WO2022035142A1 - 저밀도 탄소나노튜브 및 이를 포함하는 복합재 - Google Patents

저밀도 탄소나노튜브 및 이를 포함하는 복합재 Download PDF

Info

Publication number
WO2022035142A1
WO2022035142A1 PCT/KR2021/010408 KR2021010408W WO2022035142A1 WO 2022035142 A1 WO2022035142 A1 WO 2022035142A1 KR 2021010408 W KR2021010408 W KR 2021010408W WO 2022035142 A1 WO2022035142 A1 WO 2022035142A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
particle size
average particle
carbon nanotubes
carbon nanotube
Prior art date
Application number
PCT/KR2021/010408
Other languages
English (en)
French (fr)
Inventor
장형식
박혜진
김세현
김옥신
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP21856148.8A priority Critical patent/EP4197969A4/en
Priority to CN202180037621.5A priority patent/CN115667138B/zh
Priority to US17/928,890 priority patent/US20230227312A1/en
Publication of WO2022035142A1 publication Critical patent/WO2022035142A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to carbon nanotubes having a small bulk density and a small number average particle size and a composite material including the same.
  • Carbon nanomaterials include fullerene, carbon nanotube (CNT), graphene, and graphite nanoplate depending on the shape of the material. It is a macromolecule with a hexagonal honeycomb-shaped graphite face in which three carbon atoms are bonded to three other carbon atoms and rolled into nano-sized diameters.
  • Carbon nanotubes are hollow, so they are light and have electrical conductivity as good as copper, thermal conductivity as excellent as diamond, and tensile strength as good as steel. According to the shape of the rolled carbon nanotubes, single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), and bundled carbon nanotubes (Rope Carbon Nanotubes) are sometimes classified.
  • SWCNTs single-walled carbon nanotubes
  • MWCNTs multi-walled carbon nanotubes
  • Rope Carbon Nanotubes bundled carbon nanotubes
  • carbon nanotubes are attracting attention as fillers for various polymer composite materials such as antistatic polymer composite materials, electromagnetic wave shielding polymer composite materials, heat dissipating polymer composite materials, and high strength polymer composite materials.
  • a lot of research and development is underway for the commercialization of polymer composite materials.
  • the viscosity of the composite material may significantly increase due to the structural characteristics of the carbon nanotubes.
  • the viscosity of the composite material is high, it may not be easy to form a product manufactured from the composite material, and the productivity of the composite material itself may also decrease.
  • Patent Document 1 KR 10-2009-0073346
  • Patent Document 2 KR 10-2009-0013503
  • An object of the present invention is to provide a carbon nanotube having a lower bulk density and a number average particle size compared to the conventional carbon nanotube, and a carbon nanotube composite including the same.
  • the present invention provides carbon nanotubes having a number average particle size of 40 to 120 ⁇ m and a bulk density of 25 kg/m 3 or less, and a carbon nanotube composite including the carbon nanotubes.
  • the carbon nanotubes provided by the present invention have a small number average particle size, low bulk density, and excellent electrical conductivity.
  • FIG. 1 is a schematic diagram of a structure of a fluidized bed reactor having a side nozzle used for manufacturing carbon nanotubes of the present invention.
  • FIG. 2 is a view showing the direction of the gas inlet of the side nozzle in the fluidized bed reactor according to FIG. 1 .
  • the present invention provides carbon nanotubes having a number average particle size of 40 to 120 ⁇ m and a bulk density of 25 kg/m 3 or less.
  • the inventors of the present invention when carbon nanotubes are manufactured through a fluidized bed reactor equipped with a side nozzle, carbon nanotubes having a lower number average particle size and bulk density compared to carbon nanotubes manufactured by a conventional manufacturing method are manufactured. found and completed the present invention.
  • the formation of aggregates can be suppressed by the gas flowing through the side nozzle separately from the gas flowing through the lower dispersion plate, and , thereby making it possible to lower the bulk density and number average particle size of the carbon nanotube product finally obtained.
  • a fluidized bed reactor having a side nozzle that can be used for manufacturing carbon nanotubes of the present invention may have the shape of FIG. 1 .
  • the fluidized bed reactor used for manufacturing carbon nanotubes of the present invention includes a gas distribution plate 12, a gas supply unit 13, a catalyst supply unit 14, and a side nozzle ( 15), and may include a catalyst storage tank (2) on the outside of the reactor body (1).
  • the fluidized bed reactor of the present invention includes a reactor body, a gas distribution plate provided in the internal space of the reactor body and having an opening through which gas can flow, and a gas distribution plate having an opening in the gas distribution plate from the lower part of the internal space of the body.
  • a gas supply unit for supplying gas in an upward direction which is provided under the reactor body, a catalyst supply unit for supplying the catalyst of the catalyst storage tank to the interior space of the reactor body, and a wall surface of the reactor, from the outside of the reactor to the interior space of the reactor It may include a side nozzle having a gas inlet for introducing the gas into the furnace.
  • the gas distribution plate, the gas supply part, and the catalyst supply part perform the same functions as those applied to the conventional fluidized bed reactor, that is, the conventional fluidized bed reactor not having a side nozzle
  • a person of ordinary skill in the art may appropriately select and change the form or type within the range capable of performing the corresponding function.
  • the side nozzle it is provided on the wall surface of the reactor and has a gas inlet for introducing gas from the outside of the reactor into the space inside the reactor.
  • the side nozzle serves to inject additional gas into the reactor separately from the gas supply unit described above, and the formation of aggregates during the reaction may be suppressed or previously formed aggregates may be removed by the additional gas injected through the side nozzle.
  • the additional gas introduced through the side nozzle can prevent intensive accumulation of carbon nanotubes, etc. generated in a specific area by variously changing the fluid flow inside the fluidized bed reactor, and thus It is possible to inhibit the formation of aggregates.
  • the side nozzle may be positioned higher than the gas distribution plate based on the height of the body. Agglomerates are formed in the fluidized bed formed in the upper region of the gas distribution plate as a reference, and accordingly, additional gas to suppress the formation of aggregates needs to be introduced into the upper portion of the gas distribution plate as well. Therefore, it is preferable that the side nozzle is positioned higher than the gas distribution plate. In particular, the side nozzle is preferably positioned so as to be in contact with the upper surface of the gas distribution plate.
  • the region where the aggregates are mainly formed is the region where the reaction is performed without sufficiently dispersing the reactant gas introduced through the gas distribution plate, that is, the region directly above the gas distribution plate. When positioned so as to be in contact with the upper surface of the , this area can be minimized, and the reactant gas injected through the gas distribution plate can be better dispersed.
  • the number of the side nozzles is not particularly limited, and when a plurality of side nozzles are included, the number may vary depending on the flow rate of the additional gas introduced through the side nozzles and the diameter of the reactor, for example, the number may be 2 to 30.
  • the number may be 2 to 30.
  • 2 to 10 side nozzles when 2 to 10 side nozzles are included, the effect of suppressing the formation of agglomerates is maximized compared to the cost required to install the side nozzles. can do.
  • the number of side nozzles is too large, there is a problem in that the structure of the side nozzle itself adversely affects the flow of the fluid inside the reactor.
  • the side nozzle has a gas inlet for introducing gas in a direction toward the inside of the reactor, and the gas inlet may be one, such as in the form of a straw, or in plurality, such as in the form of a sprinkler head.
  • the gas inlets may be 2 to 8 gas inlets having different gas input directions, for example, two gas inlets having different directions as shown in FIG. 2 .
  • the side nozzle has a plurality of gas inlets, it is possible to create flow in various directions from one side nozzle, thereby suppressing the formation of aggregates more effectively.
  • the plurality of gas inlets have different directions, it is possible to create flow flows in more various directions.
  • the gas inlet may be provided with a single hole or may be provided with a plurality of holes, such as a spray nozzle. If the gas inlet is provided with a plurality of holes, it is preferable to make the fluid flow more diversified.
  • At least one of the gas inlets of the side nozzle may face a tangential direction, that is, a direction perpendicular to the side nozzle and parallel to the dispersion plate.
  • the direction of the gas inlet may be a tangential direction.
  • the carbon nanotubes of the present invention can be produced by chemical vapor synthesis (CVD) using the fluidized bed reactor described above. Specifically, carbon source gas and a catalyst are introduced into the fluidized bed reactor and reacted to produce carbon nanotubes.
  • CVD chemical vapor synthesis
  • the carbon source gas is a carbon-containing gas that can be decomposed at a high temperature to form carbon nanotubes.
  • various carbon-containing compounds such as aliphatic alkanes, aliphatic alkenes, aliphatic alkynes, and aromatic compounds can be used, and more specifically, methane , ethane, ethylene, acetylene, ethanol, methanol, acetone, carbon monoxide, propane, butane, benzene, cyclohexane, propylene, butene, isobutene, toluene, xylene, cumene, ethylbenzene, naphthalene, phenanthrene, anthracene, acetylene, Compounds such as formaldehyde and acetaldehyde can be used.
  • the catalyst may be used without any particular limitation, as long as it is known in the art to be used for the production of carbon nanotubes, and may be a heterogeneous catalyst consisting of a complex structure of an active metal and a support that can be used in general, and more specifically may use a supported catalyst or a catalyst in the form of a co-precipitation catalyst.
  • the bulk density is higher than that of the co-precipitation catalyst, and unlike the co-precipitation catalyst, the fine particles of 10 microns or less are small, so the occurrence of agglomeration of fine particles can be suppressed, and abrasion that may occur during the fluidization process It is advantageous in that it is possible to reduce the possibility of generation of fine powder due to the catalyst itself and to stabilize the reactor operation due to excellent mechanical strength of the catalyst itself.
  • the method for preparing the catalyst is simple, the cost of metal salts suitable as catalyst raw materials is low, which is advantageous in terms of manufacturing cost, and the specific surface area is wide and thus catalytic activity is high.
  • reducing gas and inert gas may be further used in the production of carbon nanotubes of the present invention through a fluidized bed reactor.
  • the reducing gas is a gas for generating carbon nanotubes by reacting with the carbon source gas, and may be used as long as it has a reducing property, and specifically, hydrogen gas or ammonia gas may be used.
  • the inert gas is for imparting fluidity of the synthesized carbon nanotubes, and can be used without limitation as long as it can impart fluidity without reacting with the carbon source gas and the reducing gas, for example, nitrogen or argon gas can be used. there is.
  • the volume ratio of the carbon source gas among all the gases to be input may be 0.1 to 0.3, preferably 0.15 to 0.25.
  • the ratio of the carbon source gas is smaller or larger than this, less or more carbon source gas is input than the amount required for carbon nanotube synthesis, and a carbon source gas or reducing gas that does not participate in the reaction is generated, and accordingly, the overall efficiency of the reaction and A problem arises in that the economy deteriorates.
  • the additional gas introduced through the side nozzle in the fluidized bed reactor used in the present invention may be at least one selected from the group consisting of a carbon source gas, a reducing gas, and an inert gas. Since the additional gas can also act as a reaction gas, it is preferable that the additional gas has the same components as some or all of the components included in the reaction gas. or an inert gas.
  • the flow rate of the additional gas input through the side nozzle is less than 20% of the flow rate of the total gas input through the side nozzle and the gas distribution plate. and preferably 10 to 15%. If the amount of the additional gas injected into the side nozzle is too small, the effect of suppressing the formation of aggregates by the additional gas is low, and thus the number average particle size and the volume average particle size of the produced carbon nanotubes may become very large.
  • the input of the product may increase the amount of entrainment of the product and increase the product loss, or the flow reaction itself may be difficult.
