WO2022021051A1 - 一种量子点改性的金属有机骨架光催化剂及其制备方法和应用 - Google Patents

一种量子点改性的金属有机骨架光催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2022021051A1
WO2022021051A1 PCT/CN2020/105123 CN2020105123W WO2022021051A1 WO 2022021051 A1 WO2022021051 A1 WO 2022021051A1 CN 2020105123 W CN2020105123 W CN 2020105123W WO 2022021051 A1 WO2022021051 A1 WO 2022021051A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic framework
metal
quantum dot
photocatalyst
iron
Prior art date
Application number
PCT/CN2020/105123
Other languages
English (en)
French (fr)
Inventor
袁兴中
陈浩云
曾冠军
张进
Original Assignee
湖南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南大学 filed Critical 湖南大学
Priority to PCT/CN2020/105123 priority Critical patent/WO2022021051A1/zh
Publication of WO2022021051A1 publication Critical patent/WO2022021051A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Definitions

  • the invention belongs to the field of heavy metal redox and photocatalytic treatment, and in particular relates to a quantum dot-modified metal-organic framework photocatalyst and a preparation method and application thereof.
  • the substandard discharge of heavy metal wastewater has caused serious pollution to rivers and lakes, posing a huge threat to aquatic organisms, groundwater and human life.
  • the treatment technology of heavy metals is constantly innovating, due to the rapid development of industry and agriculture, the problem of heavy metal wastewater pollution is becoming more and more serious. Therefore, cheap and efficient heavy metal wastewater treatment technology still faces huge challenges.
  • the commonly used treatment methods for heavy metals mainly include ion exchange method, adsorption method, membrane separation method, chemical precipitation method and photocatalytic redox method, etc. These methods have their own advantages and play a huge role in water pollution treatment. They also have their own shortcomings to varying degrees. Among them, chemical oxidation usually has the characteristics of high efficiency, rapidity and complete removal.
  • Photocatalytic technology is an efficient and green pollutant removal technology that has developed rapidly in recent years, and has been widely used in the field of catalytic degradation of organic matter. In recent years, it has also been gradually used in the redox treatment of heavy metal wastewater, but the development of efficient, stable and inexpensive photocatalysts is an important limitation in the development of this technology.
  • the present invention provides a quantum dot-modified metal-organic framework photocatalyst and a preparation method thereof. application.
  • the technical scheme adopted in the present invention is:
  • a quantum dot-modified metal-organic framework photocatalyst is characterized in that it is an iron-based metal-organic framework modified by nitrogen-doped carbon quantum dots.
  • the structure of the iron-based metal organic framework modified by nitrogen-doped carbon quantum dots is that nitrogen-doped carbon quantum dots enter the crystal lattice of the iron-based metal organic framework, as shown in FIG. 2 .
  • the size of the nitrogen-doped carbon quantum dots is 1-100 nm, preferably 5 nm;
  • the iron of the iron-based metal organic framework is in the form of iron-oxygen bonding.
  • microstructure of the iron-based metal organic framework is an octahedral structure, as shown in Figure 1;
  • the microstructure of the quantum dot is a core-shell structure, as shown in Figure 13;
  • the diameter of the core-shell structure is 1 nm-100 nm, preferably 10 nm.
  • a method for preparing a quantum dot-modified metal-organic framework photocatalyst which is characterized by comprising mixing an iron-based metal-organic framework with nitrogen-doped carbon quantum dots.
  • the mixing refers to mixing iron-based metal skeleton with nitrogen-doped carbon quantum dot solution and methanol solution;
  • the mass ratio of the iron-based metal organic framework, the nitrogen-doped carbon quantum dot solution, and the methanol solution is 100:0.5-5:5-30, preferably 100:3:25;
  • stirring is performed during the mixing process; preferably, the stirring time is 60min-200min, preferably 120min; the stirring temperature is 40°C-80°C, preferably 45°C; the stirring speed is 550r/min.
  • the preparation method of the metal organic framework is a one-step hydrothermal method
  • the one-step hydrothermal method is to put ferric chloride hexahydrate and terephthalic acid into dimethylformamide solvent to react;
  • the dosage ratio of ferric chloride hexahydrate and terephthalic acid into dimethylformamide is 11.7-33.3mg:31.88-39mg:42-60ml, preferably 23mg:37mg:6ml;
  • ferric trichloride hexahydrate and terephthalic acid are put into dimethylformamide solvent and stirred to obtain a uniform solution; preferably, the stirring refers to continuous stirring for 15-60min, preferably 40min;
  • the homogeneous solution is reacted at 120-180°C, preferably 150°C, for 4-12 hours, preferably 10 hours;
  • the reaction vessel is a high-pressure reactor lined with polytetrafluoroethylene
  • the solid obtained by centrifugation is washed and then dried;
  • the washing refers to washing with ethanol three times
  • the drying refers to drying at 50°C.
  • the preparation method of the nitrogen-doped carbon quantum dots is prepared by dialysis after hydrothermal reaction;
  • the hydrothermal reaction comprises dissolving triammonium citrate in deionized water, adding ethylenediamine for hydrothermal reaction, and cooling to room temperature for dialysis;
  • the dosage ratio of triammonium citrate, deionized, and ethylenediamine is 100-125mg:5-20ml:0.5-0.3ml, preferably 121.5mg:10ml:0.335ml;
  • the temperature of the hydrothermal reaction is 120-200°C, preferably 200°C; the reaction time is 2-8h, preferably 5h;
  • the reaction vessel is a high-pressure reactor lined with polytetrafluoroethylene
  • the dialysis solution is deionized water; the specification of the dialysis bag is MWCO 1000; the dialysis time is 20-40h, preferably 24h.
  • the heavy metal wastewater is wastewater containing trivalent arsenic; the concentration of trivalent arsenic in the heavy metal wastewater is 20-80 mg/L, preferably 50 mg/L; the pH of the heavy metal wastewater with hydrochloric acid is 3-7, preferably 5 ;
  • the mass volume ratio of the photocatalyst to the heavy metal wastewater is 50-200mg:1-2L, preferably 50mg:1L;
  • the stirring refers to stirring the heavy metal wastewater added with the photocatalyst with a magnetic stirrer; the rotational speed of the magnetic stirrer is 400-550r/min, preferably 450r/min; the stirring and adsorption time before the illumination is 1- 4h, preferably 2h;
  • the illumination condition is that ⁇ is the visible light illumination during adsorption, and the illumination time is 0.5-2h, preferably 1h;
  • the adsorption after illumination is stirring adsorption; the stirring adsorption time is 4-8h, preferably 6h.
  • a quantum dot-modified metal-organic framework catalyst is characterized by a quantum-dot-modified metal-organic framework material.
  • the quantum dot-modified metal-organic framework material is that the quantum dots enter the crystal lattice of the iron-based metal-organic framework.
  • the microstructure of the iron-based metal organic framework is an octahedral structure; preferably, the microstructure of the quantum dot is a core-shell structure with a diameter of about 10 nm.
  • a method for preparing a quantum dot-modified metal-organic framework catalyst is characterized by comprising: mixing an iron-based metal-organic framework and quantum dots in methanol.
  • the mass ratio of the iron-based metal organic framework, quantum dots and methanol is 100:0.5-5:5-30, preferably 100:3:25; preferably, the mixing refers to mixing the iron-based metal organic framework and the quantum dot solution in a container.
  • the stirring speed is 550r/min; preferably, the stirring temperature is 40°C-80°C; preferably 45°C; the stirring time is 60min-200min; preferably 120min.
  • the iron-based metal organic framework is prepared by a one-step hydrothermal method
  • Ferric chloride hexahydrate and terephthalic acid are put into dimethylformamide solvent to carry out one-step hydrothermal method;
  • the dosage ratio of ferric chloride hexahydrate, terephthalic acid and terephthalic acid in the hydrothermal method is 11.7-33.3mg:31.88-39mg:42-60ml, preferably 23mg:37mg:6ml;
  • ferric chloride hexahydrate and terephthalic acid are put into a dimethylformamide solvent and stirred to obtain a uniform solution; preferably, the stirring refers to continuous stirring for 15-60 min, preferably 40 min ;
  • the homogeneous solution is reacted at 120-180°C, preferably 150°C, for 4-12 hours, preferably 10 hours;
  • the reaction vessel is a high-pressure reactor lined with polytetrafluoroethylene
  • the solid obtained by centrifugation is washed and then dried;
  • the washing refers to washing with ethanol three times
  • the drying refers to drying at 50°C.
  • the quantum dots are nitrogen-doped carbon quantum dots, which are prepared by dialysis after hydrothermal reaction;
  • triammonium citrate is dissolved in deionized water, and ethylenediamine is added for hydrothermal reaction, and dialysis is performed after cooling to room temperature;
  • the dosage ratio of triammonium citrate, deionized and ethylenediamine is 100-125mg:5-20ml:0.5-0.3ml, preferably 121.5mg:10ml:0.335ml;
  • the temperature of the hydrothermal reaction is 120-200°C, preferably 200°C, and the reaction time is 2-8h, preferably 5h;
  • the reaction vessel is a high-pressure reactor lined with polytetrafluoroethylene
  • the dialysis solution is deionized water
  • the dialysis bag specification is MWCO 1000
  • the dialysis time is 20-40h, preferably 24h.
  • the application of the quantum dot-modified metal-organic framework catalyst is characterized in that the quantum-dot-modified metal-organic framework photocatalyst is used, and/or the photocatalyst prepared by the preparation method is simultaneously carried out in a solution. And trivalent arsenic adsorption-photocatalytic reaction-adsorption reaction.
