WO2022030608A1 - 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 Download PDF

Info

Publication number
WO2022030608A1
WO2022030608A1 PCT/JP2021/029259 JP2021029259W WO2022030608A1 WO 2022030608 A1 WO2022030608 A1 WO 2022030608A1 JP 2021029259 W JP2021029259 W JP 2021029259W WO 2022030608 A1 WO2022030608 A1 WO 2022030608A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
particle size
lithium
active material
electrode active
Prior art date
Application number
PCT/JP2021/029259
Other languages
English (en)
French (fr)
Inventor
智 谷本
宙幹 野口
振 権
倫康 木村
剛 脇山
一路 古賀
陽子 友田
Original Assignee
Basf戸田バッテリーマテリアルズ合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=78028323&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022030608(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basf戸田バッテリーマテリアルズ合同会社 filed Critical Basf戸田バッテリーマテリアルズ合同会社
Priority to JP2021571952A priority Critical patent/JP7038266B1/ja
Priority to CN202180058059.4A priority patent/CN116057729A/zh
Priority to CA3188257A priority patent/CA3188257A1/en
Priority to KR1020237007494A priority patent/KR20230048520A/ko
Priority to EP21852181.3A priority patent/EP4195325A1/en
Publication of WO2022030608A1 publication Critical patent/WO2022030608A1/ja
Priority to US18/165,252 priority patent/US20230178729A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention comprises a positive electrode active material for a non-aqueous electrolyte secondary battery capable of imparting sufficient battery capacity and excellent cycle characteristics to the non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary using the positive electrode active material. Regarding the next battery.
  • lithium ion secondary batteries having a large charge / discharge capacity, which use a material such as lithium cobalt oxide or lithium nickel nickel oxide for the positive electrode, are often used.
  • NCM nickel-cobalt manganese
  • a container is filled with at least a mixture of a lithium compound and a precursor compound of the positive positive active material, and a lithium conversion reaction is carried out. And crystallization is performed.
  • the lithium conversion reaction is a reaction between a metal hydroxide or a metal oxide and a lithium compound such as LiOH, and is a reaction when, for example, LiOH is used. As shown below, a certain amount of oxygen is added. I need.
  • water water vapor
  • the molten LiOH inhibits the reaction with lithium in the composite compound particle layer in the composite compound particle layer filled in the container, and the compound compound and the composite compound particle layer.
  • the diffusion of necessary oxygen into the composite compound particle layer filled in the container is hindered, and temperature unevenness is likely to occur.
  • the growth and crystal growth of the constituent primary particles vary in each secondary particle, and the primary particle diameter varies among the secondary particles.
  • Patent Document 1 a mixture of a nickel-cobalt composite oxide and a lithium compound is filled in a firing container, pre-baked at a firing temperature of 500 ° C. or higher and 600 ° C. or lower, and then pre-baked at a firing temperature of 680 ° C. or higher and 780 ° C. or lower.
  • a lithium nickel-cobalt composite oxide which can be obtained by firing and is composed of secondary particles in which a plurality of primary particles of 1 ⁇ m or less are aggregated to form a spherical shape is described.
  • Patent Document 2 describes that a composite hydroxide obtained by a co-precipitation reaction and a lithium compound are mixed and subjected to two stages of temporary firing at, for example, 500 ° C. to 900 ° C. and main firing at, for example, 800 ° C. to 1200 ° C. It can be manufactured by firing, has a composition of secondary particles in which primary particles are aggregated, has an average particle diameter (D1) of 0.9 ⁇ m or less, and has a standard deviation ( ⁇ ) of D1 and D1. Describes a positive electrode active material for a non-aqueous electrolyte secondary battery that satisfies the relationship of D1 / ⁇ 2 ⁇ 24.
  • the lithium nickel-cobalt composite oxide described in Patent Document 1 When the lithium nickel-cobalt composite oxide described in Patent Document 1 is obtained, two-step firing is performed, but the non-uniformity of the flow effect due to the lithium compound is not sufficiently eliminated, and oxygen diffusion also occurs. Insufficient and easy to cause temperature unevenness. Therefore, the obtained lithium nickel-cobalt composite oxide has variations in the crystal growth of the primary particles and variations in the primary particle diameter among the secondary particles, and is used for the positive electrode of the lithium ion secondary battery. At that time, cracks occur from the grain boundary due to the charge / discharge cycle.
  • the positive electrode active material described in Patent Document 2 can be obtained through two-step firing, preferably in order to adjust the crystallite size and obtain high uniformity of the primary particles in the secondary particles. Similar to the lithium nickel-cobalt composite oxide described in Patent Document 1, no discussion has been made on the entire secondary particles, that is, the crystal growth of the primary particles varies, and the primary particle diameters among the secondary particles are different. When used for the positive electrode of a lithium ion secondary battery, there is a risk that cracks are likely to occur from the grain boundary portion due to the charge / discharge cycle, depending on the secondary particles.
  • the present invention has been made in view of the above-mentioned conventional problems, and an object thereof is a positive electrode active material capable of imparting a sufficient battery capacity and excellent cycle characteristics to a non-aqueous electrolyte secondary battery. Is to provide a non-aqueous electrolyte secondary battery using.
  • the fluctuation coefficient related to the particle size of the primary particles constituting the secondary particles of the lithium nickel composite oxide is adjusted to a specific range, and the lithium nickel composite oxide is also obtained.
  • the positive electrode active material was constructed by adjusting the value related to the composition of the secondary particles of No. 1 to a specific range.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery (hereinafter, also referred to as positive electrode active material A) according to the present invention is It consists of a lithium-nickel composite oxide containing lithium, nickel and optionally at least one other element other than lithium and nickel.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery (hereinafter, also referred to as positive electrode active material B) according to the present invention is It consists of a lithium-nickel composite oxide containing lithium, nickel and optionally at least one other element other than lithium and nickel.
  • positive electrode active material B consists of a lithium-nickel composite oxide containing lithium, nickel and optionally at least one other element other than lithium and nickel.
  • the variation of D150 the particle size (average particle size) corresponding to the integrated value of the particle size distribution of the primary particle size based on the number of pieces is 50%). It is characterized in that the coefficient is 19% or less.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery (hereinafter, also referred to as positive electrode active material C) according to the present invention is It consists of a lithium-nickel composite oxide containing lithium, nickel and optionally at least one other element other than lithium and nickel.
  • the non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode containing at least one of the positive electrode active material A, the positive electrode active material B, and the positive electrode active material C.
  • At least two of the said "positive electrode active material A”, the said “positive electrode active material B”, and the said “positive electrode active material C” are combined, and simply "positive electrode activity for a non-aqueous electrolyte secondary battery". Also referred to as “substance” or “positive electrode active material”. Further, the "number-based primary particle size particle size distribution” is also simply referred to as “primary particle size distribution”, and the "volume-based secondary particle size particle size distribution” is simply referred to as “secondary particle size distribution”. Also called.
  • the non-aqueous electrolyte secondary battery even when subjected to a long-term charge / discharge cycle, cracks do not occur from the grain boundary portion (which is the surface layer portion of the primary particle) in the secondary particle, and the non-aqueous electrolyte secondary battery can be used.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery capable of imparting sufficient battery capacity and excellent cycle characteristics, and a non-aqueous electrolyte secondary battery using the same can be provided.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention comprises a lithium nickel composite oxide containing lithium (Li), nickel (Ni), and optionally at least one other element other than Li and Ni. ..
  • the primary particles constituting the secondary particles of the lithium nickel composite oxide have the following feature 1 (positive electrode active material A and positive electrode active material B), and the secondary particles of the lithium nickel composite oxide are: It has the following feature 2 (positive electrode active material C).
  • a positive electrode active material composed of a lithium composite oxide in which these variations are sufficiently suppressed is applied to the positive electrode of a non-aqueous electrolyte secondary battery and subjected to a long-term charge / discharge cycle, a large load is applied to any of the secondary particles. Is not applied, and the possibility of cracking from the grain boundary in the secondary particles is extremely low. As a result, the non-aqueous electrolyte secondary battery can maintain excellent cycle characteristics.
  • the portion where cracks can occur is suppressed when pressurizing the positive electrode when manufacturing the electrode, so that it can withstand high pressurization and per volume.
  • the amount of positive electrode active material can be increased, and the capacity can be increased.
  • the variation A that is, suppressing the variation in the particle growth and crystal growth of the constituent primary particles in each secondary particle sharpens the distribution of the primary particles existing in each secondary particle (primary particle size).
  • the distribution is sharp), and the lithium composite oxide present in each secondary particle with a sharp distribution of the primary particle size has a small variation in the composition and bonding state of the grain boundary, that is, the grain boundary.
  • the starting point of cracking from the grain boundary portion is extremely small in such a lithium composite oxide.
  • suppressing the variation B is the ratio of Li to the metal compound in the lithium formation and the degree of firing in the crystal growth in each secondary particle.
  • the average particle size of the primary particles is to be substantially equivalent.
  • particle cracking may occur during a long-term charge / discharge cycle or long-term storage in a charged state, or a positive electrode active material. It is considered that there are almost no secondary particles that can be a kind of weak point such that the metal element existing inside is eluted in the electrolytic solution.
  • the positive electrode active material A according to the present invention focuses on suppressing the variation A.
  • D 1 10 Particle diameter corresponding to the integrated value of the primary particle size distribution of 10%
  • D 1 50 Particle diameter corresponding to the integrated value of the primary particle size distribution of 50% (average particle diameter)
  • D 1 90 Particle diameter corresponding to 90% of the integrated value of the primary particle size distribution
  • the span represented by (span, no unit) indicates the sharpness of the primary particle size distribution, and indicates whether or not a uniform lithium reaction and uniform crystal growth have been performed.
  • the coefficient of variation of the span is specified for the primary particles constituting the secondary particles of the lithium nickel composite oxide.
  • the magnitude of the coefficient of variation of the span is a measure of whether or not the lithium reaction and crystal growth in the individual secondary particles proceeded equally. If the spans of the N secondary particles are equivalent, it can be interpreted that the same lithiumization reaction and crystal growth have been performed in the individual secondary particles, and the coefficient of variation of the span approaches 0%.
  • the N pieces are, for example, 10 or more, which will be described later.
  • the positive electrode active material of the present invention composed of a lithium nickel composite oxide containing subatomic particles does not crack from the grain boundary in the secondary particles even when subjected to a long-term charge / discharge cycle, and is a non-aqueous electrolyte. It is possible to impart excellent cycle characteristics to the secondary battery.
  • the positive electrode active material B focuses on the suppression of the variation B.
  • the D150 particle size (average particle size) corresponding to the integrated value of the primary particle size distribution of 50%) for the primary particles constituting the secondary particles of the lithium nickel composite oxide is The optimum value varies depending on the composition of the target positive electrode active material, the secondary particle size, and its distribution, but if the D 150 is usually too large, the charge transfer resistance and diffusion of lithium in the particles during charging and discharging.
  • the resistance increases, it tends to adversely affect the characteristics in the long-term charge / discharge cycle, and if it is too small, there is a possibility that the crystal growth and / or the particle growth is insufficient, which is also the case in the long-term charge / discharge cycle. Tends to adversely affect properties.
  • the coefficient of variation of D150 is defined for the primary particles constituting the secondary particles of the lithium nickel composite oxide.
  • the magnitude of the coefficient of variation of D 150 is a measure of whether or not the lithium reaction and crystal growth proceeded equally between the secondary particles. If each D 150 of the N secondary particles is equivalent, the variation in the lithium reaction and the crystal growth is small among the N secondary particles, and the coefficient of variation of the D 150 gradually approaches 0%. That is, the smaller the coefficient of variation of D 150 is, the more preferable it is, and when it is too large, it indicates that a non-uniform lithium conversion reaction, abnormal particle growth, or the like has occurred among the N secondary particles.
  • the N pieces are, for example, 10 or more, which will be described later.
  • the positive electrode active material of the present invention composed of a lithium nickel composite oxide containing the same can suppress cracking from the grain boundary portion in the secondary particles even when subjected to a long-term charge / discharge cycle, and can be used as a non-aqueous electrolyte secondary battery. Excellent cycle characteristics can be imparted.
  • the primary particles constituting the secondary particles of the lithium nickel composite oxide have the coefficient of variation of the span of the specific range, but at the same time, the specific range. It may have a coefficient of variation of D 150 .
  • the primary particles constituting the secondary particles of the lithium nickel composite oxide have a coefficient of variation of D150 in the specific range, but at the same time, the specific range. It may have a coefficient of variation of the span of.
  • the coefficient of variation of the span is 17% or less and the coefficient of variation of D 150 is 19% or less.
  • the D 150 is, for example, about 0.1 ⁇ m to 1.0 ⁇ m, but is not particularly limited, and is preferably about 0.1 ⁇ m to 0.8 ⁇ m. It is more preferably about 0.1 ⁇ m to 0.6 ⁇ m.
  • the particle size of each particle is determined by using a scanning electron microscope SEM-EDS [electron emission scanning electron microscope JSM-7100F: manufactured by JEOL Ltd.], an acceleration voltage of 10 kV, and a grain boundary of primary particles. It is a value obtained based on the electron micrograph (SEM photograph) of the primary particle or the secondary particle of the positive electrode active material photographed so that it can be confirmed. At this time, the scale displayed in the electron micrograph is used as the reference scale. In addition, 10 or more secondary particles were observed so that about 50 to 200 primary particles could be observed.
  • the size of the secondary particles was selected from particles having a frequency of 10% to 90% in the particle size distribution based on the volume obtained by a laser diffraction type particle size distribution measuring device [Microtrack HRA: manufactured by Nikkiso Co., Ltd.]. ..
  • the area of the primary particle was calculated by marking the particles to be image-analyzed using image analysis software (for example, ImageJ or other programming language software) and binarizing the primary particles. .. From the above area, the diameter of each primary particle was determined using a perfect circular approximation. Then, for each secondary particle, a histogram of the diameter of the primary particle was obtained and the following statistic was calculated.
  • D 1 50 ( ⁇ m) Particle diameter corresponding to the integrated value of the primary particle size distribution of 50% (average particle diameter)
  • D 1 90 ( ⁇ m) Particle diameter corresponding to 90% of the integrated value of the primary particle size distribution
  • the coefficient of variation of D150 and the span was calculated by the image analysis using several secondary particles having a frequency close to the particle size of 10%. Similarly, it was confirmed that there was no large variation in the values of the D150 and the coefficient of variation of the span at the frequency of 50 % and the frequency of 90%.
  • each coefficient of variation is a value obtained based on the following formula using the standard deviation and the average value by the numerical values obtained by the method using the above-mentioned image analysis software.
  • Coefficient of variation (%) (standard deviation / mean) x 100
