WO2022028630A2 - 一种陶瓷介质滤波器 - Google Patents

一种陶瓷介质滤波器 Download PDF

Info

Publication number
WO2022028630A2
WO2022028630A2 PCT/CN2021/132217 CN2021132217W WO2022028630A2 WO 2022028630 A2 WO2022028630 A2 WO 2022028630A2 CN 2021132217 W CN2021132217 W CN 2021132217W WO 2022028630 A2 WO2022028630 A2 WO 2022028630A2
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic dielectric
dielectric filter
edge
length
size
Prior art date
Application number
PCT/CN2021/132217
Other languages
English (en)
French (fr)
Other versions
WO2022028630A3 (zh
Inventor
方万里
李昂昂
李大旗
梁德华
Original Assignee
顺络(上海)电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 顺络(上海)电子有限公司 filed Critical 顺络(上海)电子有限公司
Publication of WO2022028630A2 publication Critical patent/WO2022028630A2/zh
Publication of WO2022028630A3 publication Critical patent/WO2022028630A3/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters

Definitions

  • the utility model relates to the technical field of filters, in particular to a ceramic dielectric filter.
  • the fifth-generation mobile communication network era is ushering in the 5G era. Because 5G communication requires a higher working frequency band, the CTE of the ceramic dielectric filter is close to zero, and it has the characteristics of high dielectric constant and low loss. , which can reduce the volume of traditional cavity filters, so the demand for ceramic dielectric filters increases sharply. However, the production yield of ceramic dielectric filters is low, the use process is unstable, and the cost is high, which cannot meet the needs of the times and customers.
  • the purpose of the utility model is to propose a ceramic dielectric filter in order to solve the problems of poor working reliability and short service life of the existing ceramic dielectric filter under high frequency band.
  • the utility model proposes a ceramic dielectric filter.
  • the ceramic dielectric filter includes a main body and a metal layer composed of conductive materials.
  • the main body includes a top surface, a bottom surface, a front surface, a back surface, a left side surface and a right side surface, and An edge formed by two adjacent planes is provided with a transition surface; the metal layer covers the outer surface of the main body.
  • the transition surface is a rounded structure and a stepped surface
  • the size of the rounded structure is R0.05mm-R5mm
  • the length of the stepped surface is the same as the length of the edge where it is located, and its width is 0.02mm-5mm .
  • the transition surface is a chamfered structure and a stepped surface
  • the size of the chamfered structure is C0.05mm-C5mm
  • the length of the stepped surface is the same as the length of the edge where it is located, and its width is 0.02mm-5mm .
  • the transition surface is a rounded structure and a chamfered structure
  • the size of the rounded structure is R0.05mm-R5mm
  • the size of the chamfered structure is C0.05mm-C5mm.
  • the transition surface is a rounded structure, and the size of the rounded structure is R0.05mm-R5mm.
  • the transition surface is a chamfered structure, and the size of the chamfered structure is C0.05mm-C5mm.
  • the accuracy of the transition surface provided on the longer edge is greater than that of the shorter edge
  • the beneficial effects of the utility model include: by arranging transition surfaces on each edge of the ceramic dielectric filter, the effective use area is increased, the product reliability is improved, the anti-drop and anti-aging ability is improved, and the service life is prolonged.
  • FIG. 1 is a schematic structural diagram of a ceramic dielectric filter in the prior art.
  • FIG. 2 is a schematic structural diagram of the transition surface of the ceramic dielectric filter of the present invention being a rounded structure and a stepped surface.
  • FIG. 3 is a schematic structural diagram of the ceramic dielectric filter of the present invention wherein the transition surface is a chamfered structure and a stepped surface.
  • FIG. 4 is a schematic structural diagram of the transition surface of the ceramic dielectric filter of the present invention having a rounded structure and a chamfered structure.
  • FIG. 5 is a schematic structural diagram of the transition surface of the ceramic dielectric filter of the present invention having a rounded structure.
  • FIG. 6 is a schematic structural diagram of the transition surface of the ceramic dielectric filter of the present invention being a chamfered structure.
  • FIG. 7 is a schematic structural diagram of the combined ceramic dielectric filter in FIG. 2 .
  • a ceramic dielectric filter provided in this embodiment includes a main body and a metal layer composed of conductive materials.
  • the main body includes a top surface, a bottom surface, a front surface, a back surface, a left side surface and a right side surface. and edges formed by two adjacent planes, all edges are provided with transition surfaces, and the metal layer covers the entire outer surface of the main body.
  • the edge has a streamlined structure, which improves the reliability and stability of the ceramic dielectric filter under harsh working conditions such as high frequency and high temperature, and is resistant to drop and aging. Good vibration stability.
  • the transition surface is a rounded structure and a stepped surface
  • the size of the rounded structure is in the range of R0.05mm-R5mm
  • the length of the stepped surface is the same as the length of the edge where it is located
  • its width is in the range of 0.02mm -5mm.
  • Each edge of the main body is treated with a transition surface, which can effectively avoid the problem of electrical cracking caused by the collapse of the sharp edge under the action of external force, and effectively improve its high frequency and low frequency. Stability for use in other harsh environments such as high temperature. After the body of the main body is sintered, it can be processed by a grinding machine on the surface or by a double-sided grinding machine.
  • the flatness of the processed main body is less than 0.02mm, and the surface roughness is less than 3um.
  • the transition surface is processed by a high-speed grinding head, and finally the metal layer is processed. Printing or spraying on the surface of the main body.
  • the ceramic dielectric filter of the present invention can also be assembled and used. As shown in FIG. 7 , when two or more ceramic dielectric filters are assembled, a narrow gap is formed at the connection of the two transition surfaces, which can be used for filling solder, increasing the The welding reliability enhances the mechanical reliability of the ceramic dielectric filter, prolongs the service life and the overall yield of product processing and assembly.
  • the size and accuracy of the transition surface of the edge of the ceramic dielectric filter are related to its own size. If the length of the longer edge of the ceramic dielectric filter is greater than or equal to twice the length of the shorter edge, the longer edge. The accuracy of the transition surface set on the upper edge is greater than the accuracy of the transition surface set on the shorter edge, and the size of the chamfer or rounded corner on the longer edge is larger than that on the short edge. It can reduce the dimensional difference caused by uneven force when processing longer edges.
  • the transition surface of the ceramic dielectric filter is a chamfered structure and a stepped surface. Its width ranges from 0.02mm to 5mm.
  • the transition surface of the ceramic dielectric filter is a rounded structure and a chamfered structure
  • the size of the rounded structure is R0.05mm-R5mm
  • the size of the chamfered structure is C0.05mm-C5mm .
  • the transition surface of the ceramic dielectric filter is a rounded structure, and the size of the rounded structure is R0.05mm-R5mm.
  • the transition surface of the ceramic dielectric filter is a chamfered structure, and the size of the chamfered structure is C0.05mm-C5mm.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Filtering Materials (AREA)

