WO2022030608A1 - 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 - Google Patents
非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 Download PDFInfo
- Publication number
- WO2022030608A1 WO2022030608A1 PCT/JP2021/029259 JP2021029259W WO2022030608A1 WO 2022030608 A1 WO2022030608 A1 WO 2022030608A1 JP 2021029259 W JP2021029259 W JP 2021029259W WO 2022030608 A1 WO2022030608 A1 WO 2022030608A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- particle size
- lithium
- active material
- electrode active
- Prior art date
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 156
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims description 42
- 239000002245 particle Substances 0.000 claims abstract description 171
- 239000011163 secondary particle Substances 0.000 claims abstract description 129
- 239000011164 primary particle Substances 0.000 claims abstract description 91
- 239000002131 composite material Substances 0.000 claims abstract description 74
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 63
- 238000009826 distribution Methods 0.000 claims abstract description 56
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 43
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 113
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 54
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 claims description 35
- 230000001186 cumulative effect Effects 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 97
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 54
- 238000010304 firing Methods 0.000 description 38
- 229910052760 oxygen Inorganic materials 0.000 description 38
- 239000002243 precursor Substances 0.000 description 36
- 150000001875 compounds Chemical class 0.000 description 35
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 33
- 239000001301 oxygen Substances 0.000 description 33
- 239000007864 aqueous solution Substances 0.000 description 32
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- 239000013078 crystal Substances 0.000 description 30
- 238000006243 chemical reaction Methods 0.000 description 26
- 150000002642 lithium compounds Chemical class 0.000 description 26
- 239000000843 powder Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 239000012298 atmosphere Substances 0.000 description 19
- 229910052782 aluminium Inorganic materials 0.000 description 18
- 239000007789 gas Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 15
- -1 Nickel cobalt aluminum Chemical compound 0.000 description 14
- 239000011572 manganese Substances 0.000 description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- 230000007774 longterm Effects 0.000 description 11
- 238000011049 filling Methods 0.000 description 10
- 239000011812 mixed powder Substances 0.000 description 10
- 229910052748 manganese Inorganic materials 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000005336 cracking Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 description 7
- 229940125904 compound 1 Drugs 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000012299 nitrogen atmosphere Substances 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000002344 surface layer Substances 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 229940125782 compound 2 Drugs 0.000 description 5
- 229940126214 compound 3 Drugs 0.000 description 5
- 239000006258 conductive agent Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 239000012452 mother liquor Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- PFYQFCKUASLJLL-UHFFFAOYSA-N [Co].[Ni].[Li] Chemical compound [Co].[Ni].[Li] PFYQFCKUASLJLL-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical group [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 4
- 229940044175 cobalt sulfate Drugs 0.000 description 4
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 150000002816 nickel compounds Chemical class 0.000 description 4
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 4
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 241000683250 Argentinidae Species 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 241000209094 Oryza Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 238000003991 Rietveld refinement Methods 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 3
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000002447 crystallographic data Methods 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 238000010191 image analysis Methods 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 150000003658 tungsten compounds Chemical class 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000007600 charging Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 150000001869 cobalt compounds Chemical class 0.000 description 2
- 238000010280 constant potential charging Methods 0.000 description 2
- 238000010277 constant-current charging Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- PPQREHKVAOVYBT-UHFFFAOYSA-H dialuminum;tricarbonate Chemical compound [Al+3].[Al+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O PPQREHKVAOVYBT-UHFFFAOYSA-H 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 150000002681 magnesium compounds Chemical class 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 150000002697 manganese compounds Chemical class 0.000 description 2
- 229940099596 manganese sulfate Drugs 0.000 description 2
- 239000011702 manganese sulphate Substances 0.000 description 2
- 235000007079 manganese sulphate Nutrition 0.000 description 2
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000004682 monohydrates Chemical class 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 150000002822 niobium compounds Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 150000003609 titanium compounds Chemical class 0.000 description 2
- QDZRBIRIPNZRSG-UHFFFAOYSA-N titanium nitrate Chemical compound [O-][N+](=O)O[Ti](O[N+]([O-])=O)(O[N+]([O-])=O)O[N+]([O-])=O QDZRBIRIPNZRSG-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 150000003752 zinc compounds Chemical class 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- UAYWVJHJZHQCIE-UHFFFAOYSA-L zinc iodide Chemical compound I[Zn]I UAYWVJHJZHQCIE-UHFFFAOYSA-L 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- MCPIIUKZBQXOSD-UHFFFAOYSA-N 2-hydroxypropanoic acid;lithium Chemical compound [Li].CC(O)C(O)=O MCPIIUKZBQXOSD-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000252203 Clupea harengus Species 0.000 description 1
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical group [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 1
- XXIKIQHIUJSWHB-UHFFFAOYSA-N [Ni].[Ni]=O.[Li] Chemical compound [Ni].[Ni]=O.[Li] XXIKIQHIUJSWHB-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- CECABOMBVQNBEC-UHFFFAOYSA-K aluminium iodide Chemical compound I[Al](I)I CECABOMBVQNBEC-UHFFFAOYSA-K 0.000 description 1
- 229940118662 aluminum carbonate Drugs 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 150000001786 chalcogen compounds Chemical class 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 1
- AVWLPUQJODERGA-UHFFFAOYSA-L cobalt(2+);diiodide Chemical compound [Co+2].[I-].[I-] AVWLPUQJODERGA-UHFFFAOYSA-L 0.000 description 1
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002180 crystalline carbon material Substances 0.000 description 1
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- YNQRWVCLAIUHHI-UHFFFAOYSA-L dilithium;oxalate Chemical compound [Li+].[Li+].[O-]C(=O)C([O-])=O YNQRWVCLAIUHHI-UHFFFAOYSA-L 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 235000019514 herring Nutrition 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 229940071264 lithium citrate Drugs 0.000 description 1
- WJSIUCDMWSDDCE-UHFFFAOYSA-K lithium citrate (anhydrous) Chemical compound [Li+].[Li+].[Li+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O WJSIUCDMWSDDCE-UHFFFAOYSA-K 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- OFJHGWPRBMPXCX-UHFFFAOYSA-M lithium;2-oxopropanoate Chemical compound [Li+].CC(=O)C([O-])=O OFJHGWPRBMPXCX-UHFFFAOYSA-M 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- BLQJIBCZHWBKSL-UHFFFAOYSA-L magnesium iodide Chemical compound [Mg+2].[I-].[I-] BLQJIBCZHWBKSL-UHFFFAOYSA-L 0.000 description 1
- 229910001641 magnesium iodide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000011656 manganese carbonate Substances 0.000 description 1
- 235000006748 manganese carbonate Nutrition 0.000 description 1
- 229940093474 manganese carbonate Drugs 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- IPJKJLXEVHOKSE-UHFFFAOYSA-L manganese dihydroxide Chemical compound [OH-].[OH-].[Mn+2] IPJKJLXEVHOKSE-UHFFFAOYSA-L 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 1
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 1
- QWYFOIJABGVEFP-UHFFFAOYSA-L manganese(ii) iodide Chemical compound [Mn+2].[I-].[I-] QWYFOIJABGVEFP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- BFSQJYRFLQUZKX-UHFFFAOYSA-L nickel(ii) iodide Chemical compound I[Ni]I BFSQJYRFLQUZKX-UHFFFAOYSA-L 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- YHBDIEWMOMLKOO-UHFFFAOYSA-I pentachloroniobium Chemical compound Cl[Nb](Cl)(Cl)(Cl)Cl YHBDIEWMOMLKOO-UHFFFAOYSA-I 0.000 description 1
- FWIYBTVHGYLSAZ-UHFFFAOYSA-I pentaiodoniobium Chemical compound I[Nb](I)(I)(I)I FWIYBTVHGYLSAZ-UHFFFAOYSA-I 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- NLLZTRMHNHVXJJ-UHFFFAOYSA-J titanium tetraiodide Chemical compound I[Ti](I)(I)I NLLZTRMHNHVXJJ-UHFFFAOYSA-J 0.000 description 1
- FOZHTJJTSSSURD-UHFFFAOYSA-J titanium(4+);dicarbonate Chemical compound [Ti+4].[O-]C([O-])=O.[O-]C([O-])=O FOZHTJJTSSSURD-UHFFFAOYSA-J 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
- 229940007718 zinc hydroxide Drugs 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229960001296 zinc oxide Drugs 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/60—Compounds characterised by their crystallite size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention comprises a positive electrode active material for a non-aqueous electrolyte secondary battery capable of imparting sufficient battery capacity and excellent cycle characteristics to the non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary using the positive electrode active material. Regarding the next battery.
- lithium ion secondary batteries having a large charge / discharge capacity, which use a material such as lithium cobalt oxide or lithium nickel nickel oxide for the positive electrode, are often used.
- NCM nickel-cobalt manganese
- a container is filled with at least a mixture of a lithium compound and a precursor compound of the positive positive active material, and a lithium conversion reaction is carried out. And crystallization is performed.
- the lithium conversion reaction is a reaction between a metal hydroxide or a metal oxide and a lithium compound such as LiOH, and is a reaction when, for example, LiOH is used. As shown below, a certain amount of oxygen is added. I need.
- water water vapor
- the molten LiOH inhibits the reaction with lithium in the composite compound particle layer in the composite compound particle layer filled in the container, and the compound compound and the composite compound particle layer.
- the diffusion of necessary oxygen into the composite compound particle layer filled in the container is hindered, and temperature unevenness is likely to occur.
- the growth and crystal growth of the constituent primary particles vary in each secondary particle, and the primary particle diameter varies among the secondary particles.
- Patent Document 1 a mixture of a nickel-cobalt composite oxide and a lithium compound is filled in a firing container, pre-baked at a firing temperature of 500 ° C. or higher and 600 ° C. or lower, and then pre-baked at a firing temperature of 680 ° C. or higher and 780 ° C. or lower.
- a lithium nickel-cobalt composite oxide which can be obtained by firing and is composed of secondary particles in which a plurality of primary particles of 1 ⁇ m or less are aggregated to form a spherical shape is described.
- Patent Document 2 describes that a composite hydroxide obtained by a co-precipitation reaction and a lithium compound are mixed and subjected to two stages of temporary firing at, for example, 500 ° C. to 900 ° C. and main firing at, for example, 800 ° C. to 1200 ° C. It can be manufactured by firing, has a composition of secondary particles in which primary particles are aggregated, has an average particle diameter (D1) of 0.9 ⁇ m or less, and has a standard deviation ( ⁇ ) of D1 and D1. Describes a positive electrode active material for a non-aqueous electrolyte secondary battery that satisfies the relationship of D1 / ⁇ 2 ⁇ 24.
- the lithium nickel-cobalt composite oxide described in Patent Document 1 When the lithium nickel-cobalt composite oxide described in Patent Document 1 is obtained, two-step firing is performed, but the non-uniformity of the flow effect due to the lithium compound is not sufficiently eliminated, and oxygen diffusion also occurs. Insufficient and easy to cause temperature unevenness. Therefore, the obtained lithium nickel-cobalt composite oxide has variations in the crystal growth of the primary particles and variations in the primary particle diameter among the secondary particles, and is used for the positive electrode of the lithium ion secondary battery. At that time, cracks occur from the grain boundary due to the charge / discharge cycle.
