WO2022019204A1 - ハロゲン化ポリフェニレンスルフィド樹脂、樹脂組成物、成形品、及び樹脂用制振化剤 - Google Patents

ハロゲン化ポリフェニレンスルフィド樹脂、樹脂組成物、成形品、及び樹脂用制振化剤 Download PDF

Info

Publication number
WO2022019204A1
WO2022019204A1 PCT/JP2021/026578 JP2021026578W WO2022019204A1 WO 2022019204 A1 WO2022019204 A1 WO 2022019204A1 JP 2021026578 W JP2021026578 W JP 2021026578W WO 2022019204 A1 WO2022019204 A1 WO 2022019204A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
polyphenylene sulfide
halogenated
sulfide resin
Prior art date
Application number
PCT/JP2021/026578
Other languages
English (en)
French (fr)
Inventor
大輔 村野
晴紀 目代
義紀 鈴木
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to KR1020227045316A priority Critical patent/KR20230015983A/ko
Priority to JP2022537961A priority patent/JPWO2022019204A1/ja
Priority to CN202180044259.4A priority patent/CN115996988A/zh
Priority to US18/005,773 priority patent/US20230279227A1/en
Publication of WO2022019204A1 publication Critical patent/WO2022019204A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • C08G75/0213Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0231Polyarylenethioethers containing chain-terminating or chain-branching agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0245Block or graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0254Preparatory processes using metal sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention is for a resin composition containing a halogenated polyphenylene sulfide resin, the halogenated polyphenylene sulfide resin and another resin, a molded product comprising the resin composition, and a resin containing the above-mentioned halogenated polyphenylene sulfide resin.
  • anti-vibration agents With respect to anti-vibration agents.
  • Polyphenylene sulfide resin (PAS) represented by polyphenylene sulfide resin (PPS) is an engineering plastic having excellent heat resistance, chemical resistance, flame retardancy, mechanical strength, electrical characteristics, dimensional stability, and the like. PAS can be molded into various molded products, films, sheets, fibers and the like by general melt processing methods such as extrusion molding, injection molding and compression molding. Therefore, PPS is widely used in a wide range of technical fields such as electrical equipment, electronic equipment, automobile equipment, and packaging materials.
  • Examples of the resin composition having excellent vibration damping properties include a polyamide resin composition containing a plate-shaped filler or a needle-shaped filler (see Patent Document 1) and an emulsion resin composition for a vibration damping material (Patent Document 2). ) Etc. are known.
  • the resin composition described in Patent Document 1 cannot be used for fillerless applications because it contains a filler indispensably.
  • the emulsion resin composition for vibration damping material described in Patent Document 2 is an emulsion resin composition, it is difficult to apply it to general resin molding methods such as press molding, extrusion molding, and injection molding. There is a problem.
  • the present invention has been made in view of the above problems, and is a poly (halophenylene) sulfide resin capable of damping the resin without using a filler when added to the resin, and the poly (halophenylene).
  • the present inventors have described above by using a poly (halophenylene) sulfide resin, which is a polycondensate of trihalobenzene and an alkali metal sulfide, as a component for vibration-damping the resin in the resin composition. We have found that the problem can be solved and have completed the present invention.
  • the halogenated polyphenylene sulfide resin according to the present invention is It is a polycondensate of benzene halide and alkali metal sulfide.
  • the halogenated benzene is dihalobenzene and / or trihalobenzene, The ratio of the mass of trihalobenzene to the mass of halogenated benzene is 50% by mass or more.
  • the halogenated benzene has one to three halogen atoms selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the resin composition according to the present invention contains the above-mentioned halogenated polyphenylene sulfide resin and other resins other than the halogenated polyphenylene sulfide resin.
  • the ratio of the mass of the halogenated polyphenylene sulfide resin to the total of the mass of the halogenated polyphenylene sulfide resin and the mass of the thermoplastic resin may be 1% by mass or more and 30% by mass or less.
  • the ratio of the mass of the halogenated polyphenylene sulfide resin to the total of the mass of the halogenated polyphenylene sulfide resin and the mass of the other resin may be larger than 30% by mass and 90% by mass or less. ..
  • the other resin may be a thermoplastic resin.
  • thermoplastic resin may be a polyarylene sulfide resin.
  • the molded product according to the present invention comprises the above resin composition.
  • the vibration damping agent for the resin of the present invention contains the above-mentioned halogenated polyphenylene sulfide resin.
  • a resin composition containing a halogenated polyphenylene sulfide resin which can suppress vibration of the resin without using a filler when added to the resin, and the halogenated polyphenylene sulfide resin and another resin. It is possible to provide a molded product made of the above-mentioned resin composition and a vibration-damping agent for a resin containing the above-mentioned halogenated polyphenylene sulfide resin.
  • FIG. 1 It is a figure which shows the FT-IR measurement result of the halogenated polyphenylene sulfide resin obtained in Example 1.
  • FIG. 1 shows the FT-IR measurement result of the halogenated polyphenylene sulfide resin obtained in Example 1.
  • the halogenated polyphenylene sulfide resin is a polycondensate of benzene halide and an alkali metal sulfide.
  • the halogenated benzene is dihalobenzene and / or trihalobenzene.
  • the ratio of the mass of trihalobenzene to the mass of halogenated benzene is 50% by mass or more.
  • the halogenated benzene has 1 to 3 halogen atoms selected from the group consisting of a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • halogen atom in the halogenated benzene a chlorine atom is preferable from the viewpoint of the reactivity of the polycondensation of the halogenated halobenzene and the availability of the halogenated halobenzene. That is, as the halogenated benzene, dichlorobenzene and trichlorobenzene are preferable.
  • the halogenated polyphenylene sulfide resin is not limited to a linear polymer in which a halophenylene group or a phenylene group and a sulfur atom are alternately bonded.
  • the halogenated polyphenylene sulfide resin contains a branched structure in the molecular chain in which all three halogen atoms of trihalobenzene have reacted with the alkali metal sulfide.
  • trihalobenzene examples include 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, and 1,3,5-trichlorobenzene.
  • 1,2,4-trichlorobenzene is preferable in terms of polycondensation reactivity. Therefore, it is preferable that the trihalobenzene contains 1,2,4-trichlorobenzene, and it is more preferable that the total amount of trihalobenzene is 1,2,4-trichlorobenzene.
  • the ratio of the mass of 1,2,4-trichlorobenzene to the mass of trihalobenzene is preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass. By mass or more is even more preferable, 95% by mass or more is even more preferable, and 100% by mass is most preferable.
  • dichlorobenzene examples include p-dichlorobenzene, m-dichlorobenzene, and o-dichlorobenzene.
  • p-dichlorobenzene is preferable because it is easily available and inexpensive, and the obtained halogenated polyphenylene sulfide resin has good molding processability and mechanical identification.
  • trihalobenzene may contain dihalobenzene as an impurity. Such trihalobenzene containing dihalobenzene as an impurity can be preferably used as a raw material for halogenated polyphenylene sulfide.
  • the purity of trihalobenzene in trihalobenzene containing dihalobenzene as an impurity is preferably 90% by mass or more and 99.9% by mass or less, and the content of dihalobenzene is preferably 0.1% by mass or more and 10% or less. It is more preferable that the purity of trihalobenzene is 95% by mass or more and 99.9% by mass or less, and the content of dihalobenzene is 0.1% by mass or more and 5% by mass or less.
  • the ratio of the mass of trichlorobenzene to the total mass of trichlorobenzene and dichlorobenzene used in the production of the halogenated polyphenylene sulfide resin is that the vibration damping performance of the halogenated polyphenylene sulfide resin is good. 70% by mass or more is preferable, 90% by mass or more is more preferable, and 100% by mass is further preferable.
  • alkali metal sulfide examples include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, and cesium sulfide. Of these, sodium sulfide and potassium sulfide are preferable, and sodium sulfide is more preferable.
  • Alkali metal sulfides as sulfur sources can also be treated, for example, in the form of either an aqueous slurry or an aqueous solution.
  • the method of the polycondensation reaction between benzene halide and the alkali metal sulfide is not particularly limited, and the same method as the conventionally known method for producing polyarylene sulfide can be appropriately adopted.
  • Preferred methods include a method of heating and polymerizing benzene halide and alkali metal sulfide in the presence of a solvent.
  • the amount of the halogenated benzene used when reacting the halogenated benzene with the alkali metal sulfide is not particularly limited as long as the halogenated polyphenylene sulfide resin having desired properties can be obtained.
