WO2022011773A1 - 一种自适应前照灯控制方法、终端设备及存储介质 - Google Patents

一种自适应前照灯控制方法、终端设备及存储介质 Download PDF

Info

Publication number
WO2022011773A1
WO2022011773A1 PCT/CN2020/109707 CN2020109707W WO2022011773A1 WO 2022011773 A1 WO2022011773 A1 WO 2022011773A1 CN 2020109707 W CN2020109707 W CN 2020109707W WO 2022011773 A1 WO2022011773 A1 WO 2022011773A1
Authority
WO
WIPO (PCT)
Prior art keywords
gradient
point
angle
vehicle
gradient point
Prior art date
Application number
PCT/CN2020/109707
Other languages
English (en)
French (fr)
Inventor
涂岩恺
罗腾元
Original Assignee
厦门雅迅网络股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门雅迅网络股份有限公司 filed Critical 厦门雅迅网络股份有限公司
Priority to US18/005,633 priority Critical patent/US20230271547A1/en
Priority to EP20944869.5A priority patent/EP4183628A4/en
Publication of WO2022011773A1 publication Critical patent/WO2022011773A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • B60Q1/085Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to special conditions, e.g. adverse weather, type of road, badly illuminated road signs or potential dangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • B60Q1/10Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution
    • B60Q1/115Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution by electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/10Indexing codes relating to particular vehicle conditions
    • B60Q2300/11Linear movements of the vehicle
    • B60Q2300/112Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/20Indexing codes relating to the driver or the passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/30Indexing codes relating to the vehicle environment
    • B60Q2300/32Road surface or travel path
    • B60Q2300/324Road inclination, e.g. uphill or downhill