  • the additional gas introduced through the side nozzle may be continuously introduced or may be introduced in a pulsed manner. Assuming that the same amount of additional gas is added, higher bulk density and larger number average particle size and volume average particle size compared to continuous feeding because some agglomerates may be formed between the dosing cycles when fed in a pulsed manner Carbon nanotubes having
  • the reaction for producing the carbon nanotubes is preferably carried out at a temperature of 600 to 750 °C. If the temperature of the reaction is lower than this, sufficient energy required to generate carbon nanotubes may not be supplied.
  • reaction is preferably carried out for 30 minutes to 2 hours.
  • reaction time is too short, a large amount of low-growth carbon nanotubes is generated, and there is a problem in that carbon nanotubes having a desired length and diameter are not generated.
  • the number average particle size of the carbon nanotubes provided by the present invention may be 120 ⁇ m or less or 115 ⁇ m or less.
  • the number average particle size of the carbon nanotubes provided by the present invention may be 40 ⁇ m or more, 50 ⁇ m or more, 60 ⁇ m or more, 65 ⁇ m or more, 70 ⁇ m or more, or 75 ⁇ m or more.
  • carbon nanotubes having a number average particle size within the above range can be manufactured. Carbon nanotubes having an average particle size are prepared.
  • the volume average particle size of the carbon nanotubes provided by the present invention may be 600 ⁇ m or less, preferably 550 ⁇ m or less, and 400 ⁇ m or more, preferably 450 ⁇ m or more.
  • carbon nanotubes having a volume average particle size within the above range can be manufactured.
  • Carbon nanotubes having an average particle size are prepared.
  • the number average particle size is the average particle size value in the number distribution diagram for the particle size of the carbon nanotube particles
  • the volume average particle size is the volume average particle size in the volume distribution diagram for the particle size of the carbon nanotube particles. It means the average particle size value.
  • the number average particle size and the volume average particle size may be measured through a particle size analyzer using a laser diffraction method. More specifically, a commercially available laser diffraction particle size measuring device for carbon nanotubes (eg, Microtrac bluewave S3500) may be used.
  • the bulk density may be 25 kg/m 3 or less, preferably 15 to 25 kg/m 3 , and particularly preferably 20 to 25 kg/m 3 .
  • the bulk density may be measured according to ASTM B329-06. Specifically, in the present invention, the weight of the carbon nanotube actually contained in the 25ml container was measured using a stainless steel hollow 25ml cylindrical container, and the bulk density was measured by dividing it by the volume of 25ml.
  • the carbon nanotube of the present invention is suitable for use in a technical field requiring the above characteristics, and is particularly suitable for use as a carbon nanotube composite material.
  • the ratio of the volume average particle size to the number average particle size of the carbon nanotubes may be 4.8 or more, preferably 4.9 or more, and 7.0 or less, preferably It may be less than or equal to 6.5.
  • the appearance of the composite material may be particularly excellent during injection molding.
  • the shape of the carbon nanotube provided by the present invention may be an entanglement type or a bundle type.
  • the entangled type refers to a secondary shape in the form of a sphere or potato in which a plurality of carbon nanotubes are entangled without directionality, and the bundle type is a bundle ( It refers to the secondary shape in the form of bundle) or rope.
  • the present invention provides a carbon nanotube composite including the above-described carbon nanotube and a polymer resin. As described above, since the carbon nanotubes provided by the present invention have a low bulk density and a small number average particle size, when applied as a composite material, excellent electrical properties, appearance properties, and fluidity can be exhibited.
  • the carbon nanotube composite of the present invention includes a polymer resin as a base.
  • the polymer resin serves to constitute a basic matrix of the composite material, and preferably has thermoplasticity.
  • polymer resin examples include polycarbonate resin, polypropylene resin, aramid resin, aromatic polyester resin, polyolefin resin, polyester carbonate resin, polyphenylene oxide resin, polysulfone resin, polyethersulfone resin, polyarylene resin, cyclo Olefin resin, polyetherimide resin, polyacetal resin, polyvinyl acetal resin, polyketone resin, polyetherketone resin, polyetheretherketone resin, polyarylketone resin, polyethernitrile resin, liquid crystal resin, polybenzimidazole
  • Copolymer resin diene-aromatic alkenyl compound copolymer resin, vinyl cyanide-diene-aromatic alkenyl compound copolymer resin, aromatic alkenyl compound-diene-vinyl cyanide-N-phenylmaleimide copolymer resin, vinyl cyanide-(ethylene -Diene-propylene (EPDM))-aromatic alkenyl compound
  • EPDM vinyl cyanide-(ethylene -Diene-propylene (EPDM))-aromatic alkenyl compound
  • At least one selected from the group consisting of copolymer resins, polyolefins, vinyl chloride resins, and chlorinated vinyl chloride resins may be used.
  • polystyrene resin polypropylene, polyethylene, polybutylene, and poly(4-methyl-1-pentene), and combinations thereof may be used.
  • a homopolyester or copolyester which is a polycondensation of a dicarboxylic acid component skeleton and a diol component skeleton may be used.
  • the homo polyester may be polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, poly-1,4-cyclohexanedimethylene terephthalate, polyethylene diphenylate, or the like. and polyethylene terephthalate is preferable in terms of cost.
  • the copolymer polyester is defined as a polycondensate comprising at least three or more components selected from a compound having a dicarboxylic acid group and a compound having a diol group.
  • the compound having a dicarboxyl group include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-di Phenyldicarboxylic acid, 4,4'-diphenylsulfonedicarboxylic acid, adipic acid, sebacic acid, dimer acid, cyclohexanedicarboxylic acid and their ester derivatives, etc.
  • ethylene Glycol 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentadiol, diethylene glycol, polyalkylene glycol, 2,2-bis(4'- ⁇ hydroxy Toxyphenyl) propane, isosorbate, 1,4-cyclohexanedimethanol, spiroglycol, and the like can be used.
  • nylon resin When a polyamide resin is used as the polymer resin, specifically, a nylon resin, a nylon copolymer resin, and a mixture thereof may be used.
  • the nylon resin include polyamide-6 (nylon 6) obtained by ring-opening polymerization of commonly known lactams such as ⁇ caprolactam and ⁇ dodecalactam; nylon polymers obtained from amino acids such as aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid; Ethylenediamine, tetramethylenediamine, hexamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 5-methylnonahexamethylenediamine , metaxylenediamine, paraxylenediamine, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohex
  • nylon polymer obtainable from polymerization of; Copolymers or mixtures thereof may be used.
  • nylon copolymer a copolymer of polycaprolactam (nylon 6) and polyhexamethylene sebacamide (nylon 6,10), a copolymer of polycaprolactam (nylon 6) and polyhexamethylene adipamide (nylon 66), A copolymer of polycaprolactam (nylon 6) and polylauryllactam (nylon 12) or the like can be used.
  • a polycarbonate resin When a polycarbonate resin is used as the polymer resin, one prepared by reacting diphenols with phosgene, halogen formate, carbonic acid ester, or a combination thereof may be used.
  • the diphenols include hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, 2,2-bis(4-hydroxyphenyl)propane (also called 'bisphenol-A'), 2,4-bis (4-hydroxyphenyl)-2-methylbutane, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 2,2-bis(3-chloro-4- Hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane, 2,2- Bis(3,5-dibromo-4-hydroxyphenyl)propane, bis(4-hydroxyphenyl)s
  • 2,2-bis(4-hydroxyphenyl)propane 2,2-bis(3,5-dichloro-4-hydroxyphenyl)propane or 1,1-bis(4-hydroxyphenyl)propane Cyclohexane may be used, and 2,2-bis(4-hydroxyphenyl)propane may be preferably used.
  • the polycarbonate resin may be a mixture of a copolymer prepared from two or more types of diphenols.
  • a linear polycarbonate resin a branched polycarbonate resin, a polyester carbonate copolymer resin, or the like may be used.
  • a bisphenol-A-based polycarbonate resin or the like may be used.
  • the branched polycarbonate resin include those prepared by reacting polyfunctional aromatic compounds such as trimellitic anhydride and trimellitic acid with diphenols and carbonates.
  • the polyfunctional aromatic compound may be included in an amount of 0.05 to 2 mol% based on the total amount of the branched polycarbonate resin.
  • polyester carbonate copolymer resin one prepared by reacting a difunctional carboxylic acid with diphenols and carbonate may be used.
  • carbonate diaryl carbonate such as diphenyl carbonate, ethylene carbonate, etc. may be used.
  • the carbon nanotube may be included in an amount of 0.5 to 10 wt%, preferably 1 to 8 wt%. When the carbon nanotube is included in less than this, sufficient conductivity does not appear, and when it is included in more than this, the fluidity is reduced.
  • the carbon nanotube composite of the present invention may include additional components, specifically, a flame retardant, an impact modifier, a flame retardant, a flame retardant auxiliary agent, a lubricant, a plasticizer, a heat stabilizer, an anti-drip agent, and an oxidizing agent. It may further include one or more additives selected from the group consisting of inhibitors, compatibilizers, light stabilizers, pigments, dyes, inorganic additives and anti-drip agents. When the additive is included, the content may be 0.1 to 10 parts by weight based on 100 parts by weight of the polymer resin. Specific types of these additives are well known to those of ordinary skill in the art, and those skilled in the art may select an appropriate type and content of additives from among the above-described additives according to desired effects and apply them to the carbon nanotube composite material of the present invention.
  • the carbon nanotube composite of the present invention may be prepared according to a manufacturing method known to those skilled in the art, for example, a single or twin-screw extruder, a Banbury mixer, a kneader, a mixing roll, etc., a mixture of components included in the composite, a commonly known melt mixer It can be prepared by supplying to and kneading at a temperature of about 100 to 500 °C or 200 to 400 °C.
  • Examples 1 to 4 and Comparative Examples 2 to 3 carbon nanotubes were prepared through a fluidized bed reactor equipped with a side nozzle as shown in FIG. 1 . Nitrogen gas was used as an additional gas introduced through the side nozzle. Meanwhile, in Comparative Example 1, carbon nanotubes were manufactured using a conventional fluidized bed reactor without a side nozzle. In Comparative Examples 4 and 5, conventional carbon nanotube products known to have relatively low number average particle sizes and volume average particle sizes were used. In each Example and Comparative Example, the ratio and input method of additional gas input through the side nozzle to the total amount of gas input to the fluidized bed reactor, and the bulk density, number average particle size, and volume average particle size of the carbon nanotubes produced in each case It is summarized in Table 1 below.
  • Example 1 Example 2 Example 3
  • Example 4 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Additional gas percentage (%) 10 15 15 15 0 5 20 - - Additional gas injection method continuity continuity 5 reps/min 5 reps/min - continuity continuity bulk density (kg/m 3 ) 24 20 23 24 28 28 Carbon nanotubes are not produced smoothly due to inability to flow 10 20 Number average particle size ( ⁇ m) 107 75 87 112 132 175 21 15 Volume average particle size ( ⁇ m) 532 471 508 566 627 652 105 150
  • the carbon nanotubes prepared in Examples and Comparative Examples were mixed with a polycarbonate resin to prepare a composite material.
  • the carbon nanotube content in the composite material was set to 1.5% by weight, extruded at 290°C temperature and 15 kg/h production condition, and injected at 290°C temperature and injection speed of 30 mm/s to prepare a specimen.
  • Surface resistance, flow index, and appearance properties were measured for the prepared specimens.
  • the specific measurement method of each physical property is as follows.
  • Example 1 Example 2 Example 3
  • Example 4 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 surface resistance (10 ⁇ ) 9-10 9 9-10 9-10 11 - 7 8-9 Flow index (g/10min) 23 25 24 22 23 20 - 7 12 Number of pinholes (pcs/0.88cm 2 ) 50 41 43 52 65 64 - 200 40
  • the carbon nanotube of the present invention exhibits fluidity similar to that of the existing carbon nanotube when the composite is applied, but has excellent electrical properties due to low surface resistance, and the number of pinholes on the specimen surface is smaller than that of the conventional carbon nanotube during injection. It was confirmed that the appearance characteristics were more excellent.
  • Comparative Examples 1 to 3 using carbon nanotubes having a larger number average particle size and bulk density compared to the present invention the surface resistance and flow index were similar to those of the present invention, but inferior in appearance.
  • Comparative Examples 4 and 5 using carbon nanotubes having a smaller number average particle size compared to the present invention it was confirmed that the fluidity was lowered, and in particular, in Comparative Example 4, the number of pinholes (undispersed particles) increased significantly, showing thermal appearance characteristics. was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 사이드 노즐을 구비한 유동층 반응기를 이용하여 제조될 수 있는 저밀도의 탄소나노튜브에 관한 것으로, 전기적 특성이 우수하고 복합재로 활용 시 외관 특성이 우수하다는 장점을 갖는다.