  • the amount of benzene halide used is preferably 1.30 mol or more and 1.90 mol or less, and more preferably 1.40 mol or more and 1.80 mol, with respect to 1 mol of the alkali metal sulfide charged as a sulfur source. It is not more than a molar amount, and more preferably 1.50 mol or more and 1.70 mol or less. By using the above amount of trihalobenzene, it is easy to obtain a halogenated polyphenylene sulfide resin having a desired high molecular weight.
  • the solvent is not particularly limited as long as the polycondensation reaction proceeds well.
  • an organic polar solvent is preferable because the raw material compound, the oligomer, and the produced polymer have good solubility and dispersibility.
  • Examples of the organic polar solvent include an organic amide solvent; an aprotic organic polar solvent composed of an organic sulfur compound; and an aprotic organic polar solvent composed of a cyclic organic phosphorus compound.
  • Examples of the organic amide solvent include amide compounds such as N, N-dimethylformamide and N, N-dimethylacetamide; N-alkylcaprolactam compounds such as N-methyl- ⁇ -caprolactam; and N-methyl-2-pyrrolidone (hereinafter, "" NMP ”), N-alkylpyrrolidone compounds such as N-cyclohexyl-2-pyrrolidone or N-cycloalkylpyrrolidone compounds; N, N-dialkylimidazolidinones such as 1,3-dialkyl-2-imidazolidinone.
  • Tetraalkylurea compounds such as tetramethylurea
  • Hexaalkylphosphoric acid triamide compounds such as hexamethylphosphoric acid triamide
  • the aprotic organic polar solvent composed of an organic sulfur compound include dimethyl sulfoxide and diphenyl sulfone.
  • the aprotic organic polar solvent composed of a cyclic organic phosphorus compound include 1-methyl-1-oxophosphoran.
  • an organic amide solvent is preferable in terms of availability, handleability, etc.
  • N-alkylpyrrolidone compound, N-cycloalkylpyrrolidone compound, N-alkylcaprolactum compound, and N, N-dialkylimidazolidinone compound are more preferable.
  • NMP, N-methyl- ⁇ -caprolactum, and 1,3-dialkyl-2-imidazolidinone are even more preferred, with NMP being particularly preferred.
  • the amount of the solvent used is preferably 1 or more and 30 mol or less, and more preferably 3 mol or more and 15 mol or less, with respect to 1 mol of the alkali metal sulfide as a sulfur source from the viewpoint of the efficiency of the polymerization reaction.
  • the reaction solution to be subjected to the polycondensation reaction may be charged with an alkali metal hydroxide together with a halogenated benzene and an alkali metal sulfide.
  • alkali metal hydroxide examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide. It has been found that a method of reacting a sulfur source with trihalobenzene in the presence of an alkali metal hydroxide is suitable for obtaining a halogenated polyphenylene sulfide resin having a good balance of various properties.
  • the amount of the alkali metal hydroxide used is not particularly limited as long as it does not impair the object of the present invention.
  • the amount of the alkali metal hydroxide used is typically 0.01 mol or more and 0.1 mol or less, preferably 0.03 mol or more and 0.08 mol, relative to 1 mol of the alkali metal sulfide as a sulfur source. The following are more preferable.
  • Water may be charged into the reaction solution to be subjected to the polycondensation reaction together with benzene halide and alkali metal sulfide.
  • alkali metal sulfides and alkali metal hydroxides can be made into a solution in the reaction system.
  • the amount of water used is not particularly limited as long as it does not impair the object of the present invention.
  • the amount of water used is typically 1.0 mol or more and 2.5 mol or less, more preferably 1.2 mol or more and 2.3 mol or less, with respect to 1 mol of the alkali metal sulfide as a sulfur source.
  • the polycondensation reaction may be carried out in air, but is preferably carried out in an inert gas atmosphere from the viewpoints of suppressing decomposition and coloring of the product and suppressing deterioration of the solvent.
  • the inert gas is not particularly limited, and nitrogen gas, helium gas and the like are preferable, and nitrogen gas is more preferable.
  • the polycondensation reaction may be carried out in a batch manner or in a continuous manner.
  • the temperature at which the polycondensation reaction is carried out is preferably 140 ° C. or higher and 300 ° C. or lower, more preferably 150 ° C. or higher and 280 ° C. or lower, and further preferably 160 ° C. or higher and 265 ° C. or lower.
  • the reaction time is not particularly limited, and the time for the polycondensation reaction to proceed to a desired degree is appropriately selected. Typically, the reaction time is preferably 0.5 hours or more and 12 hours or less, and more preferably 1 hour or more and 6 hours or less.
  • the halogenated polyphenylene sulfide resin is recovered from the reaction solution.
  • the reaction solution is cooled to a temperature near room temperature of, for example, 0 ° C. or higher and 50 ° C. or lower, preferably 10 ° C. or higher and 40 ° C. or lower, and then the halogenated polyphenylene sulfide resin contained in the cooled reaction solution is crude. Clean and collect the product.
  • the crude product of the halogenated polyphenylene sulfide resin is washed by a known method. Examples of the cleaning method include a method in which acetone cleaning and water cleaning are performed in this order.
  • the acetone used for washing may contain, for example, 10% by mass or less, preferably 5% by mass or less of water.
  • the halogenated polyphenylene sulfide resin For washing with acetone and water, it is preferable to wash the halogenated polyphenylene sulfide resin with an aqueous acetic acid solution.
  • concentration of the acetic acid aqueous solution is not particularly limited, but may be, for example, 0.05% by mass or more and 5% by mass or less, and 0.1% by mass or more and 2% by mass or less.
  • the temperature conditions for performing the above cleaning are not particularly limited as long as the desired cleaning effect can be obtained.
  • the temperature at which each of the above cleaning operations is carried out may be, for example, 0 ° C. or higher and 80 ° C. or lower, 10 ° C. or higher and 60 or lower, and 20 ° C. or higher and 50 ° C. or lower.
  • the halogenated polyphenylene sulfide resin washed as described above is dried as necessary to obtain a halogenated polyphenylene sulfide resin.
  • the halogenated polyphenylene sulfide resin obtained by the above method preferably has a glass transition temperature (Tg) in the range of 80 ° C. or higher and 130 or lower. Further, the weight average molecular weight (Mw) is preferably 1000 or more and 5000 or less.
  • the halogenated polyphenylene sulfide resin described above is preferably used by being mixed with a resin other than the halogenated polyphenylene sulfide resin.
  • a resin other than the halogenated polyphenylene sulfide resin By using the halogenated polyphenylene sulfide resin in combination with another resin, the vibration damping property of the other resin can be improved.
  • thermoplastic resin As the other resin, either a curable resin or a thermoplastic resin may be used.
  • a thermoplastic resin is preferable as the other resin because it is easy to uniformly mix the halogenated polyphenylene sulfide resin with the other resin.
  • the curable resin a precursor of a curable resin in an uncured state can also be used.
  • the curable resin may be a thermosetting resin or a photocurable resin, and a thermosetting resin is preferable because it is easy to manufacture a molded product having a large size to some extent.
  • a method of mixing the curable resin and the halogenated polyphenylene sulfide resin a powdered or particulate halogenated polyphenylene sulfide resin is mixed with a liquid or solution precursor of the curable resin in an uncured state. After mixing, a method of removing the solvent, if necessary, can be mentioned. In this case, a curing agent may be added to the mixture depending on the type of the curable resin.
  • the mixture obtained as described above is cured by heating and / or exposure by a method according to the type of the curable resin to obtain a resin composition.
  • curable resin examples include thermosetting resins such as phenol resin, melamine resin, epoxy resin, and alkyd resin, and photocurable resin such as (meth) acrylic resin.
  • the ratio of the mass of the halogenated polyphenylene sulfide resin to the total of the mass of the halogenated polyphenylene sulfide resin and the mass of the other resin is, for example, 1% by mass or more and 90% by mass or less. Is preferable, and 5% by mass or more and 50% by mass or less is more preferable.
  • the poly (halophenylene) sulfide resin and the other resin are typically mixed using a melt kneading device such as a single-screw extruder or a twin-screw extruder.
  • a melt kneading device such as a single-screw extruder or a twin-screw extruder.
  • the mixing conditions are not particularly limited, and are appropriately determined in consideration of the melting point, melt viscosity, etc. of the poly (halophenylene) sulfide resin and other resins.
  • thermoplastic resin examples include polyacetal resin, polyamide resin, polycarbonate resin, polyester resin (polybutylene terephthalate, polyethylene terephthalate, polyallylate resin, liquid crystal polyester resin, etc.), FR-AS resin.