Definitions

  • the invention relates to the field of vehicle intelligent control, in particular to an adaptive headlight control method, terminal equipment and storage medium.
  • Adaptive front lighting (AFS) technology requires changing the horizontal and vertical angles of illumination according to the vehicle environment.
  • the usual method is to adjust the horizontal headlight angle through the data collected by the steering wheel steering sensor, or adjust the vertical headlight angle through the body inclination sensor.
  • the sensor can only obtain the current state of the vehicle environment, and cannot obtain the data of the road environment in front of the vehicle, and has no predictability of the road ahead.
  • the most important thing for the lighting system is to ensure the brightness ahead, so the traditional control method cannot achieve the best effect.
  • the invention patent with the publication number CN201610915320.9 discloses that the environmental parameter information in or outside the target tunnel is obtained through a camera or a sensor, and corresponding driving control instructions are generated to control the lights, so as to achieve the purpose of safe driving.
  • cameras or sensors can only obtain environmental information in a short distance in front of the vehicle and within the field of view, and cannot obtain road environmental information completely outside the field of view in time, and its control is a simple switch control, which does not involve angle optimization.
  • the paper "Car AFS Analysis Based on Car Navigation Electronic Map” uses the navigation map to optimize the horizontal front illumination angle, which has good forward predictability.
  • ordinary navigation maps do not have road gradient information and have no optimization effect on vertical angle control.
  • the illumination angle is selected according to the gradient S of the current position of the vehicle.
  • the illumination angle is selected according to the slope S of the farthest position of the expected illumination, because there is a change in the slope with the current position of the vehicle, which leads to the fact that the expected position cannot be illuminated, and a blind spot appears.
  • the present invention provides an adaptive headlamp control method, a terminal device and a storage medium.
  • a self-adaptive headlight control method comprising: calculating a vertical adjustment angle to be adjusted for the self-adaptive headlight according to the gradient values of different slope points in front electronic horizon data, and using the vertical adjustment angle to adjust the self-adaptive headlight Adjust the illumination angle of the lamp.
  • the method for calculating the vertical adjustment angle to be adjusted by the adaptive headlamp is:
  • the difference of the field of view inclination angle of each gradient point in the safe line of sight relative to the current position of the vehicle is calculated;
  • the difference of the field of view inclination angle is the inclination angle of the field of view of the gradient point relative to the current position of the vehicle and the road inclination angle corresponding to the current position of the vehicle the absolute value of the difference;
  • the gradient points are screened in order from far to near, until the visual field inclination angle difference corresponding to all the gradient points between the filtered gradient point and the current position of the vehicle belongs to the lighting corresponding to the filtered gradient point. angle range;
  • the vertical adjustment angle of the adaptive headlamp is taken as the difference in the field of view inclination angle corresponding to the screened gradient points.
  • the safe sight distance is calculated and obtained according to the current speed of the vehicle and the reaction time of the driver.
  • the calculation method of the inclination angle of the field of view of each gradient point relative to the current position of the vehicle is:
  • w i represents the horizontal distance between the i-th gradient point to the i + 1-th gradient point
  • S i represents the slope gradient value of the i-th point
  • T i denotes the i-th gradient point to the i + 1-th The length of the road between slope points.
  • S i represents the gradient value of the i-th gradient point
  • T i represents the road length between the i-th gradient point and the i+1-th gradient point.
  • the method of screening the slope points in order from far to near is:
  • Step 1 Set the farthest slope point within the safe sight distance as the candidate slope point
  • Step 2 Calculate the lighting angle range of the to-be-selected gradient point, and determine whether there is a gradient point between the current position of the vehicle and the to-be-selected gradient point, which satisfies the angle of view difference of the gradient point within the range of the lighting angle of the to-be-selected gradient point In addition, if it exists, go to step 3; otherwise, use the to-be-selected gradient point as the selected gradient point;
  • Step 3 Set the next gradient point of the to-be-selected gradient point in the direction of the current position of the vehicle as the to-be-selected gradient point, and return to step 2.
  • the setting method of the lighting angle range is as follows: setting the angle difference of the field of view corresponding to the slope point as ⁇ ′ t , the maximum upward lighting angle of the adaptive headlight is T 1 , and the maximum downward lighting angle is T 2 , Then the illumination angle range corresponding to the gradient point is [ ⁇ ′ t -T 2 , ⁇ ′ t +T 1 ].
  • An adaptive headlight control terminal device comprising a processor, a memory, and a computer program stored in the memory and running on the processor, the processor implements the implementation of the present invention when the processor executes the computer program Example steps of the above method.
  • a computer-readable storage medium where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the steps of the foregoing method in the embodiment of the present invention.