  • the ratio of the amount of Li to the total amount of Ni and other elements is derived from the amount of the lithium compound, the nickel compound and the compound of the other element used, but both the variation A and the variation B are described above. If is not sufficiently suppressed, the ratio of the amount of Li to the total amount of Ni and other elements will be different if the particle size is different among the secondary particles. That is, for example, when classified into secondary particles on the side with a small particle size, secondary particles with a medium particle size, and secondary particles on the side with a large particle size, these three types of secondary particles contain Li. There will be a large difference in the ratio between the amount and the total amount of Ni and other elements.
  • the ratio of the amount of Li in the total secondary particles to the total amount of Ni and other elements is used in the total secondary particles.
  • the ratio of the difference between the ratio and the ratio in each of the three types of secondary particles is small. That is, it can be said that the variation (variation C) in the composition of such secondary particles is sufficiently suppressed.
  • the positive electrode active material C focuses on suppressing such variation C.
  • the values represented by are 1.00% or less.
  • the element ratio 1, the element ratio 21, the element ratio 22, and the element ratio 23 are as follows, and the element ratio is the ratio of the amount of Li to the total amount of Ni and other elements (the element ratio is as follows. Li / (Ni + other elements)) is shown.
  • Element ratio 1 Element ratio of all secondary particles
  • Element ratio 22 D250 of all secondary particles (particle size (average particle size) corresponding to the integrated value of the secondary particle size distribution of 50%) ⁇
  • Element ratio 23 Element ratio of large particles with particle size larger than medium particles
  • all secondary particles are classified into small particles, medium particles, and large particles based on their D250 .
  • a classification by a sieve or a classification device can be used.
  • the D250 of each of the classified small particles, medium particles, and large particles is not particularly limited, but is preferably, for example, about 0.5 ⁇ m to 12 ⁇ m, about 3 ⁇ m to 18 ⁇ m, and about 6 ⁇ m to 22 ⁇ m.
  • the lithium nickel composite oxide has values represented by the formulas ( ⁇ 1), ( ⁇ 2), and ( ⁇ 3) of 1.00% or less, preferably 0.70% or less, and more preferably 0. It contains secondary particles of .65% or less, particularly preferably 0.60% or less.
  • the positive electrode active material C of the present invention made of such a lithium-nickel composite oxide has sufficiently suppressed variation C, and even when subjected to a long-term charge / discharge cycle, the particles in the secondary particles thereof. No cracks are generated from the boundary portion, and excellent cycle characteristics can be imparted to the non-aqueous electrolyte secondary battery.
  • the D250 of all secondary particles is, for example, about 1 ⁇ m to 30 ⁇ m, but is not particularly limited, and is preferably about 2 ⁇ m to 25 ⁇ m, as described later.
  • the values represented by the formulas ( ⁇ 1), the formula ( ⁇ 2), and the formula ( ⁇ 3) for the secondary particles of the lithium nickel composite oxide are all within the above-mentioned specific range.
  • the primary particles constituting the secondary particles may have a coefficient of variation of the span of the specific range and / or a coefficient of variation of D150 of the specific range.
  • the coefficient of variation of the span is 17% or less
  • the coefficient of variation of D 150 is 19% or less
  • the positive electrode active material according to the present invention may be composed of a lithium nickel composite oxide containing lithium, nickel and optionally at least one other element other than lithium and nickel, and the composition thereof is particularly limited.
  • the element M other than Li, Ni, and O is not particularly limited, but is, for example, cobalt (Co), aluminum (Al), manganese (Mn), titanium (Ti), and magnesium (Mg). ), Zirconium (Zn), Niobium (Nb), Tungsten (W), Molybdenum (Mo), Vanadium (V), Chromium (Cr), Calcium (Ca), Iron (Fe), Gallium (Ga), Yttrium (Sr) ), Yttrium (Y), antimony (Sb), ruthenium (Ru), indium (In), tin (Sn), tantalum (Ta), bismuth (Bi), zirconium (Zr), boron (B) and the like.
  • Co cobalt
  • Al aluminum
  • Mn manganese
  • Ti titanium
  • Mg magnesium
  • Molybdenum (Mo) Vanadium (V)
  • the amount of Li that is, the ratio of the amount of Li to the total amount of Ni and the element M (Li / (Ni + M)) is 0.95. It is preferably ⁇ a ⁇ 1.40, more preferably 0.95 ⁇ a ⁇ 1.25, and particularly preferably 0.96 ⁇ a ⁇ 1.15.
  • the amount b of Ni that is, the ratio of the amount of Ni to the total amount of Ni and the element M (Ni / (Ni + M)) is 0.2. ⁇ B ⁇ 1, further 0.3 ⁇ b ⁇ 1, even 0.4 ⁇ b ⁇ 1, even more 0.5 ⁇ b ⁇ 1, and particularly 0.8 ⁇ b ⁇ 1. preferable.
  • the characteristics of the positive electrode active material according to the present invention cannot be unconditionally determined because they differ mainly depending on the composition, but for example, the D250 , crystallite size, and Li seat occupancy of all secondary particles are used. , It is preferable that the values are in the range shown below.
  • the D250 of all the secondary particles on a volume basis varies depending on the intended use of the positive electrode active material, but can be determined in consideration of characteristics such as high capacity due to high filling property and high cycle characteristics. It is preferably 1 ⁇ m to 30 ⁇ m, and more preferably 2 ⁇ m to 25 ⁇ m.
  • the crystallite size can be calculated by XRD diffraction of the obtained positive electrode active material, and can be adjusted according to a desired composition, primary particle size and secondary particle size. For example, of all the secondary particles.
  • D250 is about 8 ⁇ m to about 20 ⁇ m and the Ni content is 80 mol% or more, it is preferably in the range of 50 nm to 600 nm, more preferably 60 nm to 500 nm, and particularly preferably 60 nm to 450 nm. ..
  • the crystallite size is too small, the crystal structure of the positive electrode active material may become unstable. If it is too large, the battery characteristics of the non-aqueous electrolyte secondary battery using the positive electrode active material for the positive electrode may deteriorate.
  • a positive electrode active material having a D250 of about 8 ⁇ m to about 30 ⁇ m and a Ni content of more than 80 mol% (for example, b in the above formula (I) is 0.8 ⁇ b ⁇ 1.
  • the ratio of the two is the maximum value. When it is close to a certain "1", it is proved that the primary particles do not have excessive grain growth. If the ratio of the two is too small, it is suggested that the primary particles have grown too much, and the battery characteristics may deteriorate.
  • the Li seat occupancy in the Li site occupied by Li in the composition formula is theoretically 100%, and when a general precursor complex compound is used, the more optimal the lithiumization reaction is, the more the Li seat occupancy is. The rate is close to 100%.
  • Ni mainly contained in the metal site is Ni 2+ .
  • the cation mixing amount the amount of the metal that has moved to the Li site and replaced with Li. From these facts, in the positive electrode active material of the present invention, when the amount of cation mixing is about 0.1% to 5.0%, further about 0.1% to 4.0%, it is optimal at the time of firing. It is considered to mean that the lithium conversion reaction was carried out.
  • the crystallite size and the Li seat occupancy are the values obtained by performing Rietveld analysis after obtaining the XRD diffraction data of the positive electrode active material by the following method.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is preferably produced, for example, by a method in which the following steps are sequentially performed.
  • Step (1) there is no particular limitation on the method for synthesizing a precursor composite compound which is an aggregate system in which primary particles containing at least Ni are gathered.
  • an aqueous solution of a nickel compound and a target positive electrode active material are used.
  • An aqueous solution containing various aqueous solutions of a compound containing other elements according to the composition of the above is dropped into a reaction vessel in which an alkaline aqueous solution such as a sodium hydroxide aqueous solution or an ammonia solution is stirred as a mother liquor, and sodium hydroxide or the like is added.
  • a method of obtaining a hydroxide for example, a hydroxide obtained by calcining the hydroxide, a carbonate, etc. Can be adopted.
  • the reaction tank is made into a nitrogen atmosphere by using an inert gas or industrially preferably nitrogen gas from the state where the alkaline aqueous solution to be the mother liquor is prepared, and oxygen in the reaction tank system or the solution is used. It is preferable to keep the concentration as low as possible. If the oxygen concentration is too high, the hydroxide coprecipitated by the residual oxygen of a predetermined amount or more may be excessively oxidized, or the formation of agglomerates by crystallization may be hindered.
  • the nickel compound is not particularly limited, and examples thereof include nickel sulfate, nickel oxide, nickel hydroxide, nickel nitrate, nickel carbonate, nickel chloride, nickel iodide, and metallic nickel.
  • the other elements constituting the positive electrode active material are not particularly limited, but are, for example, Co, Al, Mn, Ti exemplified as the element M other than Li, Ni, and O in the formula (I). , Mg, Zn, Nb, W, Mo, Sb, V, Cr, Ca, Fe, Ga, Sr, Y, Ru, In, Sn, Ta, Bi, Zr, B and the like.
  • the compound containing the other elements is not particularly limited, and includes, for example, a cobalt compound, an aluminum compound, a manganese compound, a titanium compound, a magnesium compound, a zinc compound, a niobium compound, a tungsten compound, and the like.
  • the cobalt compound is not particularly limited, and examples thereof include cobalt sulfate, cobalt oxide, cobalt hydroxide, cobalt nitrate, cobalt carbonate, cobalt chloride, cobalt iodide, and metallic cobalt.
  • the aluminum compound is not particularly limited, and examples thereof include aluminum sulfate, aluminum oxide, aluminum hydroxide, aluminum nitrate, aluminum carbonate, aluminum chloride, aluminum iodide, sodium aluminome, and metallic aluminum.
  • the manganese compound is not particularly limited, and examples thereof include manganese sulfate, manganese oxide, manganese hydroxide, manganese nitrate, manganese carbonate, manganese chloride, manganese iodide, and metallic manganese.
  • the titanium compound is not particularly limited, and examples thereof include titanium sulfate, titanium oxide, titanium hydroxide, titanium nitrate, titanium carbonate, titanium chloride, titanium iodide, and metallic titanium.
  • the magnesium compound is not particularly limited, and examples thereof include magnesium sulfate, magnesium oxide, magnesium hydroxide, magnesium nitrate, magnesium carbonate, magnesium chloride, magnesium iodide, and metallic magnesium.
  • the zinc compound is not particularly limited, and examples thereof include zinc sulfate, zinc oxide, zinc hydroxide, zinc nitrate, zinc carbonate, zinc chloride, zinc iodide, and metallic zinc.
  • the niobium compound is not particularly limited, and examples thereof include niobium oxide, niobium chloride, lithium niobate, niobium iodide, and the like.
  • the tungsten compound is not particularly limited, and examples thereof include tungsten oxide, sodium tungstate, ammonium paratungstate, hexacarbonyltungsten, and tungsten sulfide.
  • the blending ratio of the nickel compound and various compounds containing other elements is such that the amount of Ni and the amount of various other elements are desired in consideration of the composition of the target positive electrode active material. It may be adjusted as appropriate.
  • the target positive electrode active material is, for example, the following formula (I): Li a Ni b M 1-b O 2 (I) (In the formula, M is an element other than Li, Ni, and O, 0.95 ⁇ a ⁇ 1.40, 0.2 ⁇ b ⁇ 1).
  • M is an element other than Li, Ni, and O, 0.95 ⁇ a ⁇ 1.40, 0.2 ⁇ b ⁇ 1).
  • the ratio of the amount of Ni to the amount of various other elements, that is, b in the above formula (I) is 0.2 ⁇ b ⁇ 1, and further 0.3 ⁇ b. It is preferably ⁇ 1, further 0.4 ⁇ b ⁇ 1, more preferably 0.5 ⁇ b ⁇ 1, and particularly preferably 0.8 ⁇ b ⁇ 1.
  • the appropriate pH control range for synthesizing the precursor complex compound can be determined so as to obtain a shape such as a desired secondary particle size and sparse density, and is generally in the range of about 10 to 13. It becomes.
  • the cleaning treatment By performing the cleaning treatment, impurities such as sulfate roots, carbonate roots, and Na content that are incorporated into the aggregated particles during the reaction and adhere to the surface layer can be washed away.
  • a method of performing Nuche cleaning using a Büchner funnel if the amount is small, or a method of sending the suspension after the reaction to a press filter, washing it with water, and dehydrating it can be adopted.
  • pure water, an aqueous solution of sodium hydroxide, an aqueous solution of sodium carbonate and the like can be used for the cleaning treatment, it is preferable to use pure water industrially.
  • a cleaning treatment with an aqueous solution of sodium hydroxide whose pH is controlled according to the residual amount can also be performed.
  • the precursor complex compound thus synthesized and the lithium compound are mixed at a predetermined ratio to prepare a mixture.
  • the mixing may be a solvent-based mixture in which the precursor complex compound and the lithium compound are each made into a solution such as an aqueous solution, and these solutions are mixed at a predetermined ratio, and the powder of the precursor complex compound and the powder of the lithium compound may be mixed. And may be weighed to a predetermined ratio and mixed in a dry manner in a non-solvent system.
  • the lithium compound is not particularly limited, and various lithium salts can be used.
  • the lithium compound include anhydrous lithium hydroxide, lithium hydroxide / monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, lithium chloride, lithium citrate, lithium fluoride, lithium iodide, and the like.
  • examples thereof include lithium lactic acid, lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate, lithium oxide and the like.
  • anhydrous lithium hydroxide and lithium hydroxide / monohydrate are preferable, and anhydrous lithium hydroxide is particularly preferable.
  • the blending ratio of the lithium compound and the precursor composite compound is the total amount of Li, the amount of Ni, and optionally the amount of various other elements, in consideration of the composition of the target positive electrode active material. , It may be adjusted appropriately so as to be a desired ratio.
  • the target positive electrode active material is, for example, the following formula (I): as described above.
  • Li a Ni b M 1-b O 2 (I) (In the formula, M is an element other than Li, Ni, and O, 0.95 ⁇ a ⁇ 1.40, 0.2 ⁇ b ⁇ 1).
  • the ratio of the amount of Li to the total amount of the amount of Ni and optionally the amount of various other elements, that is, a in the above formula (I) is 0.95. It is preferable that ⁇ a ⁇ a ⁇ 1.25, and more preferably 0.96 ⁇ a ⁇ a ⁇ 1.15.
  • Step (2) As described above, when a positive electrode active material containing at least Ni is produced, a lithium conversion reaction and crystal growth are carried out in firing, and the lithium conversion reaction requires a constant oxygen partial pressure.
  • the lithium conversion reaction a lithium nickel composite compound is obtained, and when lithium hydroxide is used as the lithium compound, for example, water (steam) is generated, and when lithium carbonate is used, for example, carbon dioxide gas is generated. After that, the temperature is raised to a predetermined temperature to promote crystal growth.
  • the crystal growth of the constituent primary particles varies (the variation A) in each secondary particle, and the primary particle diameter varies (the variation B) between the secondary particles. Then, when such a variation (variation A and variation B) occurs, the composition of the secondary particles varies (the variation C).
  • a lithium compound, a precursor composite compound, and an M compound are weighed and mixed in a mixer, and the mixed powder obtained is filled in a container such as a pit or a bowl.
  • a container such as a pit or a bowl.
  • the variation becomes large.
  • the variation may be increased depending on the degree of mixing of the mixture, for example, poor mixing due to a large difference in particle size between the lithium compound and the precursor composite compound.
  • the variation A and the variation B can be sufficiently suppressed, and thus the variation C can be sufficiently suppressed.
  • the mixture of the lithium compound and the precursor composite compound is not simply fired, but is first pre-baked under the following predetermined conditions in this step (2), and then further prescribed conditions in the step (3) described later. It is preferable to adopt the method of main firing at.
  • the preliminary firing it is particularly desirable to incorporate a firing method that promotes the lithium conversion reaction. Specifically, by making the mixture more likely to be heated, the gas generated from the lithium compound is easily discharged, and the gas having a high oxygen partial pressure is diffused into the mixture (inside the particles). be. For example, it is possible to achieve the properties of the present invention by pre-baking a smaller mixture.
  • the mixture in the pre-baking of the mixture, may be filled in a saggar or a sack and fired in a static furnace, a roller herring knives, or a pusher furnace, but the mixture is fired while flowing.
  • a rotary kiln can be used.
  • the conditions for performing preliminary firing using the rotary kiln are not particularly limited, but it is preferable to consider each of the following conditions, for example.
  • the filling rate of the mixture in the furnace of the rotary kiln (the volume of the mixed powder / the percentage expressed by the internal volume of the rotary kiln) is determined by changing the gas input rate and the residence time of the raw material (mixture) according to the type of the rotary kiln. It can be adjusted, and the residence time can be adjusted by changing the retort tilt angle and the retort rotation speed, but is preferably 5% to 40%, more preferably 5 to 20%, for example. If the filling rate is too high, the quality of the fired product may deteriorate. If the filling factor is too low, sufficient productivity may not be obtained.
  • the retort peripheral speed can be adjusted by changing the retort rotation speed, and is preferably in the range of, for example, 1 m / min to 6 m / min. If the peripheral speed of the retort is too low, the powder layer of the mixture may not be replaced in the furnace, and it may be difficult for water vapor to go out of the system. If the peripheral speed of the retort is too high, the separation of the mixture powder may be promoted.