  • the photocatalyst is added to the waste water containing and trivalent arsenic, after stirring in the dark to reach the adsorption equilibrium, the photocatalytic reaction is carried out under the light condition to realize the process of reducing the toxicity of the heavy metal from the oxidation of trivalent arsenic to pentavalent arsenic. Then move to a dark place for adsorption of pentavalent arsenic.
  • the heavy metal wastewater is wastewater containing trivalent arsenic; the concentration in the heavy metal wastewater is 20-80 mg/L, preferably 50 mg/L, and the concentration of trivalent arsenic in the heavy metal wastewater is 20-80 mg/L, preferably 50 mg/L. L,; the pH of the hydrochloric acid heavy metal wastewater is 3 to 7, preferably 3.
  • the mass-volume ratio of the metal-organic framework photocatalyst material modified by doped carbon quantum dots to the heavy metal wastewater is 50-200mg:1-2L, preferably 50mg:1L;
  • the stirring refers to stirring the heavy metal wastewater added with the photocatalyst with a magnetic stirrer; the rotational speed of the magnetic stirrer is 400-550r/min, preferably 450r/min; the stirring and adsorption time before the illumination is 1- 4h, preferably 2h;
  • the illumination condition is that ⁇ is the visible light illumination during adsorption, and the illumination time is 0.5-2 h, preferably 1 h.
  • the stirring adsorption time after the illumination is 4-8h, preferably 6h;
  • a method for treating heavy metal wastewater with a metal-organic framework material modified by quantum dots includes the following steps: adding the metal-organic framework catalyst material modified by quantum dots into heavy metal wastewater containing trivalent arsenic, and stirring in a dark place to achieve adsorption equilibrium Then, the photocatalytic reaction is carried out under simulated sunlight conditions to complete the heavy metal redox process, and then the adsorption reaction is carried out in the dark to complete the treatment of heavy metal wastewater.
  • the preparation method of the metal organic framework modified with quantum dots includes the following steps: adopting a one-step hydrothermal method to use ferric chloride trihydrate, terephthalic acid as a monomer, dimethyl Iron-based metal-organic framework materials with uniform morphology were synthesized by using methylformamide as solvent; quantum dots were synthesized by hydrothermal method with ammonium citrate and ethylenediamine as monomers and deionized water as solvent.
  • the hydrothermal method is a common method for synthesizing iron-based metal-organic framework materials, different temperatures, different heating times, and different ratios will make the final iron-based metal-organic framework materials different in morphology and properties.
  • steps 1 and 2 of Example 1 For details of the hydrothermal reaction parameters for preparing the iron-based metal organic framework, see steps 1 and 2 of Example 1.
  • iron-based metal organic frameworks can be obtained commercially, the morphology and performance of the commercially available materials are significantly different from those prepared by this technology, and it has not been found that there are iron-based metal organic frameworks on the market with the same structure as the one prepared by the present invention.
  • Commercial products in other words, commercially available iron-based metal organic framework materials cannot be directly used in the photocatalyst of the present invention.
  • the quantum dot-modified metal-organic framework photocatalyst of the present invention has excellent photocatalytic activity for heavy metal arsenic precisely because of its unique microstructure and morphological characteristics.
  • the quantum dot-modified metal-organic framework material used in the present invention is an adsorption-photocatalyst.
  • Modifying MIL-53(Fe) with quantum dots changes the lattice of MIL-53(Fe), reduces the band gap of the semiconductor, and improves the absorption of light in the visible light range by quantum dot-modified metal-organic framework materials.
  • the introduction of dots improves the electron transfer and storage properties of the material, and at the same time can act as a photocatalyst to establish surface separation centers for electrons and reduce the recombination rate of charge carriers.
  • the introduction of quantum dots can cause lattice distortion, form defect energy levels, reduce the recombination rate of electrons and holes, and increase the generation rate of hydroxyl radicals and superoxide radicals, thereby enhancing the photocatalytic performance.
  • Hydroxyl radicals have strong oxidizing properties, which can achieve the oxidation of trivalent arsenic, and peroxy radicals have redox properties, which can realize the reduction of trivalent arsenic.
  • the quantum dot-modified metal-organic framework photocatalyst of the present invention has higher adsorption efficiency and photocatalytic efficiency, good stability, simple synthesis, and is a kind of widely used and efficient trivalent catalyst. Adsorption-photocatalyst for post-oxidative removal of arsenic.
  • the present invention provides an adsorption-photocatalyst for the treatment of heavy metal wastewater containing low-valent arsenic (III) and high-valent chromium (VI): a quantum dot-modified iron-based metal adsorption-photocatalyst with adsorption It has the advantages of good performance and high photocatalytic efficiency.
  • the present invention provides a preparation method of a quantum dot-modified iron-based metal material, and a material with good adsorption performance and high photocatalytic efficiency can be prepared by simply processing the iron-based metal-organic framework material and the quantum dots .
  • a quantum dot-modified metal-organic framework photocatalyst is synthesized for the first time, and the preparation method has the advantages of simple operation, convenient preparation and high yield.
  • the present invention also provides a method for treating low-valent arsenic (III)-containing heavy metal wastewater, which adopts a quantum dot-modified iron-based metal-organic framework photocatalyst of the present invention to perform adsorption-photocatalytic treatment on the heavy metal wastewater. , has the advantages of convenient operation, simple equipment, good adsorption performance, high photocatalytic degradation efficiency, and is a widely used low-valent arsenic (III)) heavy metal wastewater treatment method.
  • the invention discloses a method for treating low-valent arsenic (III)-containing heavy metal wastewater by utilizing a metal-organic framework photocatalyst modified by quantum dots. It includes the following steps: mixing the quantum dot-modified metal organic framework photocatalyst with heavy metal wastewater solutions under different pH environments to achieve adsorption equilibrium, then performing photocatalytic degradation under simulated sunlight, and then performing adsorption reactions in the dark to complete the wastewater treatment. processing.
  • the method of the invention can realize the high-efficiency photocatalytic oxidation of arsenic (III) in the attached waste water into arsenic (V) and then adsorb and remove it, and has the advantages of convenient operation, simple equipment, large adsorption capacity, high photocatalytic degradation efficiency and high reusability, and is a kind of high-efficiency photocatalytic degradation efficiency. It is a widely used photocatalytic adsorbent that can efficiently remove arsenic (III) in water, and has high application and commercial value.
  • This field belongs to experimental science, and it is well known in the field that from the essence of photocatalytic reaction, when a semiconductor photocatalyst has a certain quantum effect, it can generate photoelectrons and combine with dissolved oxygen in water to form superoxide free radicals.
  • the base has a strong oxidizing property, so that the chemical bond is broken, the degradation of organic pollutants in the water body, or the oxidation of arsenic (III) can be achieved, but the degree of reaction is affected by the band gap, light absorption range, and lifetime of the light quantum itself. On the other hand, it is affected by the potential of the semiconductor surface and the adsorption energy of organic pollutants or metal ions. In the art, substances with a scale of about 10 nm are called quantum dots.
  • QDs quantum dots
  • MOFs quantum dots
  • group compositions and topological structures different group compositions and topological structures
  • catalysts finally prepared by different quantum dots and MOFs through different synthesis methods are also due to
  • the composition, structure, group and other essential factors of QDs-MOF are different, which makes the crystal structure, infrared absorption spectrum, band gap as semiconductor, light absorption range and intensity of the two materials different, resulting in different photocatalytic application functions and catalysis. active.
  • Fig. 1 is the scanning electron microscope picture of pure-phase iron-based metal-organic framework material (MIL-53) prepared in Example 1 of the present invention
  • Example 2 is a TEM image of the quantum dot-modified organic framework material (3.0NQDs-M) prepared in Example 1 of the present invention.
  • FIG. 3 is an X-ray diffraction pattern of the quantum dot-modified metal-organic framework photocatalyst with different quantum dot dosage ratios prepared in Example 1.
  • FIG. 4 is an X-ray photoelectron spectrum of the quantum dot-modified metal-organic framework photocatalyst (3.0NQDs-M) in Example 1.
  • FIG. a is the full spectrum; b is the C 1s spectrum; c is the O 1s spectrum; d is the N 1s spectrum; e is the Fe 2p spectrum.
  • FIG. 5 is an ultraviolet-visible diffuse reflection diagram of the iron-based metal-organic framework material (MIL-53) and the quantum dot-modified metal-organic framework photocatalyst (3.0NQDs-M) in Example 1.
  • MIL-53 iron-based metal-organic framework material
  • 1.0NQDs-M refer to the products 0.5NQDs-M and 1.0NQDs-M synthesized in Example 1, respectively.
  • Example 6 is a band gap diagram of the iron-based metal-organic framework material (MIL-53) and the quantum dot-modified metal-organic framework photocatalyst (3.0NQDs-M) in Example 1.
  • FIG. 7 is a photocurrent diagram of the iron-based metal-organic framework material (MIL-53) and the quantum dot-modified metal-organic framework photocatalyst (3.0NQDs-M) in Example 1.
  • FIG. 8 is an impedance diagram of the iron-based metal-organic framework material (MIL-53) and the quantum dot-modified metal-organic framework photocatalyst (3.0NQDs-M) in Example 1.
  • MIL-53 iron-based metal-organic framework material
  • quantum dot-modified metal-organic framework photocatalyst 3.0NQDs-M
  • FIG. 9 is a graph showing the adsorption-photocatalytic removal rate of arsenic by the quantum dot-modified metal-organic framework photocatalyst (3.0NQDs-M) in Example 2 under different pH environments.
  • FIG. 10 is a graph of the adsorption-photocatalytic removal rate of arsenic by the quantum dot-modified metal-organic framework photocatalyst (3.0NQDs-M) in this Example 2.
  • FIG. 10 is a graph of the adsorption-photocatalytic removal rate of arsenic by the quantum dot-modified metal-organic framework photocatalyst (3.0NQDs-M) in this Example 2.