  • FR-ABS resin AS resin, ABS resin, polyphenylene oxide resin, polyarylene sulfide resin, polysulfone resin, polyethersulfone resin, polyether ether ketone resin, fluororesin, polyimide resin, polyamideimide resin, polyamidebismaleimide resin , Polyetherimide resin, polybenzoxazole resin, polybenzothiazole resin, polybenzoimidazole resin, BT resin, polymethylpentene, ultrahigh molecular weight polyethylene, FR-polypropylene, polystyrene and the like.
  • the polyarylene sulfide resin is preferable, and the polyphenylene sulfide resin is more preferable, because the compatibility with the halogenated polyphenylene sulfide resin is excellent.
  • a polyp-phenylene sulfide resin which is a polycondensate of p-dichlorobenzene and a sulfide agent (for example, alkali metal sulfide or alkali metal hydrosulfide) is preferable.
  • the polyphenylene sulfide resin is preferably a combination of a p-phenylene sulfide resin and a polym-phenylene sulfide resin in that a resin composition having excellent vibration damping properties can be easily obtained.
  • the polym-phenylene sulfide resin is typically a polycondensate of m-dichlorobenzene and a sulfide agent (eg, alkali metal sulfide or alkali metal hydrosulfide).
  • the polyarylene sulfide resin is not particularly limited, and can be appropriately selected from conventionally known polyarylene sulfide resins.
  • the polyarylene sulfide resin blended with the halogenated polyphenylene sulfide resin preferably has a melting point of 270 ° C. or higher and 300 ° C. or lower, a weight average molecular weight (Mw) of 1000 or higher and 100,000 or lower, and a temperature of 310 ° C.
  • the melt viscosity measured at a shear rate of 1200 sec -1 is preferably 100 Pa ⁇ s or more and 250 Pa ⁇ s or less.
  • the ratio of the mass of the poly (halophenylene) sulfide resin to the total mass of the halogenated polyphenylene sulfide resin and the mass of other resins (particularly thermoplastic resins) is 1 from the viewpoint of molding processability of the resin composition. It is preferably 3% by mass or more and 30% by mass or less, more preferably 3% by mass or more and 25% by mass or less, and more preferably 5% by mass or more and 20% by mass or less.
  • the ratio of the mass of the halogenated polyphenylene sulfide resin to the total of the mass of the halogenated polyphenylene sulfide resin and the total of other resins (particularly the thermoplastic resin) is 30% by mass from the viewpoint of vibration damping of the resin composition. It is preferably 90% by mass or less, more preferably 50% by mass or more and 85% by mass or less, and further preferably 60% by mass or more and 80% by mass or less.
  • the resin compositions described above have been conventionally various resin compositions such as colorants, plasticizers, antioxidants, ultraviolet absorbers, flame retardants, mold release agents, fillers, and reinforcing materials, as required. It may contain an additive or an additive compounded in. These additives or additives are used in an appropriate range of amounts depending on the type of additive or additive.
  • the resin composition described above is suitably used as a vibration damping material.
  • a material showing a value of 0.150 or more as a loss coefficient (tan ⁇ ) measured according to a dynamic viscoelasticity measurement is used as a vibration damping material.
  • the loss coefficient of the damping material is preferably 0.170 or more, more preferably 0.200 or more.
  • the resin composition or vibration damping material described above is suitably used as molded products having various shapes by an appropriate method according to the type of other resin.
  • the other resin is a curable resin
  • the resin composition containing the uncured curable resin is in a liquid state, a molded product having a desired shape can be produced by a 3D printing method.
  • the resin composition may be appropriately cured during molding, or the molded product may be cured after obtaining a molded product having a desired shape.
  • the resin composition is typically molded by a conventional method such as press molding, extrusion molding, or injection molding.
  • the use of the molded product is not particularly limited. Specific examples of the use of the molded product include parts of a device that generates vibration in a vehicle such as an automobile and a two-wheeled vehicle, a ship, a railroad, and an aircraft, or peripheral parts of the device; a seat in the above-mentioned transport machine. Alternatively, peripheral parts of seats, parts of devices such as control devices for which reduction of vibration is desired; various household appliances parts; OA equipment parts; building materials; machine tool parts; industrial machine parts. Among the uses described above, examples of the use of the molded product include parts of a coolant circulation device in a transport aircraft equipped with an internal combustion engine such as an automobile. Examples of the component of the coolant circulation device include a pump housing, a pipe for cooling the coolant, and the like. By using the molded product for the above purposes, it is possible to suppress vibration of various products.
  • the vibration damping agent for the resin contains the above-mentioned halogenated polyphenylene sulfide resin.
  • the vibration damping agent may be composed of only a halogenated polyphenylene sulfide resin, or may be composed of a halogenated polyphenylene sulfide resin and other components.
  • the other components are not particularly limited, and examples thereof include a colorant, the above-mentioned thermoplastic resin, a plasticizer, and a compatibilizer.
  • a masterbatch of the vibration damping agent can be obtained. It is preferable to include a plasticizer and a compatibilizer in the masterbatch, if necessary.
  • Example 1 In a 1 L autoclave with a stirrer, 78.0 g of sodium sulfide, 2.5 g of sodium hydroxide, 374.8 g of N-methyl-2-pyrrolidone (NMP), 27.0 g of ion-exchanged water, and 1,2,4- 195.4 g of trichlorobenzene (purity 99.8% by mass) was charged. Then, after replacing the inside of the autoclave with a nitrogen gas atmosphere, the autoclave was sealed. Then, while stirring the reaction solution in the autoclave, the reaction solution was gradually heated to 240 ° C. over about 30 minutes. After the polycondensation reaction was carried out at 240 ° C.
  • NMP N-methyl-2-pyrrolidone
  • the obtained halogenated polyphenylene sulfide resin was subjected to FT-IR measurement by the KBr tablet method. The measurement results are shown in FIG.
  • the weight average molecular weight (Mw) of the obtained halogenated polyphenylene sulfide resin was 3500, and the glass transition temperature was 90 ° C.
  • Examples 2 to 7 and Comparative Example 1 In Examples 2 to 6, the polyp-phenylene sulfide resin (manufactured by Kureha Corporation, W-214A) and the halogenated polyphenylene sulfide resin obtained in Example 1 were mixed at the ratios shown in Table 1. , A resin composition was obtained. In Example 7, a polyp-phenylene sulfide resin (manufactured by Kureha Corporation, W-214A), the polym-phenylene sulfide resin obtained in Preparation Example 1 above, and the halogenated polyphenylene sulfide resin obtained in Example 1 were used. And were mixed at the ratios shown in Table 1 to obtain a resin composition.
  • the mixture is melt-kneaded with a barrel of R60 (capacity 60 mL) and a full-flight screw.
  • a resin composition was obtained by melt-kneading with an apparatus (Laboplast Mill, manufactured by Toyo Seiki Seisakusho) under the conditions of a test temperature of 320 ° C., a test time of 5 minutes, and a rotation speed of 100 rpm.
  • polyphenylene sulfide resin alone was used as a sample.
  • Examples 2 to 7 and Comparative Example 1 a sample of the resin composition or the resin alone was compression-molded at 320 ° C. under the conditions of 5 MPa and 1 minute to prepare a sheet having a size of 55 mm ⁇ 55 mm ⁇ 1 mm.
  • the brittleness of the prepared sheet was confirmed by touch and visual inspection, and the moldability was evaluated.
  • the case where there was no problem with the strength of the sheet was evaluated as ⁇
  • the case where compression molding was possible but some brittleness was felt in the sheet was evaluated as ⁇
  • the case where compression molding was not possible was evaluated as ⁇ . If it is evaluated as ⁇ , specifically, it is a case where the sheet is brittle to the extent that cracks are easily generated by bending.
  • a strip-shaped test piece for DMA measurement was cut out from the obtained sheet with a cutter knife, the dynamic viscoelasticity by DMA was evaluated, and the loss coefficient was measured.
  • the test piece was annealed at 150 ° C. for 1 hour before the DMA measurement.
  • the DMA measurement conditions are as follows.
  • the value of the loss coefficient is the maximum value measured at 20 ° C to 240 ° C.
  • the measurement results of the loss coefficient are shown in Table 1.
  • ⁇ DMA measurement conditions> Sample size: 10 mm x 5 mm x 1 mm
  • Tensile temperature 20 ° C to 240 ° C
  • Temperature rise rate 2 ° C / min Frequency: 10Hz
  • Example 8 To change 1,2,4-trichlorobenzene (purity 99.8%) to 1,2,4-trichlorobenzene (purity 97.5% by mass) containing 2.3% by mass of p-dichlorobenzene as an impurity.
  • a halogenated polyphenylene sulfide resin was obtained in the same manner as in Example 1.
  • the obtained halogenated polyphenylene sulfide resin had a weight average molecular weight (Mw) of 3500 and a glass transition temperature of 90 ° C.
  • the resin composition was prepared and evaluated in the same manner as in Example 3. The evaluation results of the resin composition were the same as in Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