  • the present invention adopts the above technical scheme, combined with the electronic horizon technology, provides the road gradient information outside the field of view for the control of the adaptive headlight, optimizes the vertical angle control, and can also prevent the simple angle control from causing the problem of the blind spot due to the gradient change.
  • Adaptive headlight control more adapted to sloping terrain.
  • FIG. 1 is a schematic diagram of the blind area caused by determining the vertical illumination angle according to the current slope S.
  • FIG. 2 is a schematic diagram of determining the blind area caused by the vertical illumination angle according to the slope S of the estimated illumination distance ahead.
  • FIG. 3 is a flowchart of Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram showing a blind area in the first embodiment.
  • the present invention provides an adaptive headlamp control method, which includes the following steps:
  • S1 Determine the safe line of sight D corresponding to the current position of the vehicle according to the current speed of the vehicle.
  • the driver's reaction time can be set by those skilled in the art based on experience, which is not limited here.
  • the gradient value corresponding to the i-th gradient point is set to S i
  • ⁇ i represents the i-th gradient
  • k represents the serial number of the slope point.
  • the angle difference ⁇ ′ i of the field of view at the current position of the vehicle is:
  • S4 Determine whether there is a gradient point S j , j ⁇ t, satisfying If it exists, it means that there is a lighting blind spot, as shown in FIG. 4 , go to S5; otherwise, go to S6.
  • the technical solution adopted in the first embodiment of the present invention can predict the situation of the road ahead according to the horizon data, and then adjust the illumination angle of the adaptive headlight, which not only overcomes the defect that the traditional camera or sensor is not forward-looking when obtaining the information of the road ahead , it can also adapt to the situation of complex slope road conditions; through dynamic adjustment, rather than by adjusting the fixed angle, the adjustment angle can be made more suitable, and the impact on other vehicles as little as possible (such as the adjustment angle is too large, may The effect of the high beam will be formed on the oncoming car, which affects the safety of the driver of the opposite oncoming car); further, this embodiment also solves the unsolved problem of blind spots in the field of vision in the prior art.
  • the lighting can be made as long as possible, and there is no blind spot, which can optimize the control and ensure the safety of the vehicle.
  • the above technical effect cannot be achieved by simply adjusting the fixed angle according to the gradient value.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the present invention also provides an adaptive headlight control terminal device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, when the processor executes the computer program.
  • the adaptive headlight control terminal device may be a computing device such as a vehicle-mounted computer and a cloud server.
  • the adaptive headlamp control terminal device may include, but is not limited to, a processor and a memory.
  • a processor and a memory.
  • the composition and structure of the above-mentioned adaptive headlamp control terminal device is only an example of the adaptive headlamp control terminal device, and does not constitute a limitation on the adaptive headlamp control terminal device.
  • the above-mentioned more or less components, or a combination of some components, or different components, for example, the adaptive headlight control terminal device may also include an input and output device, a network access device, a bus, etc., this embodiment of the present invention This is not limited.
  • the processor may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits ( Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the processor is the control center of the adaptive headlight control terminal equipment, and uses various interfaces and lines to connect the entire automatic control system. Adapt to various parts of the headlamp control terminal equipment.
  • the memory can be used to store the computer program and/or module, and the processor implements the self-report by running or executing the computer program and/or module stored in the memory and calling the data stored in the memory.
  • the memory may mainly include a stored program area and a stored data area, wherein the stored program area may store an operating system and an application program required for at least one function; the stored data area may store data created during the running of the program, and the like.
  • the memory may include high-speed random access memory, and may also include non-volatile memory such as hard disk, internal memory, plug-in hard disk, Smart Media Card (SMC), Secure Digital (SD) card , a flash card (Flash Card), at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • non-volatile memory such as hard disk, internal memory, plug-in hard disk, Smart Media Card (SMC), Secure Digital (SD) card , a flash card (Flash Card), at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the present invention further provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the foregoing method in the embodiment of the present invention are implemented.
  • modules/units integrated in the adaptive headlamp control terminal device are implemented in the form of software functional units and sold or used as independent products, they may be stored in a computer-readable storage medium.
  • the present invention can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a U disk, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM, ROM, Read-Only). Memory), random access memory (RAM, Random Access Memory), and software distribution media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