  • Wind speed and dew point in the furnace Both the wind speed and the dew point in the furnace can be adjusted by changing the gas input speed.
  • the gas input rate is low and the dew point is too high, dew condensation occurs especially in the retort portion where the mixture is charged, and Li is dissolved from the lithium compound in the mixture, so that the primary particles and the secondary particles are irregular. Aggregation / sintering and the like may occur, the particle size as in the present invention cannot be obtained, and the quality of the calcined product may deteriorate.
  • selective scattering (separation) of the mixed powder may occur.
  • the rate of temperature rise for the pre-baked mixture can be adjusted by setting the temperature of the rotary kiln. If the temperature rise rate is too low, sufficient productivity may not be obtained. If the temperature rise rate is too high, the lithium conversion reaction is insufficient and a local lithium conversion reaction occurs, and uniformity cannot be obtained, so that the quality of the fired product may deteriorate.
  • the maximum temperature of the pre-baked mixture can be adjusted by setting the temperature of the rotary kiln (setting the surface temperature of the retort).
  • the target positive electrode active material has a coefficient of variation of the span of the specific range and / or a coefficient of variation of D 150 of the specific range, and thus the formula ( ⁇ 1) and the formula ( ⁇ 2). ) And the value represented by the formula ( ⁇ 3) are both within the above-mentioned specific range, and the maximum temperature of the pre-baked mixture is 500 ° C. to 650 ° C., and further is 510 ° C. to 640 ° C.
  • the temperature is preferably adjusted to 520 ° C to 630 ° C.
  • the retort surface temperature of the rotary kiln is set to, for example, 530 ° C to 800 ° C, and further to 550 ° C, taking into consideration the filling rate of the mixture. It is preferable to set the temperature at about 780 ° C, particularly 700 ° C to 750 ° C.
  • the maximum temperature of the pre-fired mixture is preferably adjusted according to the type of the lithium compound used in the preparation of the mixture, whereby the precursor composite compound in the mixture and the lithium compound are reliably reacted. That is, the lithium conversion reaction can be allowed to proceed reliably and uniformly so as not to generate a heterogeneous phase, and the desired positive electrode active material as described above can be obtained.
  • the lithium compound in the pre-baked mixture is preferably pre-ground, if necessary, so as not to contain coarse particles having a particle size of, for example, exceeding 500 ⁇ m. Further, if the particle size of the lithium compound is too small, the mixture becomes bulky, so that it becomes easy to separate in the rotary kiln, which may reduce the uniformity, and in addition, the processing speed in the rotary kiln decreases. Since there is a possibility that productivity may decrease, it is preferable to adjust the particle size so as to be appropriate.
  • the atmosphere of the pre-baking is not particularly limited as long as it is an oxidizing atmosphere in which the lithium conversion reaction proceeds reliably and uniformly.
  • the carbon dioxide gas concentration is 30 ppm or less. It is preferable to adopt an oxidizing gas atmosphere of carbon dioxide and an oxygen atmosphere having an oxygen concentration of preferably 80 vol% or more, more preferably 90 vol% or more.
  • the time for pre-baking is also not particularly limited, and may be any time as long as the lithium conversion reaction proceeds reliably and uniformly, but for example, it may be 1 hour to 10 hours, further 2 hours to 8 hours. preferable.
  • Step (3) When the mixture pre-baked in the step (2) is main-baked, it is important to allow the crystal growth to proceed reliably and uniformly to obtain a positive electrode active material having a desired crystal structure.
  • equipment such as a static furnace for filling a saggar or a sack with a mixture and firing, a roller herring smelt, etc. can be used, and a rotary kiln is used as in the preliminary firing.
  • a firing furnace or a means thereof that can finely adjust the conditions suitable for crystallization.
  • the atmosphere of the main firing is not particularly limited, and it is preferable because it has an oxygen partial pressure so that reliable and uniform crystal growth is performed and Ni contained in the mixture to be fired is not reduced.
  • the atmosphere may be an atmosphere having a small water content or carbon dioxide gas concentration, but for example, a decarbonized oxidizing gas atmosphere in which the carbon dioxide gas concentration is 30 ppm or less, or an oxygen concentration of preferably 80 vol% or more, more preferably 90 vol% or more. It is preferable to adopt an oxygen atmosphere such as.
  • the temperature of the main firing can be adjusted by adjusting the maximum temperature of the pre-baked mixture by the composition of the positive electrode active material to be obtained.
  • the mixture It is preferable to adjust the maximum temperature to be 700 ° C. to 880 ° C., and further preferably 710 ° C. to 850 ° C.
  • the maximum temperature is lower than the lower limit, a positive electrode active material having a desired crystal structure cannot be obtained, and a large amount of unreacted components may be present to impair the battery characteristics.
  • the maximum temperature exceeds the upper limit value, crystal growth may proceed too much, and the battery characteristics of the non-aqueous electrolyte secondary battery using the obtained positive electrode active material as the positive electrode may deteriorate. Further, in the case of a positive electrode active material having a Ni content of 20 mol% to 80 mol%, it is preferable to bake at a temperature at which the maximum temperature of the mixture does not exceed 1100 ° C.
  • the time of the main firing is not particularly limited as long as it is sufficient to obtain a positive electrode active material having a desired crystal structure, and is, for example, 1 hour to 15 hours, further 2 hours to 10 hours. It is preferable to have.
  • the positive electrode active material obtained through the steps (1) to (3) in order has a high Ni positive electrode active material having a Ni content of, for example, 80 mol% or more (for example, b in the formula (I) is 0.8 ⁇ ).
  • b in the formula (I) is 0.8 ⁇ .
  • the unreacted lithium compound and the crystal structure are released from the crystal structure to the particle surface layer in the process of firing.
  • the amount of the Li compound hereinafter referred to as the residual Li compound
  • the amount of the residual Li compound can be reduced by, for example, washing the positive electrode active material with water or surface-treating the surface of the primary particles and / or the secondary particles of the positive electrode active material.
  • the positive electrode active material obtained through the steps (1) to (3) in order is a positive electrode active material having a low Ni content
  • secondary particles generally having a small primary particle shape. If this is the case, surface treatment may be performed because the large specific surface area may cause metal elution due to hydrogen fluoride.
  • a so-called sintering accelerator such as KOH may be used before firing in order to obtain the primary particle shape, and such a sintering accelerator may be used. It is also possible to carry out a washing treatment to clean the particles.
  • the surface treatment method is not particularly limited.
  • fine particles of aluminum oxide are dryly adhered to the particle surface layer of the positive electrode active material while applying a shearing force, and then heat treatment is performed at about 300 ° C to 700 ° C.
  • a predetermined amount of the positive electrode active material is met in an aqueous solution in which a predetermined amount of sodium sulfate is dissolved, and the mixture is stirred for about 5 to 10 minutes, dehydrated and dried, and then heat-treated at about 250 ° C to 700 ° C. Therefore, a method of coating the surface layer of the particles with an aluminum compound or the like can be adopted.
  • a boron compound or a tungsten compound can be used for the surface treatment, and can be selected according to the intended use. Furthermore, two or more kinds of compounds can be used at the same time.
  • the non-aqueous electrolyte secondary battery of the present invention includes, for example, a positive electrode containing the positive electrode active material of the present invention manufactured as described above, and the non-aqueous electrolyte secondary battery has the positive electrode, the negative electrode, and the electrolyte. It is composed of an electrolytic solution containing.
  • a conductive agent and a binder are added and mixed with the positive electrode active material of the present invention according to a conventional method.
  • the conductive agent for example, acetylene black, carbon black, graphite and the like are preferable.
  • the binder for example, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.
  • the negative electrode is not only a negative electrode active material such as a lithium metal, graphite, or a low crystalline carbon material, but also at least one selected from the group consisting of Si, Al, Sn, Pb, Zn, Bi, and Cd. Non-metals or metal elements, alloys containing them or chalcogen compounds containing them can also be used.
  • an organic solvent containing at least one of carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate and diethyl carbonate and ethers such as dimethoxyethane can be used.
  • At least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the solvent and used. ..
  • the positive electrode active material of the present invention is sufficient for a non-aqueous electrolyte secondary battery because it can suppress cracking from the grain boundary even when the non-aqueous electrolyte secondary battery is subjected to a long-term charge / discharge cycle. Battery capacity and excellent cycle characteristics can be imparted.
  • the mixed aqueous solution, the sodium hydroxide aqueous solution and the ammonia water were simultaneously added dropwise at a predetermined rate, and the amount of the alkaline solution added dropwise was adjusted so that the pH became 11.
  • Ni, Co, and Al were crystallized and co-precipitated to form aggregated particles, and a co-precipitate was obtained.
  • the slurry in the reactor is solid-liquid separated and further washed with pure water to reduce residual impurities, and then the coprecipitate in a cake state is dried at 110 ° C. for 12 hours in an air environment. Then, the precursor complex compound 1 was obtained. Further, when the average secondary particle size of the precursor composite compound 1 was measured using the laser diffraction type particle size distribution measuring device, it was 10.3 ⁇ m.
  • the reaction tank prepare 10 L of pure water to which 300 g of sodium hydroxide aqueous solution and 500 g of ammonia water are added as a mother liquor in advance, and use nitrogen gas at a flow rate of 0.7 L / min to create a nitrogen atmosphere in the reaction tank, and the reaction is also carried out. I went in a nitrogen atmosphere.
  • the mixed aqueous solution, the sodium hydroxide aqueous solution and the ammonia water were simultaneously added dropwise at a predetermined rate, and the amount of the alkaline solution added dropwise was adjusted so that the pH became 11.
  • Ni, Co, and Mn were crystallized and co-precipitated to form aggregated particles, and a co-precipitate was obtained.
  • the slurry in the reactor is solid-liquid separated and further washed with pure water to reduce residual impurities, and then the coprecipitate in a cake state is dried at 110 ° C. for 12 hours in an air environment.
  • the precursor complex compound 2 was obtained.
  • the average secondary particle diameter of the precursor composite compound 2 was measured using the laser diffraction type particle diameter distribution measuring apparatus, it was 9.9 ⁇ m.
  • the mixed aqueous solution, the sodium hydroxide aqueous solution and the ammonia water were simultaneously added dropwise at a predetermined rate, and the amount of the alkaline solution added dropwise was adjusted so that the pH became 11.
  • Ni, Co, and Al were crystallized and co-precipitated to form aggregated particles, and a co-precipitate was obtained.
  • the slurry in the reactor is solid-liquid separated and further washed with pure water to reduce residual impurities, and then the coprecipitate in a cake state is dried at 110 ° C. for 12 hours in an air environment.
  • the precursor complex compound 3 was obtained. Further, when the average secondary particle size of the precursor composite compound 3 was measured using the laser diffraction type particle size distribution measuring device, it was 10.7 ⁇ m.
  • composition of the precursor composite compound and the positive electrode active material was determined by the following method. A sample of 0.2 g of the precursor composite compound or the positive electrode active material was heated and dissolved in 25 mL of a 20% hydrochloric acid solution, cooled, transferred to a 100 mL volumetric flask, and pure water was added to prepare a preparation liquid. For the adjusting solution, each element was quantified using ICP-AES [Optima8300, manufactured by PerkinElmer Co., Ltd.].
  • a 2032 type coin cell using a positive electrode active material was manufactured using a positive electrode, a negative electrode, and an electrolytic solution, which were produced by the following methods, respectively.
  • Initial charge / discharge efficiency (%) (initial discharge capacity / initial charge capacity) x 100
  • Cycle maintenance rate (%) (Discharge capacity in the 100th cycle / Discharge capacity in the 1st cycle) x 100
  • the obtained positive electrode active material secondary particles were confirmed on a 2000-fold SEM image, and 10 particles were extracted. After that, a high-magnification SEM image was obtained for each particle and image analysis was performed to calculate D150 and the span in the primary particle size distribution.
  • the mixture was prepared by weighing so as to be .04, and the mixture powder was pre-fired in the same manner as in Example 1 except that the surface temperature of the retort was adjusted so that the maximum temperature of the mixture powder was 630 ° C. ..
  • the mixed powder after pre-baking is main-baked for 4 hours so that the maximum temperature of the mixed powder becomes 740 ° C. under the same oxygen atmosphere, and the positive electrode active material is used.
  • D150 and span in the primary particle size distribution were calculated in the same manner as in Example 1.
  • Comparative Example 2 ⁇ Comparative Example 2>
  • the mixture was prepared by weighing so as to be .04, and the mixture powder was pre-fired in the same manner as in Comparative Example 1 except that the maximum temperature of the mixture powder was adjusted to 630 ° C.
  • the mixed powder after pre-baking is main-baked for 4 hours so that the maximum temperature of the mixed powder becomes 830 ° C. under the same oxygen atmosphere, and the positive electrode active material is used.
  • D150 and span in the primary particle size distribution were calculated in the same manner as in Example 1.
  • Table 1 summarizes the firing conditions in Examples 1 and 2 and Comparative Examples 1 and 2.
  • the characteristics of the positive electrode active materials obtained in Examples 1 and 2 and Comparative Examples 1 and 2 are D 150 of the primary particles, the coefficient of variation of the span, and the coefficient of variation of D 150 , and D 250 of all the secondary particles. , The crystallite size, and the Li seat occupancy rate were determined according to the above methods. These results are shown in Table 2.
  • the coefficient of variation of the span is very small, less than 15%, and the variation in the distribution of the primary particles is sufficiently suppressed in 10 or more secondary particles, and D.
  • the coefficient of variation of 150 is also very small, less than 10%, and the variation in the primary particle size is sufficiently suppressed among 10 or more secondary particles.
  • the positive electrode active material of Example 1 is compared with the positive electrode active material of Comparative Example 1, and the positive electrode active material of Example 2 is compared with the positive electrode active material of Comparative Example 2, and the initial charge capacity and the initial charge are substantially the same. It exhibits very good cycle characteristics while maintaining charge / discharge efficiency.
  • Example 4 a positive electrode active material was obtained in the same manner as in Example 3 except that the filling rate was changed to 15% among the rotary kiln conditions.
  • the mixed powder after pre-baking is main-baked for 4 hours so that the maximum temperature of the mixed powder becomes 750 ° C. under the same oxygen atmosphere, and the positive electrode active material is used.
  • Table 4 summarizes the firing conditions in Examples 3 to 4 and Comparative Example 3.
  • the positive electrode active materials of Examples 3 to 4 have very small values represented by the formulas ( ⁇ 1), ( ⁇ 2), and ( ⁇ 3) of 1.00% or less, and are composed of secondary particles. The variation is sufficiently suppressed.
  • the positive electrode active materials of Examples 3 to 4 have a span of about 0.95 and are relatively broad in terms of secondary particle size distribution. In general, there is a tendency for the variation between small particles and large particles to be larger when the particles are broad, whereas in the present invention, the variation can be suppressed. Therefore, since it is generally difficult for a positive electrode active material having a sharp secondary particle size distribution with a span of about 0.5 to cause variations such as firing, it is expected that such variations can be suppressed. To.
  • the positive electrode active materials of Examples 3 to 4 show very excellent cycle characteristics as compared with the positive electrode active materials of Comparative Example 3 while maintaining substantially the same initial charge capacity and initial charge / discharge efficiency.
  • the positive electrode active material according to the present invention is suitable for the positive electrode of a non-aqueous electrolyte secondary battery because it can impart sufficient battery capacity and excellent cycle characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の正極活物質は、LiとNiと任意にLi及びNi以外の少なくとも1つの他の元素とを含有する複合酸化物からなり、該複合酸化物の二次粒子を構成する一次粒子について、式:(D90-D10)/D50(D10、D50、D90は各々、個数基準の一次粒子サイズの粒子径分布の積算値が10%、50%、90%に相当する粒子径)で表されるスパンの変動係数が17%以下であること、D50の変動係数が19%以下であること、並びに、二次粒子について、式:|[(元素比1-元素比21)/元素比1]|×100、|[(元素比1-元素比22)/元素比1]|×100、|[(元素比1-元素比23)/元素比1]|×100(元素比1、21、22、23は各々、全二次粒子、小粒子、中粒子、大粒子の元素比(Li/(Ni+他の元素))の値がいずれも1.00%以下であること、のいずれか1つを特徴とする。