- the positive electrode active material described in Patent Document 2 can be obtained through two-step firing, preferably in order to adjust the crystallite size and obtain high uniformity of the primary particles in the secondary particles. Similar to the lithium nickel-cobalt composite oxide described in Patent Document 1, no discussion has been made on the entire secondary particles, that is, the crystal growth of the primary particles varies, and the primary particle diameters among the secondary particles are different. When used for the positive electrode of a lithium ion secondary battery, there is a risk that cracks are likely to occur from the grain boundary portion due to the charge / discharge cycle, depending on the secondary particles.
- the present invention has been made in view of the above-mentioned conventional problems, and an object thereof is a positive electrode active material capable of imparting a sufficient battery capacity and excellent cycle characteristics to a non-aqueous electrolyte secondary battery. Is to provide a non-aqueous electrolyte secondary battery using.
- the fluctuation coefficient related to the particle size of the primary particles constituting the secondary particles of the lithium nickel composite oxide is adjusted to a specific range, and the lithium nickel composite oxide is also obtained.
- the positive electrode active material was constructed by adjusting the value related to the composition of the secondary particles of No. 1 to a specific range.
- the positive electrode active material for a non-aqueous electrolyte secondary battery (hereinafter, also referred to as positive electrode active material A) according to the present invention is It consists of a lithium-nickel composite oxide containing lithium, nickel and optionally at least one other element other than lithium and nickel.
- the positive electrode active material for a non-aqueous electrolyte secondary battery (hereinafter, also referred to as positive electrode active material B) according to the present invention is It consists of a lithium-nickel composite oxide containing lithium, nickel and optionally at least one other element other than lithium and nickel.
- positive electrode active material B consists of a lithium-nickel composite oxide containing lithium, nickel and optionally at least one other element other than lithium and nickel.
- the variation of D150 the particle size (average particle size) corresponding to the integrated value of the particle size distribution of the primary particle size based on the number of pieces is 50%). It is characterized in that the coefficient is 19% or less.
- the positive electrode active material for a non-aqueous electrolyte secondary battery (hereinafter, also referred to as positive electrode active material C) according to the present invention is It consists of a lithium-nickel composite oxide containing lithium, nickel and optionally at least one other element other than lithium and nickel.
- the non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode containing at least one of the positive electrode active material A, the positive electrode active material B, and the positive electrode active material C.
- At least two of the said "positive electrode active material A”, the said “positive electrode active material B”, and the said “positive electrode active material C” are combined, and simply "positive electrode activity for a non-aqueous electrolyte secondary battery". Also referred to as “substance” or “positive electrode active material”. Further, the "number-based primary particle size particle size distribution” is also simply referred to as “primary particle size distribution”, and the "volume-based secondary particle size particle size distribution” is simply referred to as “secondary particle size distribution”. Also called.
- the non-aqueous electrolyte secondary battery even when subjected to a long-term charge / discharge cycle, cracks do not occur from the grain boundary portion (which is the surface layer portion of the primary particle) in the secondary particle, and the non-aqueous electrolyte secondary battery can be used.
- a positive electrode active material for a non-aqueous electrolyte secondary battery capable of imparting sufficient battery capacity and excellent cycle characteristics, and a non-aqueous electrolyte secondary battery using the same can be provided.
- the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention comprises a lithium nickel composite oxide containing lithium (Li), nickel (Ni), and optionally at least one other element other than Li and Ni. ..
- the primary particles constituting the secondary particles of the lithium nickel composite oxide have the following feature 1 (positive electrode active material A and positive electrode active material B), and the secondary particles of the lithium nickel composite oxide are: It has the following feature 2 (positive electrode active material C).
- a positive electrode active material composed of a lithium composite oxide in which these variations are sufficiently suppressed is applied to the positive electrode of a non-aqueous electrolyte secondary battery and subjected to a long-term charge / discharge cycle, a large load is applied to any of the secondary particles. Is not applied, and the possibility of cracking from the grain boundary in the secondary particles is extremely low. As a result, the non-aqueous electrolyte secondary battery can maintain excellent cycle characteristics.
- the portion where cracks can occur is suppressed when pressurizing the positive electrode when manufacturing the electrode, so that it can withstand high pressurization and per volume.
- the amount of positive electrode active material can be increased, and the capacity can be increased.
- the variation A that is, suppressing the variation in the particle growth and crystal growth of the constituent primary particles in each secondary particle sharpens the distribution of the primary particles existing in each secondary particle (primary particle size).
- the distribution is sharp), and the lithium composite oxide present in each secondary particle with a sharp distribution of the primary particle size has a small variation in the composition and bonding state of the grain boundary, that is, the grain boundary.
- the starting point of cracking from the grain boundary portion is extremely small in such a lithium composite oxide.
- suppressing the variation B is the ratio of Li to the metal compound in the lithium formation and the degree of firing in the crystal growth in each secondary particle.
- the average particle size of the primary particles is to be substantially equivalent.
- particle cracking may occur during a long-term charge / discharge cycle or long-term storage in a charged state, or a positive electrode active material. It is considered that there are almost no secondary particles that can be a kind of weak point such that the metal element existing inside is eluted in the electrolytic solution.
- the positive electrode active material A according to the present invention focuses on suppressing the variation A.
- D 1 10 Particle diameter corresponding to the integrated value of the primary particle size distribution of 10%
- D 1 50 Particle diameter corresponding to the integrated value of the primary particle size distribution of 50% (average particle diameter)
- D 1 90 Particle diameter corresponding to 90% of the integrated value of the primary particle size distribution
- the span represented by (span, no unit) indicates the sharpness of the primary particle size distribution, and indicates whether or not a uniform lithium reaction and uniform crystal growth have been performed.
- the coefficient of variation of the span is specified for the primary particles constituting the secondary particles of the lithium nickel composite oxide.
- the magnitude of the coefficient of variation of the span is a measure of whether or not the lithium reaction and crystal growth in the individual secondary particles proceeded equally. If the spans of the N secondary particles are equivalent, it can be interpreted that the same lithiumization reaction and crystal growth have been performed in the individual secondary particles, and the coefficient of variation of the span approaches 0%.
- the N pieces are, for example, 10 or more, which will be described later.
- the positive electrode active material of the present invention composed of a lithium nickel composite oxide containing subatomic particles does not crack from the grain boundary in the secondary particles even when subjected to a long-term charge / discharge cycle, and is a non-aqueous electrolyte. It is possible to impart excellent cycle characteristics to the secondary battery.
- the positive electrode active material B focuses on the suppression of the variation B.
- the D150 particle size (average particle size) corresponding to the integrated value of the primary particle size distribution of 50%) for the primary particles constituting the secondary particles of the lithium nickel composite oxide is The optimum value varies depending on the composition of the target positive electrode active material, the secondary particle size, and its distribution, but if the D 150 is usually too large, the charge transfer resistance and diffusion of lithium in the particles during charging and discharging.
- the resistance increases, it tends to adversely affect the characteristics in the long-term charge / discharge cycle, and if it is too small, there is a possibility that the crystal growth and / or the particle growth is insufficient, which is also the case in the long-term charge / discharge cycle. Tends to adversely affect properties.
- the coefficient of variation of D150 is defined for the primary particles constituting the secondary particles of the lithium nickel composite oxide.
- the magnitude of the coefficient of variation of D 150 is a measure of whether or not the lithium reaction and crystal growth proceeded equally between the secondary particles. If each D 150 of the N secondary particles is equivalent, the variation in the lithium reaction and the crystal growth is small among the N secondary particles, and the coefficient of variation of the D 150 gradually approaches 0%. That is, the smaller the coefficient of variation of D 150 is, the more preferable it is, and when it is too large, it indicates that a non-uniform lithium conversion reaction, abnormal particle growth, or the like has occurred among the N secondary particles.
- the N pieces are, for example, 10 or more, which will be described later.
- the positive electrode active material of the present invention composed of a lithium nickel composite oxide containing the same can suppress cracking from the grain boundary portion in the secondary particles even when subjected to a long-term charge / discharge cycle, and can be used as a non-aqueous electrolyte secondary battery. Excellent cycle characteristics can be imparted.
- the primary particles constituting the secondary particles of the lithium nickel composite oxide have the coefficient of variation of the span of the specific range, but at the same time, the specific range. It may have a coefficient of variation of D 150 .
- the primary particles constituting the secondary particles of the lithium nickel composite oxide have a coefficient of variation of D150 in the specific range, but at the same time, the specific range. It may have a coefficient of variation of the span of.
- the coefficient of variation of the span is 17% or less and the coefficient of variation of D 150 is 19% or less.
- the D 150 is, for example, about 0.1 ⁇ m to 1.0 ⁇ m, but is not particularly limited, and is preferably about 0.1 ⁇ m to 0.8 ⁇ m. It is more preferably about 0.1 ⁇ m to 0.6 ⁇ m.
- the particle size of each particle is determined by using a scanning electron microscope SEM-EDS [electron emission scanning electron microscope JSM-7100F: manufactured by JEOL Ltd.], an acceleration voltage of 10 kV, and a grain boundary of primary particles. It is a value obtained based on the electron micrograph (SEM photograph) of the primary particle or the secondary particle of the positive electrode active material photographed so that it can be confirmed. At this time, the scale displayed in the electron micrograph is used as the reference scale. In addition, 10 or more secondary particles were observed so that about 50 to 200 primary particles could be observed.
- the size of the secondary particles was selected from particles having a frequency of 10% to 90% in the particle size distribution based on the volume obtained by a laser diffraction type particle size distribution measuring device [Microtrack HRA: manufactured by Nikkiso Co., Ltd.]. ..
- the area of the primary particle was calculated by marking the particles to be image-analyzed using image analysis software (for example, ImageJ or other programming language software) and binarizing the primary particles. .. From the above area, the diameter of each primary particle was determined using a perfect circular approximation. Then, for each secondary particle, a histogram of the diameter of the primary particle was obtained and the following statistic was calculated.
- D 1 50 ( ⁇ m) Particle diameter corresponding to the integrated value of the primary particle size distribution of 50% (average particle diameter)
- D 1 90 ( ⁇ m) Particle diameter corresponding to 90% of the integrated value of the primary particle size distribution
- the coefficient of variation of D150 and the span was calculated by the image analysis using several secondary particles having a frequency close to the particle size of 10%. Similarly, it was confirmed that there was no large variation in the values of the D150 and the coefficient of variation of the span at the frequency of 50 % and the frequency of 90%.
- each coefficient of variation is a value obtained based on the following formula using the standard deviation and the average value by the numerical values obtained by the method using the above-mentioned image analysis software.