一种自适应前照灯控制方法、终端设备及存储介质,该方法包括:根据车辆当前车速确定车辆当前位置对应的安全视距;结合前方电子地平线数据计算安全视距内每个坡度点相对于车辆当前位置的视野倾斜角差;从安全视距内最远的坡度点开始从远到近依次筛选坡度点,直到筛选的坡度点与车辆当前位置之间的所有坡度点对应的视野倾斜角差均属于筛选的坡度点对应的照明角度范围;以该筛选的坡度点对应的视野倾斜角差作为自适应前照灯的竖直调整角进行照射角度调整。该自适应前照灯控制方法、终端设备及存储介质结合电子地平线技术,提供了视野外的道路坡度信息,优化了竖直角度控制,还能够防止简单角度控制因坡度变化引起照射盲区问题,更加适应坡度地形的自适应前照灯控制。

Description

一种自适应前照灯控制方法、终端设备及存储介质 技术领域
本发明涉及车辆智能控制领域,尤其涉及一种自适应前照灯控制方法、终端设备及存储介质。
背景技术
自适应前照灯(AFS)技术要求根据车辆环境改变照明的水平角度和竖直角度。通常的方法是通过方向盘转向传感器采集的数据来调整水平前照角度,或通过车身倾角传感器来调整竖直前照角度。但是传感器只能获得车辆环境的当前状态,无法获得车辆前方道路环境的数据,对前方道路情况没有预测性,而照明系统最重要的是要保证前方亮度,因此传统控制方法效果不能达到最佳。
公开号为CN201610915320.9的发明专利公开了通过摄像头或传感器获取目标隧道内或隧道外的环境参数信息,生成对应行车控制指令来控制灯光,实现安全行车目的。但是,摄像头或传感器只能获得车辆前方短距离、视野内的环境信息,无法及时获得完全在视野外的道路环境信息,且其控制为简单的开关控制,不涉及角度优化。论文《基于汽车导航电子地图的汽车AFS分析》利用导航地图来优化水平前照角度,具有很好的前方预测性。但普通导航地图不具道路坡度信息,对竖直角度控制没有优化效果。并且当地形为山坡地形时,如仅仅进行简单的角度控制还会出现因坡度变化引起的照射盲区问题,如图1是根据当前车辆所处位置的坡度S,选择照射角度,因为前方坡度变化而出现照射盲区;图2所示是根据预期照明最远处位置的坡度S,选择照射角度,因为和车辆当前位置之间有坡度变化,导致实际无法照射到预期位置,出现盲区。
发明内容
为解决上述问题,本发明提供一种自适应前照灯控制方法、终端设备及存储介质。
具体方案如下:
一种自适应前照灯控制方法,包括:根据前方电子地平线数据中不同坡度点的坡度值,计算自适应前照灯需调整的竖直调整角,以该竖直调整角对自适应前照灯进行照射角度调整。
进一步的,计算自适应前照灯需调整的竖直调整角的方法为:
根据车辆当前车速确定车辆当前位置对应的安全视距;
结合前方电子地平线数据计算安全视距内每个坡度点相对于车辆当前位置的视野倾斜角差;视野倾斜角差为坡度点相对于车辆当前位置的视野倾斜角与车辆当前位置对应的道路倾斜角的差值的绝对值;
从安全视距内最远的坡度点开始从远到近依次筛选坡度点,直到筛选的坡度点与车辆当前位置之间的所有坡度点对应的视野倾斜角差均属于筛选的坡度点对应的照明角度范围;
以筛选的坡度点对应的视野倾斜角差作为自适应前照灯的竖直调整角。
进一步的,安全视距根据车辆当前车速和司机反应时间计算获得。
进一步的,每个坡度点相对于车辆当前位置的视野倾斜角的计算方法为:
根据前方电子地平线数据获取该坡度点与车辆当前位置之间的所有坡度点的坡度值;
根据获取的所有坡度值和相邻两坡度点之间的道路长度,计算每个坡度点对应的与其下一个坡度点之间的水平距离和竖直距离;
将计算的所有坡度点的水平距离和竖直距离分别进行累加得到待计算坡度点与车辆当前位置之间的水平距离和竖直距离;
根据水平距离和竖直距离计算视野倾斜角。
进一步的,坡度点对应的与其下一个坡度点之间的水平距离的计算公式为:
Figure PCTCN2020109707-appb-000001
其中,w i表示第i个坡度点至第i+1个坡度点之间的水平距离,S i表示第i个坡度点的坡度值,T i表示第i个坡度点至第i+1个坡度点之间的道路长度。
进一步的,坡度点对应的与其下一个坡度点之间的竖直距离的计算公式为:
Figure PCTCN2020109707-appb-000002