Abstract

本实用新型公开了一种陶瓷介质滤波器,所述陶瓷介质滤波器包括主体和导电材料构成的金属层,所述主体包括顶面、底面、正面、背面、左侧面和右侧面,及相邻两平面形成的棱边,所述棱边设有过渡面;所述的金属层覆盖在所述主体的外表面。本实用新型通过在陶瓷介质滤波器的各个棱边上设置过渡面,增加有效使用面积,提高了产品使用可靠性,且抗跌落抗老化能力提高,延长了使用寿命。

Description

一种陶瓷介质滤波器 技术领域
本实用新型涉及滤波器技术领域,尤其涉及一种陶瓷介质滤波器。
背景技术
随着通讯行业的迅速发展,迎来第五代移动通讯网络时代即5G时代,由于5G通讯需要较高的工作频段,而陶瓷介质滤波器的CTE接近零,具有高介电常数低损耗的特性,可减小传统腔体滤波器的体积,故对陶瓷介质滤波器的需求急剧增加。但陶瓷介质滤波器生产制作良率低,使用过程不稳定,成本较高,不能应对时代与客户的需求。
实用新型内容
本实用新型目的是为了解决现有的陶瓷介质滤波器在高频段下工作可靠性差,使用寿命短的问题,提出一种陶瓷介质滤波器。
本实用新型提出的一种陶瓷介质滤波器,所述陶瓷介质滤波器包括主体和导电材料构成的金属层,所述主体包括顶面、底面、正面、背面、左侧面和右侧面,及相邻两平面形成的棱边,所述棱边设有过渡面;所述的金属层覆盖在所述主体的外表面。
优选地,所述过渡面为圆角结构和台阶面,所述圆角结构的尺寸为R0.05mm-R5mm,所述台阶面的长度与其所在的棱边长度相同,其宽度为0.02mm-5mm。
优选地,所述过渡面为倒角结构和台阶面,所述倒角结构的尺寸为C0.05mm-C5mm,所述台阶面的长度与其所在的棱边长度相同,其宽度为0.02mm-5mm。
优选地,所述过渡面为圆角结构和倒角结构,所述圆角结构的尺寸为R0.05mm-R5mm,所述倒角结构的尺寸为C0.05mm-C5mm。
优选地,所述过渡面为圆角结构,所述圆角结构的尺寸为R0.05mm-R5mm。
优选地,所述过渡面为倒角结构,所述倒角结构的尺寸为C0.05mm-C5mm。
优选地,所述陶瓷介质滤波器的较长的棱边的长度大于或等于较短的棱边的长度的一倍时,较长的棱边上设置的过渡面的精度大于较短的棱边上设置的过渡面的精度。
本实用新型的有益效果包括:通过在陶瓷介质滤波器的各个棱边上设置过渡面,增加有效使用面积,提高了产品使用可靠性,且抗跌落抗老化能力提高,延长了使用寿命。
附图说明
图1是现有技术中陶瓷介质滤波器的结构示意图。
图2是本实用新型的陶瓷介质滤波器的过渡面为圆角结构和台阶面的结构示意图。
图3是本实用新型的陶瓷介质滤波器的过渡面为倒角结构和台阶面的结构示意图。
图4是本实用新型的陶瓷介质滤波器的过渡面为圆角结构和倒角结构的结构示意图。
图5是本实用新型的陶瓷介质滤波器的过渡面为圆角结构的结构示意图。
图6是本实用新型的陶瓷介质滤波器的过渡面为倒角结构的结构示意图。
图7是图2中的陶瓷介质滤波器组合后的结构示意图。
具体实施方式
下面结合具体实施方式并对照附图对本实用新型作进一步详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本实用新型的范围及其应用。
参照以下附图,将描述非限制性和非排他性的实施例,其中相同的附图标记表示相同的部件,除非另外特别说明。
实施例1:
如图2-6所示,本实施例给出的一种陶瓷介质滤波器,包括主体和导电材料构成的金属层,主体包括顶面、底面、正面、背面、左侧面和右侧面,及相邻两平面形成的棱边,所有的棱边设有过渡面,金属层覆盖在主体的整个外表面。通 过在陶瓷介质滤波器的棱边设置过渡面,使棱边具有流线型结构,提高了陶瓷介质滤波器在高频段高温等恶劣工作情况下的可靠性与稳定性,且抗跌落及抗老化,热振稳定性好。
具体地,在本实施例中,过渡面为圆角结构和台阶面,圆角结构的尺寸范围为R0.05mm-R5mm,台阶面的长度与其所在的棱边长度相同,其宽度范围为0.02mm-5mm。在主体的各个棱边均做过渡面处理,可以有效避免较锋利的棱边在外力作用下,棱边发生点受力出现崩缺而导致电性裂化的问题,有效提高其在高频、低频和高温等其他恶劣环境中使用的稳定性。主体的胚体完成烧结后,可采用磨床单面加工或双面磨床加工,加工出的主体平面度<0.02mm,表面粗糙度Ra<3um,再通过高速磨头加工过渡面,最后将金属层印刷或喷涂在主体表面。本实用新型的陶瓷介质滤波器也可组装使用,如图7所示,当两个或多个陶瓷介质滤波器组装时,两个过渡面的连接处形成一窄缝,可用于填充焊料,增加焊接可靠性,使陶瓷介质滤波器的机械可靠性增强,延长使用寿命及产品加工组装的整体良率。
陶瓷介质滤波器棱边的过渡面尺寸及精度与其本身尺寸相关,若陶瓷介质滤波器的较长的棱边的长度大于或等于较短的棱边的长度的一倍时,较长的棱边上设置的过渡面的精度大于较短的棱边上设置的过渡面的精度,较长的棱边上的倒角或倒圆角的尺寸大于较短的棱边上的倒角或倒圆角的尺寸,可以减少较长棱边加工时因受力不均导致的尺寸差异。
为了论证在跌落及高低温冲击下,各个棱边设置过渡面与棱边不做处理的陶瓷介质滤波器在性能上的差异,发明人进行了对比实验。
(1)将几组上述两种陶瓷介质滤波器在相同高度处使其自由下落,比较上述两种结构的陶瓷介质滤波器的结构变化,实验表明,具有过渡面的陶瓷介质滤波器具有良好的抗跌落性能。(2)将上述两种陶瓷滤波器同时进行高低温冲击试验,实验表明,具有过渡面的陶瓷介质滤波器耐冲击轮数约为棱边不做处理的产品的1.25倍。
实施例2
本实施例与实施例1不同的是,陶瓷介质滤波器的过渡面为倒角结构和台阶面,倒角结构的尺寸为C0.05mm-C5mm,台阶面的长度与其所在的棱边长度相同,其宽度范围为0.02mm-5mm。
实施例3
本实施例与实施例1不同的是,陶瓷介质滤波器的过渡面为圆角结构和倒角结构,圆角结构的尺寸为R0.05mm-R5mm,倒角结构的尺寸为C0.05mm-C5mm。
实施例4
本实施例与实施例1不同的是,陶瓷介质滤波器的过渡面为圆角结构,圆角结构的尺寸为R0.05mm-R5mm。
实施例5
本实施例与实施例1不同的是,陶瓷介质滤波器的过渡面为倒角结构,倒角结构的尺寸为C0.05mm-C5mm。
本领域技术人员将认识到,对以上描述做出众多变通是可能的,所以实施例和附图仅是用来描述一个或多个特定实施方式。
尽管已经描述和叙述了被看作本实用新型的示范实施例,本领域技术人员将会明白,可以对其做出各种改变和替换,而不会脱离本实用新型的精神。另外,可以做出许多修改以将特定情况适配到本实用新型的教义,而不会脱离在此描述的本实用新型中心概念。所以,本实用新型不受限于在此披露的特定实施例,但本实用新型可能还包括属于本实用新型范围的所有实施例及其等同物。