- Coefficient of variation (%) (standard deviation / mean) x 100
- the ratio of the amount of Li to the total amount of Ni and other elements is derived from the amount of the lithium compound, the nickel compound and the compound of the other element used, but both the variation A and the variation B are described above. If is not sufficiently suppressed, the ratio of the amount of Li to the total amount of Ni and other elements will be different if the particle size is different among the secondary particles. That is, for example, when classified into secondary particles on the side with a small particle size, secondary particles with a medium particle size, and secondary particles on the side with a large particle size, these three types of secondary particles contain Li. There will be a large difference in the ratio between the amount and the total amount of Ni and other elements.
- the ratio of the amount of Li in the total secondary particles to the total amount of Ni and other elements is used in the total secondary particles.
- the ratio of the difference between the ratio and the ratio in each of the three types of secondary particles is small. That is, it can be said that the variation (variation C) in the composition of such secondary particles is sufficiently suppressed.
- the positive electrode active material C focuses on suppressing such variation C.
- the values represented by are 1.00% or less.
- the element ratio 1, the element ratio 21, the element ratio 22, and the element ratio 23 are as follows, and the element ratio is the ratio of the amount of Li to the total amount of Ni and other elements (the element ratio is as follows. Li / (Ni + other elements)) is shown.
- Element ratio 1 Element ratio of all secondary particles
- Element ratio 22 D250 of all secondary particles (particle size (average particle size) corresponding to the integrated value of the secondary particle size distribution of 50%) ⁇
- Element ratio 23 Element ratio of large particles with particle size larger than medium particles
- all secondary particles are classified into small particles, medium particles, and large particles based on their D250 .
- a classification by a sieve or a classification device can be used.
- the D250 of each of the classified small particles, medium particles, and large particles is not particularly limited, but is preferably, for example, about 0.5 ⁇ m to 12 ⁇ m, about 3 ⁇ m to 18 ⁇ m, and about 6 ⁇ m to 22 ⁇ m.
- the lithium nickel composite oxide has values represented by the formulas ( ⁇ 1), ( ⁇ 2), and ( ⁇ 3) of 1.00% or less, preferably 0.70% or less, and more preferably 0. It contains secondary particles of .65% or less, particularly preferably 0.60% or less.
- the positive electrode active material C of the present invention made of such a lithium-nickel composite oxide has sufficiently suppressed variation C, and even when subjected to a long-term charge / discharge cycle, the particles in the secondary particles thereof. No cracks are generated from the boundary portion, and excellent cycle characteristics can be imparted to the non-aqueous electrolyte secondary battery.
- the D250 of all secondary particles is, for example, about 1 ⁇ m to 30 ⁇ m, but is not particularly limited, and is preferably about 2 ⁇ m to 25 ⁇ m, as described later.
- the values represented by the formulas ( ⁇ 1), the formula ( ⁇ 2), and the formula ( ⁇ 3) for the secondary particles of the lithium nickel composite oxide are all within the above-mentioned specific range.
- the primary particles constituting the secondary particles may have a coefficient of variation of the span of the specific range and / or a coefficient of variation of D150 of the specific range.
- the coefficient of variation of the span is 17% or less
- the coefficient of variation of D 150 is 19% or less
- the positive electrode active material according to the present invention may be composed of a lithium nickel composite oxide containing lithium, nickel and optionally at least one other element other than lithium and nickel, and the composition thereof is particularly limited.
- the element M other than Li, Ni, and O is not particularly limited, but is, for example, cobalt (Co), aluminum (Al), manganese (Mn), titanium (Ti), and magnesium (Mg). ), Zirconium (Zn), Niobium (Nb), Tungsten (W), Molybdenum (Mo), Vanadium (V), Chromium (Cr), Calcium (Ca), Iron (Fe), Gallium (Ga), Yttrium (Sr) ), Yttrium (Y), antimony (Sb), ruthenium (Ru), indium (In), tin (Sn), tantalum (Ta), bismuth (Bi), zirconium (Zr), boron (B) and the like.
- Co cobalt
- Al aluminum
- Mn manganese
- Ti titanium
- Mg magnesium
- Molybdenum (Mo) Vanadium (V)
- the amount of Li that is, the ratio of the amount of Li to the total amount of Ni and the element M (Li / (Ni + M)) is 0.95. It is preferably ⁇ a ⁇ 1.40, more preferably 0.95 ⁇ a ⁇ 1.25, and particularly preferably 0.96 ⁇ a ⁇ 1.15.
- the amount b of Ni that is, the ratio of the amount of Ni to the total amount of Ni and the element M (Ni / (Ni + M)) is 0.2. ⁇ B ⁇ 1, further 0.3 ⁇ b ⁇ 1, even 0.4 ⁇ b ⁇ 1, even more 0.5 ⁇ b ⁇ 1, and particularly 0.8 ⁇ b ⁇ 1. preferable.
- the characteristics of the positive electrode active material according to the present invention cannot be unconditionally determined because they differ mainly depending on the composition, but for example, the D250 , crystallite size, and Li seat occupancy of all secondary particles are used. , It is preferable that the values are in the range shown below.
- the D250 of all the secondary particles on a volume basis varies depending on the intended use of the positive electrode active material, but can be determined in consideration of characteristics such as high capacity due to high filling property and high cycle characteristics. It is preferably 1 ⁇ m to 30 ⁇ m, and more preferably 2 ⁇ m to 25 ⁇ m.
- the crystallite size can be calculated by XRD diffraction of the obtained positive electrode active material, and can be adjusted according to a desired composition, primary particle size and secondary particle size. For example, of all the secondary particles.
- D250 is about 8 ⁇ m to about 20 ⁇ m and the Ni content is 80 mol% or more, it is preferably in the range of 50 nm to 600 nm, more preferably 60 nm to 500 nm, and particularly preferably 60 nm to 450 nm. ..
- the crystallite size is too small, the crystal structure of the positive electrode active material may become unstable. If it is too large, the battery characteristics of the non-aqueous electrolyte secondary battery using the positive electrode active material for the positive electrode may deteriorate.
- a positive electrode active material having a D250 of about 8 ⁇ m to about 30 ⁇ m and a Ni content of more than 80 mol% (for example, b in the above formula (I) is 0.8 ⁇ b ⁇ 1.
- the ratio of the two is the maximum value. When it is close to a certain "1", it is proved that the primary particles do not have excessive grain growth. If the ratio of the two is too small, it is suggested that the primary particles have grown too much, and the battery characteristics may deteriorate.
- the Li seat occupancy in the Li site occupied by Li in the composition formula is theoretically 100%, and when a general precursor complex compound is used, the more optimal the lithiumization reaction is, the more the Li seat occupancy is. The rate is close to 100%.
- Ni mainly contained in the metal site is Ni 2+ .
- the cation mixing amount the amount of the metal that has moved to the Li site and replaced with Li. From these facts, in the positive electrode active material of the present invention, when the amount of cation mixing is about 0.1% to 5.0%, further about 0.1% to 4.0%, it is optimal at the time of firing. It is considered to mean that the lithium conversion reaction was carried out.
- the crystallite size and the Li seat occupancy are the values obtained by performing Rietveld analysis after obtaining the XRD diffraction data of the positive electrode active material by the following method.
- the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is preferably produced, for example, by a method in which the following steps are sequentially performed.
- Step (1) there is no particular limitation on the method for synthesizing a precursor composite compound which is an aggregate system in which primary particles containing at least Ni are gathered.
- an aqueous solution of a nickel compound and a target positive electrode active material are used.
- An aqueous solution containing various aqueous solutions of a compound containing other elements according to the composition of the above is dropped into a reaction vessel in which an alkaline aqueous solution such as a sodium hydroxide aqueous solution or an ammonia solution is stirred as a mother liquor, and sodium hydroxide or the like is added.
- a method of obtaining a hydroxide for example, a hydroxide obtained by calcining the hydroxide, a carbonate, etc. Can be adopted.
- the reaction tank is made into a nitrogen atmosphere by using an inert gas or industrially preferably nitrogen gas from the state where the alkaline aqueous solution to be the mother liquor is prepared, and oxygen in the reaction tank system or the solution is used. It is preferable to keep the concentration as low as possible. If the oxygen concentration is too high, the hydroxide coprecipitated by the residual oxygen of a predetermined amount or more may be excessively oxidized, or the formation of agglomerates by crystallization may be hindered.
- the nickel compound is not particularly limited, and examples thereof include nickel sulfate, nickel oxide, nickel hydroxide, nickel nitrate, nickel carbonate, nickel chloride, nickel iodide, and metallic nickel.
- the other elements constituting the positive electrode active material are not particularly limited, but are, for example, Co, Al, Mn, Ti exemplified as the element M other than Li, Ni, and O in the formula (I). , Mg, Zn, Nb, W, Mo, Sb, V, Cr, Ca, Fe, Ga, Sr, Y, Ru, In, Sn, Ta, Bi, Zr, B and the like.
- the compound containing the other elements is not particularly limited, and includes, for example, a cobalt compound, an aluminum compound, a manganese compound, a titanium compound, a magnesium compound, a zinc compound, a niobium compound, a tungsten compound, and the like.
- the cobalt compound is not particularly limited, and examples thereof include cobalt sulfate, cobalt oxide, cobalt hydroxide, cobalt nitrate, cobalt carbonate, cobalt chloride, cobalt iodide, and metallic cobalt.
- the aluminum compound is not particularly limited, and examples thereof include aluminum sulfate, aluminum oxide, aluminum hydroxide, aluminum nitrate, aluminum carbonate, aluminum chloride, aluminum iodide, sodium aluminome, and metallic aluminum.
- the manganese compound is not particularly limited, and examples thereof include manganese sulfate, manganese oxide, manganese hydroxide, manganese nitrate, manganese carbonate, manganese chloride, manganese iodide, and metallic manganese.
- the titanium compound is not particularly limited, and examples thereof include titanium sulfate, titanium oxide, titanium hydroxide, titanium nitrate, titanium carbonate, titanium chloride, titanium iodide, and metallic titanium.
- the magnesium compound is not particularly limited, and examples thereof include magnesium sulfate, magnesium oxide, magnesium hydroxide, magnesium nitrate, magnesium carbonate, magnesium chloride, magnesium iodide, and metallic magnesium.
- the zinc compound is not particularly limited, and examples thereof include zinc sulfate, zinc oxide, zinc hydroxide, zinc nitrate, zinc carbonate, zinc chloride, zinc iodide, and metallic zinc.
- the niobium compound is not particularly limited, and examples thereof include niobium oxide, niobium chloride, lithium niobate, niobium iodide, and the like.
- the tungsten compound is not particularly limited, and examples thereof include tungsten oxide, sodium tungstate, ammonium paratungstate, hexacarbonyltungsten, and tungsten sulfide.
- the blending ratio of the nickel compound and various compounds containing other elements is such that the amount of Ni and the amount of various other elements are desired in consideration of the composition of the target positive electrode active material. It may be adjusted as appropriate.
- the target positive electrode active material is, for example, the following formula (I): Li a Ni b M 1-b O 2 (I) (In the formula, M is an element other than Li, Ni, and O, 0.95 ⁇ a ⁇ 1.40, 0.2 ⁇ b ⁇ 1).