其中,h i表示第i个坡度点至第i+1个坡度点之间的竖直距离,函数sign(S i)表示当S i≥0时sign(S i)=1,反之sign(S i)=-1,S i表示第i个坡度点的坡度值,T i表示第i个坡度点至第i+1个坡度点之间的道路长度。
进一步的,从安全视距内最远的坡度点开始从远到近依次筛选坡度点的方法为:
步骤一:设定安全视距内最远的坡度点作为待选坡度点;
步骤二:计算该待选坡度点的照明角度范围,并判断是否存在车辆当前位置与待选坡度点之间的坡度点,满足该坡度点的视野倾斜角差在待选坡度点的照明角度范围之外,如果存在,进入步骤三;否则,将该待选坡度点作为筛选的坡度点;
步骤三:设定该待选坡度点朝向车辆当前位置方向的下一坡度点作为待选坡度点,返回步骤二。
进一步的,照明角度范围的设定方法为:设定坡度点对应的视野倾斜角差为θ′ t,自适应前照灯灯光向上最大照明角度为T 1、向下最大照明角度为T 2,则该坡度点对应的照明角度范围为[θ′ t-T 2,θ′ t+T 1]。
一种自适应前照灯控制终端设备,包括处理器、存储器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本发明实施例上述的方法的步骤。
一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例上述的方法的步骤。
本发明采用如上技术方案,结合电子地平线技术,为自适应前照灯的控制提供视野外的道路坡度信息,优化了竖直角度控制,还可防止简单角度控制会因坡度变化引起照射盲区问题,更加适应坡度地形的自适应前照灯控制。
附图说明
图1所示为根据当前坡度S决定竖直照射角度造成的盲区的示意图。
图2所示为根据前方预计照射距离的坡度S,决定竖直照射角度造成的盲区的示意图。
图3所示为本发明实施例一的流程图。
图4所示为该实施例一中存在盲区的示意图。
具体实施方式
为进一步说明各实施例,本发明提供有附图。这些附图为本发明揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理。配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本发明的优点。
现结合附图和具体实施方式对本发明进一步说明。
实施例一:
参考图3所示,本发明提供了一种自适应前照灯控制方法,包括以下步骤:
S1:根据车辆当前车速确定车辆当前位置对应的安全视距D。
该实施例中通过车辆当前车速与司机反应时间的乘积计算得到安全视距D,比如司机反应时间为a秒,车速为v,则安全视距D=a*v。司机反应时间本领域技术人员可以根据经验自行设定,在此不做限制。
S2:计算车辆当前位置对应的安全视距内每个坡度点相对于车辆当前位置的视野倾斜角差θ′ i,具体计算过程为:
如图4所示,设定第i个坡度点对应的坡度值为S i,下标i表示坡度点的序号,i=1,2,3,....,θ i表示第i个坡度点对应的道路与水平面的夹角,则车辆从第i个坡度点行驶至第i+1个坡度点时,对应的坡度值为电子地平线数据中第i个坡度点的坡度值,tanθ i=S i
从图4中可以得出:
Figure PCTCN2020109707-appb-000003
Figure PCTCN2020109707-appb-000004
因此,
Figure PCTCN2020109707-appb-000005
则:
Figure PCTCN2020109707-appb-000006
求解得:
Figure PCTCN2020109707-appb-000007
其中,函数sign(S i)表示当S i≥0时sign(S i)=1,表示上坡,反之sign(S i) =-1表示下坡;w i表示第i个坡度点至第i+1个坡度点之间的水平距离,h i表示第i个坡度点至第i+1个坡度点之间的竖直距离,T i表示第i个坡度点至第i+1个坡度点之间的道路长度。
由于
Figure PCTCN2020109707-appb-000008
因此,将式(5)代入式(6)可得:
Figure PCTCN2020109707-appb-000009