Description

非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
 本発明は、非水電解質二次電池に、充分な電池容量及び優れたサイクル特性を付与することができる非水電解質二次電池用正極活物質、及び該正極活物質を用いた非水電解質二次電池に関する。
 携帯電話、ノートパソコン等の駆動用電源として、小型、軽量で高エネルギー密度を有する非水二次電池がある。そのなかでも、正極にコバルト酸リチウムやニッケル酸リチウムといった材料を用いた、充放電容量が大きいリチウムイオン二次電池が多用されている。
 リチウムイオン二次電池用の正極活物質として、従来より、ニッケルの一部をコバルトで置換し、マンガンを導入したニッケルコバルトマンガン(NCM)系正極活物質や、ニッケルの一部をコバルトで置換し、アルミニウムを導入したニッケルコバルトアルミニウム(NCA)系正極活物質の研究が盛んに行われている。
 前記NCM系正極活物質、NCA系正極活物質等の正極活物質を製造する際の焼成において、少なくともリチウム化合物と前記正極活物質の前駆体化合物との混合物を容器に充填させて、リチウム化反応及び結晶化が行われる。該リチウム化反応は、金属水酸化物や金属酸化物と、LiOH等のリチウム化合物との反応であり、例えばLiOHを用いた場合についての反応であるが、以下に示すとおり、一定量の酸素を必要とする。該リチウム化反応により、リチウムニッケル複合酸化物等の複合酸化物と共に水(水蒸気)が生成し、さらに高温で焼成することで結晶成長が進行する。
Me(OH)+LiOH・HO+1/4O → LiMeO+5/2H
MeO+LiOH+1/4O → LiMeO+1/2H
 ところが、前記リチウム化反応にて生成した水(水蒸気)により、容器に充填された複合化合物粒子層にて、溶融したLiOHが複合化合物粒子層内にてリチウムとの反応を阻害し、複合化合物との接触が不均一になるほか、容器に充填された複合化合物粒子層への必要な酸素の拡散が妨害されたり、温度ムラが生じ易くなる。その結果、各二次粒子において、構成する一次粒子の成長や結晶成長にバラツキが生じることや、二次粒子同士において、一次粒子径にバラツキが生じる。そうすると、得られる正極活物質をリチウムイオン二次電池の正極に適用し、長期の充放電サイクルに供した際に、正極活物質の粒界部から割れが発生してしまうため、サイクル特性が低下する。
 そこで、前記結晶成長におけるバラツキの抑制を試み、正極活物質が提案されている。
 特許文献1には、ニッケルコバルト複合酸化物とリチウム化合物との混合物を焼成容器に充填し、500℃以上600℃以下の焼成温度で予備焼成した後、680℃以上780℃以下の焼成温度で本焼成して得ることができ、例えば1μm以下の一次粒子が複数集合して球状となった二次粒子からなるリチウムニッケルコバルト複合酸化物が記載されている。
 特許文献2には、共沈反応で得られた複合水酸化物とリチウム化合物とを混合し、例えば500℃~900℃での仮焼成及び例えば800℃~1200℃での本焼成の2段階にて焼成して製造することができ、一次粒子が凝集した二次粒子の構成を有し、一次粒子の平均粒子径(D1)が0.9μm以下で、D1とD1の標準偏差(σ)とがD1/σ≧24の関係を満足している非水電解質二次電池用正極活物質が記載されている。
国際公開第2019/194150号公報 特許第6075440号公報
 特許文献1に記載のリチウムニッケルコバルト複合酸化物を得る際には、二段階の焼成を行っているが、リチウム化合物による流動効果の不均一性が充分に解消されておらず、酸素の拡散も不充分で、温度ムラが生じ易い。したがって、得られたリチウムニッケルコバルト複合酸化物は、一次粒子の結晶成長にバラツキが生じたり、二次粒子同士における一次粒子径のバラツキが生じたものであり、リチウムイオン二次電池の正極に用いた際に、充放電サイクルによって粒界部から割れが発生してしまう。
 また、特許文献2に記載の正極活物質は、結晶子サイズを調整するとともに二次粒子における一次粒子の高均一性を得るために、好ましくは二段階の焼成を経て得ることができるものの、前記特許文献1に記載のリチウムニッケルコバルト複合酸化物と同様に、二次粒子全体においての議論は行っておらず、すなわち、一次粒子の結晶成長にバラツキが生じたり、二次粒子同士における一次粒子径のバラツキが生じたものであり、リチウムイオン二次電池の正極に用いた際に、二次粒子によっては、やはり充放電サイクルによって粒界部から割れが発生しやすくなる恐れがある。
 本発明は、前記のごとき従来の課題に鑑みてなされたものであり、その目的は、充分な電池容量及び優れたサイクル特性を非水電解質二次電池に付与することができる正極活物質及びこれを用いた非水電解質二次電池を提供することである。
 前記目的を達成するために、本発明では、リチウムニッケル複合酸化物の二次粒子を構成する一次粒子の粒子径に係る変動係数を特定範囲に調整することにより、また、該リチウムニッケル複合酸化物の二次粒子の組成に係る値を特定範囲に調整することにより、正極活物質を構成した。
 本発明に係る非水電解質二次電池用正極活物質(以下、正極活物質Aともいう)は、
リチウムとニッケルと任意にリチウム及びニッケル以外の少なくとも1つの他の元素とを含有するリチウムニッケル複合酸化物からなり、
前記リチウムニッケル複合酸化物の二次粒子を構成する一次粒子について、下記式(α):
(D90-D10)/D50  (α)
(式中、
10:個数基準の一次粒子サイズの粒子径分布の積算値が10%に相当する粒子径
50:個数基準の一次粒子サイズの粒子径分布の積算値が50%に相当する粒子径(平均粒子径)
90:個数基準の一次粒子サイズの粒子径分布の積算値が90%に相当する粒子径
である)
で表されるスパンの変動係数が17%以下であることを特徴とする。
 本発明に係る非水電解質二次電池用正極活物質(以下、正極活物質Bともいう)は、
リチウムとニッケルと任意にリチウム及びニッケル以外の少なくとも1つの他の元素とを含有するリチウムニッケル複合酸化物からなり、
前記リチウムニッケル複合酸化物の二次粒子を構成する一次粒子について、D50(個数基準の一次粒子サイズの粒子径分布の積算値が50%に相当する粒子径(平均粒子径))の変動係数が19%以下であることを特徴とする。
 本発明に係る非水電解質二次電池用正極活物質(以下、正極活物質Cともいう)は、
リチウムとニッケルと任意にリチウム及びニッケル以外の少なくとも1つの他の元素とを含有するリチウムニッケル複合酸化物からなり、
 前記リチウムニッケル複合酸化物の二次粒子について、下記式(β1)、式(β2)、及び式(β3):
|[(元素比1-元素比21)/元素比1]|×100  (β1)
|[(元素比1-元素比22)/元素比1]|×100  (β2)
|[(元素比1-元素比23)/元素比1]|×100  (β3)
(式中、
元素比1:全二次粒子の元素比
元素比22:全二次粒子のD50(体積基準の二次粒子サイズの粒子径分布の積算値が50%に相当する粒子径(平均粒子径))に対して±3μmの範囲内の粒子径を有する中粒子の元素比
元素比21:中粒子よりも小さい粒子径を有する小粒子の元素比
元素比23:中粒子よりも大きい粒子径を有する大粒子の元素比
であり、元素比は、リチウムの量とニッケル及び前記他の元素の合計量との割合(リチウム/(ニッケル+他の元素))を示す)
で表される値がいずれも1.00%以下であることを特徴とする。
 本発明に係る非水電解質二次電池は、前記正極活物質A、前記正極活物質B、及び前記正極活物質Cの少なくとも1つを含有する正極を備えたものである。
 なお、本明細書において、前記「正極活物質A」、前記「正極活物質B」、及び前記「正極活物質C」の少なくとも2つを併せて、単に「非水電解質二次電池用正極活物質」又は「正極活物質」ともいう。また、前記「個数基準の一次粒子サイズの粒子径分布」を、単に「一次粒子サイズ分布」ともいい、前記「体積基準の二次粒子サイズの粒子径分布」を、単に「二次粒子サイズ分布」ともいう。
 本発明によれば、長期の充放電サイクルに供した際にも、その二次粒子内の(一次粒子表層部である)粒界部からの割れが発生せず、非水電解質二次電池に、充分な電池容量及び優れたサイクル特性を付与することができる非水電解質二次電池用正極活物質、及びこれを用いた非水電解質二次電池を提供することができる。
 以下、本発明を実施するための形態を説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用方法或いはその用途を制限することを意図するものではない。
<非水電解質二次電池用正極活物質>
 本発明に係る非水電解質二次電池用正極活物質は、リチウム(Li)とニッケル(Ni)と任意にLi及びNi以外の少なくとも1つの他の元素とを含有するリチウムニッケル複合酸化物からなる。そして、該リチウムニッケル複合酸化物の二次粒子を構成する一次粒子は、以下の特徴1を有し(正極活物質A及び正極活物質B)、該リチウムニッケル複合酸化物の二次粒子は、以下の特徴2を有する(正極活物質C)。
[特徴1]
(正極活物質A)
下記式(α):
(D90-D10)/D50  (α)
(式中、
10:一次粒子サイズ分布の積算値が10%に相当する粒子径
50:一次粒子サイズ分布の積算値が50%に相当する粒子径(平均粒子径)
90:一次粒子サイズ分布の積算値が90%に相当する粒子径
である)
で表されるスパンの変動係数が17%以下である。
(正極活物質B)
50(一次粒子サイズ分布の積算値が50%に相当する粒子径(平均粒子径))の変動係数が19%以下である。
[特徴2]
(正極活物質C)
下記式(β1)、式(β2)、及び式(β3):
|[(元素比1-元素比21)/元素比1]|×100  (β1)
|[(元素比1-元素比22)/元素比1]|×100  (β2)
|[(元素比1-元素比23)/元素比1]|×100  (β3)
(式中、
元素比1:全二次粒子の元素比
元素比22:全二次粒子のD50(二次粒子サイズ分布の積算値が50%に相当する粒子径(平均粒子径))に対して±3μmの範囲内の粒子径を有する中粒子の元素比
元素比21:中粒子よりも小さい粒子径を有する小粒子の元素比
元素比23:中粒子よりも大きい粒子径を有する大粒子の元素比
であり、元素比は、リチウムの量とニッケル及び前記他の元素の合計量との割合(リチウム/(ニッケル+他の元素))を示す)
で表される値がいずれも1.00%以下である。
[特徴1について]
 上述のとおり、金属水酸化物や金属酸化物である前駆体化合物とLiOH等のリチウム化合物との混合物を焼成してリチウム複合酸化物を調製する際に、該混合物を均一にリチウム化反応させ、かつ、均一に結晶成長させることにより、各二次粒子において、構成する一次粒子の粒子成長や結晶成長のバラツキ(バラツキA)を抑制することができ、また、二次粒子同士において、一次粒子径のバラツキ(バラツキB)を抑制することができる。
 これらのバラツキが充分に抑制されたリチウム複合酸化物からなる正極活物質を非水電解質二次電池の正極に適用し、長期の充放電サイクルに供した場合、いずれかの二次粒子に大きな負荷が掛かることがなく、二次粒子内の粒界部から割れが発生する可能性が極めて低くなる。その結果、非水電解質二次電池は優れたサイクル特性を維持することができる。
 また、二次粒子同士でのバラツキが小さいことから、正極における電極作製時に加圧する際に、割れが発生し得る部分が抑制されることから、高い加圧にも耐えることができ、体積当たりの正極活物質量を増大させることができ、高容量とすることができる。
 前記バラツキA、すなわち、各二次粒子における、構成する一次粒子の粒子成長や結晶成長のバラツキを抑制することは、各二次粒子中に存在する一次粒子の分布をシャープにする(一次粒子サイズ分布がシャープである)ことであり、各二次粒子中に存在する一次粒子サイズの分布がシャープなリチウム複合酸化物は、粒界部の組成や結合状態のバラツキが小さい、すなわち、粒界部の欠陥が小さいことが考えられ、その結果、このようなリチウム複合酸化物では、粒界部からの割れの開始点が極めて少なくなることが考えられる。
 一方、前記バラツキB、すなわち、二次粒子同士における、一次粒子径のバラツキを抑制することは、各二次粒子で、リチウム化におけるLiと金属化合物との比や、結晶の成長における焼成の度合いを略同等にして、一次粒子の平均粒子径を略同等にすることである。このような二次粒子ごとで一次粒子の平均粒子径が略同等なリチウム複合酸化物では、長期の充放電サイクルや、充電状態での長期保存の際に、粒子割れを引き起こしたり、正極活物質内に存在する金属元素が電解液に溶出するような、一種の弱点となりうる二次粒子が殆ど存在しないと考えられる。
 本発明に係る正極活物質Aは、前記バラツキAの抑制に着目したものである。正極活物質Aにおいて、前記リチウムニッケル複合酸化物の二次粒子を構成する一次粒子について、下記式(α):
(D90-D10)/D50  (α)
(式中、
10:一次粒子サイズ分布の積算値が10%に相当する粒子径
50:一次粒子サイズ分布の積算値が50%に相当する粒子径(平均粒子径)
90:一次粒子サイズ分布の積算値が90%に相当する粒子径
である)
で表されるスパン(span、単位なし)は、一次粒子サイズ分布のシャープさを示しており、均一なリチウム化反応及び均一な結晶成長が行われたか否かを表している。該スパンの変動係数は、小さいほど好ましく、大き過ぎる場合は、二次粒子内に一次粒子の大小が存在しており、前記粒界における問題が解決されない。また、結晶構造においても、結晶成長の度合いの違いが組成等の歪みとなり、一種の欠陥として存在してしまい、割れの要因となってしまう。
 本発明に係る正極活物質Aでは、リチウムニッケル複合酸化物の二次粒子を構成する一次粒子について、前記スパンの変動係数を規定している。該スパンの変動係数の大小は、個々の二次粒子におけるリチウム化反応及び結晶成長が同等に進行したか否かを示す尺度になる。N個の二次粒子における各スパンが同等であれば、個々の二次粒子で同等のリチウム化反応及び結晶成長が行われたと解釈することができ、スパンの変動係数は0%に漸近する。
 すなわち、該スパンの変動係数は、小さいほど好ましく、大き過ぎる場合は、不均一なリチウム化や異常粒子成長、結晶成長等における焼成ムラが発生したことを示しており、N個の二次粒子において、一次粒子径のバラツキは抑制されていない。なお、前記N個は、例えば後述する10個以上である。
 該スパンの変動係数を、17%以下、好ましくは15%以下、より好ましくは13%以下とすると、N個の二次粒子において、一次粒子サイズ分布のバラツキが抑制されており、このような二次粒子を含むリチウムニッケル複合酸化物からなる本発明の正極活物質は、長期の充放電サイクルに供した際にも、その二次粒子内の粒界部から割れが発生せず、非水電解質二次電池に優れたサイクル特性を付与することができる。
 また、該非水電解質二次電池では、正極に用いた正極活物質の粒界部からの割れを抑制できるので、高負荷による作動においても、例えばNi等の正極活物質中の金属が電解液へ溶出するのを充分に抑制することができる。
 一方、本発明に係る正極活物質Bは、前記バラツキBの抑制に着目したものである。正極活物質Bにおいて、前記リチウムニッケル複合酸化物の二次粒子を構成する一次粒子についてのD50(一次粒子サイズ分布の積算値が50%に相当する粒子径(平均粒子径))は、目的とする正極活物質の組成や二次粒子径、及びその分布に応じて最適値が異なるが、通常該D50は、大き過ぎると、充放電において粒子内のリチウムの電荷移動抵抗や拡散抵抗が大きくなることから、長期の充放電サイクルにおける特性に悪影響を与える傾向があり、小さ過ぎると逆に結晶成長及び/又は粒子成長が不足している恐れがあり、やはり長期の充放電サイクルにおける特性に悪影響を与える傾向がある。
 本発明に係る正極活物質Bでは、リチウムニッケル複合酸化物の二次粒子を構成する一次粒子について、前記D50の変動係数を規定している。該D50の変動係数の大小は、二次粒子間で、リチウム化反応及び結晶成長が同等に進行したか否かを示す尺度になる。N個の二次粒子の各D50が同等であれば、N個の二次粒子間で、リチウム化反応及び結晶成長のバラツキが小さく、D50の変動係数は0%に漸近する。すなわち、該D50の変動係数は、小さいほど好ましく、大き過ぎる場合は、N個の二次粒子間で、不均一なリチウム化反応や異常粒子成長等が発生したことを示している。該D50をこのような変動係数とすることで、N個の二次粒子における標準化が達成されている。なお、前記N個は、例えば後述する10個以上である。
 該D50の変動係数は、19%以下、好ましくは16%以下であることから、N個の二次粒子間で、一次粒子径のバラツキが抑制されており、このような二次粒子を含むリチウムニッケル複合酸化物からなる本発明の正極活物質は、長期の充放電サイクルに供した際にも、その二次粒子内の粒界部から割れを抑制でき、非水電解質二次電池に優れたサイクル特性を付与することができる。