- M is an element other than Li, Ni, and O, 0.95 ⁇ a ⁇ 1.40, 0.2 ⁇ b ⁇ 1).
- the ratio of the amount of Ni to the amount of various other elements, that is, b in the above formula (I) is 0.2 ⁇ b ⁇ 1, and further 0.3 ⁇ b. It is preferably ⁇ 1, further 0.4 ⁇ b ⁇ 1, more preferably 0.5 ⁇ b ⁇ 1, and particularly preferably 0.8 ⁇ b ⁇ 1.
- the appropriate pH control range for synthesizing the precursor complex compound can be determined so as to obtain a shape such as a desired secondary particle size and sparse density, and is generally in the range of about 10 to 13. It becomes.
- the cleaning treatment By performing the cleaning treatment, impurities such as sulfate roots, carbonate roots, and Na content that are incorporated into the aggregated particles during the reaction and adhere to the surface layer can be washed away.
- a method of performing Nuche cleaning using a Büchner funnel if the amount is small, or a method of sending the suspension after the reaction to a press filter, washing it with water, and dehydrating it can be adopted.
- pure water, an aqueous solution of sodium hydroxide, an aqueous solution of sodium carbonate and the like can be used for the cleaning treatment, it is preferable to use pure water industrially.
- a cleaning treatment with an aqueous solution of sodium hydroxide whose pH is controlled according to the residual amount can also be performed.
- the precursor complex compound thus synthesized and the lithium compound are mixed at a predetermined ratio to prepare a mixture.
- the mixing may be a solvent-based mixture in which the precursor complex compound and the lithium compound are each made into a solution such as an aqueous solution, and these solutions are mixed at a predetermined ratio, and the powder of the precursor complex compound and the powder of the lithium compound may be mixed. And may be weighed to a predetermined ratio and mixed in a dry manner in a non-solvent system.
- the lithium compound is not particularly limited, and various lithium salts can be used.
- the lithium compound include anhydrous lithium hydroxide, lithium hydroxide / monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, lithium chloride, lithium citrate, lithium fluoride, lithium iodide, and the like.
- examples thereof include lithium lactic acid, lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate, lithium oxide and the like.
- anhydrous lithium hydroxide and lithium hydroxide / monohydrate are preferable, and anhydrous lithium hydroxide is particularly preferable.
- the blending ratio of the lithium compound and the precursor composite compound is the total amount of Li, the amount of Ni, and optionally the amount of various other elements, in consideration of the composition of the target positive electrode active material. , It may be adjusted appropriately so as to be a desired ratio.
- the target positive electrode active material is, for example, the following formula (I): as described above.
- Li a Ni b M 1-b O 2 (I) (In the formula, M is an element other than Li, Ni, and O, 0.95 ⁇ a ⁇ 1.40, 0.2 ⁇ b ⁇ 1).
- the ratio of the amount of Li to the total amount of the amount of Ni and optionally the amount of various other elements, that is, a in the above formula (I) is 0.95. It is preferable that ⁇ a ⁇ a ⁇ 1.25, and more preferably 0.96 ⁇ a ⁇ a ⁇ 1.15.
- Step (2) As described above, when a positive electrode active material containing at least Ni is produced, a lithium conversion reaction and crystal growth are carried out in firing, and the lithium conversion reaction requires a constant oxygen partial pressure.
- the lithium conversion reaction a lithium nickel composite compound is obtained, and when lithium hydroxide is used as the lithium compound, for example, water (steam) is generated, and when lithium carbonate is used, for example, carbon dioxide gas is generated. After that, the temperature is raised to a predetermined temperature to promote crystal growth.
- the crystal growth of the constituent primary particles varies (the variation A) in each secondary particle, and the primary particle diameter varies (the variation B) between the secondary particles. Then, when such a variation (variation A and variation B) occurs, the composition of the secondary particles varies (the variation C).
- a lithium compound, a precursor composite compound, and an M compound are weighed and mixed in a mixer, and the mixed powder obtained is filled in a container such as a pit or a bowl.
- a container such as a pit or a bowl.
- the variation becomes large.
- the variation may be increased depending on the degree of mixing of the mixture, for example, poor mixing due to a large difference in particle size between the lithium compound and the precursor composite compound.
- the variation A and the variation B can be sufficiently suppressed, and thus the variation C can be sufficiently suppressed.
- the mixture of the lithium compound and the precursor composite compound is not simply fired, but is first pre-baked under the following predetermined conditions in this step (2), and then further prescribed conditions in the step (3) described later. It is preferable to adopt the method of main firing at.
- the preliminary firing it is particularly desirable to incorporate a firing method that promotes the lithium conversion reaction. Specifically, by making the mixture more likely to be heated, the gas generated from the lithium compound is easily discharged, and the gas having a high oxygen partial pressure is diffused into the mixture (inside the particles). be. For example, it is possible to achieve the properties of the present invention by pre-baking a smaller mixture.
- the mixture in the pre-baking of the mixture, may be filled in a saggar or a sack and fired in a static furnace, a roller herring knives, or a pusher furnace, but the mixture is fired while flowing.
- a rotary kiln can be used.
- the conditions for performing preliminary firing using the rotary kiln are not particularly limited, but it is preferable to consider each of the following conditions, for example.
- the filling rate of the mixture in the furnace of the rotary kiln (the volume of the mixed powder / the percentage expressed by the internal volume of the rotary kiln) is determined by changing the gas input rate and the residence time of the raw material (mixture) according to the type of the rotary kiln. It can be adjusted, and the residence time can be adjusted by changing the retort tilt angle and the retort rotation speed, but is preferably 5% to 40%, more preferably 5 to 20%, for example. If the filling rate is too high, the quality of the fired product may deteriorate. If the filling factor is too low, sufficient productivity may not be obtained.
- the retort peripheral speed can be adjusted by changing the retort rotation speed, and is preferably in the range of, for example, 1 m / min to 6 m / min. If the peripheral speed of the retort is too low, the powder layer of the mixture may not be replaced in the furnace, and it may be difficult for water vapor to go out of the system. If the peripheral speed of the retort is too high, the separation of the mixture powder may be promoted.
- Wind speed and dew point in the furnace Both the wind speed and the dew point in the furnace can be adjusted by changing the gas input speed.
- the gas input rate is low and the dew point is too high, dew condensation occurs especially in the retort portion where the mixture is charged, and Li is dissolved from the lithium compound in the mixture, so that the primary particles and the secondary particles are irregular. Aggregation / sintering and the like may occur, the particle size as in the present invention cannot be obtained, and the quality of the calcined product may deteriorate.
- selective scattering (separation) of the mixed powder may occur.
- the rate of temperature rise for the pre-baked mixture can be adjusted by setting the temperature of the rotary kiln. If the temperature rise rate is too low, sufficient productivity may not be obtained. If the temperature rise rate is too high, the lithium conversion reaction is insufficient and a local lithium conversion reaction occurs, and uniformity cannot be obtained, so that the quality of the fired product may deteriorate.
- the maximum temperature of the pre-baked mixture can be adjusted by setting the temperature of the rotary kiln (setting the surface temperature of the retort).
- the target positive electrode active material has a coefficient of variation of the span of the specific range and / or a coefficient of variation of D 150 of the specific range, and thus the formula ( ⁇ 1) and the formula ( ⁇ 2). ) And the value represented by the formula ( ⁇ 3) are both within the above-mentioned specific range, and the maximum temperature of the pre-baked mixture is 500 ° C. to 650 ° C., and further is 510 ° C. to 640 ° C.
- the temperature is preferably adjusted to 520 ° C to 630 ° C.
- the retort surface temperature of the rotary kiln is set to, for example, 530 ° C to 800 ° C, and further to 550 ° C, taking into consideration the filling rate of the mixture. It is preferable to set the temperature at about 780 ° C, particularly 700 ° C to 750 ° C.
- the maximum temperature of the pre-fired mixture is preferably adjusted according to the type of the lithium compound used in the preparation of the mixture, whereby the precursor composite compound in the mixture and the lithium compound are reliably reacted. That is, the lithium conversion reaction can be allowed to proceed reliably and uniformly so as not to generate a heterogeneous phase, and the desired positive electrode active material as described above can be obtained.
- the lithium compound in the pre-baked mixture is preferably pre-ground, if necessary, so as not to contain coarse particles having a particle size of, for example, exceeding 500 ⁇ m. Further, if the particle size of the lithium compound is too small, the mixture becomes bulky, so that it becomes easy to separate in the rotary kiln, which may reduce the uniformity, and in addition, the processing speed in the rotary kiln decreases. Since there is a possibility that productivity may decrease, it is preferable to adjust the particle size so as to be appropriate.
- the atmosphere of the pre-baking is not particularly limited as long as it is an oxidizing atmosphere in which the lithium conversion reaction proceeds reliably and uniformly.
- the carbon dioxide gas concentration is 30 ppm or less. It is preferable to adopt an oxidizing gas atmosphere of carbon dioxide and an oxygen atmosphere having an oxygen concentration of preferably 80 vol% or more, more preferably 90 vol% or more.
- the time for pre-baking is also not particularly limited, and may be any time as long as the lithium conversion reaction proceeds reliably and uniformly, but for example, it may be 1 hour to 10 hours, further 2 hours to 8 hours. preferable.
- Step (3) When the mixture pre-baked in the step (2) is main-baked, it is important to allow the crystal growth to proceed reliably and uniformly to obtain a positive electrode active material having a desired crystal structure.
- equipment such as a static furnace for filling a saggar or a sack with a mixture and firing, a roller herring smelt, etc. can be used, and a rotary kiln is used as in the preliminary firing.
- a firing furnace or a means thereof that can finely adjust the conditions suitable for crystallization.
- the atmosphere of the main firing is not particularly limited, and it is preferable because it has an oxygen partial pressure so that reliable and uniform crystal growth is performed and Ni contained in the mixture to be fired is not reduced.
- the atmosphere may be an atmosphere having a small water content or carbon dioxide gas concentration, but for example, a decarbonized oxidizing gas atmosphere in which the carbon dioxide gas concentration is 30 ppm or less, or an oxygen concentration of preferably 80 vol% or more, more preferably 90 vol% or more. It is preferable to adopt an oxygen atmosphere such as.
- the temperature of the main firing can be adjusted by adjusting the maximum temperature of the pre-baked mixture by the composition of the positive electrode active material to be obtained.
- the mixture It is preferable to adjust the maximum temperature to be 700 ° C. to 880 ° C., and further preferably 710 ° C. to 850 ° C.
- the maximum temperature is lower than the lower limit, a positive electrode active material having a desired crystal structure cannot be obtained, and a large amount of unreacted components may be present to impair the battery characteristics.
- the maximum temperature exceeds the upper limit value, crystal growth may proceed too much, and the battery characteristics of the non-aqueous electrolyte secondary battery using the obtained positive electrode active material as the positive electrode may deteriorate. Further, in the case of a positive electrode active material having a Ni content of 20 mol% to 80 mol%, it is preferable to bake at a temperature at which the maximum temperature of the mixture does not exceed 1100 ° C.