  • FIG. 11 is a graph showing the concentration changes of different valence states of arsenic during the adsorption-photocatalytic removal process of the quantum dot-modified metal-organic framework photocatalyst (3.0NQDs-M) in Example 2.
  • FIG. 11 is a graph showing the concentration changes of different valence states of arsenic during the adsorption-photocatalytic removal process of the quantum dot-modified metal-organic framework photocatalyst (3.0NQDs-M) in Example 2.
  • FIG. 12 is an experimental diagram of the arsenic adsorption-photocatalytic removal cycle by the quantum dot-modified metal-organic framework photocatalyst (3.0NQDs-M) in Example 2.
  • FIG. 12 is an experimental diagram of the arsenic adsorption-photocatalytic removal cycle by the quantum dot-modified metal-organic framework photocatalyst (3.0NQDs-M) in Example 2.
  • N-CQDs nitrogen-doped carbon quantum dots
  • the raw materials and instruments used in the following examples are commercially available.
  • the obtained data are the average values of three or more repeated experiments.
  • a quantum dot-modified metal-organic framework photocatalyst comprising an iron-based metal-organic framework (Fe-MOF) of Fe-O groups; the quantum dots enter the lattice of the iron-based metal-organic framework; the quantum dots are: Nitrogen-doped carbon quantum dots.
  • Figure 4c and Figure 4e indicate that the iron in Fe-MOF is in Fe-O bonded state.
  • the microstructure of the iron-based metal organic framework is an octahedral structure; the microstructure of the quantum dot is a core-shell structure; the diameter of the core-shell structure is less than or equal to 10 nm.
  • step (2) Transfer the homogeneous solution obtained in step (1) into a 100 mL polytetrafluoroethylene reactor, react at 150 °C for 10 h, centrifuge, wash three times with ethanol, and then dry at 60 °C to obtain brick-red powder, named MIL- 53 (that is, the iron-based metal has a skeleton), its microscopic morphological structure is shown in Figure 1, and its chemical composition and characteristics are shown in Figure 3.
  • Fe-MOF in the form of Fe-O group and its starfish-like octahedral structure are obtained for the first time in the present invention, and the ratio of raw materials and reaction parameters used in the above steps (1) and (2) are all suitable for producing this special structure. have an important impact.
  • Step (3) is an innovative step for preparing nitrogen-doped carbon quantum dots in the present invention.
  • the core-shell structure of N-CQDs has not been reported in the field before the present invention.
  • the main reason for this structure is the reaction parameters in the above steps.
  • step (1) 100 mg of the powder obtained in step (1) was mixed with 0.1 ml of N-CQDs solution in 35 ml of methanol solution, stirred at 45°C for 4h, the final mixture was centrifuged, and dried at 50°C for 12 hours to obtain the final The powder was named 0.5NCQDs-M.
  • Step (4) is an innovative method for preparing QDs-M of the present invention.
  • the preparation method of quantum dot-modified metal-organic framework photocatalyst (1.0NQDs-M) is basically the same as the preparation method of 0.5NQDs-M, the difference is only that the amount of N-CQDs solution in step (4) is 1.0ml.
  • the resulting product was named 1.0NCQDs-M.
  • the preparation method of quantum dot-modified metal-organic framework photocatalyst (3.0NQDs-M) is basically the same as that of 0.5NQDs-M, except that the amount of N-CQDs solution in step (4) is 3.0ml.
  • the high-resolution transmission structure of 3.0NQDs-M is shown in Figure 2, and its chemical composition and properties are shown in Figures 3 and 4.
  • FIG. 1 is a scanning electron microscope (SEM) image of the iron-based metal-organic framework material (MIL-53) prepared in Example 1 of the present invention.
  • MIL-53 exhibits a uniform octahedral morphology.
  • 2 is a high-magnification projection electron microscope image of the quantum dot-modified iron-based metal-organic framework catalyst (3.0NCQDs-M) prepared in Example 1 of the present invention.
  • the quantum dots are incorporated into the crystal lattice of the iron-based metal-organic framework material.
  • the MIL-53, 0.5NCQDs-M, 1.0NCQDs-M and 3.0NCQDs-M powders in Example 1 were subjected to XRD analysis. The results are shown in Figure 3.
  • the characteristic peaks of iron-based metal organic frameworks can be observed. All samples All showed obvious sharp peaks at a small angle (15°), indicating that the synthesized iron-based metal organic frameworks have good crystallinity. And as the content of quantum dots increases, obvious characteristic peaks can appear, which further indicates the successful introduction of quantum dots.
  • Example 1 The 3.0NCQDs-M in Example 1 was subjected to X-ray photoelectron spectroscopy analysis, and the results are shown in FIG. 4 . Since different valence states of iron correspond to different binding energies, it can be seen from Figure 4 that the quantum dot-modified metal-organic framework photocatalyst in Example 1 has obvious iron-oxygen bonds and carbon-nitrogen bonds, indicating that the surrounding iron is surrounded by oxygen. The atoms are surrounded, which is consistent with the structural characteristics of iron-based metal-organic framework materials, and the presence of carbon-nitrogen bonds indicates that the quantum dots are characteristic of nitrogen-doped carbon quantum dots.
  • Example 1 MIL-53, 0.5NCQDs-M, 1.0NCQDs-M and 3.0NCQDs-M in Example 1 were subjected to UV-Vis diffuse reflection absorption spectroscopy, and the results are shown in FIG. 5 .
  • the visible light absorption edge of the Fe-based metal organic framework catalyst synthesized in the present invention has an obvious red shift.
  • the band gap of the Fe-based metal organic framework is 2.67 eV, and the quantum dots change.
  • the band gap of the metal-organic framework photocatalyst is 1.75 eV. It can be seen that the introduction of quantum dots can improve the photoresponse range and intensity of iron-based metal-organic framework materials, and improve the photocatalytic performance and light energy utilization of the materials.
  • FIG. 8 is a graph of the photocatalytic effect of 3.0NCQDs-M on arsenic in Example 1, wherein the initial concentration is the concentration of arsenic when the adsorption equilibrium is reached. It can be seen from Fig.
  • the arsenic rates of MIL-53, 0.5NCQDs-M, 1.0NCQDs-M and 3.0NCQDs-M of the present invention are 47.2%, 55.1%, 67.4% and 98.9% respectively after being illuminated for 2 hours. It can be seen that the quantum dot-modified metal-organic framework photocatalyst can greatly enhance the adsorption-photocatalytic effect of arsenic-containing wastewater, and the adsorption-photocatalytic effect is the best when the amount of quantum dots is 3.0 ml.
  • the mass ratio of quantum dots to iron-based metal-organic framework structures in the quantum-dot-modified metal-organic framework photocatalyst prepared by the present invention is 100 mg: 3.0 ml.
  • Arsenic(III) adsorption-photocatalytic removal was the best.
  • the introduction of quantum dots in the metal-organic framework photocatalyst modified by the quantum dots of the present invention changes the crystal lattice and band gap of the material, thereby affecting the photoresponse range and effect of the material, thereby directly affecting the adsorption of arsenic (III) by the material- photocatalytic effect. It is worth noting that, compared with pure metro-based metal organic framework materials, the introduction of quantum dots greatly promotes the separation of photogenerated carriers and greatly improves the photocatalytic effect of the material.
  • the filtrate obtained after filtration was used to measure the concentrations of trivalent arsenic and pentavalent arsenic by liquid chromatography-atomic fluorescence spectrometer, thereby obtaining the quantum dot-modified metal-organic framework photocatalyst (3.0NCQDs-M) for arsenic ( III) Adsorption-photocatalytic removal effect.
  • 9 is a graph showing the effect of adsorption-photocatalytic removal of arsenic (III) by the quantum dot-modified metal-organic framework photocatalyst (3.0NCQDs-M) in Example 2 under different pH conditions.
  • the removal rates of arsenic by the quantum dot-modified metal-organic framework photocatalyst (3.0NCQDs-M) are 61.7%, 98.7%, and 74.1% at pH values of 3, 5, 7, and 9, respectively. and 49.1%.
  • the pH value affects the chemical potential of the quantum dot-modified metal-organic framework photocatalyst (3.0NCQDs-M), making it have different surface charge properties, thereby affecting the surface interaction between 3.0NCQDs-M and arsenate ions.
  • the adsorption-photocatalytic removal rate of arsenic (III) in aqueous solution by the quantum dot-modified metal-organic framework photocatalyst (3.0NCQDs-M) prepared by the present invention first increased and then decreased obviously .
  • the quantum dot-modified iron-based metal-organic framework photocatalyst (3.0NCQDs-M) prepared by the present invention has the best adsorption-photocatalytic removal effect on arsenic(III) in aqueous solution when the pH value is 5.
  • the remaining solution was centrifuged, and the remaining precipitate was dried in a vacuum oven at 50 °C for 12 h, and 40 mg of quantum dot-modified metal-organic framework photocatalyst (3.0NCQDs-M) was weighed and added to 200 ml with a concentration of 50 mg. /L of arsenic (III)-containing aqueous solution, mix and disperse evenly, and magnetically stir for 2 hours at a rotational speed of 420 r/min to complete the adsorption equilibrium treatment of the antibiotic solution. Then, the light source was turned on, and the photocatalytic reaction was carried out under visible light ( ⁇ 420 nm) for 180 min.
  • the remaining solution was centrifuged, and the remaining precipitate was dried in a vacuum oven at 50 °C for 12 h.
  • the light source was turned on, and the photocatalytic reaction was carried out under visible light ( ⁇ 420 nm) for 180 min.
