연 질산염 수화물, 알루미늄 질산염 수화물, 철 질산염 수화물 및 구리 질산염 수화물 중에서 선택된 어느 하나 이상을 포함하는 것을 특징으로 하는,소수성 코팅용 화합물 기반 코팅 용액의 제조 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/998,871 US20230193077A1 (en) | 2020-08-10 | 2021-08-10 | Method for preparing metallopolymer-based coating solution |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0099903 | 2020-08-10 | ||
KR20200099903 | 2020-08-10 | ||
KR1020210105604A KR102657612B1 (ko) | 2020-08-10 | 2021-08-10 | 메탈로폴리머 기반 코팅 용액의 제조 방법 |
KR10-2021-0105604 | 2021-08-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022035198A1 true WO2022035198A1 (ko) | 2022-02-17 |
Family
ID=80247461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/010607 WO2022035198A1 (ko) | 2020-08-10 | 2021-08-10 | 메탈로폴리머 기반 코팅 용액의 제조 방법 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20230193077A1 (ko) |
WO (1) | WO2022035198A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114958198A (zh) * | 2022-05-25 | 2022-08-30 | 武汉工程大学 | 一种聚合物铸膜液、抗雾涂层及其制备方法和应用 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117186770B (zh) * | 2023-11-02 | 2024-04-12 | 天津永续新材料有限公司 | 纳米酶协同生物质材料的防污涂层、制备方法及用途 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150344652A1 (en) * | 2014-06-03 | 2015-12-03 | Karlsruher Institut für Technologie | Reactive Superhydrophobic Surfaces, Patterned Superhydrophobic Surfaces, Methods For Producing The Same And Use Of The Patterned Superhydrophobic Surfaces |
KR20160004503A (ko) * | 2014-07-03 | 2016-01-13 | 주식회사 노루홀딩스 | 2-Coat형 초발수 코팅도료 및 초발수 코팅막 형성방법 |
JP2016017175A (ja) * | 2014-07-11 | 2016-02-01 | 積水化学工業株式会社 | 表示素子用保護剤 |
-
2021
- 2021-08-10 US US17/998,871 patent/US20230193077A1/en active Pending
- 2021-08-10 WO PCT/KR2021/010607 patent/WO2022035198A1/ko active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150344652A1 (en) * | 2014-06-03 | 2015-12-03 | Karlsruher Institut für Technologie | Reactive Superhydrophobic Surfaces, Patterned Superhydrophobic Surfaces, Methods For Producing The Same And Use Of The Patterned Superhydrophobic Surfaces |
KR20160004503A (ko) * | 2014-07-03 | 2016-01-13 | 주식회사 노루홀딩스 | 2-Coat형 초발수 코팅도료 및 초발수 코팅막 형성방법 |
JP2016017175A (ja) * | 2014-07-11 | 2016-02-01 | 積水化学工業株式会社 | 表示素子用保護剤 |
Non-Patent Citations (4)
Title |
---|
JEON YUBIN, NAGAPPAN SARAVANAN, LI XI-HUI, LEE JOON-HEE, SHI LIYI, YUAN SHUAI, LEE WON-KI, HA CHANG-SIK: "Highly Transparent, Robust Hydrophobic, and Amphiphilic Organic–Inorganic Hybrid Coatings for Antifogging and Antibacterial Applications", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 13, no. 5, 10 February 2021 (2021-02-10), US , pages 6615 - 6630, XP055900055, ISSN: 1944-8244, DOI: 10.1021/acsami.0c20401 * |
LANGFORD, CAITLIN ROSE: "Chemical functionalization of thiol-acrylate polyHIPEs", MASTER THESIS, 1 January 2014 (2014-01-01), pages 1 - 131, XP009534241 * |