Description

저밀도 탄소나노튜브 및 이를 포함하는 복합재
관련 출원과의 상호 인용
본 출원은 2020년 8월 12일자 한국 특허 출원 제 10-2020-0100834호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 벌크 밀도 및 수 평균 입도가 작은 탄소나노튜브 및 이를 포함하는 복합재에 관한 것이다.
탄소나노소재는 소재의 모양에 따라 퓰러렌(Fullerene), 탄소나노튜브(Carbon Nanotube; CNT), 그래핀(Graphene), 흑연 나노 플레이트(Graphite Nano Plate) 등이 있으며, 이 중 탄소나노튜브는 1개의 탄소 원자가 3개의 다른 탄소 원자와 결합한 육각형 벌집 모양의 흑연 면이 나노 크기의 직경으로 둥글게 말린 거대 분자이다.
탄소나노튜브는 속이 비어 있어 가볍고 전기 전도도는 구리만큼 좋으며, 열전도도는 다이아몬드만큼 우수하고 인장력은 철강에 못지 않다. 말려진 형태에 따라서 단층벽 탄소나노튜브(Single-Walled Carbon Nanotube; SWCNT), 다중벽 탄소나노튜브(Multi-Walled Carbon Nanotube; MWCNT), 다발형 탄소나노튜브(Rope Carbon Nanotube)로 구분되기도 한다.
이러한 탄소나노튜브는 우수한 물리적 특성으로 인해 대전 방지용 고분자 복합소재, 전자파 차폐용 고분자 복합소재, 방열 고분자 복합소재 및 고강도 고분자 복합소재 등 여러 가지 고분자 복합소재의 필러로서 각광받고 있으며, 탄소나노튜브를 이용한 고분자 복합소재의 상용화를 위한 많은 연구와 개발이 진행되고 있다. 다만 탄소나노튜브를 고분자에 혼합하여 복합재를 제조하는 경우, 탄소나노튜브의 구조적인 특징으로 인해 복합재의 점도가 크게 상승할 수 있다. 복합재의 점도가 높은 경우에는 복합재로부터 제조되는 제품의 성형이 용이하지 않을 수 있고, 복합재 자체의 생산성 역시 떨어질 수 있기 때문에 복합재에 포함되었을 때 적절한 범위의 점도나 유동성을 가지면서도, 전도성을 부여하는 탄소나노튜브 복합재의 종래 역할을 원활하게 수행할 수 있는 탄소나노튜브에 관한 연구가 필요한 실정이다.
선행기술문헌
(특허문헌 1) KR 10-2009-0073346
(특허문헌 2) KR 10-2009-0013503
본 발명의 목적은 기존 탄소나노튜브 대비 낮은 벌크 밀도 및 수 평균 입도를 갖는 탄소나노튜브 및 이를 포함하는 탄소나노튜브 복합재를 제공하는 것이다.
본 발명은 수 평균 입도가 40 내지 120㎛이고, 벌크 밀도가 25kg/m3 이하인 탄소나노튜브 및 상기 탄소나노튜브를 포함하는 탄소나노튜브 복합재를 제공한다.
본 발명이 제공하는 탄소나노튜브는 수 평균 입도가 작고, 벌크 밀도가 낮아 전기 전도성이 우수하면서도, 고분자 수지와 혼합하여 복합재로 사출 시 외관 특성이 우수하다는 장점을 갖는다.
도 1은 본 발명의 탄소나노튜브를 제조하는 것에 사용되는 사이드 노즐을 구비한 유동층 반응기의 구조를 간략화한 도이다.
도 2는 도 1에 따른 유동층 반응기에서 사이드 노즐의 기체 투입구 방향을 나타낸 도이다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
탄소나노튜브
본 발명은 수 평균 입도가 40 내지 120㎛이고, 벌크 밀도가 25kg/m3 이하인 탄소나노튜브를 제공한다.
본 발명의 발명자는 사이드 노즐을 구비한 유동층 반응기를 통해 탄소나노튜브를 제조할 경우, 기존의 제조방법으로 제조된 탄소나노튜브 대비 더 낮은 수 평균 입도와 벌크 밀도를 갖는 탄소나노튜브를 제조된다는 점을 발견하여 본 발명을 완성하였다.
구체적으로, 종래의 일반적인 유동층 반응기를 통해 탄소나노튜브를 제조할 경우, 유동층 반응기 하부 영역에서 베드로 투입되는 탄소나노튜브와 촉매로부터 합성되는 탄소나노튜브가 응집되는 현상이 발생하였으며, 이에 따라 최종적으로 수득되는 탄소나노튜브 제품에서의 벌크 밀도 및 수 평균 입도를 낮게 하는 것에 한계가 있었다. 이에 본 발명의 발명자는 기존의 탄소나노튜브보다도 더 낮은 벌크 밀도 및 수 평균 입도를 갖는 탄소나노튜브를 제조하고자 하였으며, 유동층 반응기에 사이드 노즐을 설치하고, 설치된 사이드 노즐을 통해 추가 기체를 투입하는 방식으로 탄소나노튜브를 제조할 경우, 제조된 탄소나노튜브의 벌크 밀도 및 수 평균 입도가 더욱 낮아질 수 있음을 확인하여 본 발명을 완성하였다.
더욱 구체적으로, 사이드 노즐이 구비된 유동층 반응기를 이용하여 탄소나노튜브를 제조하는 경우, 하부 분산판을 통해 유입되는 기체와는 별도로 사이드 노즐을 통해 유입되는 기체에 의하여 응집체의 형성이 억제될 수 있고, 이에 따라 최종적으로 수득되는 탄소나노튜브 제품의 벌크 밀도 및 수 평균 입도를 낮게 할 수 있다.
예컨대, 본 발명의 탄소나노튜브 제조에 사용될 수 있는 사이드 노즐을 구비한 유동층 반응기는 도 1의 형태를 가질 수 있다. 구체적으로, 본 발명의 탄소나노튜브 제조에 사용되는 유동층 반응기는 반응기 본체(1)의 내부 공간(11)에 기체분산판(12), 기체 공급부(13), 촉매 공급부(14) 및 사이드 노즐(15)를 포함하며, 반응기 본체(1)의 외부에 촉매 저장 탱크(2)을 포함하는 것일 수 있다. 더욱 구체적으로, 본 발명의 유동층 반응기는 반응기 본체, 상기 반응기 본체 내부 공간에 구비되며, 기체가 유동할 수 있는 개구부를 구비하는 기체분산판, 상기 기체분산판의 개구부를 통해 본체 내부 공간의 하부로부터 상부 방향으로 기체를 공급하기 위한 기체 공급부, 상기 반응기 본체의 하부에 구비되며, 촉매 저장 탱크의 촉매를 반응기 본체 내부 공간으로 공급하는 촉매 공급부 및 상기 반응기의 벽면에 구비되며, 반응기 외부로부터 반응기 내부 공간으로 기체를 투입하기 위한 기체 투입구를 구비하는 사이드 노즐을 포함하는 것일 수 있다.
상기 사이드 노즐을 구비한 유동층 반응기에 있어서, 기체분산판, 기체 공급부 및 촉매 공급부는 기존에 사용되던 유동층 반응기, 즉 사이드 노즐을 구비하지 않은 종래의 유동층 반응기에 적용되던 것과 동일한 기능을 수행하는 것이며, 해당 기능을 수행할 수 있는 범위 내에서 통상의 기술자가 그 형태나 종류를 적절하게 선택 및 변경하여 적용할 수 있다. 한편, 사이드 노즐의 경우 반응기의 벽면에 구비되며, 반응기 외부로부터 반응기 내부 공간으로 기체를 투입하기 위한 기체 투입구를 구비하는 것이다. 상기 사이드 노즐은 앞서 설명한 기체 공급부와는 별도로 반응기 내부로 추가 기체를 투입하는 역할을 수행하며, 사이드 노즐을 통해 투입된 추가 기체에 의하여 반응 중의 응집체 생성이 억제되거나 기 생성된 응집체가 제거될 수 있다. 구체적으로, 상기 사이드 노즐을 통해 투입된 추가 기체는 유동층 반응기 내부에서의 유체 흐름을 다양하게 변화시킴으로써 특정 영역에 생성된 탄소나노튜브 등이 집중적으로 누적되는 것을 방지할 수 있으며, 이에 따라 반응기 하부에서의 응집체 생성을 억제할 수 있다.
상기 사이드 노즐은 본체 높이를 기준으로 하여 기체분산판보다 더 높게 위치하는 것일 수 있다. 응집체의 형성은 기체분산판을 기준으로 하여 그 상부 영역에 형성되는 유동층 내에서 이루어지고, 이에 따라 응집체의 형성을 억제하기 위한 추가 기체 역시 기체분산판의 상부로 투입되어야 할 필요가 있다. 따라서, 상기 사이드 노즐은 기체분산판보다 더 높게 위치하는 것이 바람직하다. 특히, 상기 사이드 노즐은 기체분산판의 상부면에 접하도록 위치하는 것이 바람직하다. 기존의 유동층 반응기에서 응집체가 주로 형성되는 영역은 기체분산판을 통해 투입된 반응 기체가 충분히 분산되지 못한 채로 반응이 수행되는 영역, 즉 기체분산판 바로 위의 영역이며, 이에 따라 사이드 노즐이 기체분산판의 상부면에 접하도록 위치하는 경우 이러한 영역을 최소화할 수 있으면서도, 기체분산판을 통해 투입된 반응 기체가 더욱 잘 분산되도록 도울 수 있다.