樹脂に添加する場合に充填剤を用いなくても樹脂を制振化できる、ハロゲン化ポリフェニレンスルフィド樹脂と、当該ハロゲン化ポリフェニレンスルフィド樹脂と他の樹脂とを含む樹脂組成物と、前述の樹脂組成物からなる成形品と、前述のハロゲン化ポリフェニレンスルフィド樹脂を含む樹脂用の制振化剤とを提供すること。 ハロゲン化ベンゼンと、アルカリ金属硫化物との重縮合体であって、ハロゲン化ベンゼンが、ジハロベンゼン及び/又はトリハロベンゼンであり、ハロゲン化ベンゼンの質量に対する前記トリハロベンゼンの質量の比率が50質量%以上であるハロゲン化ポリフェニレンスルフィド樹脂を、樹脂組成物において樹脂を制振化させるための成分として用いる。

Description

ハロゲン化ポリフェニレンスルフィド樹脂、樹脂組成物、成形品、及び樹脂用制振化剤
 本発明は、ハロゲン化ポリフェニレンスルフィド樹脂と、当該ハロゲン化ポリフェニレンスルフィド樹脂と他の樹脂とを含む樹脂組成物と、当該樹脂組成物からなる成形品と、前述のハロゲン化ポリフェニレンスルフィド樹脂を含む樹脂用の制振化剤とに関する。
 ポリフェニレンスルフィド樹脂(PPS)に代表されるポリアリーレンスルフィド樹脂(PAS)は、耐熱性、耐薬品性、難燃性、機械的強度、電気特性、寸法安定性等に優れたエンジニアリングプラスチックである。PASは、押出成形、射出成形、圧縮成形等の一般的溶融加工法により、各種成形品、フィルム、シート、繊維等に成形可能である。このため、PPSは、電気機器、電子機器、自動車機器、包装材料等の広範な技術分野において汎用されている。
 上記のPASの用途の中でも、例えば、掃除機、冷蔵庫、エアーコンディショナーのような圧縮機やモーター等を備える家電製品や、電気自動車やハイブリッド自動車等におけるモーター部品やモーターの周辺部品についての静粛化の目的で制振性の向上が望まれている。
 制振性に優れる樹脂組成物としては、例えば、板状充填剤又は針状充填剤を含むポリアミド樹脂組成物(特許宇文献1を参照)や、制振材料用エマルジョン樹脂組成物(特許文献2)等が知られている。
特開2016-089149号公報 特開2012-126775号公報
 しかしながら、特許文献1に記載の樹脂組成物は、充填剤を必須に含むためフィラーレスの用途には用いることができない。また、特許文献2に記載の制振材料用エマルジョン樹脂組成物には、エマルジョン樹脂組成物であるがゆえにプレス成形、押出成形、射出成形等の一般的な樹脂の成形方法への適用が困難である問題がある。
 本発明は、上記の課題に鑑みなされたものであって、樹脂に添加する場合に充填剤を用いなくても樹脂を制振化できる、ポリ(ハロフェニレン)スルフィド樹脂と、当該ポリ(ハロフェニレン)スルフィド樹脂と他の樹脂とを含む樹脂組成物と、当該樹脂組成物からなる制振材料と、前述の樹脂組成物又は前述の制振材料からなる成形品と、前述のポリ(ハロフェニレン)スルフィド樹脂を含む樹脂用の制振化剤とを提供することを目的とする。
 本発明者らは、トリハロベンゼンと、アルカリ金属硫化物との重縮合体であるポリ(ハロフェニレン)スルフィド樹脂を、樹脂組成物において樹脂を制振化させるための成分として用いることにより、上記の課題を解決できることを見出し、本発明を完成するに至った。
 本発明にかかるハロゲン化ポリフェニレンスルフィド樹脂は、
 ハロゲン化ベンゼンと、アルカリ金属硫化物との重縮合体であり、
 ハロゲン化ベンゼンが、ジハロベンゼン及び/又はトリハロベンゼンであり、
 ハロゲン化ベンゼンの質量に対するトリハロベンゼンの質量の比率が50質量%以上であり、
 ハロゲン化ベンゼンがフッ素原子、塩素原子、臭素原子、及びヨウ素原子からなる群より選択される1種~3種のハロゲン原子を有する。
 本発明にかかる樹脂組成物は、前述のハロゲン化ポリフェニレンスルフィド樹脂と、ハロゲン化ポリフェニレンスルフィド樹脂以外の他の樹脂とを含む。
 上記の樹脂組成物において、ハロゲン化ポリフェニレンスルフィド樹脂の質量と、熱可塑性樹脂の質量との合計に対する、ハロゲン化ポリフェニレンスルフィド樹脂の質量の比率が、1質量%以上30質量%以下であってよい。
 上記の樹脂組成物において、ハロゲン化ポリフェニレンスルフィド樹脂の質量と、他の樹脂の質量との合計に対する、ハロゲン化ポリフェニレンスルフィド樹脂の質量の比率が、30質量%より大きく90質量%以下であってよい。
 上記の樹脂組成物において、他の樹脂が、熱可塑性樹脂であってよい。
 上記の樹脂組成物において、熱可塑性樹脂が、ポリアリーレンスルフィド樹脂であってよい。
 本発明にかかる成形品は、上記の樹脂組成物からなる。
 本発明の樹脂用の制振化剤は、上記のハロゲン化ポリフェニレンスルフィド樹脂を含む。
 本発明によれば、樹脂に添加する場合に充填剤を用いなくても樹脂を制振化できる、ハロゲン化ポリフェニレンスルフィド樹脂と、当該ハロゲン化ポリフェニレンスルフィド樹脂と他の樹脂とを含む樹脂組成物と、前述の樹脂組成物からなる成形品と、前述のハロゲン化ポリフェニレンスルフィド樹脂を含む樹脂用の制振化剤とを提供することができる。
実施例1で得たハロゲン化ポリフェニレンスルフィド樹脂のFT-IR測定結果を示す図である。
≪ハロゲン化ポリフェニレンスルフィド樹脂≫
 ハロゲン化ポリフェニレンスルフィド樹脂は、ハロゲン化ベンゼンと、アルカリ金属硫化物との重縮合体である。ハロゲン化ベンゼンは、ジハロベンゼン及び/又はトリハロベンゼンである。ハロゲン化ベンゼンの質量に対するトリハロベンゼンの質量の比率が50質量%以上である。
 ハロゲン化ベンゼンは、フッ素原子、塩素原子、臭素原子、及びヨウ素原子からなる群より選択される1種~3種のハロゲン原子を有する。
 ハロゲン化ベンゼンにおけるハロゲン原子としては、ハロゲン化ハロベンゼンの重縮合の反応性や、ハロゲン化ハロベンゼンの入手の容易性の点から塩素原子が好ましい。つまり、ハロゲン化ベンゼンとしては、ジクロロベンゼン、及びトリクロロベンゼンが好ましい。
 ハロゲン化ポリフェニレンスルフィド樹脂について、ハロフェニレン基又はフェニレン基と硫黄原子とが交互に連なって結合した直鎖型のポリマーには限定されない。典型的には、ハロゲン化ポリフェニレンスルフィド樹脂は、トリハロベンゼンが有する3つのハロゲン原子の全てがアルカリ金属硫化物と反応した分岐構造を分子鎖中に含む。
 トリハロベンゼンの好適な具体例としては、1,2,3-トリクロロベンゼン、1,2,4-トリクロロベンゼン、及び1,3,5-トリクロロベンゼンが挙げられる。これらの中では、重縮合の反応性の点で1,2,4-トリクロロベンゼンが好ましい。このため、トリハロベンゼンが、1,2,4-トリクロロベンゼンを含むのが好ましく、トリハロベンゼンの全量が1,2,4-トリクロロベンゼンであるのがより好ましい。
 トリハロベンゼンが1,2,4-トリクロロベンゼンを含む場合の、トリハロベンゼンの質量に対する1,2,4-トリクロロベンゼンの質量の比率は70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、95質量%以上がさらにより好ましく、100質量%が最も好ましい。
 ジハロベンゼンの好適な具体例としては、p-ジクロロベンゼン、m-ジクロロベンゼン、及びo-ジクロロベンゼンが挙げられる。これらの中では、入手が容易で安価であることや、得られるハロゲン化ポリフェニレンスルフィド樹脂の、成形加工性や機械的特定が良好であること等から、p-ジクロロベンゼンが好ましい。