 また、該非水電解質二次電池では、正極に用いた正極活物質の粒界部からの割れを抑制できるので、高負荷による作動においても、例えばNi等の正極活物質中の金属が電解液へ溶出するのを充分に抑制することができる。
 このように、本発明に係る正極活物質Aは、リチウムニッケル複合酸化物の二次粒子を構成する一次粒子が、前記特定範囲のスパンの変動係数を有するものであるが、同時に、前記特定範囲のD50の変動係数を有していてもよい。また、本発明に係る正極活物質Bは、リチウムニッケル複合酸化物の二次粒子を構成する一次粒子が、前記特定範囲のD50の変動係数を有するものであるが、同時に、前記特定範囲のスパンの変動係数を有していてもよい。本発明の正極活物質としては、スパンの変動係数が17%以下であり、かつ、D50の変動係数が19%以下であるものが特に好ましい。
 なお、本発明に係る正極活物質において、前記D50は、例えば0.1μm~1.0μm程度であるが、特に限定はされず、0.1μm~0.8μm程度であることが好ましく、0.1μm~0.6μm程度であることがより好ましい。
 本明細書において、各粒子径は、走査型電子顕微鏡SEM-EDS[電界放出形走査電子顕微鏡JSM-7100F:(株)日本電子製]を用い、加速電圧を10kVとし、一次粒子の粒界が確認できるように撮影した正極活物質の一次粒子又は二次粒子の電子顕微鏡写真(SEM写真)に基づいて得られた値である。この際、電子顕微鏡写真中に表示されたスケールを基準スケールとしている。なお、一次粒子を50個~200個程度観察できるように、二次粒子は10個以上を観察した。また、二次粒子のサイズは、レーザ回折式粒子径分布測定装置[マイクロトラックHRA:日機装(株)製]により得られた体積基準による粒度分布における頻度10%~頻度90%の粒子から選択した。
 前記SEM写真について、画像解析ソフト(例えば、ImageJやその他プログラミング言語のソフト)を用いて、画像解析する粒子をマークし、それらの一次粒子を二値化することで、一次粒子の面積を計算した。前記面積から、真円形近似を用いて一次粒子それぞれの直径を求めた。その後、各二次粒子について、一次粒子の直径のヒストグラムを取得し、下記統計量を計算した。
10(μm):一次粒子サイズ分布の積算値が10%に相当する粒子径
50(μm):一次粒子サイズ分布の積算値が50%に相当する粒子径(平均粒子径)
90(μm):一次粒子サイズ分布の積算値が90%に相当する粒子径
 前記で算出された粒子径の数値が、一次粒子の決定に依存せず、サンプル間の差が有意に見られることを確認するために、それぞれの分布に対してブートストラップ法を用いて統計量の再計算を実施した。ここでは、それぞれの一次粒子サイズ分布から重複を含みランダムにサンプリングを行い、平均粒子径とスパンとを計算した。これを1000回繰り返し、その中央値を母集団の統計量の近似とした。その結果、前述した一次粒子サイズ分布における各数値とブートストラップ法により得られた数値とは略同等であることから、画像解析における一次粒子の抽出手法は妥当であると判断した。
 加えて、本発明における前記二次粒子を抽出した際に、例えば、頻度10%の粒子径に近い二次粒子数個を用いた前記画像解析によるD50及びスパンの変動係数を算出したところ、同様にして頻度50%、頻度90%における該D50及びスパンの変動係数の値で大きなバラツキがないことを確認した。
 本明細書において、各変動係数は、前述した画像解析ソフトを用いた手法により得られた数値による標準偏差及び平均値を用い、以下の式に基づいて求めた値である。
変動係数(%)=(標準偏差/平均値)×100
[特徴2について]
 前記のとおり、リチウムニッケル複合酸化物の二次粒子を構成する一次粒子が前記特徴1を有する場合、すなわち、バラツキA及びバラツキB双方が充分に抑制されている場合、該二次粒子は、その組成のバラツキも充分に抑制されている。
 全二次粒子において、Liの量とNi及び他の元素の合計量との割合は、用いたリチウム化合物、ニッケル化合物及び他の元素の化合物の量に由来するが、前記バラツキA及びバラツキB双方が充分に抑制されていない場合、二次粒子の中でも粒子径が異なると、該Liの量とNi及び他の元素の合計量との割合が異なってくる。すなわち、例えば粒子径が小さい側の二次粒子と、粒子径が中程度の二次粒子と、粒子径が大きい側の二次粒子とに分類すると、これら3種類の二次粒子では、Liの量とNi及び他の元素の合計量との割合に大きな差異が生じてしまう。
 一方、前記バラツキA及びバラツキB双方が充分に抑制されているリチウムニッケル複合酸化物では、全二次粒子におけるLiの量とNi及び他の元素の合計量との割合に対する、全二次粒子における該割合と前記3種類の二次粒子各々における該割合との差の割合がいずれも小さい。すなわち、このような二次粒子は、その組成のバラツキ(バラツキC)が充分に抑制されていると言える。
 本発明に係る正極活物質Cは、このようなバラツキCの抑制に着目したものである。正極活物質Cにおいて、前記リチウムニッケル複合酸化物の二次粒子について、下記式(β1)、式(β2)、及び式(β3):
|[(元素比1-元素比21)/元素比1]|×100  (β1)
|[(元素比1-元素比22)/元素比1]|×100  (β2)
|[(元素比1-元素比23)/元素比1]|×100  (β3)
で表される値が、いずれも1.00%以下である。
 ここで、前記元素比1、元素比21、元素比22、及び元素比23は、各々以下のとおりであり、元素比は、前記Liの量とNi及び他の元素の合計量との割合(Li/(Ni+他の元素))を示している。
元素比1:全二次粒子の元素比
元素比22:全二次粒子のD50(二次粒子サイズ分布の積算値が50%に相当する粒子径(平均粒子径))に対して±3μmの範囲内の粒子径を有する中粒子の元素比
元素比21:中粒子よりも小さい粒子径を有する小粒子の元素比
元素比23:中粒子よりも大きい粒子径を有する大粒子の元素比
 前記のとおり、正極活物質Cにおいて、全二次粒子はそのD50に基づいて、小粒子、中粒子、及び大粒子に分類される。なお、全二次粒子から各々所定の粒子径を有する小粒子、中粒子、及び大粒子を得るためには、例えば篩による分級や分級装置を用いることができる。
 分類された小粒子、中粒子、及び大粒子各々のD50は、特に限定がないが、例えば、0.5μm~12μm程度、3μm~18μm程度、及び6μm~22μm程度であることが好ましい。
 リチウムニッケル複合酸化物は、前記式(β1)、式(β2)、及び式(β3)で表される値が、いずれも1.00%以下、好ましくは0.70%以下、さらに好ましくは0.65%以下、特に好ましくは0.60%以下である二次粒子を含む。このようなリチウムニッケル複合酸化物からなる本発明の正極活物質Cは、バラツキCが充分に抑制されたものであり、長期の充放電サイクルに供した際にも、その二次粒子内の粒界部から割れが発生せず、非水電解質二次電池に優れたサイクル特性を付与することができる。
 なお、本発明に係る正極活物質において、全二次粒子のD50は、後述のとおり、例えば1μm~30μm程度であるが、特に限定はされず、2μm~25μm程度であることが好ましい。
 また、下記式(γ):
(D90-D10)/D50  (γ)
(式中、
10:二次粒子サイズ分布の積算値が10%に相当する粒子径
50:二次粒子サイズ分布の積算値が50%に相当する粒子径(平均粒子径)
90:二次粒子サイズ分布の積算値が90%に相当する粒子径
である)
で表されるスパン(span、単位なし)は、二次粒子サイズ分布のシャープさを示すものである。本発明に係る正極活物質において、該スパンは、例えば0.4~1.5程度であるが、特に限定はされない。
 本発明に係る正極活物質Cは、リチウムニッケル複合酸化物の二次粒子ついて、前記式(β1)、式(β2)、及び式(β3)で表される値が、いずれも前記特定範囲であるが、該二次粒子を構成する一次粒子が、前記特定範囲のスパンの変動係数及び/又は前記特定範囲のD50の変動係数を有していてもよい。本発明の正極活物質としては、スパンの変動係数が17%以下であり、かつ、D50の変動係数が19%以下であり、かつ、前記式(β1)、式(β2)、及び式(β3)で表される値がいずれも1.00%以下であるものが特に好ましい。
 本発明に係る正極活物質は、リチウムとニッケルと任意にリチウム及びニッケル以外の少なくとも1つの他の元素とを含有するリチウムニッケル複合酸化物からなるものであればよく、その組成には特に限定がないが、例えば、下記式(I):
LiNi1-b  (I)
(式中、Mは、Li、Ni、及びO以外の元素、0.95≦a≦1.40、0.2<b<1である)
で表される組成を有することが好ましい。
 前記式(I)中、Li、Ni、及びO以外の元素Mは、特に限定がないが、例えば、コバルト(Co)、アルミニウム(Al)、マンガン(Mn)、チタン(Ti)、マグネシウム(Mg)、亜鉛(Zn)、ニオブ(Nb)、タングステン(W)、モリブデン(Mo)、バナジウム(V)、クロム(Cr)、カルシウム(Ca)、鉄(Fe)、ガリウム(Ga)、ストロンチウム(Sr)、イットリウム(Y)、アンチモン(Sb)、ルテニウム(Ru)、インジウム(In)、錫(Sn)、タンタル(Ta)、ビスマス(Bi)、ジルコニウム(Zr)、ホウ素(B)等である。これらの中でも、特にCo、Al、及びMnの少なくとも1つがMに含まれることが好ましい。
 前記式(I)で表される組成を有する正極活物質において、Liの量a、すなわち、Liの量とNi及び元素Mの合計量との割合(Li/(Ni+M))は、0.95≦a≦1.40、さらには0.95≦a≦1.25、特には0.96≦a≦1.15であることが好ましい。
 前記式(I)で表される組成を有する正極活物質において、Niの量b、すなわち、Niの量とNi及び元素Mの合計量との割合(Ni/(Ni+M))は、0.2<b<1、さらには0.3<b<1、またさらには0.4<b<1、よりさらには0.5<b<1、特には0.8<b<1であることが好ましい。
 本発明に係る正極活物質の特性は、主にその組成によっても異なるので一概には決定することができないが、例えば、全二次粒子のD50、結晶子サイズ、及びLi席占有率が、各々以下に示す範囲の値であることが好ましい。
 体積基準における前記全二次粒子のD50は、目的とする正極活物質の用途によっても異なるが、高充填性による高容量化や、高サイクル特性といった特性を考慮して決定することができ、好ましくは1μm~30μm、さらに好ましくは2μm~25μmである。
 前記結晶子サイズは、得られた正極活物質のXRD回折により算出することができ、所望の組成や一次粒子径及び二次粒子径により調整することができるが、例えば、前記全二次粒子のD50が8μm程度~20μm程度で、Ni含有量が80モル%以上である場合は、50nm~600nmの範囲であることが好ましく、さらに好ましくは60nm~500nm、特に好ましくは60nm~450nmである。一般的に結晶子サイズが小さすぎる場合には、正極活物質の結晶構造が不安定となる恐れがある。また、大きすぎる場合には、正極活物質を正極に用いた非水電解質二次電池の電池特性が低下する恐れがある。
 なお、例えばD50が8μm程度~30μm程度で、かつ、Ni含有量が80モル%を超えるような正極活物質(例えば、前記式(I)におけるbが0.8<b<1である正極活物質)の場合、前記XRD回折により算出される結晶子サイズと前記D50とが同程度の大きさであるとすると、両者の比(結晶子サイズ/D50)が最大値である「1」に近い場合には、一次粒子が過剰な粒成長となっていなことが証明される。該両者の比が小さ過ぎる場合には、一次粒子が結晶成長し過ぎていることが示唆され、電池特性が悪化する恐れがある。
 組成式中のLiが占めるLiサイトにおける前記Li席占有率は、理論上は100%であり、一般的な前駆体複合化合物を用いる場合、前記リチウム化反応が最適であるほど、該Li席占有率は100%に近くなる。一方、例えば前記式(I)で表される組成を有する正極活物質のように、Niを含有する正極活物質を製造する際の焼成時には、主に金属サイトに含有されているNiがNi2+となり、Liサイトに移動してLiと置換する。このようにLiサイトに移動してLiと置換した金属の量をカチオンミキシング量といい、通常は0.1%程度~6.0%程度となることが知られている。これらのことより、本発明の正極活物質において、カチオンミキシング量が0.1%程度~5.0%程度、さらには0.1%程度~4.0%程度であると、焼成時に最適なリチウム化反応が行われたことを意味すると考えられる。
 なお、本明細書において、結晶子サイズ及びLi席占有率は、以下の方法にて正極活物質のXRD回折データを得た後、Rietveld解析を行ってそれぞれ求められる値である。
 X線回折装置[SmartLab、(株)リガク製]を用い、以下のX線回折条件にて正極活物質のXRD回折データを得た後、該XRD回折データを用い、「R.A.Young,ed.,“The Rietveld Method”,Oxford University Press(1992)」を参考にして、Rietveld解析を行った。
(X線回折条件)
線源:Cu-Kα
加速電圧及び電流:45kV及び200mA
サンプリング幅:0.02deg.
走査幅:15deg.~122deg.
スキャンスピード:1.0ステップ/秒
発散スリット:2/3deg.
受光スリット幅:0.15mm
散乱スリット:2/3deg.
<非水電解質二次電池用正極活物質の製造方法>
 本発明に係る非水電解質二次電池用正極活物質は、例えば以下の工程を順次行う方法にて製造することが好ましい。
工程(1):少なくともNiを含有する前駆体複合化合物を合成し、該前駆体複合化合物とリチウム化合物とを混合して混合物を調製する。
工程(2):前記工程(1)で調製した混合物を予備焼成する。
工程(3):前記工程(2)にて予備焼成した混合物を本焼成する。
[工程(1)]
 まず、少なくともNiを含有する一次粒子が集まってなる凝集系である前駆体複合化合物を合成する際に、その方法には特に限定がなく、例えば、ニッケル化合物の水溶液と、目的とする正極活物質の組成に応じた他の元素を含む化合物の水溶液各種とを含む水溶液を、例えば水酸化ナトリウム水溶液、アンモニア溶液等のアルカリ水溶液を母液として撹拌させている反応槽内に滴下し、水酸化ナトリウム等も滴下しながら、pHが適切な範囲となるようにモニタリングして制御し、湿式反応によって共沈させ、例えば水酸化物、該水酸化物を仮焼した酸化物、炭酸塩等として得る方法を採用することができる。
 なお、前記合成に係る反応において、母液となるアルカリ水溶液を準備した状態から、不活性ガスや工業的に好ましくは窒素ガスによって、反応槽内を窒素雰囲気とし、反応槽系内や溶液中の酸素濃度をできる限り低くすることが好ましい。該酸素濃度が高過ぎる場合は、残留した所定量以上の酸素によって共沈した水酸化物が酸化し過ぎる恐れや、晶析による凝集体の形成が妨げられる恐れがある。
 前記ニッケル化合物としては、特に限定がないが、例えば、硫酸ニッケル、酸化ニッケル、水酸化ニッケル、硝酸ニッケル、炭酸ニッケル、塩化ニッケル、ヨウ化ニッケル、及び金属ニッケル等が挙げられる。
 正極活物質を構成する前記他の元素には、特に限定がないが、例えば、前記式(I)中の、Li、Ni、及びO以外の元素Mとして例示した、Co、Al、Mn、Ti、Mg、Zn、Nb、W、Mo、Sb、V、Cr、Ca、Fe、Ga、Sr、Y、Ru、In、Sn、Ta、Bi、Zr、B等が含まれる。
 前記他の元素を含む化合物には、特に限定がないが、例えば、コバルト化合物、アルミニウム化合物、マンガン化合物、チタン化合物、マグネシウム化合物、亜鉛化合物、ニオブ化合物、タングステン化合物等が含まれる。
 前記コバルト化合物としては、特に限定がないが、例えば、硫酸コバルト、酸化コバルト、水酸化コバルト、硝酸コバルト、炭酸コバルト、塩化コバルト、ヨウ化コバルト、及び金属コバルト等が挙げられる。
 前記アルミニウム化合物としては、特に限定がないが、例えば、硫酸アルミニウム、酸化アルミニウム、水酸化アルミニウム、硝酸アルミニウム、炭酸アルミニウム、塩化アルミニウム、ヨウ化アルミニウム、アルミン酸ナトリウム、及び金属アルミニウム等が挙げられる。
 前記マンガン化合物としては、特に限定がないが、例えば、硫酸マンガン、酸化マンガン、水酸化マンガン、硝酸マンガン、炭酸マンガン、塩化マンガン、ヨウ化マンガン、及び金属マンガン等が挙げられる。
 前記チタン化合物としては、特に限定がないが、例えば、硫酸チタニル、酸化チタン、水酸化チタン、硝酸チタン、炭酸チタン、塩化チタン、ヨウ化チタン、及び金属チタン等が挙げられる。