상기 사이드 노즐의 개수는 특별히 제한되지 않으며, 복수 개로 포함되는 경우 사이드 노즐을 통해 투입되는 추가 기체의 유속과 반응기의 직경 등에 따라 그 개수가 달라질 수 있고, 예컨대 그 개수는 2 내지 30일 수 있다. 사이드 노즐이 복수 개로 포함되는 경우, 더욱 효율적으로 반응기 내부 전 영역에 걸쳐 응집체 생성을 억제할 수 있으며, 특히 사이드 노즐이 2 내지 10개로 포함되는 경우 사이드 노즐 설치에 필요한 비용 대비 응집체 생성 억제 효과를 극대화할 수 있다. 한편, 사이드 노즐의 개수가 지나치게 많은 경우에는 사이드 노즐 자체의 구조가 반응기 내부 유체의 흐름에 악영향을 미치는 문제점이 있다.
상기 사이드 노즐은 반응기 내부를 향하는 방향으로 기체를 투입하기 위한 기체 투입구를 구비하며, 상기 기체 투입구는 빨대 형태와 같이 하나일 수도 있고, 스프링 쿨러 헤드 형태와 같이 복수 개 일수도 있다. 상기 기체 투입구가 복수 개인 경우, 상기 기체 투입구는 서로 다른 기체 투입 방향을 갖는 2 내지 8개의 기체 투입구일 수 있고, 예컨대 도 2에 도시된 바와 같이 서로 다른 방향을 갖는 2개의 기체 투입구일 수 있다. 상기 사이드 노즐이 복수 개의 기체 투입구를 갖는 경우, 하나의 사이드 노즐에서 다양한 방향으로의 유동 흐름을 만들 수 있어 더욱 효율적으로 응집체 형성을 억제할 수 있다. 특히 상기 복수개의 기체 투입구가 서로 다른 방향을 갖는 경우라면 더욱 다양한 방향으로의 유동 흐름을 만들 수 있다. 한편 상기 기체 투입구는 하나의 홀을 구비한 것일 수도 있고, 스프레이 노즐과 같이 복수 개의 홀을 구비한 것일 수도 있다. 기체 투입구가 복수 개의 홀을 구비한 경우에는 유체 흐름을 더욱 다양하게 만들 수 있어 바람직하다.
한편, 상기 사이드 노즐의 기체 투입구 중 적어도 하나는 접선 방향, 즉 사이드 노즐과 수직하고, 분산판과 평행한 방향을 향할 수 있다. 예컨대 도 2에 도시된 바와 같이, 기체 투입구의 방향이 접선 방향일 수 있다. 이와 같이 접선 방향으로 기체를 투입하는 경우, 다른 방향으로 기체를 투입하는 경우 대비 응집체 형성 방지 효과가 더욱 뛰어날 수 있다.
앞서 설명한 유동층 반응기를 이용하여 화학적 기상 합성법(CVD)으로 본 발명의 탄소나노튜브를 제조할 수 있으며, 구체적으로는 유동층 반응기 내에 탄소원 가스 및 촉매를 투입하고 반응시켜 탄소나노튜브를 제조할 수 있다.
상기 탄소원 가스는 고온 상태에서 분해되어 탄소나노튜브를 형성할 수 있는 탄소 함유 가스이고, 구체적인 예로 지방족 알칸, 지방족 알켄, 지방족 알킨, 방향족 화합물 등 다양한 탄소 함유 화합물이 사용 가능하며, 보다 구체적으로는 메탄, 에탄, 에틸렌, 아세틸렌, 에탄올, 메탄올, 아세톤, 일산화탄소, 프로판, 부탄, 벤젠, 시클로헥산, 프로필렌, 부텐, 이소부텐, 톨루엔, 자일렌, 큐멘, 에틸벤젠, 나프탈렌, 페난트렌, 안트라센, 아세틸렌, 포름알데히드, 아세트알데히드 등의 화합물을 사용할 수 있다.
특히, 상기 탄소원 가스로 메탄, 에탄, 일산화탄소, 아세틸렌, 에틸렌, 프로필렌, 프로판, 부탄 및 혼합물인 액화석유가스(LPG)를 사용하는 경우, 반응기 내로의 투입이 용이하고, 공정 경제성 측면에서도 우수하다는 장점이 있다.
상기 촉매는 본 기술 분야에서 탄소나노튜브 제조에 사용되는 것으로 알려진 것이라면, 특별한 제한 없이 사용 가능하며, 통상적으로 사용될 수 있는 활성금속과 담지체의 복합구조로 이루어진 불균일계 촉매일 수 있고, 보다 구체적으로는 담지촉매 또는 공침촉매 형태의 촉매를 사용할 수 있다.
상기 촉매로 담지촉매를 사용되는 경우 벌크밀도가 공침촉매보다 높고, 공침촉매와 달리 10 미크론(micron) 이하의 미분이 적어 미세 입자의 뭉침 현상 발생을 억제 할 수 있으며, 유동화 과정에서 발생할 수 있는 마모에 의한 미분 발생 가능성을 줄일 수 있고, 촉매 자체의 기계적 강도도 우수하여 반응기 운전을 안정하게 할 수 있다는 점에서 장점이 있다.
한편, 상기 촉매로 공침촉매를 사용하는 경우, 촉매의 제조 방법이 간단하고, 촉매 원료로 바람직한 금속염들의 가격이 낮아 제조원가상 유리한 측면이 있으며, 비표면적이 넓어 촉매활성이 높은 장점이 있다.
유동층 반응기를 통한 본 발명의 탄소나노튜브 제조에는 탄소원 가스와 촉매 이외에도 환원 기체 및 불활성 기체가 더 사용될 수 있다. 상기 환원 기체는 탄소원 가스와 반응하여 탄소나노튜브를 생성하기 위한 가스로, 환원성을 갖는 가스이면 사용 가능하고, 구체적으로는 수소 기체 또는 암모니아 기체를 사용할 수 있다.
또한, 상기 불활성 기체는 합성되는 탄소나노튜브의 유동성을 부여하기 위한 것으로, 탄소원 가스 및 환원 가스와 반응하지 않으면서도 유동성을 부여할 수 있는 것이라면 제한 없이 사용 가능하며, 예컨대 질소 또는 아르곤 기체를 사용할 수 있다.
환원 기체와 불활성 기체가 탄소원 기체와 함께 사용되는 경우, 투입되는 모든 기체 중 탄소원 기체의 부피비는 0.1 내지 0.3, 바람직하게는 0.15 내지 0.25일 수 있다. 탄소원 기체의 비율이 이보다 작거나 많을 경우, 탄소나노튜브 합성에 필요한 양에 비해 적거나 많은 탄소원 기체가 투입되게 되어 반응에 참여하지 않는 탄소원 기체 또는 환원 기체가 발생하고, 이에 따라 반응의 전체적인 효율성 및 경제성이 떨어진다는 문제점이 발생한다.
본 발명에서 사용되는 유동층 반응기 중 사이드 노즐을 통해 투입되는 추가 기체는 탄소원 기체, 환원 기체 및 불활성 기체로 이루어진 군에서 선택되는 하나 이상일 수 있다. 추가 기체 역시 반응 기체로 작용할 수 있다는 점에서 추가 기체는 반응 기체에 포함되는 성분 중 일부 또는 전부와 동일한 성분을 갖는 것이 바람직하며, 특히 균일한 반응을 수행한다는 측면에서 반응 기체와 동일한 성분 및 조성을 갖는 것이거나 불활성 기체인 것이 바람직하다.
한편, 본 발명에서 요구하는 조건을 만족하기 위한 탄소나노튜브를 제조하기 위해서는, 상기 사이드 노즐을 통해 투입되는 추가 기체의 유량이 사이드 노즐과 기체분산판을 통해 투입되는 기체 전체의 유량 대비 20% 미만일 수 있고, 바람직하게는 10 내지 15%일 수 있다. 사이드 노즐을 투입되는 추가 기체의 양이 너무 적은 경우, 추가 기체에 의한 응집체 생성 억제 효과가 낮아 제조되는 탄소나노튜브의 수 평균 입도와 부피 평균 입도가 몹시 커질 수 있고, 너무 많은 경우에는 오히려 추가 기체의 투입이 제품의 비말동반량을 증가시켜 제품 손실을 증가되거나, 유동 반응 자체가 어려울 수 있다. 한편 상기 사이드 노즐을 통해 투입되는 추가 기체는 연속적으로 투입되거나, 펄스 방식으로 투입될 수 있다. 동일한 양의 추가 기체를 투입한다고 할 때, 펄스 방식으로 투입할 경우 투입 주기 사이에서 일부 응집체가 형성될 수 있기 때문에 연속적으로 투입되는 경우 대비, 더 높은 벌크 밀도와 더 큰 수 평균 입도 및 부피 평균 입도를 갖는 탄소나노튜브가 제조될 수 있다.
본 발명에 있어서, 탄소나노튜브를 제조하기 위한 반응은 600 내지 750℃의 온도에서 수행되는 것이 바람직하다. 반응의 온도가 이보다 낮을 경우, 탄소나노튜브 생성에 필요한 충분한 에너지가 공급되지 못하며, 이보다 높은 경우 촉매 등의 열분해가 발생하여 반응이 원활하게 진행되지 않을 수 있다.
또한 상기 반응은 30분 내지 2시간 동안 수행되는 것이 바람직하다. 반응 시간이 너무 짧을 경우, 저성장 탄소나노튜브가 다량 생성되며 목적하는 정도의 길이 및 직경을 갖는 탄소나노튜브가 생성되지 않는 문제점이 있으며, 너무 긴 경우에는 전체 반응의 효율성이 저하되는 문제점이 있다.
본 발명이 제공하는 탄소나노튜브의 수 평균 입도는 120㎛ 이하 또는 115㎛ 이하일 수 있다. 또한 본 발명이 제공하는 탄소나노튜브의 수 평균 입도는 40㎛ 이상, 50㎛ 이상, 60㎛ 이상, 65㎛ 이상, 70㎛ 이상 또는 75㎛ 이상일 수 있다. 상술한 것과 같은 유동층 반응기를 사용할 경우, 상기 범위의 수 평균 입도를 갖는 탄소나노튜브가 제조될 수 있으며, 기존의 유동층 반응기를 이용할 경우에는 응집체의 형성으로 인해 본 발명의 탄소나노튜브 대비 더 큰 수 평균 입도를 갖는 탄소나노튜브가 제조된다.
본 발명이 제공하는 탄소나노튜브의 부피 평균 입도는 600㎛ 이하, 바람직하게는 550㎛ 이하일 수 있고, 400㎛ 이상, 바람직하게는 450㎛ 이상일 수 있다. 상술한 것과 같은 유동층 반응기를 사용할 경우, 상기 범위의 부피 평균 입도를 갖는 탄소나노튜브가 제조될 수 있으며, 기존의 유동층 반응기를 이용할 경우에는 응집체의 형성으로 인해 본 발명의 탄소나노튜브 대비 더 큰 부피 평균 입도를 갖는 탄소나노튜브가 제조된다.