 なお、製造方法によっては、トリハロベンゼンが、不純物としてジハロベンゼンを含む場合がある。このような、ジハロベンゼンを不純物として含むトリハロベンゼンを、ハロゲン化ポリフェニレンスルフィドの原料として好ましく用いることができる。
 この場合、ジハロベンゼンを不純物として含むトリハロベンゼンにおける、トリハロベンゼンの純度が90質量%以上99.9質量%以下であり、ジハロベンゼンの含有量が0.1質量%以上10%以下であるのが好ましく、トリハロベンゼンの純度が95質量%以上99.9質量%以下であり、ジハロベンゼンの含有量が0.1質量%以上5質量%以下であるのがより好ましい。
 ハロゲン化ポリフェニレンスルフィド樹脂の制振性能が良好である点で、ハロゲン化ポリフェニレンスルフィド樹脂の製造に使用される、トリクロロベンゼンの質量とジクロロベンゼンの質量との合計に対する、トリクロロベンゼンの質量の比率は、70質量%以上が好ましく、90質量%以上がより好ましく、100質量がさらに好ましい。
 アルカリ金属硫化物としては、例えば、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、及び硫化セシウムが挙げられる。これらの中では、硫化ナトリウム、及び硫化カリウムが好ましく、硫化ナトリウムがより好ましい。硫黄源としてのアルカリ金属硫化物は、例えば、水性スラリー及び水溶液のいずれかの状態で扱うこともできる。
 ハロゲン化ベンゼンと、アルカリ金属硫化物との重縮合反応の方法は特に限定されず、従来知られるポリアリーレンスルフィドの製造方法と同様の方法を適宜採用できる。
 好ましい方法としては、ハロゲン化ベンゼンとアルカリ金属硫化物とを、溶媒の存在下に加熱して重合させる方法が挙げられる。
 ハロゲン化ベンゼンと、アルカリ金属硫化物とを反応させる際のハロゲン化ベンゼンの使用量は、所望する性質のハロゲン化ポリフェニレンスルフィド樹脂が得られる限り特に限定されない。
 ハロゲン化ベンゼンの使用量は、硫黄源としてのアルカリ金属硫化物の仕込み量1モルに対し、好ましくは1.30モル以上1.90モル以下であり、より好ましくは1.40モル以上1.80モル以下であり、さらにより好ましくは1.50モル以上1.70モル以下である。上記の量のトリハロベンゼンを用いることにより、所望する程度に高分子量化したハロゲン化ポリフェニレンスルフィド樹脂を得やすい。
 溶媒としては、重縮合反応が良好に進行する限り特に限定されない。溶媒としては、原料化合物、オリゴマー、及び生成ポリマーの溶解性や分散性が良好であることから、有機極性溶媒が好ましい。
 有機極性溶媒としては、例えば、有機アミド溶媒;有機硫黄化合物からなる非プロトン性有機極性溶媒;環式有機リン化合物からなる非プロトン性有機極性溶媒が挙げられる。有機アミド溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド化合物;N-メチル-ε-カプロラクタム等のN-アルキルカプロラクタム化合物;N-メチル-2-ピロリドン(以下、「NMP」とも称する。)、N-シクロヘキシル-2-ピロリドン等のN-アルキルピロリドン化合物又はN-シクロアルキルピロリドン化合物;1,3-ジアルキル-2-イミダゾリジノン等のN,N-ジアルキルイミダゾリジノン化合物;テトラメチル尿素等のテトラアルキル尿素化合物;ヘキサメチルリン酸トリアミド等のヘキサアルキルリン酸トリアミド化合物等が挙げられる。有機硫黄化合物からなる非プロトン性有機極性溶媒としては、ジメチルスルホキシド、ジフェニルスルホン等が挙げられる。環式有機リン化合物からなる非プロトン性有機極性溶媒としては、1-メチル-1-オキソホスホラン等が挙げられる。中でも、入手性、取り扱い性等の点で、有機アミド溶媒が好ましく、N-アルキルピロリドン化合物、N-シクロアルキルピロリドン化合物、N-アルキルカプロラクタム化合物、及びN,N-ジアルキルイミダゾリジノン化合物がより好ましく、NMP、N-メチル-ε-カプロラクタム、及び1,3-ジアルキル-2-イミダゾリジノンがさらにより好ましく、NMPが特に好ましい。
 溶媒の使用量は、重合反応の効率等の観点から、硫黄源としてのアルカリ金属硫化物1モルに対し、1以上30モル以下が好ましく、3モル以上15モル以下がより好ましい。
 重縮合反応に供される反応液には、ハロゲン化ベンゼン、及びアルカリ金属硫化物とともに、アルカリ金属水酸化物を仕込んでもよい。アルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウムが挙げられる。
 硫黄源をアルカリ金属水酸化物の存在下にトリハロベンゼンと反応させる方法が、諸特性バランスの良好なハロゲン化ポリフェニレンスルフィド樹脂を得るのに適していることが判明している。
 アルカリ金属水酸化物の使用量は、本発明の目的を阻害しない範囲で特に限定されない。アルカリ金属水酸化物の使用量は、典型的には、硫黄源としてのアルカリ金属硫化物1モルに対して0.01モル以上0.1モル以下が好ましく、0.03モル以上0.08モル以下がより好ましい。
 重縮合反応に供される反応液には、ハロゲン化ベンゼン、及びアルカリ金属硫化物とともに、水を仕込んでもよい。水を用いることにより、アルカリ金属硫化物、及びアルカリ金属水酸化物を反応系内で溶液の状態にできる。
 水の使用量は、本発明の目的を阻害しない範囲で特に限定されない。水の使用量は、典型的には硫黄源としてのアルカリ金属硫化物1モルに対して1.0モル以上2.5モル以下が好ましく、1.2モル以上2.3モル以下がより好ましい。
 以上説明した各成分を混合した後、得られた混合物を反応液として重縮合反応に供する。重縮合反応は、空気中で行われてもよいが、生成物の分解や着色の抑制、溶媒の劣化の抑制等の観点から、不活性ガス雰囲気中で行われるのが好ましい。不活性ガスとしては特に限定されず、窒素ガス、ヘリウムガス等が好ましく、窒素ガスがより好ましい。
 重縮合反応はバッチ式で行われてもよく、連続式で行われてもよい。
 重縮合反応の効率等の観点から、重縮合反応行う温度は、140℃以上300℃以下が好ましく、150℃以上280℃以下がより好ましく、160℃以上265℃以下がさらに好ましい。
 反応時間は特に限定されず、重縮合反応が所望する程度まで進行する時間が適宜選択される。典型的には、反応時間は0.5時間以上12時間以下が好ましく、1時間以上6時間以下がより好ましい。
 上記のようにして重縮合反応を行った後、反応液からハロゲン化ポリフェニレンスルフィド樹脂が回収される。
 典型的には、反応液を例えば0℃以上50℃以下、好ましくは10℃以上40℃以下程度の室温付近の温度まで冷却した後、冷却された反応液に含まれるハロゲン化ポリフェニレンスルフィド樹脂の粗製品を洗浄して回収する。
 ハロゲン化ポリフェニレンスルフィド樹脂の粗製品は、公知の方法により洗浄される。洗浄方法としては、アセトン洗浄と、水による洗浄とをこの順で行う方法が挙げられる。この場合、洗浄に用いられるアセトンには、例えば、10質量%以下、好ましくは5質量%以下程度の水を含有させてもよい。アセトン、及び水による洗浄について、ハロゲン化ポリフェニレンスルフィド樹脂を酢酸水溶液により洗浄するのが好ましい。酢酸水溶液の濃度は特に限定されないが、例えば、0.05質量%以上5質量%以下であり、0.1質量%以上2質量%以下であってよい。