  • the remaining solution was centrifuged, and the remaining precipitate was dried in a vacuum oven at 50 °C for 12 h, and 20 mg of quantum dot-modified metal-organic framework photocatalyst (3.0NCQDs-M) was weighed and added to 100 ml with a concentration of 50 mg. /L of arsenic (III)-containing aqueous solution, mix and disperse evenly, and magnetically stir for 2 hours at a rotational speed of 420 r/min to complete the adsorption equilibrium treatment of the antibiotic solution. Then, the light source was turned on, and the photocatalytic reaction was carried out under visible light ( ⁇ 420 nm) for 180 min.
  • FIG. 11 is a graph showing the effect of adsorption and photocatalytic removal of arsenic (III) in the quantum dot-modified iron-based metal-organic framework (3.0NCQDs-M) for four cycles respectively. It can be seen from Figure 12 that the adsorption-photocatalytic removal rates of arsenic (III) in the 4 cycle experiments were 98.97%, 97.71%, 87.5% and 81.4%, respectively. It can be seen that the material provided by the present invention has good stability, but with the progress of the cycle experiment, the adsorption effect of the material on arsenic gradually reaches saturation.
  • the arsenic-containing wastewater in this field is mainly trivalent, and the content of pentavalent arsenic is low. It can be seen from Fig. 10 and Fig. 12 that the photocatalytic oxidation reaction speed of the quantum dot-modified metal organic framework photocatalyst provided by the present invention is obviously better than that of the adsorption reaction, and the trivalent arsenic is oxidized in a shorter time after the reaction starts. pentavalent arsenic, and the adsorption of pentavalent arsenic on the surface of the material takes longer to complete. Therefore, the pentavalent arsenic will increase for a period of time after the photocatalytic reaction starts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种量子点改性的金属有机骨架光催化剂及其制备方法和应用,属于重金属氧化还原以及光催化处理领域。所述量子点改性的金属有机骨架光催化剂为氮掺杂碳量子点改性的铁基金属有机骨架。量子点改性的金属有机骨架光催化剂具有更高的吸附效率和光催化效率,稳定性好,合成简单,是一种可以被广泛采用、能够高效实现三价砷的氧化后去除的吸附-光催化剂。

Description

一种量子点改性的金属有机骨架光催化剂及其制备方法和应用 技术领域
本发明属于重金属氧化还原以及光催化处理领域,尤其涉及一种量子点改性的金属有机骨架光催化剂及其制备方法和应用。
背景技术
重金属废水的不达标排放对河流湖泊造成了严重的污染,对水生生物,地下水和人类生活构成了巨大威胁。虽然对重金属的治理技术不断革新,但是由于工农业的快速发展,重金属废水污染问题越来越严重。因此,廉价、高效的重金属废水处理技术依旧面临着巨大的挑战。目前对于重金属常用的处理方法主要包括离子交换法、吸附法、膜分离法、化学沉淀法以及光催化氧化还原法等,这些方法各有优势,在水污染处理方面发挥了巨大的作用,但同时也都不同程度地存在各自的缺点。其中化学氧化法通常具有高效、快速、去除彻底的特点,可将大量难降解有机污染物直接矿化,或经化学氧化后有机污染物可生化性得到了提高,是人们广泛关注的方法。但是,常规的H 2O 2、氯气以及高锰酸盐等氧化体系成本较高、氧化能力低,且在操作过程中易产生二次污染。此外,重金属废水中通常同时含有多种以不同价态形式存在的重金属离子,这也大大增加了重金属废水处理的难度和成本。因此,进一步开发高效、低能耗、适用范围广、氧化能力强、绿色的重金属废水处理技术在该领域一直是人们追求的目标。
光催化技术是近年来发展迅速的一项高效、绿色的污染物去除技术,在有机物催化降解领域得到了广泛应用。近年来,也逐步用于重金属废水的氧化还原处理,但是高效、稳定、廉价的光催化剂的开发是该技术发展的中重要限制条件。
发明内容
为了解决当前重金属废水处理存在的成本较高、氧化能力低,且在操作过程中易产生二次污染等缺陷,本发明提供了一种量子点改性的金属有机骨架光催化剂及其制备方法和应用。
为了解决上述技术问题,本发明采用的技术方案是:
一种量子点改性的金属有机骨架光催化剂,其特征在于,为氮掺杂碳量子点改性的铁基金属有机骨架。
所述氮掺杂碳量子点改性的铁基金属有机骨架的结构为氮掺杂碳量子点进入铁基金属有机骨架的晶格中,如图2所示。
所述氮掺杂碳量子点的大小为1-100nm,优选5nm;
优选地,所述铁基金属有机骨架的铁为铁氧键合态形式。
所述铁基金属有机骨架的微观结构为八面体结构,如图1所示;所述量子点的微观结构为核壳结构,如图13所示;
优选地,所述核壳结构直径为1nm-100nm,优选10nm。
一种量子点改性的金属有机骨架光催化剂的制备方法,其特征在于,包括将铁基金属有机骨架与氮掺杂碳量子点混合。
所述混合指将铁基金属有骨架与氮掺杂碳量子点溶液和甲醇溶液混合;
优选地,所述铁基金属有机骨架、氮掺杂碳量子点溶液、甲醇溶液的质量比为100∶0.5-5∶5-30,优选100∶3∶25;
优选地,所述混合过程中进行搅拌;优选地,所述搅拌时间为60min-200min,优选120min;所述搅拌温度为40℃-80℃,优选45℃;所述搅拌速度为550r/min。
所述金属有机骨架的制备方法为一步水热法;
优选地,所述一步水热法为将六水三氯化铁、对苯二甲酸投入二甲基甲酰胺溶剂中进行反应;
优选地,所述六水三氯化铁、对苯二甲酸投入二甲基甲酰胺的用量比为11.7-33.3mg∶31.88-39mg∶42-60ml,优选23mg∶37mg∶6ml;
优选地,将六水三氯化铁,对苯二甲酸投入二甲基甲酰胺溶剂中经搅拌得到均匀溶液;优选地,所述搅拌指连续搅拌15-60min,优选40min;
优选地,所述均匀溶液于120-180℃,优选150℃下,反应4-12h,优选10h;
优选地,所述反应容器为以聚四氟乙烯为内衬的高压反应釜;
优选地,均匀溶液反应后经离心分离所得固体洗涤后干燥;
优选地,所述洗涤指乙醇洗涤三次,所述干燥指50℃干燥。
所述氮掺杂碳量子点的制备方法为水热反应后经过透析制得;
优选地,所述水热反应为将柠檬酸三铵溶解于去离子水中,并添加乙二胺进行水热反应,冷却至室温后进行透析;
优选地,所述水热反应中柠檬酸三铵、去离子、乙二胺的用量比为100-125mg:5-20ml:0.5-0.3ml,优选121.5mg:10ml:0.335ml;
优选地,所述水热反应的温度为120-200℃,优选200℃;所述反应时间为2-8h,优选5h;
优选地,所述反应容器为以聚四氟乙烯为内衬的高压反应釜;
优选地,所述透析溶液为去离子水;所述透析袋规格为MWCO 1000;所述透析时间为20-40h,优选24h。
所述的量子点改性的金属有机骨架光催化剂,和/或,所述的制备方法制备的量子点改性的金属有机骨架光催化剂在修复重金属污染废水方面的应用。
将所述光催化剂添加到重金属废水中,在暗处搅拌达到吸附平衡后,在光照条件下进行光催化反应,之后再移至暗处进行吸附;
优选地,所述重金属废水为含有三价砷废水;所述重金属废水中三价砷的浓度为20-80mg/L,优选50mg/L;所述盐酸重金属废水的pH为3~7,优选5;
优选地,所述光催化剂与重金属废水的质量体积比为50-200mg∶1-2L,优选50mg:1L;
优选地,所述搅拌指将添加了光催化剂的重金属废水用磁力搅拌器搅拌;所述磁力搅拌器的转速为400-550r/min,优选450r/min;所述光照前搅拌吸附时间为1-4h,优选2h;
优选地,所述光照条件为λ≥为照吸附时的可见光照射,光照时间为0.5-2h,优选1h;
优选地,所述光照后吸附为搅拌吸附;所述搅拌吸附时间为4-8h,优选6h。
一种量子点改性的金属有机骨架催化剂,其特征在于,量子点改性的金属有机骨架材料。
所述量子点改性的金属有机骨架材料为量子点进入铁基金属有机骨架的晶格中。
所述铁基金属有机骨架的微观结构为八面体结构;优选地,所述量子点的微观结构为直径约10nm的核壳结构。
一种量子点改性的金属有机骨架催化剂的制备方法,其特征在于,包括:将铁基金属有机骨架与量子点在甲醇中混合。