Claims (7)

  1. 一种陶瓷介质滤波器,其特征在于,所述陶瓷介质滤波器包括主体和导电材料构成的金属层,所述主体包括顶面、底面、正面、背面、左侧面和右侧面,及相邻两平面形成的棱边,所述棱边设有过渡面;所述的金属层覆盖在所述主体的外表面。
  2. 如权利要求1所述的陶瓷介质滤波器,其特征在于,所述过渡面为圆角结构和台阶面,所述圆角结构的尺寸为R0.05mm-R5mm,所述台阶面的长度与其所在的棱边长度相同,其宽度为0.02mm-5mm。
  3. 如权利要求1所述的陶瓷介质滤波器,其特征在于,所述过渡面为倒角结构和台阶面,所述倒角结构的尺寸为C0.05mm-C5mm,所述台阶面的长度与其所在的棱边长度相同,其宽度为0.02mm-5mm。
  4. 如权利要求1所述的陶瓷介质滤波器,其特征在于,所述过渡面为圆角结构和倒角结构,所述圆角结构的尺寸为R0.05mm-R5mm,所述倒角结构的尺寸为C0.05mm-C5mm。
  5. 如权利要求1所述的陶瓷介质滤波器,其特征在于,所述过渡面为圆角结构,所述圆角结构的尺寸为R0.05mm-R5mm。
  6. 如权利要求1所述的陶瓷介质滤波器,其特征在于,所述过渡面为倒角结构,所述倒角结构的尺寸为C0.05mm-C5mm。
  7. 如权利要求1所述的陶瓷介质滤波器,其特征在于,所述陶瓷介质滤波器的较长的棱边的长度大于或等于较短的棱边的长度的一倍时,较长的棱边上设置的过渡面的精度大于较短的棱边上设置的过渡面的精度。
PCT/CN2021/132217 2020-11-26 2021-11-23 一种陶瓷介质滤波器 WO2022028630A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022775400.3 2020-11-26
CN202022775400.3U CN214153142U (zh) 2020-11-26 2020-11-26 一种陶瓷介质滤波器