- the time of the main firing is not particularly limited as long as it is sufficient to obtain a positive electrode active material having a desired crystal structure, and is, for example, 1 hour to 15 hours, further 2 hours to 10 hours. It is preferable to have.
- the positive electrode active material obtained through the steps (1) to (3) in order has a high Ni positive electrode active material having a Ni content of, for example, 80 mol% or more (for example, b in the formula (I) is 0.8 ⁇ ).
- b in the formula (I) is 0.8 ⁇ .
- the unreacted lithium compound and the crystal structure are released from the crystal structure to the particle surface layer in the process of firing.
- the amount of the Li compound hereinafter referred to as the residual Li compound
- the amount of the residual Li compound can be reduced by, for example, washing the positive electrode active material with water or surface-treating the surface of the primary particles and / or the secondary particles of the positive electrode active material.
- the positive electrode active material obtained through the steps (1) to (3) in order is a positive electrode active material having a low Ni content
- secondary particles generally having a small primary particle shape. If this is the case, surface treatment may be performed because the large specific surface area may cause metal elution due to hydrogen fluoride.
- a so-called sintering accelerator such as KOH may be used before firing in order to obtain the primary particle shape, and such a sintering accelerator may be used. It is also possible to carry out a washing treatment to clean the particles.
- the surface treatment method is not particularly limited.
- fine particles of aluminum oxide are dryly adhered to the particle surface layer of the positive electrode active material while applying a shearing force, and then heat treatment is performed at about 300 ° C to 700 ° C.
- a predetermined amount of the positive electrode active material is met in an aqueous solution in which a predetermined amount of sodium sulfate is dissolved, and the mixture is stirred for about 5 to 10 minutes, dehydrated and dried, and then heat-treated at about 250 ° C to 700 ° C. Therefore, a method of coating the surface layer of the particles with an aluminum compound or the like can be adopted.
- a boron compound or a tungsten compound can be used for the surface treatment, and can be selected according to the intended use. Furthermore, two or more kinds of compounds can be used at the same time.
- the non-aqueous electrolyte secondary battery of the present invention includes, for example, a positive electrode containing the positive electrode active material of the present invention manufactured as described above, and the non-aqueous electrolyte secondary battery has the positive electrode, the negative electrode, and the electrolyte. It is composed of an electrolytic solution containing.
- a conductive agent and a binder are added and mixed with the positive electrode active material of the present invention according to a conventional method.
- the conductive agent for example, acetylene black, carbon black, graphite and the like are preferable.
- the binder for example, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.
- the negative electrode is not only a negative electrode active material such as a lithium metal, graphite, or a low crystalline carbon material, but also at least one selected from the group consisting of Si, Al, Sn, Pb, Zn, Bi, and Cd. Non-metals or metal elements, alloys containing them or chalcogen compounds containing them can also be used.
- an organic solvent containing at least one of carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate and diethyl carbonate and ethers such as dimethoxyethane can be used.
- At least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the solvent and used. ..
- the positive electrode active material of the present invention is sufficient for a non-aqueous electrolyte secondary battery because it can suppress cracking from the grain boundary even when the non-aqueous electrolyte secondary battery is subjected to a long-term charge / discharge cycle. Battery capacity and excellent cycle characteristics can be imparted.
- the mixed aqueous solution, the sodium hydroxide aqueous solution and the ammonia water were simultaneously added dropwise at a predetermined rate, and the amount of the alkaline solution added dropwise was adjusted so that the pH became 11.
- Ni, Co, and Al were crystallized and co-precipitated to form aggregated particles, and a co-precipitate was obtained.
- the slurry in the reactor is solid-liquid separated and further washed with pure water to reduce residual impurities, and then the coprecipitate in a cake state is dried at 110 ° C. for 12 hours in an air environment. Then, the precursor complex compound 1 was obtained. Further, when the average secondary particle size of the precursor composite compound 1 was measured using the laser diffraction type particle size distribution measuring device, it was 10.3 ⁇ m.
- the reaction tank prepare 10 L of pure water to which 300 g of sodium hydroxide aqueous solution and 500 g of ammonia water are added as a mother liquor in advance, and use nitrogen gas at a flow rate of 0.7 L / min to create a nitrogen atmosphere in the reaction tank, and the reaction is also carried out. I went in a nitrogen atmosphere.
- the mixed aqueous solution, the sodium hydroxide aqueous solution and the ammonia water were simultaneously added dropwise at a predetermined rate, and the amount of the alkaline solution added dropwise was adjusted so that the pH became 11.
- Ni, Co, and Mn were crystallized and co-precipitated to form aggregated particles, and a co-precipitate was obtained.
- the slurry in the reactor is solid-liquid separated and further washed with pure water to reduce residual impurities, and then the coprecipitate in a cake state is dried at 110 ° C. for 12 hours in an air environment.
- the precursor complex compound 2 was obtained.
- the average secondary particle diameter of the precursor composite compound 2 was measured using the laser diffraction type particle diameter distribution measuring apparatus, it was 9.9 ⁇ m.
- the mixed aqueous solution, the sodium hydroxide aqueous solution and the ammonia water were simultaneously added dropwise at a predetermined rate, and the amount of the alkaline solution added dropwise was adjusted so that the pH became 11.
- Ni, Co, and Al were crystallized and co-precipitated to form aggregated particles, and a co-precipitate was obtained.
- the slurry in the reactor is solid-liquid separated and further washed with pure water to reduce residual impurities, and then the coprecipitate in a cake state is dried at 110 ° C. for 12 hours in an air environment.
- the precursor complex compound 3 was obtained. Further, when the average secondary particle size of the precursor composite compound 3 was measured using the laser diffraction type particle size distribution measuring device, it was 10.7 ⁇ m.
- composition of the precursor composite compound and the positive electrode active material was determined by the following method. A sample of 0.2 g of the precursor composite compound or the positive electrode active material was heated and dissolved in 25 mL of a 20% hydrochloric acid solution, cooled, transferred to a 100 mL volumetric flask, and pure water was added to prepare a preparation liquid. For the adjusting solution, each element was quantified using ICP-AES [Optima8300, manufactured by PerkinElmer Co., Ltd.].
- a 2032 type coin cell using a positive electrode active material was manufactured using a positive electrode, a negative electrode, and an electrolytic solution, which were produced by the following methods, respectively.
- Initial charge / discharge efficiency (%) (initial discharge capacity / initial charge capacity) x 100
- Cycle maintenance rate (%) (Discharge capacity in the 100th cycle / Discharge capacity in the 1st cycle) x 100
- the obtained positive electrode active material secondary particles were confirmed on a 2000-fold SEM image, and 10 particles were extracted. After that, a high-magnification SEM image was obtained for each particle and image analysis was performed to calculate D150 and the span in the primary particle size distribution.
- the mixture was prepared by weighing so as to be .04, and the mixture powder was pre-fired in the same manner as in Example 1 except that the surface temperature of the retort was adjusted so that the maximum temperature of the mixture powder was 630 ° C. ..
- the mixed powder after pre-baking is main-baked for 4 hours so that the maximum temperature of the mixed powder becomes 740 ° C. under the same oxygen atmosphere, and the positive electrode active material is used.
- D150 and span in the primary particle size distribution were calculated in the same manner as in Example 1.
- Comparative Example 2 ⁇ Comparative Example 2>
- the mixture was prepared by weighing so as to be .04, and the mixture powder was pre-fired in the same manner as in Comparative Example 1 except that the maximum temperature of the mixture powder was adjusted to 630 ° C.
- the mixed powder after pre-baking is main-baked for 4 hours so that the maximum temperature of the mixed powder becomes 830 ° C. under the same oxygen atmosphere, and the positive electrode active material is used.
- D150 and span in the primary particle size distribution were calculated in the same manner as in Example 1.
- Table 1 summarizes the firing conditions in Examples 1 and 2 and Comparative Examples 1 and 2.
- the characteristics of the positive electrode active materials obtained in Examples 1 and 2 and Comparative Examples 1 and 2 are D 150 of the primary particles, the coefficient of variation of the span, and the coefficient of variation of D 150 , and D 250 of all the secondary particles. , The crystallite size, and the Li seat occupancy rate were determined according to the above methods. These results are shown in Table 2.
- the coefficient of variation of the span is very small, less than 15%, and the variation in the distribution of the primary particles is sufficiently suppressed in 10 or more secondary particles, and D.
- the coefficient of variation of 150 is also very small, less than 10%, and the variation in the primary particle size is sufficiently suppressed among 10 or more secondary particles.
- the positive electrode active material of Example 1 is compared with the positive electrode active material of Comparative Example 1, and the positive electrode active material of Example 2 is compared with the positive electrode active material of Comparative Example 2, and the initial charge capacity and the initial charge are substantially the same. It exhibits very good cycle characteristics while maintaining charge / discharge efficiency.
- Example 4 a positive electrode active material was obtained in the same manner as in Example 3 except that the filling rate was changed to 15% among the rotary kiln conditions.
- the mixed powder after pre-baking is main-baked for 4 hours so that the maximum temperature of the mixed powder becomes 750 ° C. under the same oxygen atmosphere, and the positive electrode active material is used.
- Table 4 summarizes the firing conditions in Examples 3 to 4 and Comparative Example 3.
- the positive electrode active materials of Examples 3 to 4 have very small values represented by the formulas ( ⁇ 1), ( ⁇ 2), and ( ⁇ 3) of 1.00% or less, and are composed of secondary particles. The variation is sufficiently suppressed.
- the positive electrode active materials of Examples 3 to 4 have a span of about 0.95 and are relatively broad in terms of secondary particle size distribution. In general, there is a tendency for the variation between small particles and large particles to be larger when the particles are broad, whereas in the present invention, the variation can be suppressed. Therefore, since it is generally difficult for a positive electrode active material having a sharp secondary particle size distribution with a span of about 0.5 to cause variations such as firing, it is expected that such variations can be suppressed. To.
- the positive electrode active materials of Examples 3 to 4 show very excellent cycle characteristics as compared with the positive electrode active materials of Comparative Example 3 while maintaining substantially the same initial charge capacity and initial charge / discharge efficiency.