铁基金属有机骨架、量子点及甲醇的质量比为100∶0.5-5∶5-30,优选100∶3∶25;优选地,所述混合指将铁基金属有机骨架与量子点溶液在容器中混合搅拌120min;优选地,搅拌速度为550r/min;优选地,所述搅拌温度为40℃-80℃;优选45℃;所述搅拌时间为60min-200min;优选120min。
所述铁基金属有机骨架通过一步水热法制得;
将六水三氯化铁,对苯二甲酸投入二甲基甲酰胺溶剂中进行一步水热法;
优选地,所述水热法中六水三氯化铁、对苯二甲酸和对苯二甲酸的用量比例为11.7-33.3mg∶31.88-39mg∶42-60ml,优选23mg∶37mg∶6ml;
优选地,所述水热法中将六水三氯化铁,对苯二甲酸投入二甲基甲酰胺溶剂中经搅拌得到均匀溶液;优选地,所述搅拌指连续搅拌15-60min,优选40min;
优选地,所述均匀溶液于120-180℃,优选150℃下,反应4-12h,优选10h;
优选地,所述反应容器为以聚四氟乙烯为内衬的高压反应釜;
优选地,均匀溶液反应后经离心分离所得固体洗涤后干燥;
优选地,所述洗涤指乙醇洗涤三次,所述干燥指50℃干燥。
所述量子点为氮掺杂碳量子点,通过水热反应过后经过透析制得;
优选地,将拧檬酸三铵溶解于去离子水中,并添加乙二胺进行水热反应,冷却至室温后进行透析;
优选地,所述水热反应中拧檬酸三铵、去离子、乙二胺的用量比为100-125mg:5-20ml:0.5-0.3ml,优选121.5mg:10ml:0.335ml;
优选地,所述水热反应的温度为120-200℃,优选200℃下,反应时间为2-8h,优选5h;
优选地,所述反应容器为以聚四氟乙烯为内衬的高压反应釜;
优选地,所述透析溶液为去离子水,透析袋规格为MWCO 1000;
优选地,所述透析时间为20-40h,优选24h。
量子点改性的金属有机骨架催化剂的应用,其特征在于,采用所述的量子点改性的金属有机骨架光催化剂,和/或,所述的制备方法制备得到的光催化剂在溶液中同时进行和三价砷吸附-光催化反应-吸附反应。
将所述光催化剂添加到含有和三价砷的废水中,在暗处搅拌达到吸附平衡后,在光照条件下进行光催化反应实现对三价砷氧化成五价砷的重金属毒性降低过程,之后再移至暗处进行五价砷的吸附。
所述重金属废水为含有三价砷废水;所述重金属废水中的浓度为20-80mg/L,优选50mg/L,所述重金属废水中三价砷的浓度为20-80mg/L,优选50mg/L,;所述盐酸重金属废水的pH为3~7,优选3。
所述掺杂碳量子点改性的金属有机骨架光催化剂材料与所述重金属废水的质量体积比为50-200mg∶1-2L,优选50mg:1L;
优选地,所述搅拌指将添加了光催化剂的重金属废水用磁力搅拌器搅拌;所述磁力搅拌器的转速为400-550r/min,优选450r/min;所述光照前搅拌吸附时间为1-4h,优选2h;
优选地,所述光照条件为λ≥为照吸附时的可见光照射,光照时间为0.5-2h,优选1h。所述光照后搅拌吸附时间为4-8h,优选6h;
用量子点改性的金属有机骨架材料进行重金属废水处理的方法,包括以下步骤:将量子点改性的金属有机骨架催化剂材料添加到含有三价砷的重金属废水中,在暗处搅拌达到吸附平衡然后在模拟日光条件下进行光催化反应,完成重金属氧化还原过程后,再在暗处进行吸附反应,完成对重金属废水的处理。
上述方法中,进一步改进的,所述的用量子点改性的金属有机骨架的制备方法,包括以下步骤:采用一步水热法以三水合氯化铁,对苯二甲酸为单体,二甲基甲酰胺为溶剂合成形貌均一的铁基金属有机骨架材料;采用水热法以柠檬酸铵和乙二胺为单体,去离子水为溶剂合成量子点,
将所述铁基金属有机骨架材料与量子点在甲醇溶液中均匀混合后,搅拌6h,得到量子点改性的金属有机骨架光催化剂。铁基金属有机骨架与量子点的质量比为100∶3。
尽管水热法是常见的合成铁基金属有机骨架结构材料的常用方法,但不同温度,不同加热时间,不同比例都会使得最终制得的铁基金属有机骨架材料的形貌及性质不同,本发明制备铁基金属有机骨架的水热法反应参数具体见实施例1的步骤1和步骤2。铁基金属有机骨架虽然可以商购获得,但商购材料的形貌与本技术制备的形貌、性能有明显差异,尚未发现市面上存在与本发明制备的相同结构的铁基金属有机骨架材料商品,换言之,商购获得的铁基金属有机骨架材料无法直接用于本发明的光催化剂中。
本领域公知,光催化剂微观结构、形貌的不同决定其催化应用、催化对象及催化活性。本发明的量子点改性的金属有机骨架光催化剂正是由于其独特的微观结构、形貌特征使得其对重金属砷具有十分优秀的光催化活性。
本发明的创新点在于:本发明采用的量子点改性的金属有机骨架材料为吸附-光催化剂。用量子点修饰MIL-53(Fe),使MIL-53(Fe)的晶格发生改变,降低半导体的带隙,提高了量子点改性金属有机骨架材料在可见光范围内对光的吸收,量子点的引入提高了材料的电子转移和储集性能,同时可以作为光催化剂,建立电子的表面分离中心,降低电荷载流子的复合速率。同时量子点的引入可以引起晶格畸变,形成缺陷能级,降低电子和空穴的复合率,提高羟基自由基和超氧自由基的产生率,从而增强了光催化性能。羟基自由基具有强氧化性,可以实现三价砷的氧化,过氧自由基具有氧化还原性,可以实现的还原。与现有技术相比,本发明的量子点改性的金属有机骨架光催化剂具有更高的吸附效率和光催化效率,稳定性好,合成简单,是一种可以被广泛采用、能够高效实现三价砷的氧化后去除的吸附-光催化剂。
与现有技术相比,本发明的优点在于:
(1)本发明提供了一种用于含低价砷(III)和高价铬(VI)重金属废水处理的吸附-光催化剂:一种量子点改性的铁基金属吸附-光催化剂,具有吸附性能好、光催化效率高等优点。
(2)本发明提供了一种量子点改性的铁基金属材料的制备方法,以铁基金属有机骨架材料与量子点经过简单的处理即可制备得到吸附性能好、光催化效率高的材料。本发明首次合成了量子点改性的金属有机骨架光催化剂,制备方法具有操作简单、制备方便、产量高等优 点。
(3)本发明还提供了一种含低价砷(III)重金属废水处理的方法,采用本发明的一种量子点改性的铁基金属有机骨架光催化剂对重金属废水进行吸附-光催化处理,具有操作方便,设备简单,吸附性能好,光催化降解效率高等优点,是一种可以被广泛采用的低价砷(III))重金属废水处理方法。
本发明公开的利用量子点改性的金属有机骨架光催化剂对含低价砷(III)重金属废水处理的方法。包括以下步骤:将量子点改性的金属有机骨架光催化剂与不同pH环境下的重金属废水溶液混合达到吸附平衡,然后在模拟日光下进行光催化降解,再在暗处进行吸附反应,完成对废水的处理。本发明方法能够实现附废水中砷(III)高效光催化氧化成砷(V)后吸附去除,操作方便,设备简单,吸附容量大,光催化降解效率高且重复利用率高,是一种可以被广泛采用、能够高效去除水体中砷(III)的光催化吸附剂,具有很高的应用价值和商业价值。
光催化领域的常见的量子点有多种,是否任何一种量子点都能用来与MOF结合并具有光催化活性以及二者结合的方式取决于实际的实验验证,难以预测,并且MOF的结构根据拓扑原理可以变换成不同种类,但是能实际合成出来的情况也取决于实验能否成功。一般而言,本领域未见报道的物质就是没有成功合成的物质。
本领域属于实验科学,且本领域公知,从光催化反应的本质来说,当半导体光催化剂有一定的量子效应,能产生光电子,与水中的溶解氧结合,形成超氧自由基,超氧自由基具有强氧化性,使得化学键断裂,则可以实现水体中有机污染物的降解,或者砷(III)的氧化,但是反应程度一方面受半导体本身的带隙、吸光范围、光量子的寿命等影响,另一方面,受半导体表面的电势、与有机污染物或金属离子的吸附能等影响。本领域将物质尺度在10nm左右的称为量子点。不同的原料、制备方法方法产生结构不同的量子点(QDs)以及基团组成、拓扑结构均不相同的MOF,而不同的量子点和不同的MOF通过不同的合成方法最终制得的催化剂也因QDs-MOF组成、结构、基团等各本质因素不同而使两种材料的晶体结构、红外吸收光谱、作为半导体的带隙、吸光范围和强度等均不同进而产生不同的光催化应用功能和催化活性。
附图说明
图1为本发明实施例1制得的纯相铁基金属有机骨架材料(MIL-53)的扫描电镜图;
图2为本发明实施例1中制得的量子点改性有机骨架材料(3.0NQDs-M)的投射电镜图。
图3为本实施例1中制得的不同量子点投加比的量子点改性的金属有机骨架光催化剂的X射线衍射图。
图4为本实施例1中量子点改性的金属有机骨架光催化剂(3.0NQDs-M)的X射线光电子能谱图。a图为全谱;b图为C 1s谱;c图为O 1s谱;d图为N 1s谱;e图为Fe 2p谱。
图5为本实施例1中铁基金属有机骨架材料(MIL-53)以及量子点改性的金属有机骨架光催化剂(3.0NQDs-M)的紫外可见漫反射图。图中标记:0.5NQDs-M、1.0NQDs-M分别指实施例1中合成的产物0.5NQDs-M和1.0NQDs-M。
图6为本实施例1中铁基金属有机骨架材料(MIL-53)以及量子点改性的金属有机骨架光催化剂(3.0NQDs-M)的带隙图。
图7为本实施例1中铁基金属有机骨架材料(MIL-53)以及量子点改性的金属有机骨架光催化剂(3.0NQDs-M)的光电流图
图8为本实施例1中铁基金属有机骨架材料(MIL-53)以及量子点改性的金属有机骨架光催化剂(3.0NQDs-M)的阻抗图。
图9为本实施例2中量子点改性的金属有机骨架光催化剂(3.0NQDs-M)对不同pH环境下砷吸附-光催化去除率图。
图10为本实施例2中量子点改性的金属有机骨架光催化剂(3.0NQDs-M)对砷吸附-光催化去除率图。
图11为本实施例2中量子点改性的金属有机骨架光催化剂(3.0NQDs-M)吸附-光催化去除过程中不同价态砷的浓度变化图。
图12为本实施例2中量子点改性的金属有机骨架光催化剂(3.0NQDs-M)对砷吸附-光催化去除循环实验图。
图13为本发明一个实施例制备得到的氮掺杂碳量子点(N-CQDs)的微观核壳结构图。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
以下实施例中所采用的原料和仪器均为市售。以下实施例中,若无特别说明,所得数据均是三次以上重复实验的平均值。
实施例1
一种量子点改性的金属有机骨架光催化剂,包括Fe-O基团的铁基金属有机骨架 (Fe-MOF);为量子点进入铁基金属有机骨架的晶格中;所述量子点为氮掺杂碳量子点。图4c和图4e表明Fe-MOF中的铁为Fe-O键合态。
所述铁基金属有机骨架的微观结构为八面体结构;所述量子点的微观结构为核壳结构;所述核壳结构直径≤10nm。