 前記マグネシウム化合物としては、特に限定がないが、例えば、硫酸マグネシウム、酸化マグネシウム、水酸化マグネシウム、硝酸マグネシウム、炭酸マグネシウム、塩化マグネシウム、ヨウ化マグネシウム、及び金属マグネシウム等が挙げられる。
 前記亜鉛化合物としては、特に限定がないが、例えば、硫酸亜鉛、酸化亜鉛、水酸化亜鉛、硝酸亜鉛、炭酸亜鉛、塩化亜鉛、ヨウ化亜鉛、及び金属亜鉛等が挙げられる。
 前記ニオブ化合物としては、特に限定がないが、例えば、酸化ニオブ、塩化ニオブ、ニオブ酸リチウム、ヨウ化ニオブ等が挙げられる。
 前記タングステン化合物としては、特に限定がないが、例えば、酸化タングステン、タングステン酸ナトリウム、パラタングステン酸アンモニウム、ヘキサカルボニルタングステン、硫化タングステン等が挙げられる。
 前記ニッケル化合物と他の元素を含む各種化合物との配合割合は、目的とする正極活物質の組成を考慮して、Niの量と各種他の元素の量とが所望の割合となるように、適宜調整すればよい。
 目的とする正極活物質が、例えば、下記式(I):
LiNi1-b  (I)
(式中、Mは、Li、Ni、及びO以外の元素、0.95≦a≦1.40、0.2<b<1である)
で表される組成を有する場合、Niの量と各種他の元素の量との割合、すなわち、前記式(I)中のbは、0.2<b<1、さらには0.3<b<1、またさらには0.4<b<1、よりさらには0.5<b<1、特には0.8<b<1であることが好ましい。
 前記前駆体複合化合物を合成する際の適切なpHの制御範囲は、所望の二次粒子径や疎密度合いといった形状を得るように決定することができ、一般的には10程度~13程度の範囲となる。
 前記のごとく湿式反応により得られた前駆体複合化合物に対して洗浄処理を行い、脱水後に乾燥処理を行うことが好ましい。
 前記洗浄処理を行うことで、反応中に凝集粒子中に取り込まれたり、表層に付着している硫酸根や炭酸根、Na分といった不純物を洗い流すことができる。洗浄処理には、少量であればブフナー漏斗を用いたヌッチェ洗浄を行う手法や、プレスフィルターに反応後の懸濁液を送液して水洗し、脱水する手法を採用することができる。なお、洗浄処理には、純水、水酸化ナトリウム水溶液、炭酸ナトリウム水溶液等を使用することができるが、工業的に純水を使用することが好ましい。ただし、残留硫酸根が多い場合は、その残留量に応じてpHを制御した水酸化ナトリウム水溶液による洗浄処理を行うこともできる。
 次に、このように合成した前駆体複合化合物とリチウム化合物とを所定の比率で混合して混合物を調製する。該混合は、前駆体複合化合物及びリチウム化合物を各々水溶液等の溶液とし、これらの溶液を所定の割合で混合する溶媒系の混合であってもよく、前駆体複合化合物の粉末とリチウム化合物の粉末とを所定の割合となるように秤量し、これらを乾式にて混合する非溶媒系の混合であってもよい。
 前記リチウム化合物には特に限定がなく、各種のリチウム塩を用いることができる。該リチウム化合物としては、例えば、無水水酸化リチウム、水酸化リチウム・一水和物、硝酸リチウム、炭酸リチウム、酢酸リチウム、臭化リチウム、塩化リチウム、クエン酸リチウム、フッ化リチウム、ヨウ化リチウム、乳酸リチウム、シュウ酸リチウム、リン酸リチウム、ピルビン酸リチウム、硫酸リチウム、及び酸化リチウム等が挙げられる。これらの中でも、無水水酸化リチウム及び水酸化リチウム・一水和物が好ましく、特に無水水酸化リチウムが好ましい。
 前記リチウム化合物と前記前駆体複合化合物との配合割合は、目的とする正極活物質の組成を考慮して、Liの量と、Niの量及び任意に各種他の元素の量の合計量とが、所望の割合となるように、適宜調整すればよい。
 目的とする正極活物質が、例えば前記のとおり、下記式(I):
LiNi1-b  (I)
(式中、Mは、Li、Ni、及びO以外の元素、0.95≦a≦1.40、0.2<b<1である)
で表される組成を有する場合、Liの量と、Niの量及び任意に各種他の元素の量の合計量との割合、すなわち、前記式(I)中のaは、は、0.95≦a≦1.25、さらには0.96≦a≦1.15であることが好ましい。
[工程(2)]
 前記のとおり、少なくともNiを含有する正極活物質を製造する際に、焼成においてリチウム化反応及び結晶成長が行われ、該リチウム化反応は、一定の酸素分圧が必要となる。該リチウム化反応により、リチウムニッケル複合化合物が得られると共に、リチウム化合物として、例えば水酸化リチウムを用いた場合は水(水蒸気)が発生し、例えば炭酸リチウムを用いた場合は炭酸ガスが発生し、その後、昇温して所定の温度とすることで、結晶成長が促される。
 しかし、前記リチウム化反応により発生する水(水蒸気)や炭酸ガスにより、リチウムと反応している複合化合物粒子層への酸素の拡散が妨害され、必要な酸素分圧が損ねられたり、温度ムラが生じてしまう。
 その結果、各二次粒子において、構成する一次粒子の結晶成長にバラツキ(前記バラツキA)が生じたり、二次粒子同士において、一次粒子径にバラツキ(前記バラツキB)が生じてしまう。そして、このようなバラツキ(バラツキA及びバラツキB)が生じると、二次粒子の組成にバラツキ(前記バラツキC)が生じてしまう。
 また、焼成は一般に、リチウム化合物と前駆体複合化合物と必要に応じてM化合物とを秤量し、混合機にて混合することで得られた混合粉を、坩堝や匣鉢といった容器に充填して行うが、リチウム化反応において、特に混合粉が充填された容器下部に近くなるにつれて、発生したガスの外部への排出や、必要な酸素濃度の拡散が困難となる。その結果、前記バラツキが大きくなってしまう。加えて前記バラツキは、例えば、リチウム化合物と前駆体複合化合物との粒径差が大きい場合による混合不良といった、前記混合物の混合度合いによっても大きくなる恐れがある。
 そこで、本発明に係る正極活物質を製造する際には、前記バラツキA及び前記バラツキB双方が充分に抑制され得るように、ひいては前記バラツキCが充分に抑制され得るように、従来のように前記リチウム化合物と前記前駆体複合化合物との混合物を単に焼成するのではなく、まず本工程(2)において以下の所定の条件にて予備焼成した後、さらに後述する工程(3)において所定の条件にて本焼成する方法を採用することが好ましい。
 また、前記予備焼成では、特に前記リチウム化反応を促進させる焼成手法を取り入れることが望ましい。具体的には、混合物に対してより熱がかかり易い状態とし、リチウム化合物より生成されるガスを容易に排出し、かつ、酸素分圧が高いガスを混合物内(粒子内)に拡散させることである。例えば、より少ない混合物を予備焼成することで、本発明における特性を達成することが可能である。
 工程(2)において、前記混合物の予備焼成には、該混合物を匣鉢や坩堝に充填し、静置炉やローラーハースキルン、プッシャー炉で焼成することもできるが、該混合物を流動させながら焼成するロータリーキルンを用いることができる。
 前記ロータリーキルンを用いて予備焼成を行う際の条件には特に限定がないが、例えば、以下の各条件を考慮することが好ましい。
(充填率)
 ロータリーキルンの炉内での混合物の充填率(混合粉の容積/ロータリーキルン内容積で表される百分率)は、ロータリーキルンの種類に応じて、原料(混合物)のガスインプット速度及び滞留時間を変化させることによって調整することができ、滞留時間は、レトルト傾動角及びレトルト回転数を変化させることによって調整することができるが、例えば、5%~40%、さらには5~20%が好ましい。該充填率が高過ぎる場合には、焼成物の品質が低下する恐れがある。該充填率が低過ぎる場合には、充分な生産性が得られない恐れがある。
(レトルト周速度)
 レトルト周速度は、前記レトルト回転数を変化させることによって調整することができ、例えば、1m/min~6m/minの範囲であることが好ましい。該レトルト周速度が低過ぎる場合には、炉内で混合物の粉体層が入れ替わらず、水蒸気が系外に出難くなる恐れがある。該レトルト周速度が高過ぎる場合には、混合物粉体の分離が促進されてしまう恐れがある。
(炉内風速及び露点)
 炉内風速及び露点はいずれも、前記ガスインプット速度を変化させることによって調整することができる。該ガスインプット速度が低く、露点が高過ぎる場合には、特に混合物を投入するレトルト部において結露が起こり、混合物中のリチウム化合物からLiが溶解することによる、一次粒子や二次粒子の不規則な凝集/焼結等が発生し、本発明にあるような粒径を得ることができず、焼成物の品質が低下する恐れがある。該ガスインプット速度が高く、炉内風速が高過ぎる場合には、混合物粉体の選択的飛散(分離)を招く恐れがある。
(昇温速度)
 予備焼成される混合物に対する昇温速度は、ロータリーキルンの温度設定により調整することができる。該昇温速度が低過ぎる場合には、充分な生産性が得られない恐れがある。該昇温速度が高過ぎる場合には、リチウム化反応が不充分で局所的なリチウム化反応が起き、均一性が得られないことから、焼成物の品質が低下する恐れがある。
(最高温度)
 予備焼成される混合物の最高温度は、ロータリーキルンの温度設定(レトルト表面温度設定)により調整することができる。本発明において、目的とする正極活物質が、前記特定範囲のスパンの変動係数及び/又は前記特定範囲のD50の変動係数を有するようにすること、ひいては前記式(β1)、式(β2)、及び式(β3)で表される値がいずれも前記特定範囲となるようにすることを考慮すると、予備焼成される混合物の最高温度は、500℃~650℃、さらには510℃~640℃、特には520℃~630℃に調整されていることが好ましい。該最高温度が前記下限値を下回る場合には、後の本焼成において、焼成物(リチウムニッケル複合酸化物)の品質が低下する恐れがある。該最高温度が前記上限値を上回る場合には、リチウム化反応と並行して結晶成長が進行してしまい、焼成物の品質が低下する恐れがある。予備焼成される混合物の最高温度がこのような範囲となるようにするには、前記混合物の充填率を考慮しながら、ロータリーキルンのレトルト表面温度を、例えば、530℃~800℃、さらには550℃~780℃、特には700℃~750℃となるように設定することが好ましい。
 なお、前記予備焼成される混合物の最高温度は、混合物の調製に用いたリチウム化合物の種類に応じて調整することが好ましく、これにより、混合物中の前駆体複合化合物とリチウム化合物とを確実に反応させて、すなわち、リチウム化反応を確実かつ均一に進行させて、異相を発生させないようにすることができ、前記のごとき目的とする正極活物質を得ることができる。
(炉内付着防止設備)
 予備焼成中にロータリーキルンの炉内で、特に、混合物を投入する入口付近では、水分を含んだ混合物粉体が付着し易くなる場合があるので、付着物が生じた際にこれを効率よく落下させるための、例えばエアノッカー、電磁ノッカー等の外部設備を備えたロータリーキルンを使用することが好ましい。
(リチウム化合物の粒度)
 予備焼成される混合物中のリチウム化合物は、例えば500μmを超える粒径を有するような粗大粒子を含まないように、必要に応じて予め粉砕されていることが好ましい。また、該リチウム化合物の粒度が小さすぎると混合物が嵩高くなるため、ロータリーキルン内で分離し易くなることから、均一性が低下する恐れもあり、加えて、ロータリーキルンでの処理速度が低下することから、生産性が低下する恐れもあるので、適度な粒径となるように調整することが好ましい。
 工程(2)において、予備焼成の雰囲気には特に限定がなく、リチウム化反応が確実かつ均一に進行するような酸化性の雰囲気であればよいが、例えば、炭酸ガス濃度が30ppm以下である脱炭酸の酸化性ガス雰囲気や、酸素濃度が好ましくは80vol%以上、さらに好ましくは90vol%以上といった酸素雰囲気を採用することが好ましい。
 予備焼成の時間にも特に限定がなく、やはりリチウム化反応が確実かつ均一に進行するような時間であればよいが、例えば、1時間~10時間、さらには2時間~8時間であることが好ましい。
[工程(3)]
 前記工程(2)にて予備焼成した混合物を本焼成する際には、確実かつ均一に結晶成長を進行させて、所望の結晶構造を有する正極活物質を得ることが重要である。工程(3)にて本焼成を行うために、例えば、匣鉢や坩堝に混合物を充填して焼成する静置炉、ローラーハースキルン等の設備を用いることもでき、また予備焼成と同様にロータリーキルンを用いることもできるが、結晶化に適した条件を微調整できる焼成炉やその手段を用いることが好ましい。
 工程(3)において、本焼成の雰囲気には特に限定がなく、確実かつ均一な結晶成長が行われ、かつ、焼成する混合物に含有されるNiが還元しないような酸素分圧を有し、好ましくは水分量や炭酸ガス濃度が小さい雰囲気であればよいが、例えば、炭酸ガス濃度が30ppm以下である脱炭酸の酸化性ガス雰囲気や、酸素濃度が好ましくは80vol%以上、さらに好ましくは90vol%以上といった酸素雰囲気を採用することが好ましい。
 本焼成の温度は、予備焼成した混合物の最高温度は、得ようとする正極活物質の組成によって調整することができ、例えばNiの含有量が80モル%を超える正極活物質の場合は、混合物の最高温度は700℃~880℃、さらには710℃~850℃となるように調整することが好ましい。該最高温度が前記下限値を下回る場合には、所望の結晶構造を有する正極活物質が得られず、未反応成分が多く存在して電池特性が損なわれる恐れがある。該最高温度が前記上限値を上回る場合には、結晶成長が進み過ぎて、得られる正極活物質を正極に用いた非水電解質二次電池の電池特性が低下する恐れがある。また、Niの含有量が20モル%~80モル%の正極活物質の場合は、混合物の最高温度が1100℃を超えない温度で焼成することが好ましい。
 本焼成の時間には特に限定がなく、所望の結晶構造を有する正極活物質が得られるのに充分な時間であればよいが、例えば、1時間~15時間、さらには2時間~10時間であることが好ましい。
 前記工程(1)~工程(3)を順に経て得られる正極活物質が、Ni含有量が例えば80モル%以上の高Ni正極活物質(例えば、前記式(I)におけるbが0.8≦b<1である正極活物質)である場合は、Ni含有量が少ない低Ni正極活物質と比べると、未反応であるリチウム化合物や、焼成工程の過程で結晶構造から粒子表層に出てしまうLi化合物分の総和である、粒子表層に残存してしまうLi化合物(以下、残存Li化合物という)の量が多くなる可能性がある。該残存Li化合物の量は、例えば、正極活物質に水洗処理を行うことや、正極活物質の一次粒子及び/又は二次粒子の表面に表面処理を行うことによって低減させることができる。
 加えて、前記工程(1)~工程(3)を順に経て得られる正極活物質が、Ni含有量が低い正極活物質であっても、例えば一般的に一次粒子が小さい形状からなる二次粒子である場合は、その大きな比表面積により、フッ化水素により金属溶出する恐れがあるため、表面処理を行う場合もある。また、大きな形状の一次粒子からなる二次粒子である場合でも、その一次粒子形状を得るために、焼成前にKOH等のいわゆる焼結促進剤を用いる場合もあり、このような焼結促進剤を洗浄するために、水洗処理を行うこともできる。
 前記表面処理の方法には特に限定がなく、例えば、微粒子の酸化アルミニウムを、剪断力をかけながら乾式にて正極活物質の粒子表層に被着させ、その後、300℃~700℃程度で熱処理を行う方法や、硫酸ナトリウムを所定量溶解させた水溶液中に、正極活物質を所定量邂逅させて5分間~10分間程度撹拌し、脱水、乾燥した後、250℃~700℃程度で熱処理を施すことで粒子表層にアルミニウム化合物を被覆させる方法等を採用することができる。また、アルミニウム化合物以外にも、例えばホウ素化合物やタングステン化合物を表面処理に用いることができ、用途に応じて選択することができる。さらに、2種以上の化合物を同時に用いることもできる。
<非水電解質二次電池>
 本発明の非水電解質二次電池は、例えば前記のごとく製造される本発明の正極活物質を含有する正極を備えたものであり、該非水電解質二次電池は、該正極、負極、及び電解質を含む電解液から構成される。
 前記正極を製造する際には、常法に従って、本発明の正極活物質に、導電剤及びバインダーを添加混合する。導電剤としては、例えば、アセチレンブラック、カーボンブラック、黒鉛等が好ましい。バインダーとしては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。
 前記負極には、例えば、リチウム金属、グラファイト、低結晶性炭素材料等の負極活物質だけでなく、Si、Al、Sn、Pb、Zn、Bi、及びCdからなる群より選ばれる少なくとも1種の非金属又は金属元素、それを含む合金もしくはそれを含むカルコゲン化合物も用いることができる。
 前記電解液の溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種を含む有機溶媒を用いることができる。