Publications (2)

Publication Number Publication Date
WO2022028630A2 true WO2022028630A2 (zh) 2022-02-10
WO2022028630A3 WO2022028630A3 (zh) 2022-03-31

Family

ID=77566873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132217 WO2022028630A2 (zh) 2020-11-26 2021-11-23 一种陶瓷介质滤波器

Country Status (2)

Country Link
CN (1) CN214153142U (zh)
WO (1) WO2022028630A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214153142U (zh) * 2020-11-26 2021-09-07 顺络(上海)电子有限公司 一种陶瓷介质滤波器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207183476U (zh) * 2017-02-07 2018-04-03 四川省韬光通信有限公司 低无源互调介质波导滤波器
CN106960994A (zh) * 2017-04-25 2017-07-18 四川省韬光通信有限公司 一种便于调节频率与耦合带宽的介质滤波器
CN209434357U (zh) * 2019-03-21 2019-09-24 深圳市国人射频通信有限公司 一种介质波导滤波器
CN210379361U (zh) * 2019-10-08 2020-04-21 深圳顺络电子股份有限公司 一种介质滤波器
CN214153142U (zh) * 2020-11-26 2021-09-07 顺络(上海)电子有限公司 一种陶瓷介质滤波器

Also Published As

Publication number Publication date
CN214153142U (zh) 2021-09-07
WO2022028630A3 (zh) 2022-03-31

Similar Documents

Publication Publication Date Title
WO2022028630A2 (zh) 一种陶瓷介质滤波器
KR101462767B1 (ko) 기판 내장용 적층 세라믹 전자부품 및 적층 세라믹 전자부품 내장형 인쇄회로기판
JP2015146454A (ja) 積層セラミックキャパシタ及びその製造方法
US11145463B2 (en) Multilayer capacitor
US9378891B2 (en) Multilayer ceramic device
JP6058291B2 (ja) 積層型チップ素子及びその製造方法
CN106357234A (zh) 一种石英晶体谐振器及其加工工艺
KR101153686B1 (ko) 적층 세라믹 전자부품 제조방법 및 그 제조방법에 의한 적층 세라믹 전자부품
JP2017011142A (ja) セラミック電子部品
CN210379361U (zh) 一种介质滤波器
JP3644800B2 (ja) 積層セラミック電子部品の製造方法
CN210007680U (zh) 一种具有凹槽结构的高频抛光石英晶片
JPH07183154A (ja) 電子部品
CN201766560U (zh) 一种新型石英晶体谐振器
CN210273999U (zh) 一种凸块结构的高频抛光石英晶片
US2698909A (en) Piezoelectric crystal plate
US1334142A (en) Condenser-plate construction
JP2011003655A (ja) 積層セラミックの製造方法
TW202015072A (zh) 閥金屬箔片及其製作方法
CN207982530U (zh) 高频焊焊接导向轮
CN106103025B (zh) 抽吸头及片材处理装置
JP2013004969A (ja) 積層セラミック電子部品及びその製造方法
JP2004095687A (ja) 積層セラミックコンデンサ及びその製造方法
JP7074967B2 (ja) 縁に台状構造を有するポリッシュ水晶結晶周波数片
CN214819841U (zh) 一种纳米晶切割刀具

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853739

Country of ref document: EP

Kind code of ref document: A2

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22-11-2023)