本发明实施例中的量子点改性的金属有机骨架光催化剂,采用以下方式制得:
包括以下步骤:(1)称取230mg六水三氯化铁,370mg对苯二甲酸,量取60mL对二甲基甲酰胺在烧杯中连续搅拌40min,得到均匀溶液。
(2)将步骤(1)获得的均匀溶液转移到100mL聚四氟乙烯反应釜中,150℃反应10h后离心分离,并用乙醇洗涤三次,之后在60℃干燥获得砖红色粉末,命名为MIL-53(即铁基金属有骨架),其微观形貌结构如图1所示,其化学成分及特性如图3所示。
Fe-O基团形式的Fe-MOF及其类似海星状的八面体结构是本发明首次得到,上述步骤(1)和(2)采用的原料物质配比和反应参数对产生这种特殊结构均有重要影响。
(3)称取121.5mg柠檬酸三铵溶解于10mL去离子水中,并添加0.335ml乙二胺,置于25毫升聚四氟乙烯衬内衬的高压釜中,并在200℃下热处理5小时。随后,反应器自然冷却。最终,所获得的产品进行透析(MWCO 1000)24小时以获得氮掺杂碳量子点(N-CQDs)溶液。
步骤(3)是本发明制备氮掺杂碳量子点的创新步骤,N-CQDs核壳结构在本发明之前本领域也未见报道,产生这一结构的主要原因为上述步骤中的反应参数。
(4)将步骤(1)获得的100mg粉末与0.1ml的N-CQDs溶液在35ml甲醇溶液中混合,在45℃搅拌4h,将最终混合物离心分离,并在50℃下干燥12小时,得到最终的粉末,命名为0.5NCQDs-M。
步骤(4)是本发明制备QDs-M的创新方法。
量子点改性的金属有机骨架光催化剂(1.0NQDs-M)的制备方法,与0.5NQDs-M的制备方法基本相同,区别仅在于步骤(4)中N-CQDs溶液的量为1.0ml,将得到的产物命名为1.0NCQDs-M。
量子点改性的金属有机骨架光催化剂(3.0NQDs-M)的制备方法,与0.5NQDs-M的制备方法基本相同,区别仅在于步骤(4)中N-CQDs溶液的量为3.0ml。3.0NQDs-M的高分辨透射结构如图2所示,其化学成分及特性如图3和图4所示。
实施例2
一种本发明的一种量子点改性的金属有机骨架光催化剂的应用,包括以下步骤:
称取的20mg量子点改性的金属有机骨架光催化剂MIL-53、0.5NCQDs-M、1.0NCQDs-M及3.0NCQDs-M,分别添加到100mL、浓度为50mg/L的含砷水溶液中,在暗处转速为420r/min磁力搅拌2h达到吸附平衡然后打开光源,在模拟太阳光下照射进行光催化反应,完成对砷的氧化和去除。
磁力搅拌过程中,每隔一段时间取3mL样品,并将样品进行过滤。取过滤所得溶液通过液相色谱-原子荧光联用仪,测定三价砷和五价砷的浓度,同时采用ICP-MS测定溶液中总砷的浓度,从而得到不同量子点改性金属有机骨架材料对三价砷去除效果。光催化降解实验以达到吸附平衡时三价砷浓度为初始浓度,从而得到不同量子点改性金属有机骨架材料对三价砷的光催化降解效果。
图1为本发明实施例1中制得的铁基金属有机骨架材料(MIL-53)的扫描电镜(SEM)图。从图1可以看出,MIL-53呈均匀的八面体形貌。图2为本发明实施例1中制得的量子点改性铁基金属有机骨架催化剂(3.0NCQDs-M)的高倍投射电镜图。从图2中可以看出,量子点被引在铁基金属有机骨架材料的晶格中。
将实施例1中的MIL-53、0.5NCQDs-M、1.0NCQDs-M及3.0NCQDs-M粉末进行XRD分析,结果如图3所示,可以观察到铁基金属有机骨架的特征峰,所有样品均在小角度(15°)呈现出明显尖峰,表明合成的铁基金属有机骨架材料结晶性好。且随着量子点的含量增加可以出现明显的特征峰,进一步表明量子点的成功引入。
将实施例1中3.0NCQDs-M进行X射线光电子能谱分析,结果如图4所示。由于不同价态铁对应不同的结合能,由图4可以看出,实施例1中的量子点改性的金属有机骨架光催化剂存在明显铁氧键和碳氮键,表明了铁的周围被氧原子环绕,这符合铁基金属有机骨架材料的结构特征,碳氮键的存在表明量子点的特征是氮掺杂碳量子点。
将实施例1中的MIL-53、0.5NCQDs-M、1.0NCQDs-M及3.0NCQDs-M进行紫外-可见漫反射吸收光谱分析,结果如图5所示。由图5可以看出,本发明中合成的量子点改性的铁基金属有机骨架催化剂可见光吸收边发生明显红移,经过分析计算,铁基金属有机骨架的带隙为2.67eV,量子点改性的金属有机骨架光催化剂的带隙为1.75eV,由此可知量子点的引入能够提高铁基金属有机骨架材料光响应范围和强度,提高材料的光催化性能和光能利用率。
将实施例1中的MIL-53和3.0NCQDs-M进行光电流测试,结果如图7所示,由图可知,量子点的引入可以明显提高光电流的值,表明更高的量子效率。
将实施例1中的MIL-53和3.0NCQDs-M进行电化学阻抗测试,结果如图8所示。由图可知量子点改性的铁基金属有机骨架材料表现出更有效的电荷分离,从而具有更好的光催化 性能。图8为本实施例1中3.0NCQDs-M对砷的光催化效果图,其中初始浓度为达到吸附平衡时砷的浓度。由图9可知,本发明的MIL-53、0.5NCQDs-M、1.0NCQDs-M及3.0NCQDs-M在光照2h后对砷的率分别为47.2%、55.1%、67.4%、98.9%。可见,量子点改性的金属有机骨架光催化剂对含砷废水进行吸附-光催化效果大大增强且量子点的量为3.0ml时吸附-光催化效果最好。
因而,本发明制备的量子点改性的金属有机骨架光催化剂中量子点与铁基金属有机骨架结构的质量比为100mg:3.0ml,本发明制备的量子点改性铁基金属有机骨架材料对砷(III)吸附-光催化去除效果最佳。本发明量子点改性的金属有机骨架光催化剂中量子点的引入改变了材料的晶格及带隙,从而影响了材料的光响应范围及效果,从而直接影响着材料对砷(III)吸附-光催化效果。值得注意的是,相较于单纯地铁基金属有机骨架材料,量子点引入后,极大促进了光生载流子的分离,大大提高了材料的光催化效果。
实施例3
一种利用量子点改性的金属有机骨架光催化剂(3.0NCQDs-M)吸附-光催化去除重金属废水中低价砷的方法,包括以下步骤:
称取4份实施例1制备的量子点改性的金属有机骨架光催化剂(3.0NCQDs-M),每份20mg,分别加入到5份100ml,浓度为50mg/L的含砷(III)水溶液中,溶液pH值分别为3,5,7,9。将量子点改性的金属有机骨架光催化剂(3.0NCQDs-M)在含砷(III)水溶液中混合分散均匀,在无光照、转速为420r/min条件下,磁力搅拌2h,完成对砷(III)水溶液的吸附平衡处理。然后打开光源,在可见光(λ≥420nm)下照射进行光催化反应180min。在光照搅拌光照过程中,每隔30min取3mL样品,并将样品进行过滤,滤芯为直径为0.22um的微孔。取过滤后得到的容液通过液相色谱-原子荧光联用仪,测定三价砷和五价砷的浓度,从而得到量子点改性的金属有机骨架光催化剂(3.0NCQDs-M)对砷(III)的吸附-光催化去除效果。图9为本实施例2中量子点改性的金属有机骨架光催化剂(3.0NCQDs-M)对不同pH值条件下对砷(III)的吸附-光催化去除效果图。由图8可知,在pH值分别为3,5,7,9时,量子点改性的金属有机骨架光催化剂(3.0NCQDs-M)对砷的去除率分别为61.7%、98.7%、74.1%和49.1%。pH值会影响量子点改性的金属有机骨架光催化剂(3.0NCQDs-M)的化学电位,使其具备不同的表面电荷性质,从而影响3.0NCQDs-M与砷酸根离子的表面相互吸附作用。随着pH值的增加,本发明制备量子点改性的金属有机骨架光催化剂(3.0NCQDs-M)对水溶液中砷(III)的吸附-光催化去除率呈现出先升高,后明显降低的情况。特别地,本发明制备的量子点改性的铁基金属有机骨架光催化剂(3.0NCQDs-M)在pH 值为5时对水溶液中砷(III)的吸附-光催化去除效果最好。
实施例4
一种利用量子点改性的金属有机骨架光催化剂(3.0NCQDs-M)吸附-光催化去除水总溶液中砷(III)的方法,包括以下步骤:
称取实施例1制备的量子点改性的金属有机骨架光催化剂(3.0NCQDs-M)50mg,加入到250mL,浓度为50mg/L的含砷(III)水溶液中,混合分散均匀,在转速为420r/min下磁力搅拌2h,完成对抗生素溶液的吸附平衡处理。然后打开光源,在可见光(λ≥420nm)下照射进行光催化反应180min。在光照搅拌过程中,每隔10min取3mL样品,每隔30min取3mL样品,并将样品进行过滤,滤芯为直径为0.22um的微孔。取过滤后得到的容液通过液相色谱-原子荧光联用仪,测定三价砷和五价砷的浓度,从而得到量子点改性的金属有机骨架光催化剂(3.0NCQDs-M)对砷(III)的吸附-光催化去除效果。
将剩余的溶液进行离心分离,并将剩余沉淀在50℃真空烘箱中进行干燥12h后,称取40mg量子点改性的金属有机骨架光催化剂(3.0NCQDs-M),加入到200ml,浓度为50mg/L的含砷(III)水溶液中,混合分散均匀,在转速为420r/min下磁力搅拌2h,完成对抗生素溶液的吸附平衡处理。然后打开光源,在可见光(λ≥420nm)下照射进行光催化反应180min。在光照搅拌过程中,每隔10min取3mL样品,每隔30min取3mL样品,并将样品进行过滤,滤芯为直径为0.22um的微孔。取过滤后得到的容液通过液相色谱-原子荧光联用仪,测定三价砷和五价砷的浓度,从而得到量子点改性的金属有机骨架光催化剂(3.0NCQDs-M)对砷(III)的吸附-光催化去除效果。
将剩余的溶液进行离心分离,并将剩余沉淀在50℃真空烘箱中进行干燥12h后,称取30mg量子点改性的金属有机骨架光催化剂(3.0NCQDs-M),加入到150ml,浓度为50mg/L的含砷(III)水溶液中,混合分散均匀,在转速为420r/min下磁力搅拌2h,完成对抗生素溶液的吸附平衡处理。然后打开光源,在可见光(λ≥420nm)下照射进行光催化反应180min。在光照搅拌过程中,每隔10min取3mL样品,每隔30min取3mL样品,并将样品进行过滤,滤芯为直径为0.22um的微孔。取过滤后得到的容液通过液相色谱-原子荧光联用仪,测定三价砷和五价砷的浓度,从而得到量子点改性的金属有机骨架光催化剂(3.0NCQDs-M)对砷(III)的吸附-光催化去除效果。
将剩余的溶液进行离心分离,并将剩余沉淀在50℃真空烘箱中进行干燥12h后,称取20mg量子点改性的金属有机骨架光催化剂(3.0NCQDs-M),加入到100ml,浓度为50mg/L的含砷(III)水溶液中,混合分散均匀,在转速为420r/min下磁力搅拌2h,完成对抗生素溶液的吸附平衡处理。然后打开光源,在可见光(λ≥420nm)下照射进行光催化反应180min。 在光照搅拌过程中,每隔10min取3mL样品,每隔30min取3mL样品,并将样品进行过滤,滤芯为直径为0.22um的微孔。取过滤后得到的容液通过液相色谱-原子荧光联用仪,测定三价砷和五价砷的浓度,从而得到量子点改性的金属有机骨架光催化剂(3.0NCQDs-M)对砷(III)的吸附-光催化去除效果。