至此,第i个坡度点对应的h i和w i均以求解完成。
则将第i个坡度点之前的所有坡度点对应的h k和w k值累加,即可得到第i个坡度点与车辆当前位置之间连线与水平方向的夹角,即第i个坡度点的视野倾斜角θ i为:
Figure PCTCN2020109707-appb-000010
其中,k表示坡度点的序号。
由于车辆当前位置也具有坡度值,设为S c,因此,车辆当前位置对应的道路倾斜角θ c为:θ c=arcsinS c,则车辆当前位置对应的安全视距内第i个坡度点相对于车辆当前位置的视野倾斜角差θ′ i为:
θ′ i=|θ ic|
S3:设定车辆当前位置对应的安全视距内第t个坡度点为安全视距内最远的坡度点,对应的坡度值为S t,其对应的视野倾斜角差为θ′ t,设定AFS灯光向上最大照明角度为T 1、向下最大照明角度为T 2,则该坡度点对应的照明角度范围为[θ′ t-T 2,θ′ t+T 1]。
S4:判断是否存在坡度点S j,j<t,满足
Figure PCTCN2020109707-appb-000011
如果存在,则表示存在照明盲区,如图4所示,进入S5;否则,进入S6。
S5:令t=t-1,返回S4。
S6:将第t个坡度点对应的视野倾斜角差θ′ t作为自适应前照灯的竖直调整角,对自适应前照灯进行照射角度调整。
本发明实施例一采用的技术方案可以根据地平线数据预测前方道路的情况,进而对自适应前照灯的照射角度进行调整,其不仅克服了传统摄像头或传感器获取前方道路信息时无前瞻性的缺陷,还可以适应复杂坡度路况时的情况;通过动态调整的方式,而不是通过调整固定角度的方式,可以使调整的角度更加的合适,尽可能小的影响其他车辆(如调整角度过大,可能会对对面来车形成远光灯的效果,影响对面来车司机的安全性);进一步的,本实施例还解决了现有技术中未解决的视野盲区问题,通过上述选取的角度进行调整,可以使得照明尽可能长,并且不存在盲区,起到优化控制,保证车辆安全性的作用。上述技术效果不是仅仅根据坡度值进行简单的固定角度调整能够实现的。
实施例二:
本发明还提供一种自适应前照灯控制终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本发明实施例一的上述方法实施例中的步骤。
进一步地,作为一个可执行方案,所述自适应前照灯控制终端设备可以是车载电脑、云端服务器等计算设备。所述自适应前照灯控制终端设备可包括,但不仅限于,处理器、存储器。本领域技术人员可以理解,上述自适应前照灯控制终端设备的组成结构仅仅是自适应前照灯控制终端设备的示例,并不构成对自适应前照灯控制终端设备的限定,可以包括比上述更多或更少的部件,或 者组合某些部件,或者不同的部件,例如所述自适应前照灯控制终端设备还可以包括输入输出设备、网络接入设备、总线等,本发明实施例对此不做限定。
进一步地,作为一个可执行方案,所称处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器是所述自适应前照灯控制终端设备的控制中心,利用各种接口和线路连接整个自适应前照灯控制终端设备的各个部分。
所述存储器可用于存储所述计算机程序和/或模块,所述处理器通过运行或执行存储在所述存储器内的计算机程序和/或模块,以及调用存储在存储器内的数据,实现所述自适应前照灯控制终端设备的各种功能。所述存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储程序的运行过程中所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
本发明还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例上述方法的步骤。
所述自适应前照灯控制终端设备集成的模块/单元如果以软件功能单元的形 式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)以及软件分发介质等。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