본 발명이 제공하는 탄소나노튜브에 있어서, 상기 수 평균 입도는 탄소나노튜브 입자의 입도에 대한 수 분포도에서의 평균 입도 값을, 상기 부피 평균 입도는 탄소나노튜브 입자의 입도에 대한 부피 분포도에서의 평균 입도 값을 의미한다. 상기 수 평균 입도와 부피 평균 입도는 레이저 회절법(Laser Diffraction Method)를 이용하여 입도 분석기를 통해 측정될 수 있다. 보다 구체적으로는, 탄소나노튜브를 시판되는 레이저 회절 입도 측정 장치(예컨대 Microtrac bluewave S3500)를 사용할 수 있다.
본 발명이 제공하는 탄소나노튜브에 있어서, 상기 벌크 밀도는 25kg/m3 이하, 바람직하게는 15 내지 25kg/m3, 특히 바람직하게는 20 내지 25kg/m3일 수 있다. 수 평균 입도의 경우와 마찬가지로, 상술한 유동층 반응기를 이용하는 경우에는 응집체의 형성이 적기 때문에, 기존 유동층 반응기를 사용한 경우 대비 상대적으로 낮은 벌크 밀도를 갖는 탄소나노튜브가 제조된다. 한편 상기 벌크 밀도는 ASTM B329-06에 의거하여 측정될 수 있다. 구체적으로, 본 발명에서는 스테인리스 재질의 속이 빈 25ml 원기둥형 용기를 이용하여, 25ml 용기에 실제로 담긴 탄소나노튜브의 무게를 측정하고, 이를 부피 25ml로 나누어 벌크 밀도를 측정하였다.
탄소나노튜브의 수 평균 입도, 부피 평균 입도 및 벌크 밀도가 본 발명의 범위 내일 경우, 복합재의 일 성분으로 사용할 때의 전기적` 특성과 유동성이 우수할 수 있으며, 복합재의 사출 시 외관 특성 역시 우수하다. 따라서, 본 발명의 탄소나노튜브는 상기 특성을 필요로 하는 기술 분야에 사용되기에 적합하며, 탄소나노튜브 복합재로 사용되기에 특히 적합하다.
본 발명이 제공하는 탄소나노튜브에 있어서, 탄소나노튜브의 수 평균 입도에 대한 부피 평균 입도의 비(부피 평균 입도/수 평균 입도)는 4.8 이상, 바람직하게는 4.9 이상일 수 있고, 7.0 이하, 바람직하게는 6.5 이하일 수 있다. 탄소나노튜브의 수 평균 입도 및 부피 평균 입도 사이의 비가 상술한 범위 내일 경우, 복합재 형태에서 사출 성형 시 외관이 특히 우수할 수 있다.
본 발명이 제공하는 탄소나노튜브의 형태는 인탱글형 또는 번들형일 수 있다. 상기 인탱글형(entangled type)은 복수 개의 탄소나노튜브가 방향성 없이 얽힌 구 또는 포테이토 형태의 2차 형상을 지칭하며, 상기 번들형은 복수 개의 탄소 나노튜브가 일정한 방향으로 나란하게 배열 또는 정렬된 다발(bundle) 혹은 로프(rope) 형태의 2차 형상을 지칭한다.
탄소나노튜브 복합재
본 발명은 상술한 탄소나노튜브 및 고분자 수지를 포함하는 탄소나노튜브 복합재를 제공한다. 앞서 설명한 바와 같이, 본 발명이 제공하는 탄소나노튜브는 낮은 벌크 밀도와 작은 수 평균 입도를 갖기 때문에, 복합재로 적용 시 우수한 전기적 특성, 외관 특성 및 유동성을 나타낼 수 있다.
본 발명의 탄소나노튜브 복합재는 베이스로 고분자 수지를 포함한다. 상기 고분자 수지는 복합재의 기본적인 매트릭스를 구성하는 역할을 수행하며, 열가소성을 갖는 것이 바람직하다.
상기 고분자 수지로는 폴리카보네이트 수지, 폴리프로필렌 수지, 아라미드수지, 방향족 폴리에스테르 수지, 폴리올레핀 수지, 폴리에스테르카보네이트 수지, 폴리페닐렌 옥사이드 수지, 폴리설폰 수지, 폴리에테르설폰 수지, 폴리아릴렌 수지, 시클로올레핀계 수지, 폴리에테르이미드 수지, 폴리아세탈 수지, 폴리비닐아세탈 수지, 폴리케톤 수지, 폴리에테르케톤 수지, 폴리에테르에테르케톤 수지, 폴리아릴케톤 수지, 폴리에테르니트릴 수지, 액정 수지, 폴리벤즈이미다졸 수지, 폴리파라반산 수지, 폴리아미드 수지, 방향족 알케닐 화합물, 메타크릴산에스테르, 아크릴산에스테르 및 시안화비닐 화합물로 이루어지는 군에서 선택되는 1종 이상의 비닐 단량체를, 중합 혹은 공중합시켜서 얻어지는 비닐계 중합체 혹은 공중합체 수지, 디엔-방향족 알케닐 화합물 공중합체 수지, 시안화비닐-디엔-방향족 알케닐 화합물 공중합체 수지, 방향족 알케닐 화합물-디엔-시안화비닐-N-페닐말레이미드 공중합체 수지, 시안화비닐-(에틸렌-디엔-프로필렌(EPDM))-방향족 알케닐 화합물 공중합체 수지, 폴리올레핀, 염화비닐 수지, 염소화 염화비닐 수지로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 고분자 수지로 폴리올레핀 수지를 사용하는 경우, 폴리프로필렌, 폴리에틸렌, 폴리부틸렌, 및 폴리(4-메틸-1-펜텐), 및 이들의 조합을 사용할 수 있다.
상기 고분자 수지로 폴리에스테르 수지를 사용하는 경우, 디카르복실산 성분 골격과 디올 성분 골격의 중축합체인 호모 폴리에스테르나 공중합 폴리에스테르를 사용할 수 있다. 예컨대, 상기 호모 폴리에스테르는 폴리에틸렌테레프탈레이트, 폴리프로필렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌-2,6-나프탈레이트, 폴리-1,4-시클로헥산디메틸렌테레프탈레이트, 폴리에틸렌디페닐레이트 등일 수 있고, 비용 측면에서 폴리에틸렌테레프탈레이트가 바람직하다. 상기 공중합 폴리에스테르는 디카르복실산기를 갖는 화합물과 디올기를 갖는 화합물로부터 선택되는 적어도 3개 이상의 성분으로 이루어지는 중축합체로 정의된다. 디카르복실기를 갖는 화합물로는 테레프탈산, 이소프탈산, 프탈산, 1,4-나프탈렌디카르복실산, 1,5-나프탈렌디카르복실산, 2,6-나프탈렌디카르복실산, 4,4'-디페닐디카르복실산, 4,4'-디페닐술폰디카르복실산, 아디핀산, 세바신산, 다이머산, 시클로헥산디카르복실산과 그들의 에스테르 유도체 등을 사용할 수 있고, 디올기를 갖는 화합물로는 에틸렌글리콜, 1,2-프로판디올, 1,3-부탄디올, 1,4-부탄디올, 1,5-펜타디올, 디에틸렌글리콜, 폴리알킬렌글리콜, 2,2-비스(4'-β히드록시에톡시페닐)프로판, 이소소르베이트, 1,4-시클로헥산디메탄올, 스피로글리콜 등을 사용할 수 있다.
상기 고분자 수지로 폴리아미드 수지를 사용하는 경우, 구체적으로는 나일론 수지, 나일론 공중합체 수지 및 이들의 혼합물을 사용할 수 있다. 나일론 수지로는 통상적으로 알려진 ε카프로락탐, ω도데카락탐 등의 락탐을 개환 중합하여 얻어진 폴리아미드-6(나일론 6); 아미노카프론산, 11-아미노운데칸산, 12-아미노도데칸산 등의 아미노산에서 얻을 수 있는 나일론 중합물; 에틸렌디아민, 테트라메틸렌디아민, 헥사메틸렌디아민, 운데카메틸렌디아민, 도데카메틸렌디아민, 2,2,4-트리메틸헥사메틸렌디아민, 2,4,4-트리메틸헥사메틸렌디아민, 5-메틸노나헥사메틸렌디아민, 메타크실렌디아민, 파라크실렌디아민, 1,3-비스아미노메틸시클로헥산, 1,4-비스아미노메틸시클로헥산, 1-아미노-3-아미노메틸-3,5,5-트리메틸시클로헥산, 비스(4-아미노시클로헥산)메탄, 비스(4-메틸-4-아미노시클로헥실)메탄, 2,2-비스(4-아미노시클로헥실)프로판, 비스(아미노프로필)피페라진, 아미노에틸피페리딘 등의 지방족, 지환족 또는 방향족 디아민과 아디프산, 세바킨산(sebacic acid), 아젤란산(azelaic acid), 테레프탈산, 2-클로로테레프탈산, 2-메틸테레프탈산 등의 지방족, 지환족 또는 방향족 디카르복시산 등의 중합으로부터 얻을 수 있는 나일론 중합체; 이들의 공중합체 또는 혼합물을 사용할 수 있다. 나일론 공중합체로는 폴리카프로락탐(나일론 6)과 폴리헥사메틸렌세바카미드(나일론 6,10)의 공중합체, 폴리카프로락탐(나일론 6)과 폴리헥사메틸렌아디프아미드(나일론 66)의 공중합체, 폴리카프로락탐(나일론 6)과 폴리라우릴락탐(나일론 12)의 공중합체 등을 사용할 수 있다.