图11为量子点改性铁基金属有机骨架材料(3.0NCQDs-M)4次循环实验中分别对砷(III)的吸附-光催化的去除效果图。由图12可知,在4次循环实验中对砷(III)的吸附-光催化的去除率分别为98.97%、97.71%、87.5%和81.4%。由此可见,本发明提供的材料具有良好的稳定性,但是随着循环实验的进行,材料对砷的吸附作用逐渐达到饱和。
本领域含砷废水以三价为主,五价砷含量低。从图10和图12看出,本发明提供的量子点改性的金属有机骨架光催化剂的光催化氧化反应的速度明显优于吸附反应,在反应开始后三价砷在更短的时间被氧化成五价砷,而五价砷在材料表面的吸附需要更长时间完成。因此,光催化反应开始后一段时间五价砷会有所升高。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例。凡属于本发明思路下的技术方案均属于本发明的保护范围。应该指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下的改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种量子点改性的金属有机骨架光催化剂,其特征在于,为氮掺杂碳量子点改性的铁基金属有机骨架。
  2. 根据权利要求1所述的一种量子点改性的金属有机骨架光催化剂,其特征在于,所述氮掺杂碳量子点改性的铁基金属有机骨架的结构为氮掺杂碳量子点进入铁基金属有机骨架的晶格中。
  3. 根据权利要求1或2所述的一种量子点改性的金属有机骨架光催化剂,其特征在于,所述氮掺杂碳量子点的大小为1-100nm,优选5nm;
    优选地,所述铁基金属有机骨架的铁为铁氧键合态形式。
  4. 根据权利要求1-3任一所述的一种量子点改性的金属有机骨架光催化剂,其特征在于,所述铁基金属有机骨架的微观结构为八面体结构;所述量子点的微观结构为核壳结构;
    优选地,所述核壳结构直径为1nm-100nm,优选10nm。
  5. 一种量子点改性的金属有机骨架光催化剂的制备方法,其特征在于,包括将铁基金属有机骨架与氮掺杂碳量子点混合。
  6. 根据权利要求5所述的一种量子点改性的金属有机骨架光催化剂的制备方法,其特征在于,所述混合指将铁基金属有骨架与氮掺杂碳量子点溶液和甲醇溶液混合;
    优选地,所述铁基金属有机骨架、氮掺杂碳量子点溶液、甲醇溶液的质量比为100∶0.5-5∶5-30,优选100∶3∶25;
    优选地,所述混合过程中进行搅拌;优选地,所述搅拌时间为60min-200min,优选120min;所述搅拌温度为40℃-80℃,优选45℃;所述搅拌速度为550r/min。
  7. 根据权利要求5或6所述的一种量子点改性的金属有机骨架光催化剂的制备方法,其特征在于,所述金属有机骨架的制备方法为一步水热法;
    优选地,所述一步水热法为将六水三氯化铁、对苯二甲酸投入二甲基甲酰胺溶剂中进行反应;
    优选地,所述六水三氯化铁、对苯二甲酸投入二甲基甲酰胺的用量比为11.7-33.3mg∶31.88-39mg∶42-60ml,优选23mg∶37mg∶6ml;
    优选地,将六水三氯化铁,对苯二甲酸投入二甲基甲酰胺溶剂中经搅拌得到均匀溶液;优选地,所述搅拌指连续搅拌15-60min,优选40min;
    优选地,所述均匀溶液于120-180℃,优选150℃下,反应4-12h,优选10h;
    优选地,所述反应容器为以聚四氟乙烯为内衬的高压反应釜;
    优选地,均匀溶液反应后经离心分离所得固体洗涤后干燥;
    优选地,所述洗涤指乙醇洗涤三次,所述干燥指50℃干燥。
  8. 根据权利要求5或6所述的一种量子点改性的金属有机骨架光催化剂的制备方法,其特征在于,所述氮掺杂碳量子点的制备方法为水热反应后经过透析制得;
    优选地,所述水热反应为将柠檬酸三铵溶解于去离子水中,并添加乙二胺进行水热反应,冷却至室温后进行透析;
    优选地,所述水热反应中柠檬酸三铵、去离子、乙二胺的用量比为100-125mg:5-20ml:0.5-0.3ml,优选121.5mg:10ml:0.335ml;
    优选地,所述水热反应的温度为120-200℃,优选200℃;所述反应时间为2-8h,优选5h;
    优选地,所述反应容器为以聚四氟乙烯为内衬的高压反应釜;
    优选地,所述透析溶液为去离子水;所述透析袋规格为MWCO 1000;所述透析时间为20-40h,优选24h。
  9. 权利要求1-4任一所述的量子点改性的金属有机骨架光催化剂,和/或,权利要求5-8任一所述的制备方法制备的量子点改性的金属有机骨架光催化剂在修复重金属污染废水方面的应用。
  10. 根据权利要求9所述的应用,其特征在于,将所述光催化剂添加到重金属废水中,在暗处搅拌达到吸附平衡后,在光照条件下进行光催化反应,之后再移至暗处进行吸附;
    优选地,所述重金属废水为含有三价砷废水;所述重金属废水中三价砷的浓度为20-80mg/L,优选50mg/L;所述盐酸重金属废水的pH为3~7,优选5;
    优选地,所述光催化剂与重金属废水的质量体积比为50-200mg∶1-2L,优选50mg:1L;
    优选地,所述搅拌指将添加了光催化剂的重金属废水用磁力搅拌器搅拌;所述磁力搅拌器的转速为400-550r/min,优选450r/min;所述光照前搅拌吸附时间为1-4h,优选2h;
    优选地,所述光照条件为λ≥为照吸附时的可见光照射,光照时间为0.5-2h,优选1h;
    优选地,所述光照后吸附为搅拌吸附;所述搅拌吸附时间为4-8h,优选6h。
PCT/CN2020/105123 2020-07-28 2020-07-28 一种量子点改性的金属有机骨架光催化剂及其制备方法和应用 WO2022021051A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/105123 WO2022021051A1 (zh) 2020-07-28 2020-07-28 一种量子点改性的金属有机骨架光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/105123 WO2022021051A1 (zh) 2020-07-28 2020-07-28 一种量子点改性的金属有机骨架光催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022021051A1 true WO2022021051A1 (zh) 2022-02-03

Family

ID=80037986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105123 WO2022021051A1 (zh) 2020-07-28 2020-07-28 一种量子点改性的金属有机骨架光催化剂及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2022021051A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479113A (zh) * 2022-03-18 2022-05-13 中国农业科学院蔬菜花卉研究所 二维荧光MOFs复合材料及其制备方法、应用和荧光检测铁离子的方法
CN114904580A (zh) * 2022-05-11 2022-08-16 福建农林大学 一种NGQDs@ZIF-67复合材料及其制备方法和应用
CN115092991A (zh) * 2022-06-20 2022-09-23 浙江工商大学 基于碳量子点和二茂铁共掺杂的p型MOF光阴极的废水燃料电池及其制备和应用
CN115121276A (zh) * 2022-06-23 2022-09-30 湖南农业大学 复合光催化剂及其制备方法和含有抗生素废水的处理方法
CN115161024A (zh) * 2022-08-09 2022-10-11 南通中科海洋科学与技术研究发展中心 一种包埋碳量子点的mof材料及其制备和应用
CN115178110A (zh) * 2022-07-13 2022-10-14 浙江理工大学 一种具有高效动态吸附和光-Fenton再生特性的污水处理膜、其制备方法及应用
CN116199224A (zh) * 2023-05-06 2023-06-02 成都达奇科技股份有限公司 煤质颗粒活性炭制备方法、产品及染料废水脱色方法
CN116554868A (zh) * 2023-05-06 2023-08-08 浙江理工大学 一种金属-有机框架负载螺吡喃光致双重变色材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107224990A (zh) * 2017-06-30 2017-10-03 湖南大学 氮掺杂碳量子点修饰钨酸铋复合光催化剂及其制备方法和应用
CN107244706A (zh) * 2017-06-16 2017-10-13 云南大学 一种高氨氮高重金属废水的处理工艺
CN107754861A (zh) * 2017-11-01 2018-03-06 中国科学院福建物质结构研究所 一种碳量子点/金属有机骨架催化剂的制备方法和应用
CN107913675A (zh) * 2017-11-20 2018-04-17 湖南大学 金属有机骨架修饰硫化亚锡复合光催化剂及其制备方法和应用
CN109970258A (zh) * 2019-03-01 2019-07-05 同济大学 一种模块化地下水修复循环井装置
CN110694691A (zh) * 2019-11-04 2020-01-17 湘潭大学 一种光芬顿催化剂及制备方法与应用方法
CN111154274A (zh) * 2019-12-05 2020-05-15 山西大学 一种化学传感器材料的制备方法及其应用
CN111617805A (zh) * 2020-06-04 2020-09-04 吉林大学 光Fenton催化剂、其制备方法、其应用及水处理剂