 前記電解質としては、六フッ化リン酸リチウム(LiPF)以外に、例えば、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種を前記溶媒に溶解して用いることができる。
<作用>
 本発明の正極活物質は、非水電解質二次電池に、長期の充放電サイクルに供した際にも、その粒界部からの割れを抑制できるので、非水電解質二次電池に、充分な電池容量及び優れたサイクル特性を付与することができる。
 以下に、本発明の代表的な実施例と比較例とを挙げて、本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
<製造例1:前駆体複合化合物1の製造>
 硫酸ニッケル水溶液、硫酸コバルト水溶液、及び硫酸アルミニウム水溶液を、NiとCoとAlとの割合(モル比)がNi:Co:Al=90:5:5となるように混合して、混合水溶液を得た。反応槽内には事前に、水酸化ナトリウム水溶液300g及びアンモニア水500gを添加した純水10Lを母液として準備し、0.7L/minの流量の窒素ガスにより反応槽内を窒素雰囲気とし、反応も窒素雰囲気で行った。
 その後、撹拌羽を1000rpmで回転させながら前記混合水溶液と水酸化ナトリウム水溶液及びアンモニア水とを、所定の速度で同時に滴下させ、pHが11となるようにアルカリ溶液の滴下量を調整した晶析反応により、NiとCoとAlとが晶析して凝集粒子を形成するように共沈させ、共沈物を得た。
 その後、反応器内のスラリーを固液分離し、さらに純水にて洗浄することで残留不純物を低減させてから、ケーキ状態となった共沈物を大気環境下にて110℃で12時間乾燥し、前駆体複合化合物1を得た。また、前記レーザ回折式粒子径分布測定装置を用い、該前駆体複合化合物1の平均二次粒子径を測定したところ、10.3μmであった。
<製造例2:前駆体複合化合物2の製造>
 硫酸ニッケル水溶液、硫酸コバルト水溶液、及び硫酸マンガン水溶液を、NiとCoとMnとの割合(モル比)がNi:Co:Mn=85:10:5となるように混合して、混合水溶液を得た。反応槽内には事前に、水酸化ナトリウム水溶液300g及びアンモニア水500gを添加した純水10Lを母液として準備し、0.7L/minの流量の窒素ガスにより反応槽内を窒素雰囲気とし、反応も窒素雰囲気で行った。
 その後、撹拌羽を1000rpmで回転させながら前記混合水溶液と水酸化ナトリウム水溶液及びアンモニア水とを、所定の速度で同時に滴下させ、pHが11となるようにアルカリ溶液の滴下量を調整した晶析反応により、NiとCoとMnとが晶析して凝集粒子を形成するように共沈させ、共沈物を得た。
 その後、反応器内のスラリーを固液分離し、さらに純水にて洗浄することで残留不純物を低減させてから、ケーキ状態となった共沈物を大気環境下にて110℃で12時間乾燥し、前駆体複合化合物2を得た。また、前記レーザ回折式粒子径分布測定装置を用い、該前駆体複合化合物2の平均二次粒子径を測定したところ、9.9μmであった。
<製造例3:前駆体複合化合物3の製造>
 硫酸ニッケル水溶液、硫酸コバルト水溶液、及び硫酸アルミニウム水溶液を、NiとCoとAlとの割合(モル比)がNi:Co:Al=89:6:5となるように混合して、混合水溶液を得た。反応槽内には事前に、水酸化ナトリウム水溶液300g及びアンモニア水500gを添加した純水10Lを母液として準備し、0.7L/minの流量の窒素ガスにより反応槽内を窒素雰囲気とし、反応も窒素雰囲気で行った。
 その後、撹拌羽を1000rpmで回転させながら前記混合水溶液と水酸化ナトリウム水溶液及びアンモニア水とを、所定の速度で同時に滴下させ、pHが11となるようにアルカリ溶液の滴下量を調整した晶析反応により、NiとCoとAlとが晶析して凝集粒子を形成するように共沈させ、共沈物を得た。
 その後、反応器内のスラリーを固液分離し、さらに純水にて洗浄することで残留不純物を低減させてから、ケーキ状態となった共沈物を大気環境下にて110℃で12時間乾燥し、前駆体複合化合物3を得た。また、前記レーザ回折式粒子径分布測定装置を用い、該前駆体複合化合物3の平均二次粒子径を測定したところ、10.7μmであった。
<前駆体複合化合物及び正極活物質の組成>
 前駆体複合化合物及び正極活物質(全二次粒子、小粒子、中粒子、及び大粒子)の組成を、次の方法にて決定した。前駆体複合化合物又は正極活物質0.2gの試料を25mLの20%塩酸溶液中で加熱溶解させ、冷却後100mLメスフラスコに移して、純水を入れ調整液を調製した。該調整液について、ICP-AES[Optima8300、(株)パーキンエルマー製]を用いて各元素を定量した。
<正極活物質を用いたコインセル>
 正極活物質を用いた2032型コインセルを、各々次の方法にて作製した正極、負極、及び電解液を用いて製造した。
(正極)
導電剤としてアセチレンブラック及びグラファイトを、アセチレンブラック:グラファイト=1:1(重量比)で用い、バインダーとしてポリフッ化ビニリデンを用いて、正極活物質、導電剤、及びバインダーを、正極活物質:導電剤:バインダー=90:6:4(重量比)となるように配合し、これらをN-メチルピロリドンに混合したスラリーをアルミニウム箔上に塗布した。これを110℃で乾燥してシートを作製し、このシートを15mmΦに打ち抜いた後、合材の密度が3.0g/cmとなるように圧延したものを正極とした。
(負極)
16mmΦに打ち抜いた厚さ500μmのリチウム箔を負極とした。
(電解液)
炭酸エチレン(EC)及び炭酸ジメチル(DMC)の混合溶媒を、EC:DMC=1:2(体積比)となるように調製し、これに、電解質である1MのLiPFを混合した溶液を電解液とした。
<非水電解質二次電池の初期充電容量及び初期充放電効率>
 前記方法にて製造したコインセルを用い、25℃の環境下で、4.30V(上限電圧)まで20mA/gの電流密度で定電流充電後、電流密度が2mA/gとなるまで定電圧充電を行った。このときの容量を初期充電容量(mAh/g)とした。
 次いで、5分間休止した後、同環境下で、3.00Vまで20mA/gの電流密度で定電流放電を行い、5分間休止して初期放電容量(mAh/g)を測定した。
 前記初期充電容量の測定値及び前記初期放電容量の測定値を用い、下記式に基づいて初期充放電効率を算出した。
初期充放電効率(%)=(初期放電容量/初期充電容量)×100
<非水電解質二次電池のサイクル特性>
 前記方法にて製造したコインセルを用い、60℃の環境下で、4.30V(上限電圧)まで100mA/gの電流密度で定電流充電後、電流密度が2mA/gとなるまで定電圧充電を行った。次いで、5分間休止した後、同環境下で、3.00Vまで200mA/gの電流密度で定電流放電を行い、5分間休止した。この操作を1サイクルとし、100サイクルの充放電を行った。1サイクル目の放電容量の測定値及び100サイクル目の放電容量の測定値を用い、下記式に基づいてサイクル維持率を算出した。
サイクル維持率(%)
 =(100サイクル目の放電容量/1サイクル目の放電容量)×100
<実施例1>
 前記前駆体複合化合物1と無水水酸化リチウムとを、LiとNi、Co、及びAlの合計量との割合(モル比)が、Li/(Ni+Co+Al)=1.02となるように秤量し、混合機を用いてこれらを混合して混合物を調製した。なお、粒径が500μmを超える粗大な無水水酸化リチウム粒子が混合物中に含まれないように、予め粉砕して用いた。
 次いで、レトルト直径が300mmであるロータリーキルンを用いて、酸素雰囲気下(酸素濃度:97vol%)にて、以下の条件で6時間に亘って前記混合物粉体を予備焼成した。
(ロータリーキルン条件)
充填率:20%
レトルト周速度:レトルト回転数を1.3rpmに調整
傾動角:1/100に調整
炉内風速及び露点:ガスインプット速度を50L/minに調整
昇温速度:レトルト表面温度を下記のとおりに設定
混合物紛体の最高温度:600℃
レトルト表面温度:630℃
 次いで、予備焼成後の混合物粉体を、幅300mm、深さ100mmである匣鉢に8kg充填させ、ローラーハースキルンを用いて、酸素雰囲気下(酸素濃度:97vol%)にて、混合物粉体の最高温度が740℃となるように4時間に亘って本焼成し、正極活物質を得た。
 得られた正極活物質について、2000倍のSEM画像にて二次粒子を確認し、10個を抽出した。その後、各粒子について高倍率のSEM画像を得て画像解析を行うことで、一次粒子サイズ分布におけるD50及びスパンを算出した。
<実施例2>
 実施例1において、前記前駆体複合化合物1の代わりに前記前駆体複合化合物2を用い、LiとNi、Co、及びMnの合計量との割合(モル比)が、Li/(Ni+Co+Mn)=1.04となるように秤量して混合物を調製し、混合物粉体の最高温度が630℃になるようにレトルト表面温度を調整した以外は、実施例1と同様にして混合物粉体を予備焼成した。
 次いで、予備焼成後の混合物粉体を、幅300mm、深さ100mmである匣鉢に8kg充填させ、ローラーハースキルンを用いて、酸素雰囲気下(酸素濃度:97vol%)にて、混合物粉体の最高温度が830℃となるように4時間に亘って本焼成し、正極活物質を得た。また、得られた正極活物質について、実施例1と同様にして一次粒子サイズ分布におけるD50及びスパンを算出した。
<比較例1>
 前記前駆体複合化合物1と無水水酸化リチウムとを、LiとNi、Co、及びAlの合計量との割合(モル比)が、Li/(Ni+Co+Al)=1.02となるように秤量し、混合機を用いてこれらを混合して混合物を調製した。なお、粒径が500μmを超える粗大な無水水酸化リチウム粒子が混合物中に含まれないように、予め粉砕して用いた。
 次いで、混合物粉体を幅300mm、深さ100mmである匣鉢に8kg充填させ、ローラーハースキルンを用いて、酸素雰囲気下(酸素濃度:97vol%)にて、混合物粉体の最高温度が600℃となるように5時間に亘って、混合物粉体を予備焼成した。
 次いで、そのままローラーハースキルンを用い、同じ酸素雰囲気下にて、混合物粉体の最高温度が740℃となるように4時間に亘って、予備焼成後の混合物粉体を本焼成し、正極活物質を得た。また、得られた正極活物質について、実施例1と同様にして一次粒子サイズ分布におけるD50及びスパンを算出した。
<比較例2>
 比較例1において、前記前駆体複合化合物1の代わりに前記前駆体複合化合物2を用い、LiとNi、Co、及びMnの合計量との割合(モル比)が、Li/(Ni+Co+Mn)=1.04となるように秤量して混合物を調製し、混合物粉体の最高温度が630℃となるように調整した以外は、比較例1と同様にして混合物粉体を予備焼成した。
 次いで、そのままローラーハースキルンを用い、同じ酸素雰囲気下にて、混合物粉体の最高温度が830℃となるように4時間に亘って、予備焼成後の混合物粉体を本焼成し、正極活物質を得た。また、得られた正極活物質について、実施例1と同様にして一次粒子サイズ分布におけるD50及びスパンを算出した。
 実施例1~2及び比較例1~2における焼成条件を表1に纏めて示す。
 実施例1~2及び比較例1~2で得られた正極活物質の特性として、一次粒子のD50、スパンの変動係数、及びD50の変動係数、全二次粒子のD50、結晶子サイズ、並びに、Li席占有率を、各々前記方法にしたがって求めた。これらの結果を表2に示す。
 また、実施例1~2及び比較例1~2で得られた正極活物質を正極に用いた非水電解質二次電池の電池特性として、初期充電容量、初期充放電効率、及びサイクル維持率を、各々前記方法にしたがって求めた。これらの結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例1~2の正極活物質は、スパンの変動係数が15%未満と非常に小さく、10個以上の二次粒子において、一次粒子の分布のバラツキが充分に抑制されており、かつ、D50の変動係数も10%未満と非常に小さく、10個以上の二次粒子間で、一次粒子径のバラツキが充分に抑制されたものである。
 その結果、実施例1~2では、焼成後の二次粒子中の一次粒子の大きさは、二次粒子に依らず略同等であることが示されており、Li席占有率が高く、前述した通り、粒子や粒界における脆弱な部分が少ないことが示唆される。
 したがって、実施例1の正極活物質は比較例1の正極活物質と比べて、また、実施例2の正極活物質は比較例2の正極活物質と比べて、略同等の初期充電容量及び初期充放電効率を維持しながら、非常に優れたサイクル特性を示している。
<実施例3>
 前記前駆体複合化合物3と無水水酸化リチウムとを、LiとNi、Co、及びAlの合計量との割合(モル比)が、Li/(Ni+Co+Al)=1.021となるように秤量し、混合機を用いてこれらを混合して混合物を調製した。なお、粒径が500μmを超える粗大な無水水酸化リチウム粒子が混合物中に含まれないように、予め粉砕して用いた。
 次いで、レトルト直径が300mmであるロータリーキルンを用いて、酸素雰囲気下(酸素濃度:97vol%)にて、以下の条件で4時間に亘って前記混合物粉体を予備焼成した。
(ロータリーキルン条件)
充填率:7%
レトルト周速度:レトルト回転数を1.3rpmに調整
傾動角:1/100に調整
炉内風速及び露点:ガスインプット速度を50L/minに調整
昇温速度:レトルト表面温度を下記のとおりに設定
混合物紛体の最高温度:610℃
レトルト表面温度:635℃
 次いで、予備焼成後の混合物粉体を、幅300mm、深さ100mmである匣鉢に8kg充填させ、ローラーハースキルンを用いて、酸素雰囲気下(酸素濃度:97vol%)にて、混合物粉体の最高温度が750℃となるように4時間に亘って本焼成し、正極活物質を得た。
<実施例4>
 実施例3において、ロータリーキルン条件のうち、充填率を15%に変更した以外は、実施例3と同様にして正極活物質を得た。
<比較例3>
 前記前駆体複合化合物3と無水水酸化リチウムとを、LiとNi、Co、及びAlの合計量との割合(モル比)が、Li/(Ni+Co+Al)=1.025となるように秤量し、混合機を用いてこれらを混合して混合物を調製した。なお、粒径が500μmを超える粗大な無水水酸化リチウム粒子が混合物中に含まれないように、予め粉砕して用いた。
 次いで、混合物粉体を幅300mm、深さ100mmである匣鉢に8kg充填させ、ローラーハースキルンを用いて、酸素雰囲気下(酸素濃度:97vol%)にて、混合物粉体の最高温度が600℃となるように4時間に亘って、混合物粉体を予備焼成した。
 次いで、そのままローラーハースキルンを用い、同じ酸素雰囲気下にて、混合物粉体の最高温度が750℃となるように4時間に亘って、予備焼成後の混合物粉体を本焼成し、正極活物質を得た。
 実施例3~4及び比較例3における焼成条件を表4に纏めて示す。
 実施例3~4及び比較例3で得られた正極活物質について、二次粒子サイズ分布におけるD50、D10、D90、及びスパンを算出した。また、篩(16μm目開きメッシュ及び20μm目開きメッシュ:ISO3301-1/JIS Z-8801に準拠した仕様)を用いて各々所定の粒子径を有する小粒子、中粒子、及び大粒子を得た後、これら小粒子、中粒子、及び大粒子の二次粒子サイズ分布におけるD50を算出した。さらに、元素比1、元素比21、元素比22、及び元素比23を求めた後、前記式(β1)、式(β2)、及び式(β3)で表される値を算出した。また、元素比21、元素比22、及び元素比23から変動係数も求めた。さらに、結晶子サイズも求めた。これらの結果を表5及び表6に示す。
 また、実施例3~4及び比較例3で得られた正極活物質を正極に用いた非水電解質二次電池の電池特性として、初期充電容量、初期充放電効率、及びサイクル維持率を、各々前記方法にしたがって求めた。これらの結果を表7に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 実施例3~4の正極活物質は、式(β1)、式(β2)、及び式(β3)で表される値が、いずれも1.00%以下と非常に小さく、二次粒子において組成のバラツキが充分に抑制されたものである。なお、実施例3~4の正極活物質は、二次粒子サイズ分布についてスパンが0.95程度で比較的ブロードなものである。一般的にはブロードである方が小粒子と大粒子とのバラツキが大きくなる傾向が見られるのに対し、本発明ではバラツキの抑制を達成できた。そのため、二次粒子サイズ分布についてスパンが0.5程度のシャープな正極活物質は、一般的には焼成等のバラツキが発生し難いことから、このようなバラツキの抑制が達成され得ると予想される。
 したがって、実施例3~4の正極活物質は比較例3の正極活物質と比べて、略同等の初期充電容量及び初期充放電効率を維持しながら、非常に優れたサイクル特性を示している。
 本発明に係る正極活物質は、充分な電池容量及び優れたサイクル特性を付与することができるので、非水電解質二次電池の正極に好適である。