- the positive electrode active material according to the present invention is suitable for the positive electrode of a non-aqueous electrolyte secondary battery because it can impart sufficient battery capacity and excellent cycle characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
Abstract
Description
Me(OH)2+LiOH・H2O+1/4O2 → LiMeO2+5/2H2O
MeO+LiOH+1/4O2 → LiMeO2+1/2H2O
リチウムとニッケルと任意にリチウム及びニッケル以外の少なくとも1つの他の元素とを含有するリチウムニッケル複合酸化物からなり、
前記リチウムニッケル複合酸化物の二次粒子を構成する一次粒子について、下記式(α):
(D190-D110)/D150 (α)
(式中、
D110:個数基準の一次粒子サイズの粒子径分布の積算値が10%に相当する粒子径
D150:個数基準の一次粒子サイズの粒子径分布の積算値が50%に相当する粒子径(平均粒子径)
D190:個数基準の一次粒子サイズの粒子径分布の積算値が90%に相当する粒子径
である)
で表されるスパンの変動係数が17%以下であることを特徴とする。
リチウムとニッケルと任意にリチウム及びニッケル以外の少なくとも1つの他の元素とを含有するリチウムニッケル複合酸化物からなり、
前記リチウムニッケル複合酸化物の二次粒子を構成する一次粒子について、D150(個数基準の一次粒子サイズの粒子径分布の積算値が50%に相当する粒子径(平均粒子径))の変動係数が19%以下であることを特徴とする。
リチウムとニッケルと任意にリチウム及びニッケル以外の少なくとも1つの他の元素とを含有するリチウムニッケル複合酸化物からなり、
前記リチウムニッケル複合酸化物の二次粒子について、下記式(β1)、式(β2)、及び式(β3):
|[(元素比1-元素比21)/元素比1]|×100 (β1)
|[(元素比1-元素比22)/元素比1]|×100 (β2)
|[(元素比1-元素比23)/元素比1]|×100 (β3)
(式中、
元素比1:全二次粒子の元素比
元素比22:全二次粒子のD250(体積基準の二次粒子サイズの粒子径分布の積算値が50%に相当する粒子径(平均粒子径))に対して±3μmの範囲内の粒子径を有する中粒子の元素比
元素比21:中粒子よりも小さい粒子径を有する小粒子の元素比
元素比23:中粒子よりも大きい粒子径を有する大粒子の元素比
であり、元素比は、リチウムの量とニッケル及び前記他の元素の合計量との割合(リチウム/(ニッケル+他の元素))を示す)
で表される値がいずれも1.00%以下であることを特徴とする。
本発明に係る非水電解質二次電池用正極活物質は、リチウム(Li)とニッケル(Ni)と任意にLi及びNi以外の少なくとも1つの他の元素とを含有するリチウムニッケル複合酸化物からなる。そして、該リチウムニッケル複合酸化物の二次粒子を構成する一次粒子は、以下の特徴1を有し(正極活物質A及び正極活物質B)、該リチウムニッケル複合酸化物の二次粒子は、以下の特徴2を有する(正極活物質C)。
[特徴1]
(正極活物質A)
下記式(α):
(D190-D110)/D150 (α)
(式中、
D110:一次粒子サイズ分布の積算値が10%に相当する粒子径
D150:一次粒子サイズ分布の積算値が50%に相当する粒子径(平均粒子径)
D190:一次粒子サイズ分布の積算値が90%に相当する粒子径
である)
で表されるスパンの変動係数が17%以下である。
(正極活物質B)
D150(一次粒子サイズ分布の積算値が50%に相当する粒子径(平均粒子径))の変動係数が19%以下である。
[特徴2]
(正極活物質C)
下記式(β1)、式(β2)、及び式(β3):
|[(元素比1-元素比21)/元素比1]|×100 (β1)
|[(元素比1-元素比22)/元素比1]|×100 (β2)
|[(元素比1-元素比23)/元素比1]|×100 (β3)
(式中、
元素比1:全二次粒子の元素比
元素比22:全二次粒子のD250(二次粒子サイズ分布の積算値が50%に相当する粒子径(平均粒子径))に対して±3μmの範囲内の粒子径を有する中粒子の元素比
元素比21:中粒子よりも小さい粒子径を有する小粒子の元素比
元素比23:中粒子よりも大きい粒子径を有する大粒子の元素比
であり、元素比は、リチウムの量とニッケル及び前記他の元素の合計量との割合(リチウム/(ニッケル+他の元素))を示す)
で表される値がいずれも1.00%以下である。
上述のとおり、金属水酸化物や金属酸化物である前駆体化合物とLiOH等のリチウム化合物との混合物を焼成してリチウム複合酸化物を調製する際に、該混合物を均一にリチウム化反応させ、かつ、均一に結晶成長させることにより、各二次粒子において、構成する一次粒子の粒子成長や結晶成長のバラツキ(バラツキA)を抑制することができ、また、二次粒子同士において、一次粒子径のバラツキ(バラツキB)を抑制することができる。
(D190-D110)/D150 (α)
(式中、
D110:一次粒子サイズ分布の積算値が10%に相当する粒子径
D150:一次粒子サイズ分布の積算値が50%に相当する粒子径(平均粒子径)
D190:一次粒子サイズ分布の積算値が90%に相当する粒子径
である)
で表されるスパン(span、単位なし)は、一次粒子サイズ分布のシャープさを示しており、均一なリチウム化反応及び均一な結晶成長が行われたか否かを表している。該スパンの変動係数は、小さいほど好ましく、大き過ぎる場合は、二次粒子内に一次粒子の大小が存在しており、前記粒界における問題が解決されない。また、結晶構造においても、結晶成長の度合いの違いが組成等の歪みとなり、一種の欠陥として存在してしまい、割れの要因となってしまう。
D110(μm):一次粒子サイズ分布の積算値が10%に相当する粒子径
D150(μm):一次粒子サイズ分布の積算値が50%に相当する粒子径(平均粒子径)
D190(μm):一次粒子サイズ分布の積算値が90%に相当する粒子径
変動係数(%)=(標準偏差/平均値)×100
前記のとおり、リチウムニッケル複合酸化物の二次粒子を構成する一次粒子が前記特徴1を有する場合、すなわち、バラツキA及びバラツキB双方が充分に抑制されている場合、該二次粒子は、その組成のバラツキも充分に抑制されている。
|[(元素比1-元素比21)/元素比1]|×100 (β1)
|[(元素比1-元素比22)/元素比1]|×100 (β2)
|[(元素比1-元素比23)/元素比1]|×100 (β3)
で表される値が、いずれも1.00%以下である。
元素比1:全二次粒子の元素比
元素比22:全二次粒子のD250(二次粒子サイズ分布の積算値が50%に相当する粒子径(平均粒子径))に対して±3μmの範囲内の粒子径を有する中粒子の元素比
元素比21:中粒子よりも小さい粒子径を有する小粒子の元素比
元素比23:中粒子よりも大きい粒子径を有する大粒子の元素比
(D290-D210)/D250 (γ)
(式中、
D210:二次粒子サイズ分布の積算値が10%に相当する粒子径
D250:二次粒子サイズ分布の積算値が50%に相当する粒子径(平均粒子径)
D290:二次粒子サイズ分布の積算値が90%に相当する粒子径
である)
で表されるスパン(span、単位なし)は、二次粒子サイズ分布のシャープさを示すものである。本発明に係る正極活物質において、該スパンは、例えば0.4~1.5程度であるが、特に限定はされない。
LiaNibM1-bO2 (I)
(式中、Mは、Li、Ni、及びO以外の元素、0.95≦a≦1.40、0.2<b<1である)
で表される組成を有することが好ましい。
(X線回折条件)
線源:Cu-Kα
加速電圧及び電流:45kV及び200mA
サンプリング幅:0.02deg.
走査幅:15deg.~122deg.
スキャンスピード:1.0ステップ/秒
発散スリット:2/3deg.
受光スリット幅:0.15mm
散乱スリット:2/3deg.
本発明に係る非水電解質二次電池用正極活物質は、例えば以下の工程を順次行う方法にて製造することが好ましい。
工程(1):少なくともNiを含有する前駆体複合化合物を合成し、該前駆体複合化合物とリチウム化合物とを混合して混合物を調製する。
工程(2):前記工程(1)で調製した混合物を予備焼成する。
工程(3):前記工程(2)にて予備焼成した混合物を本焼成する。
まず、少なくともNiを含有する一次粒子が集まってなる凝集系である前駆体複合化合物を合成する際に、その方法には特に限定がなく、例えば、ニッケル化合物の水溶液と、目的とする正極活物質の組成に応じた他の元素を含む化合物の水溶液各種とを含む水溶液を、例えば水酸化ナトリウム水溶液、アンモニア溶液等のアルカリ水溶液を母液として撹拌させている反応槽内に滴下し、水酸化ナトリウム等も滴下しながら、pHが適切な範囲となるようにモニタリングして制御し、湿式反応によって共沈させ、例えば水酸化物、該水酸化物を仮焼した酸化物、炭酸塩等として得る方法を採用することができる。
LiaNibM1-bO2 (I)
(式中、Mは、Li、Ni、及びO以外の元素、0.95≦a≦1.40、0.2<b<1である)
で表される組成を有する場合、Niの量と各種他の元素の量との割合、すなわち、前記式(I)中のbは、0.2<b<1、さらには0.3<b<1、またさらには0.4<b<1、よりさらには0.5<b<1、特には0.8<b<1であることが好ましい。
LiaNibM1-bO2 (I)
(式中、Mは、Li、Ni、及びO以外の元素、0.95≦a≦1.40、0.2<b<1である)
で表される組成を有する場合、Liの量と、Niの量及び任意に各種他の元素の量の合計量との割合、すなわち、前記式(I)中のaは、は、0.95≦a≦1.25、さらには0.96≦a≦1.15であることが好ましい。
前記のとおり、少なくともNiを含有する正極活物質を製造する際に、焼成においてリチウム化反応及び結晶成長が行われ、該リチウム化反応は、一定の酸素分圧が必要となる。該リチウム化反応により、リチウムニッケル複合化合物が得られると共に、リチウム化合物として、例えば水酸化リチウムを用いた場合は水(水蒸気)が発生し、例えば炭酸リチウムを用いた場合は炭酸ガスが発生し、その後、昇温して所定の温度とすることで、結晶成長が促される。
ロータリーキルンの炉内での混合物の充填率(混合粉の容積/ロータリーキルン内容積で表される百分率)は、ロータリーキルンの種類に応じて、原料(混合物)のガスインプット速度及び滞留時間を変化させることによって調整することができ、滞留時間は、レトルト傾動角及びレトルト回転数を変化させることによって調整することができるが、例えば、5%~40%、さらには5~20%が好ましい。該充填率が高過ぎる場合には、焼成物の品質が低下する恐れがある。該充填率が低過ぎる場合には、充分な生産性が得られない恐れがある。
レトルト周速度は、前記レトルト回転数を変化させることによって調整することができ、例えば、1m/min~6m/minの範囲であることが好ましい。該レトルト周速度が低過ぎる場合には、炉内で混合物の粉体層が入れ替わらず、水蒸気が系外に出難くなる恐れがある。該レトルト周速度が高過ぎる場合には、混合物粉体の分離が促進されてしまう恐れがある。
炉内風速及び露点はいずれも、前記ガスインプット速度を変化させることによって調整することができる。該ガスインプット速度が低く、露点が高過ぎる場合には、特に混合物を投入するレトルト部において結露が起こり、混合物中のリチウム化合物からLiが溶解することによる、一次粒子や二次粒子の不規則な凝集/焼結等が発生し、本発明にあるような粒径を得ることができず、焼成物の品質が低下する恐れがある。該ガスインプット速度が高く、炉内風速が高過ぎる場合には、混合物粉体の選択的飛散(分離)を招く恐れがある。
予備焼成される混合物に対する昇温速度は、ロータリーキルンの温度設定により調整することができる。該昇温速度が低過ぎる場合には、充分な生産性が得られない恐れがある。該昇温速度が高過ぎる場合には、リチウム化反応が不充分で局所的なリチウム化反応が起き、均一性が得られないことから、焼成物の品質が低下する恐れがある。
予備焼成される混合物の最高温度は、ロータリーキルンの温度設定(レトルト表面温度設定)により調整することができる。本発明において、目的とする正極活物質が、前記特定範囲のスパンの変動係数及び/又は前記特定範囲のD150の変動係数を有するようにすること、ひいては前記式(β1)、式(β2)、及び式(β3)で表される値がいずれも前記特定範囲となるようにすることを考慮すると、予備焼成される混合物の最高温度は、500℃~650℃、さらには510℃~640℃、特には520℃~630℃に調整されていることが好ましい。該最高温度が前記下限値を下回る場合には、後の本焼成において、焼成物(リチウムニッケル複合酸化物)の品質が低下する恐れがある。該最高温度が前記上限値を上回る場合には、リチウム化反応と並行して結晶成長が進行してしまい、焼成物の品質が低下する恐れがある。予備焼成される混合物の最高温度がこのような範囲となるようにするには、前記混合物の充填率を考慮しながら、ロータリーキルンのレトルト表面温度を、例えば、530℃~800℃、さらには550℃~780℃、特には700℃~750℃となるように設定することが好ましい。