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107244706A (zh) * 2017-06-16 2017-10-13 云南大学 一种高氨氮高重金属废水的处理工艺
CN107224990A (zh) * 2017-06-30 2017-10-03 湖南大学 氮掺杂碳量子点修饰钨酸铋复合光催化剂及其制备方法和应用
CN107754861A (zh) * 2017-11-01 2018-03-06 中国科学院福建物质结构研究所 一种碳量子点/金属有机骨架催化剂的制备方法和应用
CN107913675A (zh) * 2017-11-20 2018-04-17 湖南大学 金属有机骨架修饰硫化亚锡复合光催化剂及其制备方法和应用
CN109970258A (zh) * 2019-03-01 2019-07-05 同济大学 一种模块化地下水修复循环井装置
CN110694691A (zh) * 2019-11-04 2020-01-17 湘潭大学 一种光芬顿催化剂及制备方法与应用方法
CN111154274A (zh) * 2019-12-05 2020-05-15 山西大学 一种化学传感器材料的制备方法及其应用
CN111617805A (zh) * 2020-06-04 2020-09-04 吉林大学 光Fenton催化剂、其制备方法、其应用及水处理剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN MEIJUAN, WEI XIAOYAN, ZHAO LIAOLIAO, HUANG YU, LEE SHUN-CHENG, HO WINGKEI, CHEN KEHAO: "Novel N/Carbon Quantum Dot Modified MIL-125(Ti) Composite for Enhanced Visible-Light Photocatalytic Removal of NO", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, AMERICAN CHEMICAL SOCIETY, vol. 59, no. 14, 8 April 2020 (2020-04-08), pages 6470 - 6478, XP055892567, ISSN: 0888-5885, DOI: 10.1021/acs.iecr.9b06816 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479113A (zh) * 2022-03-18 2022-05-13 中国农业科学院蔬菜花卉研究所 二维荧光MOFs复合材料及其制备方法、应用和荧光检测铁离子的方法
CN114904580A (zh) * 2022-05-11 2022-08-16 福建农林大学 一种NGQDs@ZIF-67复合材料及其制备方法和应用
CN114904580B (zh) * 2022-05-11 2023-08-18 福建农林大学 一种NGQDs@ZIF-67复合材料及其制备方法和应用
CN115092991A (zh) * 2022-06-20 2022-09-23 浙江工商大学 基于碳量子点和二茂铁共掺杂的p型MOF光阴极的废水燃料电池及其制备和应用
CN115092991B (zh) * 2022-06-20 2023-05-23 浙江工商大学 基于碳量子点和二茂铁共掺杂的p型MOF光阴极的废水燃料电池及其制备和应用
CN115121276A (zh) * 2022-06-23 2022-09-30 湖南农业大学 复合光催化剂及其制备方法和含有抗生素废水的处理方法
CN115178110A (zh) * 2022-07-13 2022-10-14 浙江理工大学 一种具有高效动态吸附和光-Fenton再生特性的污水处理膜、其制备方法及应用
CN115178110B (zh) * 2022-07-13 2024-01-30 浙江理工大学 一种具有高效动态吸附和光-Fenton再生特性的污水处理膜、其制备方法及应用
CN115161024A (zh) * 2022-08-09 2022-10-11 南通中科海洋科学与技术研究发展中心 一种包埋碳量子点的mof材料及其制备和应用
CN116199224A (zh) * 2023-05-06 2023-06-02 成都达奇科技股份有限公司 煤质颗粒活性炭制备方法、产品及染料废水脱色方法
CN116554868A (zh) * 2023-05-06 2023-08-08 浙江理工大学 一种金属-有机框架负载螺吡喃光致双重变色材料及其制备方法
CN116554868B (zh) * 2023-05-06 2024-04-09 浙江理工大学 一种金属-有机框架负载螺吡喃光致双重变色材料及其制备方法

Similar Documents

Publication Publication Date Title
WO2022021051A1 (zh) 一种量子点改性的金属有机骨架光催化剂及其制备方法和应用
Gao et al. Solar photocatalytic abatement of tetracycline over phosphate oxoanion decorated Bi2WO6/polyimide composites
Chen et al. Studies on the photocatalytic performance of cuprous oxide/chitosan nanocomposites activated by visible light
CN113548698B (zh) 三元类水滑石金属氧化物及其制备方法与活化过一硫酸盐降解有机污染物的应用
Shan et al. Preparation and application of bimetallic mixed ligand MOF photocatalytic materials
CN114849748B (zh) 一种CoS/Ti3C2MXene复合材料的制备及其应用
Zhang et al. Bismuth (III)-based metal-organic framework for tetracycline removal via adsorption and visible light catalysis processes
Zhang et al. Photo-Fenton degradation of tetracycline hydrochloride with Fe2O3-on-ZrO2 polypods derived from MIL-88B-on-UiO-66-NH2 within full pH range: Kinetics, degradation pathway and mechanism insight
Zhang et al. Novel Z-scheme MgFe2O4/Bi2WO6 heterojunction for efficient photocatalytic degradation of tetracycline hydrochloride: Mechanistic insight, degradation pathways and density functional theory calculations
Zhang et al. Novel MnCo2O4. 5@ manganese sand for efficient degradation of tetracycline through activating peroxymonosulfate: Facile synthesis, adaptable performance and long-term effectiveness
Lu et al. The collaborative incentive effect in adsorption-photocatalysis: A special perspective on phosphorus recovery and reuse
Liu et al. Synthesis of metal–organic coordination polymers and their derived nanostructures for organic dye removal and analyte detection
CN113996344B (zh) 一种量子点改性的金属有机骨架光催化剂及其制备方法和应用
CN111804303B (zh) 一种核壳结构二氧化铈/钴铝水滑石材料的制备方法
CN109745992A (zh) 一种高光催化活性单相铁电纳米材料及其制备方法
CN115970693A (zh) 一种微藻改性氧化铁光芬顿催化剂及其制备方法和应用
Zhang et al. Construction lamellar BaFe12O19/Bi3. 64Mo0. 36O6. 55 photocatalyst for enhanced photocatalytic activity via a photo-Fenton-like Mo6+/Mo4+ redox cycle
CN115124077A (zh) 一种Bi5O7Br纳米片的制备方法
CN110302838B (zh) 表面修饰PNH的磁性Fe2O3纳米小球及其在水处理中的应用
CN111569890A (zh) 一种氧化石墨烯-氧化铽-氧化铁复合材料、合成方法及其在催化降解中的应用
Gao et al. Enhancing degradation of norfloxacin using chrysanthemum-shaped bimetallic NH2-MIL-53 (Fe/Ti) photocatalysts under visible light irradiation
CN111167464A (zh) 基于原位合成法制备双Z型V2O5/FeVO4/Fe2O3光催化剂的方法及其应用
CN111790405B (zh) 一种可降解抗生素的光催化剂及其制备方法与应用
CN115193439B (zh) 一种三维有序大孔La0.4Ce0.6FeO3光催化剂的制备方法及应用
CN114471617B (zh) 一种磁性光催化剂、其制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947669

Country of ref document: EP

Kind code of ref document: A1