 上記の洗浄を行う場合の温度条件は、所望する洗浄効果が得られる限り特に限定されない。上記の各洗浄操作を実施する温度は、例えば、0℃以上80℃以下であってよく、10℃以上60以下であってよく20℃以上50℃以下であってよい。
 上記のようにして洗浄されたハロゲン化ポリフェニレンスルフィド樹脂を必要に応じて乾燥させることにより、ハロゲン化ポリフェニレンスルフィド樹脂が得られる。
 制振性能及び成形加工性の点で、上記の方法により得られるハロゲン化ポリフェニレンスルフィド樹脂について、ガラス転移温度(Tg)が80℃以上130以下の範囲内であるのが好ましい。また、重量平均分子量(Mw)が1000以上5000以下であるのが好ましい。
≪樹脂組成物≫
 以上説明したハロゲン化ポリフェニレンスルフィド樹脂は、好ましくは、ハロゲン化ポリフェニレンスルフィド樹脂以外の他の樹脂と混合されて使用される。ハロゲン化ポリフェニレンスルフィド樹脂を、他の樹脂と混合して使用することにより、他の樹脂の制振性を向上させることができる。
 他の樹脂としては、硬化性樹脂、及び熱可塑性樹脂のいずれを用いてもよい。ハロゲン化ポリフェニレンスルフィド樹脂と、他の樹脂との均一な混合が容易であることから、他の樹脂としては熱可塑性樹脂が好ましい。
 硬化性樹脂としては、未硬化の状態の硬化性樹脂の前駆体を用いることもできる。硬化性樹脂は、熱硬化性樹脂であっても、光硬化性樹脂であってもよく、ある程度サイズの大きな成形品を製造しやすいこと等から熱硬化性樹脂が好ましい。
 硬化性樹脂と、ハロゲン化ポリフェニレンスルフィド樹脂とを混合する方法としては、粉末又は粒子状のハロゲン化ポリフェニレンスルフィド樹脂を、液状又は溶液状の未硬化の状態の硬化性樹脂の前駆体と混合させ、混合後、必要に応じて溶媒を除去する方法が挙げられる。この場合、硬化性樹脂の種類に応じて、混合物に、硬化剤を配合してもよい。
 以上のようにして得られる混合物は、硬化性樹脂の種類に応じた方法で、加熱及び/又は露光により硬化され樹脂組成物とされる。
 硬化性樹脂の具体例としては、フェノール樹脂、メラミン樹脂、エポキシ樹脂、及びアルキド樹脂等の熱硬化性樹脂や、(メタ)アクリル樹脂等の光硬化性樹脂が挙げられる。
 他の樹脂が硬化性樹脂である場合の、ハロゲン化ポリフェニレンスルフィド樹脂の質量と、他の樹脂の質量との合計に対する、ハロゲン化ポリフェニレンスルフィド樹脂の質量の比率は、例えば1質量%以上90質量以下が好ましく、5質量%以上50質量%以下がより好ましい。
 他の樹脂が熱可塑性樹脂である場合、ポリ(ハロフェニレン)スルフィド樹脂と他の樹脂とは、典型的には、1軸押出機や2軸押出機等の溶融混錬装置を用いて混合される。混合条件は特に限定されず、ポリ(ハロフェニレン)スルフィド樹脂、及び他の樹脂の、融点、溶融粘度等を勘案して適宜決定される。
 他の樹脂が熱可塑性樹脂である場合の好適な例としては、ポリアセタール樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリエステル樹脂(ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリアリレート樹脂、液晶ポリエステル樹脂等)、FR-AS樹脂、FR-ABS樹脂、AS樹脂、ABS樹脂、ポリフェニレンオキサイド樹脂、ポリアリーレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、フッ素系樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミドビスマレイミド樹脂、ポリエーテルイミド樹脂、ポリベンゾオキサゾール樹脂、ポリベンゾチアゾール樹脂、ポリベンゾイミダゾール樹脂、BT樹脂、ポリメチルペンテン、超高分子量ポリエチレン、FR-ポリプロピレン、及びポリスチレン等が挙げられる。
 これらの熱可塑性樹脂の中では、ハロゲン化ポリフェニレンスルフィド樹脂との相溶性に優れる点等から、ポリアリーレンスルフィド樹脂が好ましく、ポリフェニレンスルフィド樹脂がより好ましい。ポリフェニレンスルフィド樹脂としてはp-ジクロロベンゼンとスルフィド化剤(例えば、アルカリ金属硫化物やアルカリ金属水硫化物)との重縮合物であるポリp-フェニレンスルフィド樹脂が好ましい。
 また、制振性に優れる樹脂組成物を得やすい点で、ポリフェニレンスルフィド樹脂は、p-フェニレンスルフィド樹脂と、ポリm-フェニレンスルフィド樹脂との組み合わせであるのもの好ましい。ポリm-フェニレンスルフィド樹脂は、典型的には、m-ジクロロベンゼンとスルフィド化剤(例えば、アルカリ金属硫化物やアルカリ金属水硫化物)との重縮合物である。
 ポリアリーレンスルフィド樹脂としては特に限定されず、従来知られるポリアリーレンスルフィド樹脂から適宜選択され得る。ハロゲン化ポリフェニレンスルフィド樹脂と配合されるポリアリーレンスルフィド樹脂については、融点が270℃以上300℃以下であるのが好ましく、重量平均分子量(Mw)が1000以上100000以下であるのが好ましく、温度310℃、せん断速度1200sec-1で測定した溶融粘度が100Pa・s以上250Pa・s以下であるのが好ましい。
 ハロゲン化ポリフェニレンスルフィド樹脂の質量と、他の樹脂(特に熱可塑性樹脂)の質量との合計に対する、ポリ(ハロフェニレン)スルフィド樹脂の質量の比率は、樹脂組成物の成形加工性の点から、1質量%以上30質量%以下が好ましく、3質量%以上25質量%以下がより好ましく、5質量%以上20質量%以下がより好ましい。
 ハロゲン化ポリフェニレンスルフィド樹脂の質量と、他の樹脂(特に熱可塑性樹脂)のとの合計に対する、ハロゲン化ポリフェニレンスルフィド樹脂の質量の比率は、樹脂組成物の制振性の点から、30質量%より大きく90質量%以下が好ましく、50質量%以上85質量%以下がより好ましく、60質量%以上80質量%以下がさらに好ましい。
 以上説明した樹脂組成物は、必要に応じて、着色剤、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤、離型剤、充填材、及び強化材等の、従来から種々の樹脂組成物に配合されている添加剤、又は添加材を含んでいてもよい。これらの添加剤又は添加材は、添加剤又は添加材の種類に応じた適切な範囲の量を使用される。
≪制振材料≫
 以上説明した樹脂組成物は、制振材料として好適に使用される。本出願の明細書及び特許請求の範囲において、具体的には、動的粘弾性測定に従って測定される損失係数(tanδ)として0.150以上の値を示す材料を制振材料とする。制振材料の損失係数は、0.170以上が好ましく、0.200以上がより好ましい。
≪成形品≫
 以上説明した樹脂組成物、又は制振材料は、他の樹脂の種類に応じた適切な方法により種々の形状の成形品とされ好適に使用される。
 他の樹脂が、硬化性樹脂である場合、例えば、所望する形状の凹部を有するモールド内に未硬化の状態の樹脂組成物を充填した後、モールド内で所望する形状に成形された樹脂組成物を硬化させてもよい。
 また、未硬化の状態の硬化性樹脂を含む樹脂組成物が液状である場合、3Dプリンティング法により所望する形状の成形品を製造することもできる。この場合、樹脂組成物は、成形途中に適宜硬化されてもよく、所望する形状の成形品を得た後に成形品が硬化されてもよい。
 他の樹脂が熱可塑性樹脂である場合、典型的には、プレス成形、押出成形、射出成形のような常法により樹脂組成物が成形される。