MENG GUIHUA; YAN JIAYU; WU JIANNING; ZHANG WEIFANG; WANG YIXI; WANG QIAN; LIU ZHIYONG; GUO XUHONG: "Thiol-ene Click Chemistry Construct Superhydrophobic Cotton Fabric for High-efficiency Water-in-oil Emulsion Separation", FIBERS AND POLYMERS, THE KOREAN FIBER SOCIETY, SEOUL, vol. 21, no. 2, 1 February 2020 (2020-02-01), Seoul, pages 245 - 251, XP037027023, ISSN: 1229-9197, DOI: 10.1007/s12221-020-9191-6 * |
RESETCO C., HENDRIKS B., BADI N., DU PREZ F.: "Thiol–ene chemistry for polymer coatings and surface modification – building in sustainability and performance", MATER. HORIZ., vol. 4, no. 6, 1 January 2017 (2017-01-01), pages 1041 - 1053, XP055900054, ISSN: 2051-6347, DOI: 10.1039/C7MH00488E * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114958198A (zh) * | 2022-05-25 | 2022-08-30 | 武汉工程大学 | 一种聚合物铸膜液、抗雾涂层及其制备方法和应用 |
CN114958198B (zh) * | 2022-05-25 | 2023-09-01 | 武汉工程大学 | 一种聚合物铸膜液、抗雾涂层及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
US20230193077A1 (en) | 2023-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022035198A1 (ko) | 메탈로폴리머 기반 코팅 용액의 제조 방법 | |
JP6197118B2 (ja) | 硬化性シルセスキオキサンポリマー、組成物、物品、及び方法 | |
DE69624923T2 (de) | Silizium enthaltende organische fluorpolymere und ihre verwendung | |
US7687593B2 (en) | Fluorinated polymer and polymer composition | |
EP1644450B1 (en) | Superhydrophobic coating | |
EP1170336A1 (en) | Polysilazane composition and coated molded article having cured object obtained therefrom | |
DE60205220T2 (de) | Siliconharz-zusammensetzung für wasserabweisende beschichtung | |
KR20100075404A (ko) | 실리콘 수지용 조성물 | |
CN104854173A (zh) | 透明聚酰亚胺基板及其制备方法 | |
JP5083444B2 (ja) | フッ素系重合体および樹脂組成物 | |
JP2008520773A (ja) | ポリシラザンに基づく被覆剤及びフィルム、特にポリマーフィルムを被覆するためのこれの使用 | |
KR102036858B1 (ko) | 폴리실라잔을 이용한 uv 경화형 하드 코팅액 및 도막 제조방법 | |
Oktay et al. | Polydimethylsiloxane (PDMS)-based antibacterial organic–inorganic hybrid coatings | |
US5958598A (en) | Radiation curable hardcoat compositions possessing anti-fog properties | |
MX2011009590A (es) | Composicion de cubierta. | |
KR20220044420A (ko) | 플루오로폴리에테르기 함유 폴리머 조성물, 코팅제 및 물품 | |
EP1633805A1 (de) | Verfahren zur herstellung von beschlagsfreien kratzfest-schichtsystemen | |
KR20190074236A (ko) | 경화성 조성물 | |
Nambafu et al. | Hydrophobic coatings prepared using various dipodal silane-functionalized polymer precursors | |
Cui et al. | Fabrication of UV/moisture dual curing coatings based on fluorinated polyoxetanes for anti-fouling applications | |
KR100463926B1 (ko) | 다기능성 실리콘 폴리머 코팅제 조성물 | |
KR102202142B1 (ko) | Uv 가교가 가능한 비플루오르화 고투명성, 양친매성 실리카계 내 지문 코팅 소재 | |
KR102657612B1 (ko) | 메탈로폴리머 기반 코팅 용액의 제조 방법 | |
Kesmez | Preparation of UV-curable hybrid films via sol–gel synthesis for hydrophobic surface applications | |
KR20200061954A (ko) | 나노입자를 포함하는 수지 조성물 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21856204 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21856204 Country of ref document: EP Kind code of ref document: A1 |