Claims (10)

  1. 一种自适应前照灯控制方法,其特征在于,包括:
    根据前方电子地平线数据中不同坡度点的坡度值,计算自适应前照灯需调整的竖直调整角,以该竖直调整角对自适应前照灯进行照射角度调整。
  2. 根据权利要求1所述的方法,其特征在于:计算自适应前照灯需调整的竖直调整角的方法为:
    根据车辆当前车速确定车辆当前位置对应的安全视距;
    结合前方电子地平线数据计算安全视距内每个坡度点相对于车辆当前位置的视野倾斜角差;视野倾斜角差为坡度点相对于车辆当前位置的视野倾斜角与车辆当前位置对应的道路倾斜角的差值的绝对值;
    从安全视距内最远的坡度点开始从远到近依次筛选坡度点,直到筛选的坡度点与车辆当前位置之间的所有坡度点对应的视野倾斜角差均属于筛选的坡度点对应的照明角度范围;
    以筛选的坡度点对应的视野倾斜角差作为自适应前照灯的竖直调整角。
  3. 根据权利要求2所述的方法,其特征在于:安全视距根据车辆当前车速和司机反应时间计算获得。
  4. 根据权利要求2所述的方法,其特征在于:每个坡度点相对于车辆当前位置的视野倾斜角的计算方法为:
    根据前方电子地平线数据获取该坡度点与车辆当前位置之间的所有坡度点的坡度值;
    根据获取的所有坡度值和相邻两坡度点之间的道路长度,计算每个坡度点对应的与其下一个坡度点之间的水平距离和竖直距离;
    将计算的所有坡度点的水平距离和竖直距离分别进行累加得到待计算坡度 点与车辆当前位置之间的水平距离和竖直距离;
    根据水平距离和竖直距离计算视野倾斜角。
  5. 根据权利要求4所述的方法,其特征在于:坡度点对应的与其下一个坡度点之间的水平距离的计算公式为:
    Figure PCTCN2020109707-appb-100001
    其中,w i表示第i个坡度点至第i+1个坡度点之间的水平距离,S i表示第i个坡度点的坡度值,T i表示第i个坡度点至第i+1个坡度点之间的道路长度。
  6. 根据权利要求4所述的方法,其特征在于:坡度点对应的与其下一个坡度点之间的竖直距离的计算公式为:
    Figure PCTCN2020109707-appb-100002
    其中,h i表示第i个坡度点至第i+1个坡度点之间的竖直距离,函数sign(S i)表示当S i≥0时sign(S i)=1,反之sign(S i)=-1,S i表示第i个坡度点的坡度值,T i表示第i个坡度点至第i+1个坡度点之间的道路长度。
  7. 根据权利要求2所述的方法,其特征在于:从安全视距内最远的坡度点开始从远到近依次筛选坡度点的方法为:
    步骤一:设定安全视距内最远的坡度点作为待选坡度点;
    步骤二:计算该待选坡度点的照明角度范围,并判断是否存在车辆当前位置与待选坡度点之间的坡度点,满足该坡度点的视野倾斜角差在待选坡度点的照明角度范围之外,如果存在,进入步骤三;否则,将该待选坡度点作为筛选的坡度点;
    步骤三:设定该待选坡度点朝向车辆当前位置方向的下一坡度点作为待选 坡度点,返回步骤二。
  8. 根据权利要求2所述的方法,其特征在于:照明角度范围的设定方法为:设定坡度点对应的视野倾斜角差为θ′ t,自适应前照灯灯光向上最大照明角度为T 1、向下最大照明角度为T 2,则该坡度点对应的照明角度范围为[θ′ t-T 2,θ′ t+T 1]。
  9. 一种自适应前照灯控制终端设备,其特征在于:包括处理器、存储器以及存储在所述存储器中并在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1~8中任一所述方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1~8中任一所述方法的步骤。
PCT/CN2020/109707 2020-07-15 2020-08-18 一种自适应前照灯控制方法、终端设备及存储介质 WO2022011773A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/005,633 US20230271547A1 (en) 2020-07-15 2020-08-18 Adaptive front-lighting system control method and terminal device, and storage medium
EP20944869.5A EP4183628A4 (en) 2020-07-15 2020-08-18 ADAPTIVE HEADLIGHT CONTROL METHOD AND TERMINAL DEVICE AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010678057.2A CN113942445A (zh) 2020-07-15 2020-07-15 一种自适应前照灯控制方法、终端设备及存储介质
CN202010678057.2 2020-07-15

Publications (1)

Publication Number Publication Date
WO2022011773A1 true WO2022011773A1 (zh) 2022-01-20

Family

ID=79326286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109707 WO2022011773A1 (zh) 2020-07-15 2020-08-18 一种自适应前照灯控制方法、终端设备及存储介质

Country Status (4)