Claims (4)

  1.  リチウムとニッケルと任意にリチウム及びニッケル以外の少なくとも1つの他の元素とを含有するリチウムニッケル複合酸化物からなる正極活物質であって、
     前記リチウムニッケル複合酸化物の二次粒子を構成する一次粒子について、下記式(α):
    (D90-D10)/D50  (α)
    (式中、
    10:個数基準の一次粒子サイズの粒子径分布の積算値が10%に相当する粒子径
    50:個数基準の一次粒子サイズの粒子径分布の積算値が50%に相当する粒子径(平均粒子径)
    90:個数基準の一次粒子サイズの粒子径分布の積算値が90%に相当する粒子径
    である)
    で表されるスパンの変動係数が17%以下であることを特徴とする、非水電解質二次電池用正極活物質。
  2.  リチウムとニッケルと任意にリチウム及びニッケル以外の少なくとも1つの他の元素とを含有するリチウムニッケル複合酸化物からなる正極活物質であって、
     前記リチウムニッケル複合酸化物の二次粒子を構成する一次粒子について、D50(個数基準の一次粒子サイズの粒子径分布の積算値が50%に相当する粒子径(平均粒子径))の変動係数が19%以下であることを特徴とする、非水電解質二次電池用正極活物質。
  3.  リチウムとニッケルと任意にリチウム及びニッケル以外の少なくとも1つの他の元素とを含有するリチウムニッケル複合酸化物からなる正極活物質であって、
     前記リチウムニッケル複合酸化物の二次粒子について、下記式(β1)、式(β2)、及び式(β3):
    |[(元素比1-元素比21)/元素比1]|×100  (β1)
    |[(元素比1-元素比22)/元素比1]|×100  (β2)
    |[(元素比1-元素比23)/元素比1]|×100  (β3)
    (式中、
    元素比1:全二次粒子の元素比
    元素比22:全二次粒子のD50(体積基準の二次粒子サイズの粒子径分布の積算値が50%に相当する粒子径(平均粒子径))に対して±3μmの範囲内の粒子径を有する中粒子の元素比
    元素比21:中粒子よりも小さい粒子径を有する小粒子の元素比
    元素比23:中粒子よりも大きい粒子径を有する大粒子の元素比
    であり、元素比は、リチウムの量とニッケル及び前記他の元素の合計量との割合(リチウム/(ニッケル+他の元素))を示す)
    で表される値がいずれも1.00%以下であることを特徴とする、非水電解質二次電池用正極活物質。
  4.  請求項1~3のいずれか1つに記載の正極活物質を含有する正極を備えた、非水電解質二次電池。
PCT/JP2021/029259 2020-08-07 2021-08-06 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 WO2022030608A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021571952A JP7038266B1 (ja) 2020-08-07 2021-08-06 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
CN202180058059.4A CN116057729A (zh) 2020-08-07 2021-08-06 非水电解质二次电池用正极活性物质及使用其的非水电解质二次电池
CA3188257A CA3188257A1 (en) 2020-08-07 2021-08-06 Positive electrode active material for non-aqueous electrolyte secondarybattery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR1020237007494A KR20230048520A (ko) 2020-08-07 2021-08-06 비수전해질 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 비수전해질 이차전지
EP21852181.3A EP4195325A1 (en) 2020-08-07 2021-08-06 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
US18/165,252 US20230178729A1 (en) 2020-08-07 2023-02-06 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-135158 2020-08-07
JP2020135158 2020-08-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/165,252 Continuation US20230178729A1 (en) 2020-08-07 2023-02-06 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Publications (1)

Publication Number Publication Date
WO2022030608A1 true WO2022030608A1 (ja) 2022-02-10

Family

ID=78028323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029259 WO2022030608A1 (ja) 2020-08-07 2021-08-06 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池

Country Status (7)

Country Link
US (1) US20230178729A1 (ja)
EP (1) EP4195325A1 (ja)
JP (2) JP6936909B1 (ja)
KR (1) KR20230048520A (ja)
CN (1) CN116057729A (ja)
CA (1) CA3188257A1 (ja)
WO (1) WO2022030608A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115547A1 (ja) * 2014-01-31 2015-08-06 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP6075440B2 (ja) 2013-02-28 2017-02-08 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池
WO2019194150A1 (ja) 2018-04-02 2019-10-10 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
JP2020035625A (ja) * 2018-08-29 2020-03-05 株式会社田中化学研究所 二次電池用正極活物質粒子及び二次電池用正極活物質粒子の製造方法
US20200099045A1 (en) * 2018-09-24 2020-03-26 Uchicago Argonne, Llc Tangent gradient concentration material for battery, digital gradient concentration material for battery
CN111082042A (zh) * 2018-10-21 2020-04-28 圣戈莱(北京)科技有限公司 锂离子电池用三元正极材料微米单晶结构及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260655A (ja) * 2001-02-28 2002-09-13 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質の製造方法
JP2005336004A (ja) * 2004-05-26 2005-12-08 Mitsubishi Chemicals Corp ニッケルマンガンコバルト系複合酸化物、層状リチウムニッケルマンガンコバルト系複合酸化物及びリチウム二次電池正極材料とそれを用いたリチウム二次電池用正極、並びにリチウム二次電池
WO2013073633A1 (ja) * 2011-11-16 2013-05-23 Agcセイミケミカル株式会社 リチウム含有複合酸化物の製造方法
JP6857482B2 (ja) * 2016-10-13 2021-04-14 住友化学株式会社 リチウム二次電池用正極活物質の製造方法
JP6849812B2 (ja) * 2017-08-28 2021-03-31 三井金属鉱業株式会社 全固体型リチウム二次電池用正極活物質
JP7371364B2 (ja) * 2018-06-27 2023-10-31 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075440B2 (ja) 2013-02-28 2017-02-08 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池
WO2015115547A1 (ja) * 2014-01-31 2015-08-06 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
WO2019194150A1 (ja) 2018-04-02 2019-10-10 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
JP2020035625A (ja) * 2018-08-29 2020-03-05 株式会社田中化学研究所 二次電池用正極活物質粒子及び二次電池用正極活物質粒子の製造方法
US20200099045A1 (en) * 2018-09-24 2020-03-26 Uchicago Argonne, Llc Tangent gradient concentration material for battery, digital gradient concentration material for battery
CN111082042A (zh) * 2018-10-21 2020-04-28 圣戈莱(北京)科技有限公司 锂离子电池用三元正极材料微米单晶结构及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"The Rietveld Method", 1992, OXFORD UNIVERSITY PRESS

Also Published As

Publication number Publication date
JP7038266B1 (ja) 2022-03-17
JP6936909B1 (ja) 2021-09-22
CA3188257A1 (en) 2022-02-10
EP4195325A1 (en) 2023-06-14
JPWO2022030608A1 (ja) 2022-02-10
KR20230048520A (ko) 2023-04-11
US20230178729A1 (en) 2023-06-08
JP2022031070A (ja) 2022-02-18
CN116057729A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
JP6428105B2 (ja) ニッケルコバルトマンガン化合物及びその製造方法
JP6201895B2 (ja) ニッケルコバルトマンガン複合水酸化物の製造方法
JP5464348B2 (ja) 非水系電解質二次電池正極活物質用ニッケル−コバルト複合水酸化物およびその製造方法、ならびに該ニッケル−コバルト複合水酸化物を用いた非水系電解質二次電池正極活物質の製造方法
JP6341313B2 (ja) 非水系電解質二次電池用正極活物質の製造方法
JP2017530086A (ja) リチウム・ニッケル・マンガン・コバルト酸化物カソード材料用のカーボネート前駆体及びその製造方法
JP5811383B2 (ja) 非水系電解質二次電池用正極活物質と該正極活物質を用いた非水系電解質二次電池
JP2021068701A (ja) リチウム二次電池用正極活物質、その製造方法、及びこれを含むリチウム二次電池
JP6968844B2 (ja) 非水電解質二次電池用の正極活物質粒子及びその製造方法、並びに非水電解質二次電池
JP2019023148A (ja) 遷移金属水酸化物粒子の製造方法、リチウム遷移金属複合酸化物の製造方法、リチウム二次電池用正極の製造方法、及びリチウム二次電池の製造方法、並びに遷移金属水酸化物粒子
CN110799460B (zh) 掺杂有铝的β-氢氧化镍
US20230104888A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
KR20230019838A (ko) 미립자 (옥시)히드록시드의 제조 방법
JP5206948B2 (ja) オキシ水酸化コバルト粒子粉末及びその製造法
JP6245081B2 (ja) ニッケルコバルトマンガン複合水酸化物とその製造方法
JP7338133B2 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP7038266B1 (ja) 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
WO2021235470A1 (ja) 非水電解質二次電池用正極活物質の製造方法
WO2023157525A1 (ja) 正極活物質粒子の処理方法、並びに正極活物質及びそれを用いた非水電解質二次電池
WO2023095548A1 (ja) 遷移金属含有水酸化物、遷移金属含有水酸化物を前駆体とした正極活物質、遷移金属含有水酸化物の製造方法
JP7070250B2 (ja) 水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法
WO2023242375A1 (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
WO2024014558A1 (ja) 金属複合水酸化物及びリチウム二次電池用正極活物質の製造方法
WO2024115679A1 (en) Method for treating positive electrode active material particles, and positive electrode active material and nonaqueous electrolyte secondary battery employing same
KR20240151779A (ko) 양극 활물질 입자의 처리 방법, 및 양극 활물질 및 이를 이용한 비수성 전해질 이차 배터리
WO2024160969A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021571952

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852181

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3188257

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20237007494

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021852181

Country of ref document: EP

Effective date: 20230307