予備焼成中にロータリーキルンの炉内で、特に、混合物を投入する入口付近では、水分を含んだ混合物粉体が付着し易くなる場合があるので、付着物が生じた際にこれを効率よく落下させるための、例えばエアノッカー、電磁ノッカー等の外部設備を備えたロータリーキルンを使用することが好ましい。
予備焼成される混合物中のリチウム化合物は、例えば500μmを超える粒径を有するような粗大粒子を含まないように、必要に応じて予め粉砕されていることが好ましい。また、該リチウム化合物の粒度が小さすぎると混合物が嵩高くなるため、ロータリーキルン内で分離し易くなることから、均一性が低下する恐れもあり、加えて、ロータリーキルンでの処理速度が低下することから、生産性が低下する恐れもあるので、適度な粒径となるように調整することが好ましい。
前記工程(2)にて予備焼成した混合物を本焼成する際には、確実かつ均一に結晶成長を進行させて、所望の結晶構造を有する正極活物質を得ることが重要である。工程(3)にて本焼成を行うために、例えば、匣鉢や坩堝に混合物を充填して焼成する静置炉、ローラーハースキルン等の設備を用いることもでき、また予備焼成と同様にロータリーキルンを用いることもできるが、結晶化に適した条件を微調整できる焼成炉やその手段を用いることが好ましい。
本発明の非水電解質二次電池は、例えば前記のごとく製造される本発明の正極活物質を含有する正極を備えたものであり、該非水電解質二次電池は、該正極、負極、及び電解質を含む電解液から構成される。
本発明の正極活物質は、非水電解質二次電池に、長期の充放電サイクルに供した際にも、その粒界部からの割れを抑制できるので、非水電解質二次電池に、充分な電池容量及び優れたサイクル特性を付与することができる。
硫酸ニッケル水溶液、硫酸コバルト水溶液、及び硫酸アルミニウム水溶液を、NiとCoとAlとの割合(モル比)がNi:Co:Al=90:5:5となるように混合して、混合水溶液を得た。反応槽内には事前に、水酸化ナトリウム水溶液300g及びアンモニア水500gを添加した純水10Lを母液として準備し、0.7L/minの流量の窒素ガスにより反応槽内を窒素雰囲気とし、反応も窒素雰囲気で行った。
硫酸ニッケル水溶液、硫酸コバルト水溶液、及び硫酸マンガン水溶液を、NiとCoとMnとの割合(モル比)がNi:Co:Mn=85:10:5となるように混合して、混合水溶液を得た。反応槽内には事前に、水酸化ナトリウム水溶液300g及びアンモニア水500gを添加した純水10Lを母液として準備し、0.7L/minの流量の窒素ガスにより反応槽内を窒素雰囲気とし、反応も窒素雰囲気で行った。
硫酸ニッケル水溶液、硫酸コバルト水溶液、及び硫酸アルミニウム水溶液を、NiとCoとAlとの割合(モル比)がNi:Co:Al=89:6:5となるように混合して、混合水溶液を得た。反応槽内には事前に、水酸化ナトリウム水溶液300g及びアンモニア水500gを添加した純水10Lを母液として準備し、0.7L/minの流量の窒素ガスにより反応槽内を窒素雰囲気とし、反応も窒素雰囲気で行った。
前駆体複合化合物及び正極活物質(全二次粒子、小粒子、中粒子、及び大粒子)の組成を、次の方法にて決定した。前駆体複合化合物又は正極活物質0.2gの試料を25mLの20%塩酸溶液中で加熱溶解させ、冷却後100mLメスフラスコに移して、純水を入れ調整液を調製した。該調整液について、ICP-AES[Optima8300、(株)パーキンエルマー製]を用いて各元素を定量した。
正極活物質を用いた2032型コインセルを、各々次の方法にて作製した正極、負極、及び電解液を用いて製造した。
(正極)
導電剤としてアセチレンブラック及びグラファイトを、アセチレンブラック:グラファイト=1:1(重量比)で用い、バインダーとしてポリフッ化ビニリデンを用いて、正極活物質、導電剤、及びバインダーを、正極活物質:導電剤:バインダー=90:6:4(重量比)となるように配合し、これらをN-メチルピロリドンに混合したスラリーをアルミニウム箔上に塗布した。これを110℃で乾燥してシートを作製し、このシートを15mmΦに打ち抜いた後、合材の密度が3.0g/cm3となるように圧延したものを正極とした。
(負極)
16mmΦに打ち抜いた厚さ500μmのリチウム箔を負極とした。
(電解液)
炭酸エチレン(EC)及び炭酸ジメチル(DMC)の混合溶媒を、EC:DMC=1:2(体積比)となるように調製し、これに、電解質である1MのLiPF6を混合した溶液を電解液とした。
前記方法にて製造したコインセルを用い、25℃の環境下で、4.30V(上限電圧)まで20mA/gの電流密度で定電流充電後、電流密度が2mA/gとなるまで定電圧充電を行った。このときの容量を初期充電容量(mAh/g)とした。
初期充放電効率(%)=(初期放電容量/初期充電容量)×100
前記方法にて製造したコインセルを用い、60℃の環境下で、4.30V(上限電圧)まで100mA/gの電流密度で定電流充電後、電流密度が2mA/gとなるまで定電圧充電を行った。次いで、5分間休止した後、同環境下で、3.00Vまで200mA/gの電流密度で定電流放電を行い、5分間休止した。この操作を1サイクルとし、100サイクルの充放電を行った。1サイクル目の放電容量の測定値及び100サイクル目の放電容量の測定値を用い、下記式に基づいてサイクル維持率を算出した。
サイクル維持率(%)
=(100サイクル目の放電容量/1サイクル目の放電容量)×100
前記前駆体複合化合物1と無水水酸化リチウムとを、LiとNi、Co、及びAlの合計量との割合(モル比)が、Li/(Ni+Co+Al)=1.02となるように秤量し、混合機を用いてこれらを混合して混合物を調製した。なお、粒径が500μmを超える粗大な無水水酸化リチウム粒子が混合物中に含まれないように、予め粉砕して用いた。
(ロータリーキルン条件)
充填率:20%
レトルト周速度:レトルト回転数を1.3rpmに調整
傾動角:1/100に調整
炉内風速及び露点:ガスインプット速度を50L/minに調整
昇温速度:レトルト表面温度を下記のとおりに設定
混合物紛体の最高温度:600℃
レトルト表面温度:630℃
実施例1において、前記前駆体複合化合物1の代わりに前記前駆体複合化合物2を用い、LiとNi、Co、及びMnの合計量との割合(モル比)が、Li/(Ni+Co+Mn)=1.04となるように秤量して混合物を調製し、混合物粉体の最高温度が630℃になるようにレトルト表面温度を調整した以外は、実施例1と同様にして混合物粉体を予備焼成した。
前記前駆体複合化合物1と無水水酸化リチウムとを、LiとNi、Co、及びAlの合計量との割合(モル比)が、Li/(Ni+Co+Al)=1.02となるように秤量し、混合機を用いてこれらを混合して混合物を調製した。なお、粒径が500μmを超える粗大な無水水酸化リチウム粒子が混合物中に含まれないように、予め粉砕して用いた。
比較例1において、前記前駆体複合化合物1の代わりに前記前駆体複合化合物2を用い、LiとNi、Co、及びMnの合計量との割合(モル比)が、Li/(Ni+Co+Mn)=1.04となるように秤量して混合物を調製し、混合物粉体の最高温度が630℃となるように調整した以外は、比較例1と同様にして混合物粉体を予備焼成した。
前記前駆体複合化合物3と無水水酸化リチウムとを、LiとNi、Co、及びAlの合計量との割合(モル比)が、Li/(Ni+Co+Al)=1.021となるように秤量し、混合機を用いてこれらを混合して混合物を調製した。なお、粒径が500μmを超える粗大な無水水酸化リチウム粒子が混合物中に含まれないように、予め粉砕して用いた。
(ロータリーキルン条件)
充填率:7%
レトルト周速度:レトルト回転数を1.3rpmに調整
傾動角:1/100に調整
炉内風速及び露点:ガスインプット速度を50L/minに調整
昇温速度:レトルト表面温度を下記のとおりに設定
混合物紛体の最高温度:610℃
レトルト表面温度:635℃
実施例3において、ロータリーキルン条件のうち、充填率を15%に変更した以外は、実施例3と同様にして正極活物質を得た。
前記前駆体複合化合物3と無水水酸化リチウムとを、LiとNi、Co、及びAlの合計量との割合(モル比)が、Li/(Ni+Co+Al)=1.025となるように秤量し、混合機を用いてこれらを混合して混合物を調製した。なお、粒径が500μmを超える粗大な無水水酸化リチウム粒子が混合物中に含まれないように、予め粉砕して用いた。
Claims (4)
- リチウムとニッケルと任意にリチウム及びニッケル以外の少なくとも1つの他の元素とを含有するリチウムニッケル複合酸化物からなる正極活物質であって、
前記リチウムニッケル複合酸化物の二次粒子を構成する一次粒子について、下記式(α):
(D190-D110)/D150 (α)
(式中、
D110:個数基準の一次粒子サイズの粒子径分布の積算値が10%に相当する粒子径
D150:個数基準の一次粒子サイズの粒子径分布の積算値が50%に相当する粒子径(平均粒子径)
D190:個数基準の一次粒子サイズの粒子径分布の積算値が90%に相当する粒子径
である)
で表されるスパンの変動係数が17%以下であることを特徴とする、非水電解質二次電池用正極活物質。 - リチウムとニッケルと任意にリチウム及びニッケル以外の少なくとも1つの他の元素とを含有するリチウムニッケル複合酸化物からなる正極活物質であって、
前記リチウムニッケル複合酸化物の二次粒子を構成する一次粒子について、D150(個数基準の一次粒子サイズの粒子径分布の積算値が50%に相当する粒子径(平均粒子径))の変動係数が19%以下であることを特徴とする、非水電解質二次電池用正極活物質。 - リチウムとニッケルと任意にリチウム及びニッケル以外の少なくとも1つの他の元素とを含有するリチウムニッケル複合酸化物からなる正極活物質であって、
前記リチウムニッケル複合酸化物の二次粒子について、下記式(β1)、式(β2)、及び式(β3):
|[(元素比1-元素比21)/元素比1]|×100 (β1)
|[(元素比1-元素比22)/元素比1]|×100 (β2)
|[(元素比1-元素比23)/元素比1]|×100 (β3)
(式中、
元素比1:全二次粒子の元素比
元素比22:全二次粒子のD250(体積基準の二次粒子サイズの粒子径分布の積算値が50%に相当する粒子径(平均粒子径))に対して±3μmの範囲内の粒子径を有する中粒子の元素比
元素比21:中粒子よりも小さい粒子径を有する小粒子の元素比
元素比23:中粒子よりも大きい粒子径を有する大粒子の元素比
であり、元素比は、リチウムの量とニッケル及び前記他の元素の合計量との割合(リチウム/(ニッケル+他の元素))を示す)
で表される値がいずれも1.00%以下であることを特徴とする、非水電解質二次電池用正極活物質。 - 請求項1~3のいずれか1つに記載の正極活物質を含有する正極を備えた、非水電解質二次電池。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021571952A JP7038266B1 (ja) | 2020-08-07 | 2021-08-06 | 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 |
CN202180058059.4A CN116057729A (zh) | 2020-08-07 | 2021-08-06 | 非水电解质二次电池用正极活性物质及使用其的非水电解质二次电池 |
CA3188257A CA3188257A1 (en) | 2020-08-07 | 2021-08-06 | Positive electrode active material for non-aqueous electrolyte secondarybattery, method for producing the same, and non-aqueous electrolyte secondary battery using the same |
KR1020237007494A KR20230048520A (ko) | 2020-08-07 | 2021-08-06 | 비수전해질 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 비수전해질 이차전지 |
EP21852181.3A EP4195325A1 (en) | 2020-08-07 | 2021-08-06 | Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell |
US18/165,252 US20230178729A1 (en) | 2020-08-07 | 2023-02-06 | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-135158 | 2020-08-07 | ||