상기 고분자 수지로 폴리카보네이트 수지를 사용하는 경우, 디페놀류와 포스겐, 할로겐 포르메이트, 탄산 에스테르 또는 이들의 조합과 반응시켜 제조된 것을 사용할 수 있다. 상기 디페놀류로는 히드로퀴논, 레조시놀, 4,4'-디히드록시디페닐, 2,2-비스(4-히드록시페닐)프로판('비스페놀-A'라고도 함), 2,4-비스(4-히드록시페닐)-2-메틸부탄, 비스(4-히드록시페닐)메탄, 1,1-비스(4-히드록시페닐)사이클로헥산, 2,2-비스(3-클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디브로모-4-히드록시페닐)프로판, 비스(4-히드록시페닐)술폭사이드, 비스(4-히드록시페닐)케톤, 비스(4-히드록시페닐)에테르 등을 들 수 있다.  이들 중에서 좋게는 2,2-비스(4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판 또는 1,1-비스(4-히드록시페닐)사이클로헥산을 사용할 수 있으며, 바람직하게는 2,2-비스(4-히드록시페닐)프로판을 사용할 수 있다.
또한 상기 폴리카보네이트 수지는 2종 이상의 디페놀류로부터 제조된 공중합체의 혼합물일 수도 있다.  또한 상기 폴리카보네이트 수지는 선형 폴리카보네이트 수지, 분지형(branched) 폴리카보네이트 수지, 폴리에스테르카보네이트 공중합체 수지 등을 사용할 수 있다. 상기 선형 폴리카보네이트 수지로는 비스페놀-A계 폴리카보네이트 수지 등을 사용할 수 있다.  상기 분지형 폴리카보네이트 수지로는 트리멜리틱 무수물, 트리멜리틱산 등과 같은 다관능성 방향족 화합물을 디페놀류 및 카보네이트와 반응시켜 제조한 것을 들 수 있다.  상기 다관능성 방향족 화합물은 분지형 폴리카보네이트 수지 총량에 대하여 0.05 내지 2 몰%로 포함될 수 있다. 상기 폴리에스테르카보네이트 공중합체 수지로는 이관능성 카르복실산을 디페놀류 및 카보네이트와 반응시켜 제조한 것을 사용할 수 있다. 이때 상기 카보네이트로는 디페닐카보네이트 등과 같은 디아릴카보네이트, 에틸렌 카보네이트 등을 사용할 수 있다.
본 발명의 탄소나노튜브 복합재에 있어서, 탄소나노튜브는 0.5 내지 10 중량%, 바람직하게는 1 내지 8 중량%로 포함될 수 있다. 탄소나노튜브가 이보다 적게 포함되는 경우, 충분한 전도성이 나타나지 않으며, 이보다 많게 포함되는 경우에는 유동성이 저하된다.
앞서 설명한 탄소나노튜브와 고분자 수지 이외에도, 본 발명의 탄소나노튜브 복합재는 추가적인 성분을 포함할 수 있으며, 구체적으로는 난연제, 충격보강제, 난연제, 난연보조제, 활제, 가소제, 열안정제, 적하방지제, 산화방지제, 상용화제, 광안정제, 안료, 염료, 무기물 첨가제 및 드립 방지제로 이루어지는 군으로부터 하나 이상 선택되는 첨가제를 더 포함할 수 있다. 상기 첨가제를 포함하는 경우, 그 함량은 상기 고분자 수지 100 중량부에 대하여 0.1 내지 10 중량부의 함량일 수 있다. 이들 첨가제의 구체적인 종류는 통상의 기술자에게 잘 알려져 있으며, 통상의 기술자는 목적하는 효과에 따라 상술한 첨가제 중 적절한 첨가제의 종류 및 함량을 선택하여 본 발명의 탄소나노튜브 복합재에 적용할 수 있다.
본 발명의 탄소나노튜브 복합재는 통상의 기술자에게 알려진 제조방법에 따라 제조될 수 있으며, 예컨대 복합재에 포함되는 성분들의 혼합물을 단축 또는 2축의 압출기, 밴버리 믹서, 니더, 믹싱 롤 등 통상 공지의 용융 혼합기에 공급하여 대략 100 내지 500℃ 또는 200 내지 400℃의 온도에서 혼련함으로써 제조될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예 및 실험예를 들어 더욱 상세하게 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다. 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 및 비교예
실시예 1 내지 4와 비교예 2 내지 3에서는 도 1과 같이 사이드 노즐을 구비한 유동층 반응기를 통해 탄소나노튜브를 제조하였다. 사이드 노즐을 통해 투입되는 추가 기체로는 질소 기체를 사용하였다. 한편 비교예 1에서는 종래의 사이드 노즐을 구비하지 않은 유동층 반응기를 사용하여 탄소나노튜브를 제조하였다. 또한, 비교예 4 및 5로는 상대적으로 낮은 수 평균 입도와 부피 평균 입도를 갖는 것으로 알려진 기존 탄소나노튜브 제품을 사용하였다. 각 실시예 및 비교예에서 유동층 반응기로 투입되는 기체 전량 대비 사이드 노즐을 통해 투입되는 추가 기체의 비율 및 투입 방식과, 각 경우에 제조되는 탄소나노튜브의 벌크 밀도, 수 평균 입도 및 부피 평균 입도를 하기 표 1로 정리하였다.
실시예 1 실시예 2 실시예 3 실시예 4 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5
추가 기체 비율(%) 10 15 15 15 0 5 20 - -
추가 기체 투입 방식 연속 연속 5회/분 5회/분 - 연속 연속
벌크 밀도
(kg/m3)
24 20 23 24 28 28 유동 불가로 탄소나노튜브가 원활히 제조되지 않음 10 20
수 평균 입도(㎛) 107 75 87 112 132 175 21 15
부피 평균 입도(㎛) 532 471 508 566 627 652 105 150
사이드 노즐을 구비한 유동층 반응기를 통해 제조하되, 사이드 노즐을 통해 투입되는 추가 기체의 양을 적절히 제어한 실시예 1 내지 4의 탄소나노튜브의 경우, 낮은 벌크 밀도 및 수 평균 입도를 나타낸 반면, 종래의 유동층 반응기를 이용한 경우나, 사이드 노즐을 구비한 유동층 반응기를 이용하되, 사이드 노즐을 투입되는 추가 기체의 양이 너무 적거나 많은 경우에는 상대적으로 높은 벌크 밀도 및 수 평균 입도를 갖는 탄소나노튜브가 제조되거나, 유동 불가로 탄소나노튜브가 제조되지 않음을 확인하였다.
실험예 2. 복합재 제조시의 물성 확인
상기 실시예 및 비교예에서 제조한 탄소나노튜브를 폴리카보네이트 수지와 혼합하여 복합재로 제조하였다. 복합재 내의 탄소나노튜브 함량은 1.5 중량%가 되도록 하였으며, 290℃ 온도 및 15kg/h 생산량 조건에서 압출하고, 290℃ 온도 및 사출 속도 30mm/s의 조건에서 사출하여 시편을 제조하였다. 제조된 시편에 대하여 표면 저항, 유동 지수 및 외관 특성을 측정하였다. 각 물성의 구체적 측정 방법은 아래와 같다.
1) 표면 저항: 표면 저항 측정기 SRM110을 이용하여 시편 표면 저항을 측정하였다.
2) 유동지수(g/10min): ASTM D1238 기준 중 사용 추의 무게를 1.2kg 대신 2.18kg으로 변경한 것을 제외하고는 동일하게 적용하여 측정하였다.
3) 외관 특성(핀홀 수): 시편의 표면을 현미경을 통해 관찰하고, 관찰된 이미지를 컴퓨터로 전송하여 연속 촬영 모드로 1.1x0.8cm2 면적의 이미지를 획득하였다. 그 후 획득된 이미지의 명암 조절을 통해 핀홀과 평면의 경계를 확보하였으며, 이미지 프로세싱을 통해 원형도 0.4 이상 및 크기 50㎛ 이상의 핀홀을 선별하였으며, 그 개수를 카운트하였다.
상기 측정 방법으로 측정한 물성 값을 하기 표 2로 정리하여 나타내었다.
실시예 1 실시예 2 실시예 3 실시예 4 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5
표면 저항(10^) 9~10 9 9 9~10 9~10 11 - 7 8~9
유동 지수(g/10min) 23 25 24 22 23 20 - 7 12
핀홀 수 (개/0.88cm2) 50 41 43 52 65 64 - 200 40
상기 결과로부터 본 발명의 탄소나노튜브는 복합재 적용 시 기존 탄소나노튜브와 유사하게 준수한 유동성을 나타내면서도, 표면 저항이 낮아 전기적 특성이 우수하고, 시편 표면의 핀홀 수는 기존 탄소나노튜브 대비 적어 사출 시 외관 특성이 더욱 우수함을 확인하였다.
특히 본 발명 대비 더 큰 수 평균 입도와 벌크 밀도를 갖는 탄소나노튜브를 사용한 비교예 1 내지 3의 경우, 표면 저항과 유동 지수는 본 발명과 유사한 수준이었으나, 외관 측면에서 열위함을 나타내었다. 또한, 본 발명 대비 더 작은 수 평균 입도를 갖는 탄소나노튜브를 사용한 비교예 4 및 5에서는 유동성이 떨어짐이 확인되었으며, 특히 비교예 4에서는 핀홀(미분산입자) 수가 크게 늘어 열위한 외관 특성이 나타남을 확인하였다.
부호의 설명
1: 유동층 반응기
11: 반응기 본체 내부 공간
12: 기체분산판
13: 기체 투입부
14: 촉매 투입부
15: 사이드 노즐
2: 촉매 저장 탱크