 成形品の用途は特に限定されない。成形品の用途の具体例としては、自動車及び二輪車等の車両、船舶、鉄道、航空機のような輸送機における振動が発生する装置の部品、又は当該装置の周辺部品;前述の輸送機における、座席又は座席の周辺部品や、操縦装置等の振動の低減が望まれる装置の部品;各種家電機器部品;OA機器部品;建築材料;工作機械部品;産業機械部品が挙げられる。
 以上説明した用途の中でも、成形品の用途としては、自動車等の内燃機関を備える輸送機におけるクーラント循環装置の部品が挙げられる。かかるクーラント循環装置の部品としては、ポンプ筐体やクーラント循環用のパイプ等が挙げられる。
 成形品を上記の用途に用いることにより、各種製品の制振化を図ることができる。
≪樹脂用の制振化剤≫
 樹脂用の制振化剤は、前述のハロゲン化ポリフェニレンスルフィド樹脂を含む。制振化剤は、ハロゲン化ポリフェニレンスルフィド樹脂のみからなってもよく、ハロゲン化ポリフェニレンスルフィド樹脂と、他の成分とからなってもよい。他の成分としては特に限定されず、着色剤、前述の熱可塑性樹脂、可塑剤、及び相溶化剤等が挙げられる。特に、ハロゲン化ポリフェニレンスルフィド樹脂を、熱可塑性樹脂中に高濃度で混合することにより、制振化剤のマスターバッチとすることができる。マスターバッチには、必要に応じて、可塑剤や、相溶化剤を含めるのが好ましい。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。
 以下に実施例及び比較例を挙げて、本発明についてより具体的に説明する。なお、本発明は、実施例に限られるものではない。以下に記す溶融粘度について、測定方法は前述の通りである。
[実施例1]
 撹拌機付の容量1Lオートクレーブに、硫化ナトリウム78.0g、水酸化ナトリウム2.5g、N―メチル-2-ピロリドン(NMP)374.8g、イオン交換水27.0g、及び1,2,4-トリクロロベンゼン195.4g(純度99.8質量%)を仕込んだ。次いで、オートクレーブ内を窒素ガス雰囲気に置換した後、オートクレーブを密封した。その後、オートクレーブ内の反応液を撹拌しながら、反応液を240℃まで約30分かけて徐々に加熱した。240℃を2時間保持して重縮合反応を行った後、反応液を室温近くまで冷却した。
 オートクレーブの内容物を取り出した後、オートクレーブの内容物に3質量%の純水を含むアセトン1Lを加えて、室温にて30分間撹拌して洗浄した。洗浄された固形分(粗製品)をろ過により回収した後、前述のアセトンによる洗浄操作を2回繰り返した。
 アセトンで洗浄された固形分を、室温にて純水1L中で30分間撹拌して洗浄した後、ろ過により回収した。回収された固形分に対して、前述の純水による洗浄操作を3回繰り返した後、ろ過により回収された固形分を120℃で4時間乾燥させて、精製されたハロゲン化ポリフェニレンスルフィド樹脂として、トリクロロベンゼンと硫化ナトリウムとの重縮合物を得た。
 得られた、ハロゲン化ポリフェニレンスルフィド樹脂について、KBr錠剤法によるFT-IR測定を行った。測定結果を図1に示す。
 また、得られたハロゲン化ポリフェニレンスルフィド樹脂の重量平均分子量(Mw)は3500であり、ガラス転移温度は90℃であった。
〔調製例1〕
 撹拌機付の容量1Lオートクレーブに、硫化ナトリウム78.0g、水酸化ナトリウム2.5g、N―メチル-2-ピロリドン(NMP)374.8g、イオン交換水27.0g、及び1,3-ジクロロベンゼン(m-ジクロロベンゼン)149.9gを仕込んだ。次いで、オートクレーブ内を窒素ガス雰囲気に置換した後、オートクレーブを密封した。その後、オートクレーブ内の反応液を撹拌しながら、240℃まで約30分かけて徐々に加熱した。240℃を2時間保持して重縮合反応を行った後、反応液を室温近くまで冷却した。
 オートクレーブの内容物を取り出した後、オートクレーブの内容物に3質量%の純水を含むアセトン1Lを加えて、室温にて30分間撹拌して洗浄した。洗浄された固形分(粗製品)をろ過により回収した後、前述のアセトンによる洗浄操作を2回繰り返した。
 アセトンで洗浄された固形分を、室温にて純水1L中で30分間撹拌して洗浄した後、ろ過により回収した。回収された固形分に対して、前述の純水による洗浄操作を3回繰り返した後、ろ過により回収された固形分を120℃で4時間乾燥させて、ポリm-フェニレンスルフィド樹脂を得た。得られたポリm-フェニレンスルフィド樹脂の重量平均分子量(Mw)は5000であった。
[実施例2~7、及び比較例1]
 実施例2~6において、ポリp-フェニレンスルフィド樹脂((株)クレハ製、W-214A)と、実施例1で得たハロゲン化ポリフェニレンスルフィド樹脂とを、表1に記載の比率で混合して、樹脂組成物を得た。
 実施例7において、ポリp-フェニレンスルフィド樹脂((株)クレハ製、W-214A)と、上記調製例1で得たポリm-フェニレンスルフィド樹脂と、実施例1で得たハロゲン化ポリフェニレンスルフィド樹脂とを、表1に記載の比率で混合して、樹脂組成物を得た。
 具体的には、ポリフェニレンスルフィド樹脂と、ハロゲン化ポリフェニレンスルフィド樹脂とを表1に記載の比率でドライブレンドした後、混合物を、R60(容量60mL)のバレルと、フルフライトのスクリューを備える溶融混錬装置(ラボプラストミル、東洋精機製作所製)にて、試験温度320℃、試験時間5分、回転数100rpmの条件で溶融混錬して樹脂組成物を得た。
 比較例1では、ポリフェニレンスルフィド樹脂単独を試料として用いた。
 実施例2~7、及び比較例1について、樹脂組成物、又は樹脂単独の試料を320℃で、5MPa、1分の条件で圧縮成形して55mm×55mm×1mmのサイズのシートを作製した。作成されたシートのもろさを手触り及び目視により確認して、成形性を評価した。シートの強度に全く問題ない場合を◎と評価し、圧縮成形可能であるがシートに若干の脆さが感じられた場合を〇と評価し、圧縮成形できなかった場合を×と評価した。○と評価される場合は、具体的には、曲げにより容易にクラックが発生する程度にシートが脆い場合である。
 また、得られたシートから、カッターナイフによりDMA測定用の短冊状の試験片を切り出し、DMAによる動的粘弾性の評価を行い、損失係数を測定した。なお、試験片には、DMA測定前に、150℃、1時間の条件でアニール処理を施した。DMA測定条件は以下の通りである。損失係数の値は、20℃~240℃でと測定された値の最大値である。損失係数の測定結果を、表1に記す。
<DMA測定条件>
試料サイズ:10mm×5mm×1mm
引張温度:20℃~240℃
昇温速度:2℃/分
周波数:10Hz
Figure JPOXMLDOC01-appb-T000001
 実施例2~7と、比較例1との比較によれば、ポリフェニレンスルフィド樹脂に、ハロゲン化ポリフェニレンスルフィド樹脂が配合されることにより、損失係数が顕著に高まり、制振性が改良されることが分かる。
〔実施例8〕
 1,2,4-トリクロロベンゼン(純度99.8%)を、不純物としてp-ジクロロベンゼン2.3質量%を含む1,2,4-トリクロロベンゼン(純度97.5質量%)に変えることの他は、実施例1と同様にして、ハロゲン化ポリフェニレンスルフィド樹脂を得た。得られたハロゲン化ポリフェニレンスルフィド樹脂の重量平均分子量(Mw)は3500であり、ガラス転移温度は90℃であった。
 得られたハロゲン化ポリフェニレンスルフィド樹脂を用いることの他は、実施例3と同様にして、樹脂組成物の調製と評価とを行った。樹脂組成物の評価結果は、実施例3と同様であった。