Country Link
US (1) US20230271547A1 (zh)
EP (1) EP4183628A4 (zh)
CN (1) CN113942445A (zh)
WO (1) WO2022011773A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117656985B (zh) * 2024-01-31 2024-04-02 成都赛力斯科技有限公司 一种车辆灯光控制方法、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130115865A (ko) * 2012-04-13 2013-10-22 현대모비스 주식회사 자동차의 헤드램프 제어방법
CN103692955A (zh) * 2013-12-16 2014-04-02 中国科学院深圳先进技术研究院 一种基于云端计算的智能车灯控制方法
CN104175945A (zh) * 2014-09-03 2014-12-03 苏州佳世达光电有限公司 一种车灯角度调整方法及车灯角度调整系统
CN105835754A (zh) * 2016-02-22 2016-08-10 北京工业大学 一种红外感知路面起伏的主动调节前照灯俯仰角控制装置
CN106032126A (zh) * 2015-03-13 2016-10-19 厦门歌乐电子企业有限公司 一种控制前照灯的装置及方法
CN109760583A (zh) * 2019-01-31 2019-05-17 武汉理工大学 基于闭环控制的自适应坡道的车辆照明装置及其控制方法
CN110893853A (zh) * 2018-08-23 2020-03-20 厦门雅迅网络股份有限公司 一种基于前方坡度信息的车辆控制方法以及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004006133B4 (de) * 2004-02-07 2006-11-23 Bayerische Motoren Werke Ag Vorrichtung zur Leuchtweitenregulierung eines Kraftfahrzeugs
JP2014125147A (ja) * 2012-12-27 2014-07-07 Daihatsu Motor Co Ltd 車両のヘッドランプの光軸制御装置
JP2018193027A (ja) * 2017-05-22 2018-12-06 スタンレー電気株式会社 前照灯の光軸制御システム及び光軸制御方法、並びに車両、光軸制御プログラム
CN111301348B (zh) * 2019-12-31 2022-04-08 厦门雅迅网络股份有限公司 基于电子地平线的雨刷控制方法、终端设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130115865A (ko) * 2012-04-13 2013-10-22 현대모비스 주식회사 자동차의 헤드램프 제어방법
CN103692955A (zh) * 2013-12-16 2014-04-02 中国科学院深圳先进技术研究院 一种基于云端计算的智能车灯控制方法
CN104175945A (zh) * 2014-09-03 2014-12-03 苏州佳世达光电有限公司 一种车灯角度调整方法及车灯角度调整系统
CN106032126A (zh) * 2015-03-13 2016-10-19 厦门歌乐电子企业有限公司 一种控制前照灯的装置及方法
CN105835754A (zh) * 2016-02-22 2016-08-10 北京工业大学 一种红外感知路面起伏的主动调节前照灯俯仰角控制装置
CN110893853A (zh) * 2018-08-23 2020-03-20 厦门雅迅网络股份有限公司 一种基于前方坡度信息的车辆控制方法以及系统
CN109760583A (zh) * 2019-01-31 2019-05-17 武汉理工大学 基于闭环控制的自适应坡道的车辆照明装置及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4183628A4

Also Published As

Publication number Publication date
EP4183628A1 (en) 2023-05-24
CN113942445A (zh) 2022-01-18
US20230271547A1 (en) 2023-08-31
EP4183628A4 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
US8768576B2 (en) Undazzled-area map product, and system for determining whether to dazzle person using the same
JP6657925B2 (ja) 車載カメラ・システム並びに画像処理装置
JP5809785B2 (ja) 車両用外界認識装置およびそれを用いた配光制御システム
US11373532B2 (en) Pothole detection system
US20210042955A1 (en) Distance estimation apparatus and operating method thereof
JP2008211410A (ja) 車載用画像認識装置及び配光制御装置、並びに配光制御方法
CN111284482A (zh) 用于控制车辆行驶的装置、具有该装置的系统以及用于控制车辆行驶的方法
JP4980970B2 (ja) 撮像手段の調整装置および物体検出装置
WO2016194296A1 (en) In-vehicle camera system and image processing apparatus
CN113135183A (zh) 车辆的控制系统、车辆的控制系统的控制方法、车辆以及计算机可读记录介质
WO2022011773A1 (zh) 一种自适应前照灯控制方法、终端设备及存储介质
JP7081444B2 (ja) 車両制御システム
WO2022142354A1 (zh) 车辆及其前照灯调节装置、方法
JP2011253222A (ja) 前方領域検出装置及び車両制御装置
CN110877517B (zh) 一种防止远光灯强光刺激的方法、终端设备及存储介质
JP2013209034A (ja) 車両検出装置
JP4798182B2 (ja) 眩惑検出装置、眩惑検出プログラム、および前照灯制御装置
JP6151569B2 (ja) 周囲環境判定装置
JP2018127135A (ja) 車両用照明の制御方法及び車両用照明の制御装置
CN113212292A (zh) 车辆的控制方法及装置、车载设备、车辆、介质
JP2021146897A (ja) ヘッドライト制御装置
JP2019219816A (ja) 画像処理装置および車両用灯具
JP6125975B2 (ja) ピッチ角検出装置及びピッチ角検出方法
JP2019202656A (ja) 車両用灯具の制御装置、車両用灯具の制御方法、車両用灯具システム
JP7378673B2 (ja) 前照灯制御装置、前照灯制御システム、及び前照灯制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020944869

Country of ref document: EP

Effective date: 20230215