Claims (8)

  1. 수 평균 입도가 40 내지 120㎛이고, 벌크 밀도가 25kg/m3 이하인 탄소나노튜브.
  2. 제1항에 있어서,
    벌크 밀도가 15 내지 25kg/m3인 탄소나노튜브.
  3. 제1항에 있어서,
    수 평균 입도가 75 내지 115㎛인 탄소나노튜브.
  4. 제1항에 있어서,
    부피 평균 입도가 400 내지 600㎛인 탄소나노튜브.
  5. 제4항에 있어서,
    수 평균 입도에 대한 부피 평균 입도의 비(부피 평균 입도/수 평균 입도)가 4.8 내지 7.0인 탄소나노튜브.
  6. 제1항의 탄소나노튜브; 및
    고분자 수지;를 포함하는 탄소나노튜브 복합재
  7. 제6항에 있어서,
    상기 고분자 수지는 폴리카보네이트 수지, 폴리프로필렌 수지, 아라미드수지, 방향족 폴리에스테르 수지, 폴리올레핀 수지, 폴리에스테르카보네이트 수지, 폴리페닐렌 옥사이드 수지, 폴리설폰 수지, 폴리에테르설폰 수지, 폴리아릴렌 수지, 시클로올레핀계 수지, 폴리에테르이미드 수지, 폴리아세탈 수지, 폴리비닐아세탈 수지, 폴리케톤 수지, 폴리에테르케톤 수지, 폴리에테르에테르케톤 수지, 폴리아릴케톤 수지, 폴리에테르니트릴 수지, 액정 수지, 폴리벤즈이미다졸 수지, 폴리파라반산 수지, 폴리아미드 수지, 방향족 알케닐 화합물, 메타크릴산에스테르, 아크릴산에스테르 및 시안화비닐 화합물로 이루어지는 군에서 선택되는 1종 이상의 비닐 단량체를, 중합 혹은 공중합시켜서 얻어지는 비닐계 중합체 혹은 공중합체 수지, 디엔-방향족 알케닐 화합물 공중합체 수지, 시안화비닐-디엔-방향족 알케닐 화합물 공중합체 수지, 방향족 알케닐 화합물-디엔-시안화비닐-N-페닐말레이미드 공중합체 수지, 시안화비닐-(에틸렌-디엔-프로필렌(EPDM))-방향족 알케닐 화합물 공중합체 수지, 폴리올레핀, 염화비닐 수지, 염소화 염화비닐 수지로 이루어진 군으로부터 선택되는 1종 이상인 탄소나노튜브 복합재.
  8. 제6항에 있어서,
    상기 탄소나노튜브는 0.5 내지 10 중량%로 포함되는 것인 탄소나노튜브 복합재.
PCT/KR2021/010408 2020-08-12 2021-08-06 저밀도 탄소나노튜브 및 이를 포함하는 복합재 WO2022035142A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21856148.8A EP4197969A4 (en) 2020-08-12 2021-08-06 LOW DENSITY CARBON NANOTUBES AND COMPOSITES INCLUDING THEM
CN202180037621.5A CN115667138B (zh) 2020-08-12 2021-08-06 具有低密度的碳纳米管和包含该碳纳米管的复合材料
US17/928,890 US20230227312A1 (en) 2020-08-12 2021-08-06 Carbon nanotube having low density and composite material including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200100834 2020-08-12
KR10-2020-0100834 2020-08-12