Claims (8)

  1.  ハロゲン化ベンゼンと、アルカリ金属硫化物との重縮合体であり、
     前記ハロゲン化ベンゼンが、ジハロベンゼン及び/又はトリハロベンゼンであり、
     前記ハロゲン化ベンゼンの質量に対する前記トリハロベンゼンの質量の比率が50質量%以上であり、
     前記ハロゲン化ベンゼンがフッ素原子、塩素原子、臭素原子、及びヨウ素原子からなる群より選択される1種~3種のハロゲン原子を有する、ハロゲン化ポリフェニレンスルフィド樹脂。
  2.  請求項1に記載の前記ハロゲン化ポリフェニレンスルフィド樹脂と、前記ハロゲン化ポリフェニレンスルフィド樹脂以外の他の樹脂とを含む、樹脂組成物。
  3.  前記ハロゲン化ポリフェニレンスルフィド樹脂の質量と、前記他の樹脂の質量との合計に対する、前記ハロゲン化ポリフェニレンスルフィド樹脂の質量の比率が、1質量%以上30質量%以下である、請求項2に記載の樹脂組成物。
  4.  前記ハロゲン化ポリフェニレンスルフィド樹脂の質量と、前記他の樹脂の質量との合計に対する、前記ハロゲン化ポリフェニレンスルフィド樹脂の質量の比率が、30質量%より大きく90質量%以下である、請求項2に記載の樹脂組成物。
  5.  前記他の樹脂が熱可塑性樹脂である、請求項2~4のいずれか1項に記載の樹脂組成物。
  6.  前記熱可塑性樹脂が、ポリアリーレンスルフィド樹脂である、請求項5に記載の樹脂組成物。
  7.  請求項2~6のいずれか1項に記載の前記樹脂組成物からなる成形品。
  8.  請求項1に記載のハロゲン化ポリフェニレンスルフィド樹脂を含む、樹脂用の制振化剤。
PCT/JP2021/026578 2020-07-22 2021-07-15 ハロゲン化ポリフェニレンスルフィド樹脂、樹脂組成物、成形品、及び樹脂用制振化剤 WO2022019204A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227045316A KR20230015983A (ko) 2020-07-22 2021-07-15 할로겐화 폴리페닐렌 설파이드 수지, 수지 조성물, 성형품 및 수지용 제진화제
JP2022537961A JPWO2022019204A1 (ja) 2020-07-22 2021-07-15
CN202180044259.4A CN115996988A (zh) 2020-07-22 2021-07-15 卤化聚苯硫醚树脂、树脂组合物、成型品以及树脂用减振化剂
US18/005,773 US20230279227A1 (en) 2020-07-22 2021-07-15 Halogenated polyphenylene sulfide resin, resin composition, molded article, and vibration-damping agent for resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-125534 2020-07-22
JP2020125534 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022019204A1 true WO2022019204A1 (ja) 2022-01-27

Family

ID=79729505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026578 WO2022019204A1 (ja) 2020-07-22 2021-07-15 ハロゲン化ポリフェニレンスルフィド樹脂、樹脂組成物、成形品、及び樹脂用制振化剤

Country Status (5)

Country Link
US (1) US20230279227A1 (ja)
JP (1) JPWO2022019204A1 (ja)
KR (1) KR20230015983A (ja)
CN (1) CN115996988A (ja)
WO (1) WO2022019204A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225934A (ja) * 2004-02-12 2005-08-25 Shiseido Co Ltd ポリ(フェニレンスルフィド)デンドリマー、カルボキシフォーカルフェニレンスルフィドデンドロン及びこれらの製造方法
JP2005225933A (ja) * 2004-02-12 2005-08-25 Shiseido Co Ltd ポリ(トリス−1,3,5(4−フェニル−1−チオ)ベンゼン)及びその製造方法
JP2005264030A (ja) * 2004-03-19 2005-09-29 Dainippon Ink & Chem Inc ポリアリーレンスルフィドの精製方法
JP2006166554A (ja) * 2004-12-06 2006-06-22 Toyota Motor Corp 回転電機および回転電機の製造方法
WO2006068161A1 (ja) * 2004-12-21 2006-06-29 Polyplastics Co., Ltd. ポリアリーレンスルフィド樹脂組成物及びその製造方法
JP2011223771A (ja) * 2010-04-12 2011-11-04 Nsk Ltd ブラシモータ及び電動パワーステアリング装置、並びにブラシの配置方法
WO2016111146A1 (ja) * 2015-01-09 2016-07-14 株式会社クレハ ポリアリーレンスルフィドの製造方法及びポリアリーレンスルフィド

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5815233B2 (ja) 2010-12-14 2015-11-17 株式会社日本触媒 制振材用エマルション樹脂組成物及び制振材
JP6841588B2 (ja) 2014-10-31 2021-03-10 花王株式会社 制振材料用のポリアミド樹脂組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225934A (ja) * 2004-02-12 2005-08-25 Shiseido Co Ltd ポリ(フェニレンスルフィド)デンドリマー、カルボキシフォーカルフェニレンスルフィドデンドロン及びこれらの製造方法
JP2005225933A (ja) * 2004-02-12 2005-08-25 Shiseido Co Ltd ポリ(トリス−1,3,5(4−フェニル−1−チオ)ベンゼン)及びその製造方法
JP2005264030A (ja) * 2004-03-19 2005-09-29 Dainippon Ink & Chem Inc ポリアリーレンスルフィドの精製方法
JP2006166554A (ja) * 2004-12-06 2006-06-22 Toyota Motor Corp 回転電機および回転電機の製造方法
WO2006068161A1 (ja) * 2004-12-21 2006-06-29 Polyplastics Co., Ltd. ポリアリーレンスルフィド樹脂組成物及びその製造方法
JP2011223771A (ja) * 2010-04-12 2011-11-04 Nsk Ltd ブラシモータ及び電動パワーステアリング装置、並びにブラシの配置方法
WO2016111146A1 (ja) * 2015-01-09 2016-07-14 株式会社クレハ ポリアリーレンスルフィドの製造方法及びポリアリーレンスルフィド

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MITSUTOSHI JIKEI, ET AL.: "SYNTHESIS OF HYPERBRANCHED POLY(PHENYLENE SULFIDE) VIA A POLY(SULFONIUM CATION) PRECURSOR.", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 29., no. 03., 29 January 1996 (1996-01-29), US , pages 1062 - 1064, XP000548553, ISSN: 0024-9297, DOI: 10.1021/ma951147r *

Also Published As

Publication number Publication date
US20230279227A1 (en) 2023-09-07
KR20230015983A (ko) 2023-01-31
CN115996988A (zh) 2023-04-21
JPWO2022019204A1 (ja) 2022-01-27

Similar Documents

Publication Publication Date Title
JP5534815B2 (ja) ポリエーテルエーテルケトン、及び、ポリマー材料の精製方法
JP2010095613A (ja) ポリエーテルエーテルケトン系樹脂組成物
JP6497110B2 (ja) ポリフェニレンスルフィド樹脂組成物
JP2017043772A (ja) 変性ポリフェニレンスルフィド樹脂および樹脂組成物
CN111372998A (zh) 热塑性聚酰胺组合物及其制备方法和应用
WO2022019204A1 (ja) ハロゲン化ポリフェニレンスルフィド樹脂、樹脂組成物、成形品、及び樹脂用制振化剤
WO2022030459A1 (ja) 変性ポリフェニレンスルフィド樹脂、樹脂組成物、及び成形品
JP6701877B2 (ja) ポリフェニレンスルフィド樹脂組成物
JP4257506B2 (ja) 耐熱性樹脂複合材料
JP2022042759A (ja) ポリフェニレンスルフィド樹脂組成物、成形品、及び制振化剤
JP2010095615A (ja) ポリエーテルエーテルケトン、それを含有する樹脂組成物、およびその成形体
JP7373668B2 (ja) ポリフェニレンスルフィド樹脂組成物およびこれを含む制振材
JP2021113302A (ja) ポリアリーレンスルフィドの製造法
WO2010018681A1 (ja) 樹脂組成物
JP2022029826A (ja) ポリフェニレンスルフィド樹脂組成物、成形品、及びポリフェニレンスルフィド樹脂用制振化剤
CN107922735B (zh) 聚亚芳基硫醚树脂组合物及其成形体
JP2019006923A (ja) ポリアリーレンスルフィドおよびその製造方法
JP7197066B1 (ja) ポリアリーレンスルフィド樹脂組成物、成形品及びそれらの製造方法
JP2019011421A (ja) ポリアリーレンスルフィド組成物
EP4146723A1 (en) Poly(arylene sulfide) copolymer
JP2002167510A (ja) ポリフェニレンスルフィド樹脂組成物
JP6699154B2 (ja) ポリアリーレンスルフィド系組成物
JP2005068187A (ja) ポリアリーレンスルフィド樹脂組成物及びそれを用いた成形品
WO2023074035A1 (ja) ポリアリーレンスルフィド樹脂組成物、成形品及びそれらの製造方法
WO2022215395A1 (ja) ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227045316

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022537961

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21846226

Country of ref document: EP

Kind code of ref document: A1