JP2020135158 | 2020-08-07 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/165,252 Continuation US20230178729A1 (en) | 2020-08-07 | 2023-02-06 | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022030608A1 true WO2022030608A1 (ja) | 2022-02-10 |
Family
ID=78028323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/029259 WO2022030608A1 (ja) | 2020-08-07 | 2021-08-06 | 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230178729A1 (ja) |
EP (1) | EP4195325A1 (ja) |
JP (2) | JP6936909B1 (ja) |
KR (1) | KR20230048520A (ja) |
CN (1) | CN116057729A (ja) |
CA (1) | CA3188257A1 (ja) |
WO (1) | WO2022030608A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015115547A1 (ja) * | 2014-01-31 | 2015-08-06 | 住友金属鉱山株式会社 | ニッケルマンガン複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 |
JP6075440B2 (ja) | 2013-02-28 | 2017-02-08 | 日産自動車株式会社 | 正極活物質、正極材料、正極および非水電解質二次電池 |
WO2019194150A1 (ja) | 2018-04-02 | 2019-10-10 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質及びその製造方法 |
JP2020035625A (ja) * | 2018-08-29 | 2020-03-05 | 株式会社田中化学研究所 | 二次電池用正極活物質粒子及び二次電池用正極活物質粒子の製造方法 |
US20200099045A1 (en) * | 2018-09-24 | 2020-03-26 | Uchicago Argonne, Llc | Tangent gradient concentration material for battery, digital gradient concentration material for battery |
CN111082042A (zh) * | 2018-10-21 | 2020-04-28 | 圣戈莱(北京)科技有限公司 | 锂离子电池用三元正极材料微米单晶结构及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002260655A (ja) * | 2001-02-28 | 2002-09-13 | Nichia Chem Ind Ltd | リチウムイオン二次電池用正極活物質の製造方法 |
JP2005336004A (ja) * | 2004-05-26 | 2005-12-08 | Mitsubishi Chemicals Corp | ニッケルマンガンコバルト系複合酸化物、層状リチウムニッケルマンガンコバルト系複合酸化物及びリチウム二次電池正極材料とそれを用いたリチウム二次電池用正極、並びにリチウム二次電池 |
WO2013073633A1 (ja) * | 2011-11-16 | 2013-05-23 | Agcセイミケミカル株式会社 | リチウム含有複合酸化物の製造方法 |
JP6857482B2 (ja) * | 2016-10-13 | 2021-04-14 | 住友化学株式会社 | リチウム二次電池用正極活物質の製造方法 |
JP6849812B2 (ja) * | 2017-08-28 | 2021-03-31 | 三井金属鉱業株式会社 | 全固体型リチウム二次電池用正極活物質 |
JP7371364B2 (ja) * | 2018-06-27 | 2023-10-31 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池 |
-
2020
- 2020-09-09 JP JP2020151340A patent/JP6936909B1/ja active Active
-
2021
- 2021-08-06 JP JP2021571952A patent/JP7038266B1/ja active Active
- 2021-08-06 CN CN202180058059.4A patent/CN116057729A/zh active Pending
- 2021-08-06 KR KR1020237007494A patent/KR20230048520A/ko active Search and Examination
- 2021-08-06 CA CA3188257A patent/CA3188257A1/en active Pending
- 2021-08-06 WO PCT/JP2021/029259 patent/WO2022030608A1/ja unknown
- 2021-08-06 EP EP21852181.3A patent/EP4195325A1/en active Pending
-
2023
- 2023-02-06 US US18/165,252 patent/US20230178729A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6075440B2 (ja) | 2013-02-28 | 2017-02-08 | 日産自動車株式会社 | 正極活物質、正極材料、正極および非水電解質二次電池 |
WO2015115547A1 (ja) * | 2014-01-31 | 2015-08-06 | 住友金属鉱山株式会社 | ニッケルマンガン複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 |
WO2019194150A1 (ja) | 2018-04-02 | 2019-10-10 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質及びその製造方法 |
JP2020035625A (ja) * | 2018-08-29 | 2020-03-05 | 株式会社田中化学研究所 | 二次電池用正極活物質粒子及び二次電池用正極活物質粒子の製造方法 |
US20200099045A1 (en) * | 2018-09-24 | 2020-03-26 | Uchicago Argonne, Llc | Tangent gradient concentration material for battery, digital gradient concentration material for battery |
CN111082042A (zh) * | 2018-10-21 | 2020-04-28 | 圣戈莱(北京)科技有限公司 | 锂离子电池用三元正极材料微米单晶结构及其制备方法 |
Non-Patent Citations (1)
Title |
---|
"The Rietveld Method", 1992, OXFORD UNIVERSITY PRESS |
Also Published As
Publication number | Publication date |
---|---|
JP7038266B1 (ja) | 2022-03-17 |
JP6936909B1 (ja) | 2021-09-22 |
CA3188257A1 (en) | 2022-02-10 |
EP4195325A1 (en) | 2023-06-14 |
JPWO2022030608A1 (ja) | 2022-02-10 |
KR20230048520A (ko) | 2023-04-11 |
US20230178729A1 (en) | 2023-06-08 |
JP2022031070A (ja) | 2022-02-18 |
CN116057729A (zh) | 2023-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6428105B2 (ja) | ニッケルコバルトマンガン化合物及びその製造方法 | |
JP6201895B2 (ja) | ニッケルコバルトマンガン複合水酸化物の製造方法 | |
JP5464348B2 (ja) | 非水系電解質二次電池正極活物質用ニッケル−コバルト複合水酸化物およびその製造方法、ならびに該ニッケル−コバルト複合水酸化物を用いた非水系電解質二次電池正極活物質の製造方法 | |
JP6341313B2 (ja) | 非水系電解質二次電池用正極活物質の製造方法 | |
JP2017530086A (ja) | リチウム・ニッケル・マンガン・コバルト酸化物カソード材料用のカーボネート前駆体及びその製造方法 | |
JP5811383B2 (ja) | 非水系電解質二次電池用正極活物質と該正極活物質を用いた非水系電解質二次電池 | |
JP2021068701A (ja) | リチウム二次電池用正極活物質、その製造方法、及びこれを含むリチウム二次電池 | |
JP6968844B2 (ja) | 非水電解質二次電池用の正極活物質粒子及びその製造方法、並びに非水電解質二次電池 | |
JP2019023148A (ja) | 遷移金属水酸化物粒子の製造方法、リチウム遷移金属複合酸化物の製造方法、リチウム二次電池用正極の製造方法、及びリチウム二次電池の製造方法、並びに遷移金属水酸化物粒子 | |
CN110799460B (zh) | 掺杂有铝的β-氢氧化镍 | |
US20230104888A1 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
KR20230019838A (ko) | 미립자 (옥시)히드록시드의 제조 방법 | |
JP5206948B2 (ja) | オキシ水酸化コバルト粒子粉末及びその製造法 | |
JP6245081B2 (ja) | ニッケルコバルトマンガン複合水酸化物とその製造方法 | |
JP7338133B2 (ja) | 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法 | |
JP7038266B1 (ja) | 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 | |
WO2021235470A1 (ja) | 非水電解質二次電池用正極活物質の製造方法 | |
WO2023157525A1 (ja) | 正極活物質粒子の処理方法、並びに正極活物質及びそれを用いた非水電解質二次電池 | |
WO2023095548A1 (ja) | 遷移金属含有水酸化物、遷移金属含有水酸化物を前駆体とした正極活物質、遷移金属含有水酸化物の製造方法 | |
JP7070250B2 (ja) | 水酸化銅被覆ニッケルコバルト複合水酸化物の製造方法 | |
WO2023242375A1 (en) | Method for producing positive electrode active material for nonaqueous electrolyte secondary battery | |
WO2024014558A1 (ja) | 金属複合水酸化物及びリチウム二次電池用正極活物質の製造方法 | |
WO2024115679A1 (en) | Method for treating positive electrode active material particles, and positive electrode active material and nonaqueous electrolyte secondary battery employing same | |
KR20240151779A (ko) | 양극 활물질 입자의 처리 방법, 및 양극 활물질 및 이를 이용한 비수성 전해질 이차 배터리 | |
WO2024160969A1 (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021571952 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21852181 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3188257 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 20237007494 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021852181 Country of ref document: EP Effective date: 20230307 |