Publications (1)

Publication Number Publication Date
WO2022035142A1 true WO2022035142A1 (ko) 2022-02-17

Family

ID=80247411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010408 WO2022035142A1 (ko) 2020-08-12 2021-08-06 저밀도 탄소나노튜브 및 이를 포함하는 복합재

Country Status (5)

Country Link
US (1) US20230227312A1 (ko)
EP (1) EP4197969A4 (ko)
KR (1) KR20220020779A (ko)
CN (1) CN115667138B (ko)
WO (1) WO2022035142A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090013503A (ko) 2007-08-02 2009-02-05 성균관대학교산학협력단 탄화수소의 카본 촉매분해에 의한 이산화탄소 배출없이 수소를 연속적으로 생산할 수 있는 유동층 반응기 및 이를 포함하는 반응 장치
KR20090073346A (ko) 2007-12-31 2009-07-03 세메스 주식회사 탄소나노튜브 생성을 위한 유동층 장치 및 방법
KR101197288B1 (ko) * 2012-02-13 2012-11-05 금호석유화학 주식회사 탄소나노소재 분말의 펠릿과 그 제조 방법
KR20130026419A (ko) * 2010-02-16 2013-03-13 바이엘 인텔렉쳐 프로퍼티 게엠베하 카본 나노튜브의 제조
KR101350690B1 (ko) * 2012-02-13 2014-01-14 금호석유화학 주식회사 초저밀도 특성을 지닌 번들 구조의 고전도성 탄소나노튜브 및 이의 제조방법
JP6229235B2 (ja) * 2010-11-05 2017-11-15 国立研究開発法人産業技術総合研究所 分散液、cnt組成物及びcnt成形体
KR101923465B1 (ko) * 2015-09-25 2018-11-30 주식회사 엘지화학 카본나노튜브를 포함하는 고강도 고분자 복합재

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141250C (zh) * 2001-05-25 2004-03-10 清华大学 一种流化床连续化制备碳纳米管的方法及其反应装置
US8034738B2 (en) * 2007-03-14 2011-10-11 Taiyo Nippon Sanso Corporation Process for producing catalyst body for production of brush-shaped carbon nanostructure
JP5900860B2 (ja) * 2011-09-29 2016-04-06 国立研究開発法人産業技術総合研究所 カーボンナノチューブ複合材料
KR101652566B1 (ko) * 2013-12-06 2016-08-30 주식회사 엘지화학 전도성이 개선된 복합재 및 이를 함유하는 성형품
EP3301745B1 (en) * 2015-10-28 2019-09-18 LG Chem, Ltd. Conductive material dispersed liquid and lithium secondary battery manufactured using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090013503A (ko) 2007-08-02 2009-02-05 성균관대학교산학협력단 탄화수소의 카본 촉매분해에 의한 이산화탄소 배출없이 수소를 연속적으로 생산할 수 있는 유동층 반응기 및 이를 포함하는 반응 장치
KR20090073346A (ko) 2007-12-31 2009-07-03 세메스 주식회사 탄소나노튜브 생성을 위한 유동층 장치 및 방법
KR20130026419A (ko) * 2010-02-16 2013-03-13 바이엘 인텔렉쳐 프로퍼티 게엠베하 카본 나노튜브의 제조
JP6229235B2 (ja) * 2010-11-05 2017-11-15 国立研究開発法人産業技術総合研究所 分散液、cnt組成物及びcnt成形体
KR101197288B1 (ko) * 2012-02-13 2012-11-05 금호석유화학 주식회사 탄소나노소재 분말의 펠릿과 그 제조 방법
KR101350690B1 (ko) * 2012-02-13 2014-01-14 금호석유화학 주식회사 초저밀도 특성을 지닌 번들 구조의 고전도성 탄소나노튜브 및 이의 제조방법
KR101923465B1 (ko) * 2015-09-25 2018-11-30 주식회사 엘지화학 카본나노튜브를 포함하는 고강도 고분자 복합재

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4197969A4

Also Published As

Publication number Publication date
CN115667138A (zh) 2023-01-31
EP4197969A1 (en) 2023-06-21
EP4197969A4 (en) 2024-05-29
CN115667138B (zh) 2024-01-26
KR20220020779A (ko) 2022-02-21
US20230227312A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
US10626252B2 (en) Composite with improved mechanical properties and molded article including the same
WO2015084065A1 (ko) 기계적 물성이 개선된 복합재 및 이를 함유하는 성형품
WO2015084067A1 (ko) 전도성이 개선된 복합재 및 이를 함유하는 성형품
JP5357047B2 (ja) 導電性熱可塑性樹脂組成物及びプラスチック成形品
JP4994671B2 (ja) 導電性樹脂組成物、その製造方法及び用途
JP5634870B2 (ja) 炭素繊維を含有する複合材料
JP2009527630A (ja) ナノチューブポリマー複合材料組成物および作製方法
JP2014529352A (ja) ナノチューブ及び微粉砕炭素繊維ポリマー複合組成物ならびに作製方法
EP1786858A2 (en) Conductive thermosets by extrusion
WO2010059008A2 (ko) 복합탄소소재를 포함하는 전도성 수지조성물
WO2017052057A1 (ko) 카본나노튜브를 포함하는 고강도 고분자
WO2022035142A1 (ko) 저밀도 탄소나노튜브 및 이를 포함하는 복합재
JP2009127038A (ja) 樹脂組成物およびその製造方法、並びに、その用途
WO2015083893A1 (ko) 전도성이 개선된 복합재 및 이를 함유하는 성형품
JP2006137939A (ja) 燃料チューブ用導電性熱可塑性樹脂組成物及び燃料チューブ
WO2017131317A1 (ko) 대전방지 트레이 및 그 제조방법
KR102666894B1 (ko) 탄소나노튜브 복합재
CN107075262B (zh) 具有增强的导电性的复合材料及其制备方法
KR20240005054A (ko) 폴리부틸렌 테레프탈레이트 조성물 및 물품
WO2016032307A1 (ko) 기계적 물성이 개선된 복합재 및 이를 함유하는 성형품
CN108124443B (zh) 可调节碳纳米管选择性的碳纳米管制备方法及包含由此制备的碳纳米管的复合材料
WO2017146340A1 (ko) 탄소복합소재 및 그 제조방법
Kuwahara Creation of Boron Nitride Nanotubes and Possibility for a Series of Advanced Nanocomposite Materials
Lin Experimental investigation of toughening carbon fibre/epoxy composites with graphene/phenoxy fibres

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21856148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021856148

Country of ref document: EP

Effective date: 20230313